

Close-Kin Mark-Recapture: overview for WCPFC

Mark Bravington, CSIRO: Sep 2021

Close-Kin Mark-Recapture-- overview

CKMR delivers:

absolute abundance natural mortality (M) and more without relying on problematic data eg CPUE just with biopsies from small % of catch

One-time "ground-truth"... and/or integrate with conventional data in ongoing assessment & management This first talk:

- 1. How it works
- 2. Examples brief
- 3. Requirements
- 4. Spatial issues brief
- 5. Comparison / summary

Can give more detail in subsequent talks

Biopsies from juves & adults (dead is OK) over a few years Some idea about age/sizes

Two "assumptions":

1. At birth, everything had 1 living mother and 1 living father

2. Reliably find *Parent-Offspring-Pairs* and *Half-Sibling-Pairs* with genetics

ie 2 animals with same mum or dad

Biopsies from juves & adults (dead is OK) over a few years Some idea about age/sizes

* Not necessarily very young

Direct recapture (POPs)

... but ...

mortality, time-gaps, growth / fecundity **also** affect prob so there is no simple formula for "estimated N"

Sample adults and juves

- ... genotype them ...
- ... look for POPs ("marks")

- Each adult-juve comparison:
 Prob[POP] =2/N_{adult}
- Sample 6 juves & 4 adults
 - 24 pairwise comparisons
 - 3 POPs found

- Each adult-juve comparison:
 Prob[POP] =2/N_{adult}
- Sample 6 juves & 4 adults
 - 24 pairwise comparisons
 - 3 POPs found
- 24 * 2/N_{adult} gives 3
- Estimate of N_{adult} is 16
 - ... which happens to be the right answer. Lucky !

Mortality rate from XHSPs

XHSP: Cross-cohort Half-Sib Pair--- same mother or same father

Mortality rate from XHSPs

This still needs *adjustment* before you have Z

Relative Fecundity from POPs

SBTuna:2017 data, from fitted modelCurve for \mathcal{J} is similar

I really should do a better "empirical" graph for this !

Putting it all together

- Several cohorts / years / ages
- Lots of comparisons
- Different prob formulae
- More parameters than just "N"
- Need to fit pop dyn model as for normal stock assessment
- not just "one index per year"

POPs =>

HSPs =>

Z = F + M =

N Z

Catch/N + M

& rel fec-at-age/size

Putting it all together

- Several cohorts / years / ages
- Lots of comparisons
- Different prob formulae
- More parameters than just "N"
- Need to fit pop dyn model as for normal stock assessment
- not just "one index per year"

POPs	=>	Ν	& rel fec-at-age/size
HSPs	=>	Z	
Z = F + M	=	Catch/N + N	N

NB: you get *average* M across adults NB: no (direct) info on *juvenile* M or N NB more complex in practice because of adult growth

CKMR Examples

Commercial	"Complete"	WFC21 talk
SBTuna	2013	Hillary
	2017	
School Shark	2019	Thomson
Thornback Ray	2021	
Trenkel@ IFREMER		
WABTuna	2021	Walter
CSIRO+NOAA		

Breed'n'die	Complete	
Chinook	2014	
Rawding@WDFW		

"Conservation"	"Complete"	
White Shark * 2	2017	
Glyphis glyphis * 2+	2018	
G. garrickii	2018	
Grey Nurse Shark	2018	
Brook Trout	2019	
Ruzzante@Dalhousie		

Publications...

so much to do, so little time

ARTICLE Received 17 Nov 2015 Accepted 8 Sep 2016 | Published 14 Nev 2016 DOI: 10.1031/100mm13312 OPEN

Absolute abundance of southern bluefin tuna estimated by close-kin mark-recapture

Mark V. Bravington¹, Peter M. Grewe¹ & Campbell R. Davies¹

OPEN Genetic relatedness reveals total population size of white sharks in eastern Australia and New Zealand

R. M. Hillary¹, M. V. Bravington², T. A. Patterson³, P. Grewe¹, R. Bradford², P. Feutry¹, R. Gunasekera², V. Peddemors³, J. Werry¹, M. P. Francis⁴, C. A. J. Duffy² & B. D. Bruce¹ Accepted 10 January 2018

Close-Kin Mark-Recapture

Mark V. Bravington, Hans J. Skaug and Eric C. Anderson

Abstance Music suspenses (MD) matheds are some Methods in Ecology and Evolution

Received 19 June 2017

hibble of

Validation of close-kin mark-recapture (CKMR) methods for estimating population abundance

Daniel E. Ruzzante 🕰 Gregory R. McCracken, Brage Førland, John MacMillan, Buhariwalla, Joanna Mills Flemming, Hans Skaug,

CSIRO

First published: 18 June 2019 | https://doi.org/10.1111/2041-210X.13243 | (

SBT: more details in other talks...

By 2021: nearing 30,000 samples, 100 POPs, 200 HSPs

CKMR requirements

At least 50 POPs/XHSPs to get a precise "N"... but not just "how many"

CKMR requirements

At least 50 POPs/XHSPs to get a precise "N"... but not just "how many"

- Adequate numbers of juveniles^{*}, and of all sizes of adults

- to get adequate POPs and XHSPs

- Total sample size: "constant" * sqrt(N_{adult})
- Adequate number of juvenile cohorts
- Adequate spatial spread
- Adequate precision on age estimates
- careful design what is "adequate"? and execution

not actually constant!

* Not necessarily very young

CKMR design is...

"simulation" to work out cheapest sample size/composition/etc for useful precision

Epigenetic age

Biggest CKMR headaches so far : poor age / length data

- CKMR needs *some* idea about age
- For young fish, length alone may be fine...
- ... but not for older fish

Epigenetic age

Biggest CKMR headaches so far : poor age / length data

- CKMR needs some idea about age
- For young fish, length alone may be fine...
- ... but not for older fish
- 2020+: can estimate age just from DNA in biopsies
 - google Mayne lungfish age
- Easy setup; low unit cost:
- Needs calibrating per species
- so, large-scale otolith collection not needed for CKMR

less than genotyping

precision varies; that's OK

Genetics and kin-finding

- All thanks to massive progress in genotyping in last ~6 years

- nothing to do with fish!

- With modern genetics (1000s of *high-quality* SNPs) it is no great problem to *reliably* find POPs and HSPs
- Routine, and inexpensive per sample at least if you do it *exactly* the way we do at CSIRO, via DArT ...

- ie, high-read-depth ddRAD with "capture-probes/baits"

Spatial population structure

"Usually" it's not very important for CKMR

- at least in marine species
- mixing is *much* better than MR
- no need for synoptic coverage, a la CPUE

But it *can* matter... even when *not* heritable

- Spread your sampling
- Look for spatial pattern in the kin-pairs
- Direct info on demographic connectivity
- if you do find it, can usually fix up the model

Connectivity

Conventional population genetics will often *not* reveal demographically important substructure...

Thornback rays, Bay of Biscay

Trenkel et al. 2020/1

Inshore / offshore:

no difference in allele freqs

Connectivity

Conventional population genetics will often *not* reveal demographically important substructure...

Thornback rays, Bay o	of Biscay	Trenkel et al. 2020/	1
Inshore / offshore:	no difference in allele freqs		
	POPs		
ln/ln	In/Off	Off/Off	
25	0	73	

... but CKMR always will

provided you sample widely and well enough

Hypothetical bad mixing: extreme case

no POPs: "abundance must be HUGE" **x** at least the HSPs will *tell* you it's wrong!

Hypothetical bad mixing: extreme case

no POPs: "abundance must be HUGE" **x** at least the HSPs will *tell* you it's wrong!

- So: spatial structure + poor sampling can be a problem
- Watch out when *all* sampling is linked to spawning grounds
- But: if *either* adult *or* juve samples are "well-mixed": then you are basically OK
- Try to sample "everywhere" if poss but doesn't need to be "evenly"

Spatial CKMR: degree-of-difficulty IMO...

SBTuna: easy W ABTuna:

pretty easy

PBTuna:

do-able with *right* sampling

harder E ABTuna (Med): (discrete spawning sites; most sampling is at those sites) but do-able with care

Rabbits:

Abalone:

probably not! forget it!

Spatial CKMR: degree-of-difficulty IMO...

SBTuna: W ABTuna: easy pretty easy

"Tropical" tunas ? fine, if samples are spread ?

PBTuna:

do-able with *right* sampling

E ABTuna (Med): harder (discrete spawning sites; most sampling is at those sites) but do-able with care

Rabbits:

Abalone:

probably not! forget it!

CKMR: what could possibly go wrong..?

Most pitfalls are *logistics* as long as sampling is *designed carefully*

- CKMR needs a **team**
 - biology / sampling
 - genetics
 - modelling / stats

It **all** has to work for **any** of it to be useful...

CKMR Summary & comparisons

Absolute abundance and *M* from biopsy small % of catch over few years - NB direct info only about adults, not juves

Integrate into assessment and/or as standalone ground-truth

No CPUE-linked assumptions

& no relative/absolute drama

Unlike conventional MR, CKMR:

- no live relea\$e
- no reporting rate issues
- better mixing
- directly addresses "connectivity/structure"

Widely applicable incl. tunas & many sharks

- "just" a matter of logistics ..?

Acknowledgements

