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1 Executive Summary

1.1 Scope of work

This paper describes the updated reference model for Pacific bigeye tuna spatiotemporal
dynamics as a result of integration of catch, length and tagging data into the SEAPODYM
model to inform model parameters.

1.2 Key Outcomes
SC17 is advised of the following:

1. A next generation (NG) reference model has been prepared for Pacific bigeye tuna
describing its spatiotemporal dynamics as a result of integration of catch, length
and tagging data into the SEAPODYM model to estimate model parameters.

2. The inclusion of the tagging data estimates habitats and movement rates that are
quite different from those estimated from fisheries data alone.

3. The NG reference model simulates reasonably well the observed distributions of tag
recapture, which the previous bigeye reference model failed to do.

4. It (in comparison to previous reference models) predicts the spatial structure of
bigeye that is more consistent with the distribution of catch data (Fig. 1). It
provides better fits to major longline fisheries targeting bigeye and better or similar
fit to the purse-seine fleet data.

1.3 Report details

The bigeye stock dynamics is described by a next generation SEAPODYM optimisation
with parameter estimation based on catch, length and tagging data. The report provides
a detailed technical summary of the work completed together with revised parameter
estimates and relevant model diagnostics.

The development of the NG reference model was split in four major phases including
i) global sensitivity analysis, ii) a parameter estimation from conventional tagging data
only iii) update of historical fisheries data with structure adapted for SEAPODYM, and
iv) optimisation study with full likelihood.

A global sensitivity analysis was performed for each type of data that is used in
the parameter estimation. The results showed that catch and effort data mostly inform
the model on reproduction and mortality processes, while length frequency data con-
trol the recruitment. Model parameters controlling movement rates are also observable
from fisheries data, however integration of tagging data in the likelihood enhances this
observability.

A comprehensive optimization study with the full likelihood was undertaken to min-
imize the biases due to fixed (model and forcing) parameters and to achieve the MLE
solution characterized by biologically meaningful parameters, model validity for the in-
dependent datasets, prediction of the fish stock with the spatiotemporal structure that
sustains fishing pressure and describes best the catch and length frequency data variabil-
ity and observed distributions of tag recaptures.
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Figure 1: Biomass density of adult bigeye (in mt/km?) predicted by CL and CLT models.
The circles indicate positions of 5-degree cells with aggregated catch of selected fisheries.
Note that fisheries are selected based on the mean length in catches estimated in each
model. It is considered that fishery is targeting more adult tuna if the mean length in
catches is higher than the those corresponding to the age at 50% maturity.

1.4 Remaining Actions

The following sources of uncertainty in the obtained model results need to be verified in
further work:

1. The estimation of stock-recruitment and mortality parameters through extending
the time period in optimisation runs;

2. The impact of the chosen primary production model on the MLE solution;
3. The role of climatological oxygen in the habitat and movement estimations;
4. The estimation of parameters describing the early life stages dynamics;

5. The degradation method of environmental forcing data.

1.5 Acknowledgments
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to Olivier Titaud from CLS for sharing the integrated 2D fields of physical variables and
satellite-derived primary production. We are thankful also to Marc Ghergariu from SPC
for providing consolidated tagging dataset including information from various tagging
campaigns and data reliability flag. The Inter American Tropical Tuna Commission has
provided access to non-public domain data for the purposes of progressing the work
programme of the WCPFC-SC. This work is supported by Pacific Community under a
contract agreement between CLS and SPC.



2 Introduction

SEAPODYM is a numerical model developed for investigating population dynamics of tu-
nas under the influence of environment and fishing. The underlying continuous equations
of SEAPODYM are classical advection-diffusion-reaction equations with ageing term,
describing the population dynamics in time, age and two-dimensional space. The quanti-
tative modelling of tuna population dynamics with SEAPODYM has been continuously
improving, including development of reference models that integrate fisheries catch and
length data for Pacific Ocean populations of skipjack, yellowfin, bigeye and South Pacific
albacore.

Besides complete geo-referenced fisheries datasets for a given species, the ‘next-generation’
of SEAPODYM reference models include integration of tagging data in the likelihood es-
timation approach, implementation of robust statistical methods for global sensitivity
analysis and cost function profiling, enhanced algorithm of the fisheries data use within
likelihood function and complete validation on independent data sets. This leads to better
estimates of both stock size and stock spatial structure (Senina et al. 2020). Next gener-
ation reference model have been completed for the Pacific Ocean populations of skipjack
and South Pacific albacore.

This Information Paper describes the developed “next-generation” reference model
for Pacific bigeye tuna (Thunnus obesus). The previous reference model constrained by
fisheries data only was presented in Senina et al. (2018, 2020). Here we report the main
results from updated reference model and demonstrate how integrating tagging dataset
influences the model parameters and allows improving model consistency with the data.
In particular, we present the results of comprehensive sensitivity analysis based on an
ensemble of &~ 0.65 - 10° simulations preformed with 1) the reference model configuration
evaluating separately catch and length-frequency likelihoods and 2) the model of tag
dynamics with conventional tagging data in the likelihood 3) LF likelihoods and fisheries
selectivity parameters. Then, we present the results of the optimization study performed
with the full-likelihood, CLT, model. Finally we evaluate the fit and validate the CLT
model using catch, length and tagging data. To do the latter, we use independent tagging
data, and validate three optimal solutions of: 1) the previous CL reference model, 2)
the model of tag movement integrating 6 years of tag recaptures and 3) the CLT model
integrating 7 years of tag recaptures. The results of this study are discussed, highlighting
both the improvement and deficiencies and suggesting the next steps aimed at improving
the new reference model.

3 Data

3.1 Update of bigeye tuna fisheries data

The new structure of SEAPODYM fisheries for bigeye tuna is provided in Table 1. A
fishery in SEAPODYM is defined by the homogeneous fishing catchability and selectiv-
ity, unique fishing gear, having the same target species and fishing strategy. To achieve
this, the long-line fleet data were processed individually and split into bigeye, yellowfin
and albacore target "fleets” depending on the proportions of each species in the total
catch. Then the fleet data were aggregated into fisheries by similar statistical properties



of the CPUE derived from effort-and-catch (EC) dataset and of the length frequency
(LF) distribution in the same area (L1, L2, L3, L4, L.7). Long-line fisheries with hetero-
geneous CPUE but similar LF properties were aggregated to so-called ’dummy’ fisheries,
accounted in the model without fishing effort and catchability using catch removal method
(L6, L8 - L11). For purse-seine fleets, the statistical properties of catch and length fre-
quency were computed by the school type: unassociated, log, drifting or anchored FADs,
animal association. Then the fleets with the best data coverage in both, EC and LF,
datasets were selected to be used for fishing mortality and catch prediction based on
fishing effort (S12, S14, S15, S17). The other fleets with same school type and similar se-
lectivity were aggregated to ’dummy’ fisheries (S13, S16, S18). All pole-and-line catches,
which can be considered rare and accidental for bigeye, were combined into fishery P19.
The mixed-gear domestic fisheries of Indonesia, Philippines and Vietnam were combined
into 020 fishery.

All longline catch and effort fishing data are available at a resolution of 5° x 5° x
month while for surface gears (purse seine and pole-and-line) the resolution is 1° x 1°
x month, excepted for Philippine and Indonesia fisheries. Size frequency data are at a
resolution of 5° x 5°, 5° x 10° and 10° x 20°. A screening for the outliers based on the
CPUE variance in 5° was performed with the aim to detect and correct incidental and
erroneous fishing effort. Finally, we checked that the geo-referenced catch dataset for the
Pacific fisheries matches closely the total landings declared by countries (Fig. 2).

As seen on Fig. 2 and Fig. 3) providing the overview of spatial distribution of catches
in the two previous decades, there was a persistent decline in long-line catches since
the beginning of 2000, moreover, the surface gears extended towards the central tropical
Pacific Ocean, resulting in higher catches in this area and the decline in the EPO.

3.2 Conventional tagging data

Conventional tagging data are integrated into the optimization method in SEAPODYM
essentially to improve the estimates of habitat and movement parameters that are critical
to control the overall population dynamics. The approach considers only fish that have
been recaptured, as these are the only data that contain information about potential
movement (for details, see 5.2). Tags are aggregated into groups by their common time
(month, quarter) of recapture. The groups of tags were defined using compiled tagging
datasets provided by SPC and [ATTC from different tuna tagging programs between
1967 and 2019, which contains 18735 records on released and recaptured bigeye. Note
that 99% of all records in this dataset occur between 2000 and 2017, with only 23 released
bigeye before 2000 and 39 after 2017. Besides, 38% of 2000-2017 tag recaptures occurred
before 2008 and 57% were recaptured between 2008 and 2013. In 2012 number of releases
dropped and from 2014 the number of recaptured bigeye started to decline rapidly. For
more details on tagging programs see [SPC-OFP]. The tagging data temporal coverage
and the distribution in terms of mean length and time at liberty are illustrated in Fig. 4.
Two characteristic periods with massive tagging of bigeye can be selected within 2000-
2013 time range, clearly distinguished by the length of released tunas, the positions of
release and the distributions of recaptures. During the first one, from early 2000 to mid-
2007, the mean length of bigeye at release was 77 cm, they were mostly tagged at three
release position around equator at 95°W longitude and a few dozens of tunas were tagged



and recaptured in the warm pool area. During the second period, from mid-2007 to the
end of 2013, much smaller bigeye, 56 cm on average, were tagged extending the area of
release towards central Pacific Ocean. The maps and the data statistics are depicted in
Fig. 4, the red and blue lines corresponding to the first and the second tagging periods
respectively.

Unfortunately, neither sub-set of conventional data represents the whole population,
but essentially the juvenile fish that are associated to surface schools and caught with
surface gears. First, juvenile and immature bigeye tunas were tagged and released primar-
ily in six lon-lat positions along the equator, three in the western and central equatorial
region and three in the EPO. Multiple minor releases were done all over the warm pool
area. Second, 89% of all tagged and recaptured tunas are recaptured before one year of
liberty at sea, 10% between one and two years and only 1% more than two years. In
consequence, with size at 50% maturity being 115 c¢cm, the majority (93%) of recaptures
are still immature tunas. As a consequence, observing only part of the population may
present difficulties for estimating model parameters, in particular those responsible for
dynamics of an unobserved fraction of a population.

For the purposes of reducing computational costs and integrating maximum infor-
mation to inform dynamics processes through all model dimensions, the second sub-set
of recaptures, from July 2008 to June 2014, constituting about 50% of the dataset was
used in the present work in order to estimate model parameters, while the first one, with
recaptures from May 2000 to June 2007, was left for validation.

3.3 Environmental forcing

SEAPODYM uses ocean physical (temperature and horizontal currents) and biogeochem-
ical (primary production, euphotic depth and dissolved oxygen concentration) variables.
Physical variables are provided by ocean general circulation models (OGCM), either from
hindcast simulations or reanalyses. They both provide the same outputs but in the first
case the ocean model is forced by atmospheric variables only. In reanalyses, the simula-
tion assimilates observations of oceanic variables (e.g. Argo profilers, satellite sea surface
temperature and altimetry) to produce more realistic circulation patterns, especially at
mesoscale resolution. Primary production and euphotic depth can be simulated by a bio-
geochemical model coupled to the physical model or estimated from satellite ocean colour,
solar radiation and sea surface temperature data [Behrenfeld and Falkowski, 1997]. The
euphotic depth is used for averaging the physical data and the dissolved oxygen concen-
tration data over three vertical layers representing i) the epipelagic layer, between the
surface and 1.5 the euphotic depth; ii) the upper mesopelagic layer, between 1.5 and 4.5
the euphotic depth; and iii) the lower mesopelagic layer, between 4.5 and max[1000m;
7.5 euphotic depth]. Dissolved oxygen concentration is provided by most biogeochemical
(BGCH) models. However, in the case when the BGCH model was not coupled with
the physical model, providing forcing variables to SEAPODYM, a monthly climatology
based on all available observations can be also used, although in that case, it cannot
represent the interannual variability (e.g. ENSO). SEAPODYM tuna habitats rely of the
biomass distributions of micronekton functional groups, which need to be computed with
the SEAPODYM-LMTL (Low and Mid Trophic Levels) model. There are 6 micronekton
groups inhabiting the epipelagic, upper and lower mesopelagic layers.



In this study we use ocean environmental forcing datasets to cover the period 1998-
2019, with the start of the period determined by the beginning of satellite observa-
tion of ocean color. The physical variables are the ocean hindcast simulated with the
Mercator-Ocean global eddy-permitting NEMO OGCM in the ORCA025 configuration
under project GLORYS. This simulation was forced by the atmospheric reanalysis ERA-
INTERIM and did not have data assimilation. To distinguish it from GLORYS reanalysis
with data assimilation hereafter this dataset is called GLORYS-free. These physical vari-
ables are associated with the primary production derived from satellite data and the
WOA climatology for dissolved oxygen concentration (see Table 2).

All forcing variables were interpolated to a regular 2° grid and degraded to monthly
time step. See Table 2 for details on the original NEMO-PISCES-INTERIM outputs and
Figures Al - A3 showing the mean state of key environmental variables of each forcing
data set.

4 Model

4.1 Model structure

The model PDE equations and the functional links between species habitats and envi-
ronmental drivers are described in [Senina et al., 2020a]. As for skipjack, the seasonal
spawning migrations were set off, hence assuming that bigeye is an opportunistic spawner,
does not undertake the distant spawning migrations and spawns whenever the feeding
habitat conditions become also favorable for spawning. Three life stages are considered:
larvae (0-1 month of age), small juveniles (1-3 months) and adults (older than 3 months
of age, including both immature and mature part of the population).

Unlike in earlier SEAPODYM applications, both parameters of thermal function, op-
timal temperature and preferred thermal range were set to be estimated independently for
spawning and feeding habitat. The previous assumption of the link between the thermal
preferences for spawning (and hence larvae survival) and those for feeding of the oldest
individuals, driven by the individual’s length [Lehodey et al., 2008] could not be verified
in skipjack and albacore applications [Senina et al., 2020a,b].

The fisheries mortality was computed using both methods: using fishing effort ac-
cording to Gordon-Schaefer model, or using catch removal method (Senina et al., 2020a),
applied to the fisheries according to their data quality and target species properties (Ta-
ble 1).

4.2 Numerical configuration

The model PDE equations [Senina et al., 2020a] are numerically solved on a 2° regular grid
on the spatial domain covering the Pacific Ocean domain 2 = {z € (88°E,69°W),y €
(55°5,65°N)} and monthly time step. The age is discretized between 0 and d,,q, = 14
(years) into monthly cohorts resulting for bigeye in 85 cohorts, so that the first seven
years are split into 84 monthly age classes and the oldest individuals are aggregated into
a single A+ cohort of length 7 years.



4.3 Static model parameters

The estimates of length-at-age, weight-at-age and maturity-at-age relationships were
taken from the 2014 MULTIFAN-CL assessment report [Farley et al., 2014] and inter-
polated to the model age structure (Fig. 5). The more recent estimates of the bigeye
growth [?], implying faster growing, but substantially smaller adult bigeye, were imple-
mented within the CL reference model and found to provide unsatisfactory fit to the EPO
fisheries data. In the current model application the continuous maturity-at-age function
was provided to compute the spawning biomass. According to this function, the 50% of
stock is mature at the age 36 months (mean age of the age class 36.5), which corresponds
to the mean length of 115.7 cm and mean weight 34.4 kg.

Since accessibility to the vertical layer and therefore the abundance of accessible prey
depend on the species size, it is practical to link the habitat computation to the growth
rate in order to avoid unnecessary computations when the growth slows down. In the
current model configuration, the habitats were updated only if the mean length of the
age class has been changed more than 4 cm compared to the previous age class. The
result of this technique was the reduction from 85 two-dimensional habitat fields, equal
to the number of monthly age classes, to only 33 habitat fields (see Fig. 5).

4.4 Initial conditions

During the first set of optimisation runs the estimated state of the INTERIM model
was used as the initial conditions. Furthermore, the predictions of the first five years
of simulation were not included into the likelihood to reduce the effect of the initial
conditions of the MLE solution.

5 Methods

The aim of the current study was to develop a quantitative modelling application for
bigeye tuna using all available geo-referenced fisheries data and historical conventional
tagging data. Since this task requires extensive computations given the use of highly
dimensional model of spatial dynamics and involves solving complex non-linear optimiza-
tion problem with dozens of unknown parameters, the preliminary exploratory study was
done in order to compute parameters sensitivity given different types of observational
data and to explore the capacity of the tag movement model alone to predict observed
distributions of tag recaptures. The results of this exploratory study can be seen in pre-
vious SC report [Senina et al., 2020c]. Further, the following steps were undertaken to
achieve the optimal parametrisation of the full population dynamics model:

e Processing and compilation of the updated fisheries dataset, which included the
new definitions of fisheries based on the target species and statistical properties of
the CPUE fleet data. The Hampel rule [Pearson, 2011] was used to detect the effort
outliers, which were either removed (corresponding catch records were moved to
so-called ”dummy” fisheries) or corrected to the value giving the average CPUE in
the 5-degree cell or its vicinity.
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e Global sensitivity analysis was extended and performed for the fisheries selectivity
parameters to leave only parameters, which can be estimated from the available
data and hence to achieve more rapid convergence of optimisation method;

e Maximum likelihood estimation of parameters minimizing the log-negative likeli-
hood with four terms: catch, length-frequency, tag recaptures and the average stock
constraint over the WCPO region;

e Model validation based on statistical metrics computed for each type of data.

5.1 The global sensitivity analysis

A global sensitivity analysis (GSA) implemented in SEAPODYM (Senina et al., 2020a,c)
is based on variance methods [Saltelli et al., 2008, Pianosi et al., 2016]. It allows evaluat-
ing model sensitivity to its parameters through the i) first-order, or main effect, indices
S measuring the direct and independent from other parameters contribution of each
parameter to the output variance and ii) the total-order, or total effect, indices S! mea-
suring the overall contribution from a parameter including its interactions with other
parameters. The main and total effect indices are useful to rank and to exclude the non-
influential parameters respectively. The parameter 6; is not influential if and only if the
index ST = 0. Having S} > S} indicates existing correlation with other parameters.

According to their definitions, the indices SI* can be computed in so called All-At-a-
Time (AAT) SA experiments, i.e. randomly sampling all parameters at every model run.
The evaluation of S! requires One-At-a-Time (OAT) SA experiments, where only one
parameter is randomly varied in a series (here 25) of model runs while others are fixed.
In order to evaluate model sensitivity to its parameters given the information contained
in each type of data, it is practical to set-up SA simulation study with three model
configurations integrating either catch, length frequency or tag recaptures. Since the
complementary SA in this study focused on selectivity parameters, only the likelihood
terms dependent on fisheries data were used. Although selectivity parameters mostly
define the length distributions of catch, they influence catch predictions and mortality
as well, therefore the output function was set as L™ = L, + L, + ( (see next section for
description of likelihood terms).

First, a large number m = 2500 of AAT simulations was run in parallel, each with
a different set of n = 58 parameters sampled randomly. Second, the set of parameter
combinations of length [ << m providing the lowest cost function values found in the
AAT simulations was selected to conduct OAT simulations, [ = 50. Selecting the lowest
function values allows the profiles that are too far from the optimum to be excluded
from the OAT simulations. Overall, OAT ensembles use [ parameter sets of length n,
which each parameter sampled k£ = 25 times, hence resulting in n x [ x k simulations and
same number of output function values. In addition, the following algorithm has been
found very efficient to subsequently improve the likelihood function towards its optimum
within OAT simulation study. It consists in fixing each parameter at its value providing
the best among profiled output values after each of n series of k£ = 25 runs. Thus, at every
iteration, the OAT is moving in a three-dimensional space of the likelihood projection on
a pair of parameters conditioned by the best values of previously sampled parameter(s)

11



and the starting point. In the current SA study, overall 145000 simulations were run in

both AAT and OAT ensembles.

5.2 Integration of conventional tagging data

Tagging data can primarily inform the model parameters controlling movement. The
measurement model for tag recaptures describes the observed density of cohorts including
tagged individuals only. Thus, re-defining the state variable of the advection-diffusion-
reaction model used in SEAPODYM, which is the density of fish population N(a,t,z,y)
at age a, in time ¢ and located at position x = (z,y) € Q € R?, so that it represents
the density of tagged cohort k, denoted Ry(a,t,x), this model can describe movements of
tagged sub-population only, Ry € N. However, there are some caveats to consider before
integrating individual movement data into a Eulerian model, which is not designed to
predict the displacement of individual fish. First, after release, only a small number
of tagged fish is recaptured, and the reporting rate is unknown. Second, the fish are
recaptured by the fishing gear, the exact characteristics of which (fishing technique, effort)
are poorly observed. To remove these sources of uncertainty, in SEAPODYM we use only
released and recaptured fish. This allows simplifying the model as we do not need to
deal with mortality term. Third, one needs to have enough individual data to make an
assumption on validity of a Eulerian model, which is suitable to describe movement of
a large number of individuals. It is therefore important to select the time period with
massive release-recapture data, providing hundreds of tag recaptures for each model time
step. For example, in the dataset selected in the present study, each cohort has 134 tagged
fish on average. Last but not least, to transform the individual data to fish density and
to account for the uncertainty of recapture positions, a bivariate Gaussian kernel for two
independent variables (longitudinal and latitudinal coordinates) is applied to the observed
recapture records. Also, the tags are aggregated into larger spatiotemporal strata and the
tag movement model is solved on coarse spatiotemporal resolutions.

The cohort & in the tag movement model is not defined by the same origin (classi-
cal definition), but by the same ending, with & denoting the common time of recapture.
Namely, a cohort of tags includes all tagged fish released at Vit € [to, k — 1], and recap-
tured at time k, £y being the time of release of the first tag in the cohort. Then, modelling
the dynamics of recaptured fish density Ry (z,y) through times [to, k] can be viewed as
the inverse design of the problem: instead of initialising the PDE with the observed den-
sity of tagged cohorts of fish (with cohort being defined as ensemble of fish tagged and
released at the same time and position) and then recapturing fish one by one at observed
positions and times, we initialise the PDE with individual tags and find the solution of
the PDE equation that yields the density of a given tag distribution at the moment of
recapture. An important advantage of this approach is that it accounts precisely for the
time at liberty of all tags within Eulerian model, which is otherwise impossible as the
modelled quantity cannot be traced.

Note that the age dynamics, the movement rates, the habitat indices and the control
parameters are the same as in the main SEAPODYM model. Hence, solving the tag recap-
ture measurement model and population model simultaneously in the MLE framework,
allows estimating the model parameters controlling movement. Obviously, this approach
requires the assumption, that the movement of tagged fish obeys the same physical prin-

12



ciples and is led by the same environmental drivers that control the movement of all fish
in the population.

5.3 Maximum likelihood estimation

The MLE approach used in SEAPODYM has been detailed for the skipjack tuna applica-
tion in (Senina et al. 2020). The log-negative likelihood function, denoted as L = —In(L)
to be minimized consists of four terms L = L, + L, + L, + 3, where the definitions of
likelihoods describing the contribution of catch data L (0]C***) was chosen to follow
Poisson distribution for all fisheries with catch prediction method depending on the fish-
ing effort and the normal distribution for all fisheries with catch removal method. The
length-frequency of catch likelihoods L, (9|Q0bs) were set to follow robustified normal
likelihood for all fisheries (Hampton and Fournier, 2001). The normal likelihood func-
tion was used for the tag recapture density L (G\RObS). The stock constraint is a single
contribution § = Keg — B*, so the average over the entire time series biomass B;eg was
computed over the WCPO region (110£, 150,405, 50N ), and the fixed values B* varied
in the optimisation runs within 1500-1900Mt, with the lower value being the average total
WCPO biomass estimated by the Multifan-CL model [McKechnie et al., 2017].

5.4 Optimisation runs

The optimization runs were configured over the period 2002-2018, with the first five years
of model predictions and data not augmented to the likelihood to reduce the impact of the
population structure imposed by the initial conditions. Therefore, the model parameter
estimation was essentially driven by twelve full years with fisheries data over 2007-2018
and six years of tag recapture data over 2008-2014, including sixty monthly cohorts.
Leaving four years out in the beginning of the time series (the forcing data availability
period is 1998-2019) was dictated by the need to have enough environmental forcing to
regenerate the initial conditions and to avoid starting with the strong ENSO event during
1998-2000. As for the last year, the geo-referenced fisheries data represent 86% of total
landings in 2018 and is likely less complete in 2019 (Fig. 2). Nevertheless, optimization
runs with the full CLT likelihoods and 17-years long simulations demand 62Gb of RAM
and take 22-26 minutes per function evaluation (FE) depending on machine’s CPU.

Besides the need to search for global the minimum solution, which requires so-called
7jitter” runs, it is important to explore different sources of uncertainty in the estimated
solution associated to fixed parameters and their boundaries, the model structure, the
choice of the likelihoods, forcings and observational data. Since, it is practically impossible
to make the exhaustive optimisation study in such complex, computationally demanding
and highly-dimensional problem, the achievable objective is to find such an MLE solution,
which satisfies pre-defined model validity criteria and provides reasonable fits to the
independent data (next section). A total of 88 CL and CLT optimisations were performed
with different model configurations in order to explore:

e The impact of the forcing: CL likelihood were optimised with previously estimated

model parameters (INTERIM CL reference solution) and fixed or released fisheries
parameters; 22-78 parameters; 18 optimisation runs with CL likelihood only.
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e The validity of the habitat and movement parameters estimated from the tagging
data only (Senina et al., 2020) to describe fisheries data; 12 CL and 15 CLT runs.

e The impact of the fixed selectivity parameters set to values found in the OAT
profiling on the MLE solution; 65-76 control parameters; 2 CL and 1 CLT run.

e The sensitivity to the stock-recruitment parameters; 63 control parameters; 15 CLT
runs.

e The use of SST instead of integrated epipelagic temperature in the spawning habitat
computation; 63 control parameters; 3 CLT runs.

e The use of seasonal spawning migration mechanism in the movement habitat; 63
control parameters; 5 CLT runs.

e The sensitivity to the boundaries for the optimal temperature at age 0; 61-63q
control parameter; 2 CLT runs.

e The use of catch removal method to predict purse-seine catch; 57 control parameters;
6 CLT runs.

e Sensitivity to the stock constraint; 57 control parameters; 4 CLT runs.

Additional 5 CLT runs were launched with the reset initial conditions and the
calibrated linear trends for the catchability parameters to assure zero trend in the
residual C°* — CPred time series.

5.5 Model validation

To conclude whether the obtained solution of the optimisation problem provides the best
parametrisation given the model, the forcing and the data, each optimisation run has
to be analysed and validated. First, the quality of the fit to the data being used in the
minimization, is evaluated. This step is done with help of statistical metrics, which are
selected depending on the type of the data: i) the R-squared goodness of fit, measuring
how much the model is a better predictor to the data than the mean of the data,; ii) the
squared Pearson correlation coefficient, measuring the proportion of the variation in data
described (explained) by the model iii) the root-mean-squared-error (RMSE) and the
normalized root-mean-squared-error (NMSE); iv) residual variance and temporal bias; v)
relative error; vi) model to data variance ratio.

Second, the parameter estimates are examined and confronted with the existing knowl-
edge on the modelled species. Some important biological characteristics, such as thermal
preferences, spawning sites and seasonality, and the species life span are reported in
scientific literature.

Finally, the model is validated using independent sets of fisheries and tagging data,
which were not used in the likelihood.
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6 Results

The selected MLE reference solution of the CLT model was obtained with the configura-
tion in which the catch and LF of catch from five longline fisheries targeting bigeye (L1
- L4 and L7) were predicted based on Gordon-Shaefer approach, i.e. using fishing effort.
The catch of all other longline fisheries as well as of all purse-seine fisheries was predicted
based on the catch removal method. The initial condition for January 2002 was gener-
ated with the optimal parameters obtained in the series of optimizations with the above
set-up. The results of GSA (see Appendix, Fig. A4- A8) allowed significant reduction of
selectivity parameters to estimate without any impact on the MLE solution. Among 58
selectivity function parameters controlling the prediction of catch and LF data of twenty
fisheries, only 34 were left to control the fit to corresponding data.

6.1 Optimal parameters

This section describes the estimates of main model parameters and their role in the
key dynamic processes: reproduction, survival, movement. The results of estimation of
fisheries parameters are briefly described as well.

6.1.1 Spawning habitat and reproduction

Despite of the use of the most comprehensive and complete fisheries and tagging datasets,
in the absence of observational data to constrain the dynamics of the early life stages, the
estimates of the spawning parameters remain highly uncertain. The optimal temperature
for spawning was stuck to the lower boundary fixed at 26°C, while the standard devi-
ation of the Gaussian function was stuck to the upper boundary, 3.75°C', meaning that
function minimizer basically tends to extend the spawning to larger geographic zones.
Such behaviour of the function minimizer obviously indicates the lack of signal in fish-
eries and tagging data for the spawning success, so the spatial distributions of larvae are
simply driven by the back-tracing of the exploited ages observed by the data. Obviously,
the observed part of the population may constrain the spatial distribution of early life
stages only partially, leaving the model free to predict unobserved stock emerging from
excessively extended spawning sites.

The boundaries for the thermal preferences for spawning were set to (26,3.75) to
remain in the range of surface temperatures where the bigeye larvae are observed, hence
providing plausible estimation of larvae distribution. Indeed, taking into account that
the resulting number of larvae depends not only on temperature, but also on density of
prey (primary production converted to the wet weight of plankton), predator (surface
micronekton density during the day and the twilight) and the density of reproducers
(spawning biomass), the overall reproduction parameters provide the maximal number
of larvae associated with SST 25 — 26°C' with 85% of the frequency distribution confined
between 21°C' and 30°C' (Fig. 7). To compare with observations, Reglero et al. (2014)
reported that bigeye larvae worldwide are found in waters with SST between 21.7°C' and
30.2°C'. The rest of the spawning parameters, ap, ar and Br are well estimated and the
estimated functional links are shown in Fig. 6 (see prey and predator functions). Note
that spawning habitat is modulating the spawning outcome, which depends not only on
larvae survival, but also the density of adults and hence on the suitability of the spawning

15



site for adults. Very high density of micronekton is obviously positive for concentrating
adults, which prey on the micronekton, however, it is negative for larval survival as the
micronekton prey on the larvae. So, the form of the predator function provides the optimal
range of micronekton density that is favorable for both, tuna larvae and the spawners.

The seasonal dynamics of spatial distributions of (recruited at age 30 days) larvae
in the sub-tropical regions are clearly driven by the temperature (Fig. 8). The apparent
discontinuity in the larvae density along the equator, showing near zero larvae density is
likely a model artefact, especially in the central part of the Pacific. First, bigeye larvae
were observed in the equatorial Pacific between 180E and 130W [Nishikawa et al., 1985].
Second, the divergence between the north and south equatorial currents is known to create
an upwelling phenomenon and an increased productivity in the surface layer (Fig. A2),
which should a-priori create favorable conditions for larvae feeding. However, the density
of surface micronekton being larvae predators is estimated to be optimal for the spawning
success at values 0.4 —2g/m? (Fig. 6). This density predicted by the SEAPODYM-LMTL
model, is characterised by very low values in the equatorial band west of Galapagos Islands
(Fig. A3 in the Appendix). This result can only be explained by the strong sub-surface
currents, so that the integrated epipelagic currents are pushing the micronekton off the
equator.

The reproduction rate in the Beverton-Holt function is well estimated, while the
stock-recruitment relationship cannot be estimated given a very short time period in
the optimization. In the last phase of optimization, it converged to the optimal value
an optimal value close to the one previously estimated with the CL reference model
(Table ??, parameter b). Its estimation remains subject to further work once the longer
forcing datasets will be available.

6.1.2 Species demography and population structure

All four parameters of mortality-at-age function were estimated within their boundaries,
the coefficient of variation with age was fixed to provide 10% variability of local mortality
rate depending on the habitat index. The latter mean that mortality decreases by 0-10%
in favorable habitat index, H > 0.5, and increases by 0-10% if habitat H < 0.5, with
value H = 0.5 not affecting local mortality rates. The mortality estimation gives the
bigeye mortality rates ranging from 0.11 mo~—! at age 0.5 months down to 0.02 mo~"' at
age 7 years. These rates are equivalent to only 25% survival through the first month of
life and 79% survival each year starting at the age of seven years. The non-linear shape
of the mortality curve implies that 95% reduction of the recruited cohort occurs by the
age of four years in fished population and 5.5 years if not fished (Fig. A9, lower right
panel). The decline in abundance after the age of seven years is very slow, resulting in a
significant biomass of the last A+ age class, which includes all individuals between 7 and
14 years of age (Fig. A9, lower left panel). In terms of biomass, the modelled population
is composed of 20% of juveniles (small juveniles and immature adults in SEAPODYM
definitions) and 80% of mature adults.

6.1.3 Feeding habitats and movement

Feeding habitat is the key variable determining the spatial structure of the stock as it
drives the fish movement. The estimation of feeding habitat parameters gives the estima-
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tion of thermal preferences and feeding preferences for bigeye tuna through ages 3 months
to 10 years (the mean age of the A+ class). The thermal preferences curve is shown on
Fig. 6 (panel Adult habitat). The preferred ambient temperatures of the young fish range
from 18°C and 21°C, the later being the lowest estimated temperature for larval habitat.
The mature fish are predicted to prefer temperatures 15 — 18°C. Taking into account
the estimated temperature tolerances, bigeye occupy waters with temperatures ranging
between 13°C and 28.7°C (Table 3), which is consistent with findings based on acoustic
telemetry and archival tagging data analysis (e.g. Brill, 1994; Schaefer and Fuller, 2002;
Graham and Dickson, 2004). Note that the feeding habitat thermal parameter estimates
are not very far from those estimated for the movement model of tagged fish.

The oxygen requirement parameter is usually well estimated from the fisheries data
alone, given that thermal habitat parameter estimates are not biased. The critical oxygen
value is well informed from the observed CPUE reduction in the habitat, which is oth-
erwise accessible in terms of thermal preferences. The 50% accessibility requirement for
dissolved oxygen of 1.49 ml/l1 is stipulated by the oxygen distribution in the mesopelagic
layer (Fig. Al). Note that this estimation is obtained with the climatological fields of
oxygen (Table 2).

In terms of feeding preferences, the estimation of relative contribution of micronekton
shows that bigeye prefers feeding on resident epipelagic and upper and lower mesopelagic
groups migrating to epipelagic layer at night. However, given much higher densities of mi-
cronekton groups in the mesopelagic layers predicted by the SEAPODYM-LMTL model
(Fig. A3), the feeding habitat distribution of bigeye is driven by mesopelagic forage
groups, including upper mesopelagic resident migrant groups as well as highly migrant
lower mesopelagic group. The wide range of preferred temperatures and the contributions
from resident and migrant forage are consistent with a feeding behaviour targetting the
epipelagic layer at night and mesopelagic layer during the day. The lower mesopelagic
resident forage is inaccessible to bigeye due to the low oxygen levels in almost the entire
EPO and in the tropical part of the WCPO fishing grounds, which is why the parameter
eF33 was fixed to 0. The very large standard deviation in Gaussian thermal function,
5.5°C together with the estimates for the coefficients ey, provide too extended favorable
habitats for young tuna, which varies essentially between 0.8 and 1 from 45°S to 40°N.
At the same time the feeding habitats of large bigeye vary between 0 and 1 essentially
driving the spatial distribution of adult bigeye shown in Fig. 11 (see panel without fish-
ing). Therefore for the old age classes, the spatial heterogeneity of the feeding habitat
and the biomass density is due to the estimated narrowing of thermal preferences based
on the standard deviation decreasing from 5.5°C to 2.43°C with age.

The velocities of directed and random movements modelled as advection and diffusion
of population density depend on the habitat estimation at age. As shown on Fig. 3
(panel Movement rates), the mean directed movement (including both passive and active
transport) velocities range between 1 nmi/d! and 3 nmi/d through species age. Besides,
the juvenile fish are predicted to move faster, meaning less residency than adult fish,
whose horizontal movements are negatively affected by deep-diving vertical behaviour.
The dispersive movements are estimated to increase with age from < 1nmi?/d at 3 months
to 460nmi?/d at the age of 7 years and 600 nmi? /d being an average rate of the A+ group.

'nmi — nautical mile.

17



Note that these estimates are very close to those estimated by UKFsst model from archival
tagging data provided the median values for horizontal speeds of bigeye 2.45 nmi/d and
rate of dispersal 496.7 nmi?/d [Schaefer et al., 2014].

6.2 Validation

The fit to the catch and length data provided by the MLE solution of the CLT reference
model can be seen in Appendix, section A.4 Fit to the catch and LF data. The time series
of aggregated catch by fisheries whose catch is predicted with Gordon-Shaefer method
is highly correlated to observations, the residual mean is close to zero and the residual
variance is small. Also, the three statistical metrics are evaluated for each fishery based
on geo-referenced data and shown on Taylor diagram (Fig. 9). Note, the metrics on this
diagram were computed over the full time series with the data, i.e. 1998-2019, while
only 2007-2018 data was used in the likelihoods. The extension of the time series by
10 years improves the metrics: the MLE solution obtains (0.6,0.62,0.63) compared to
(0.64,0.71,0.6) for all catch data, confirming the model validity for the independent catch
data. The validation of fit for the length frequency data showed the persistent bias in the
model predicting more large tuna in the catches. Further work is needed to verify the
robustness of the mortality rates estimation.

Also we compared the skills of the model with three optimal parametrizations in
describing the movement of tagged tunas: 1) reference CL model with only fisheries data
in the likelihood, 2) tag dynamics model with its optimal parameters estimated on the
sub-set 2008-2013 and 3) the reference CLT model and with fisheries data over 2007-
2018 and tagging data sub-set 2008-2014. Then, the validation of optimal solutions was
performed on the independent dataset, i.e. releases and recaptures data from 2000 to
2007, which were not used in parameter estimation in either of three models. So the MLE
parameters of each model were used to run tag simulations for the 2000-2007 period, then
the fit was compared between models. Note that in the optimization runs, the resolution
used to compute the likelihood term for the tagging data was 6° in longitude, 6° in latitude
and a 3-month time step, while the validation of the optimization results was undertaken
on the model’s spatio-temporal resolution, i.e. 2° and 1 month.

Neither sub-set of data can be described by the CLL MLE solution, i.e. obtained with
fisheries data only (see Fig. 10 and A12). The distributions of tags is driven by diffusion,
hence the spatial structure has a significant south-eastern bias, showing the displace-
ments of tagged tunas around three release positions with noticeable drift by equatorial
countercurrent and the tag density distortion by the Peru current pushing the density
patch from south-east. Also, spatial distributions for both time periods are characterised
by excessive density extension in the latitudinal direction.

The optimal solution achieved with the 2008-2013 tagging data sub-set presents signif-
icant improvement in simulating the observed dynamics of tags released and recaptured
before 2008 compared to the reference CL model. Although still presenting some eastern
bias, more that two thirds of tags released at 95°W moved towards central Pacific. The
latitudinal extension is well reproduced with more bigeye moving to the southern hemi-
sphere both from eastern and western positions of release. The tag simulation with the
CLT model parameters is certainly improved compared to the CL model, however, it lacks
the westward movement and shows over-dispersion of density in latitudinal direction. The

18



evaluation of the fit obtained by the MLE method demonstrated the observed movement
of bigeye within the equatorial band 10S-10N, although some latitudinal over-dispersion
is also apparent.

6.3 Model predictions

The model state vector gives the number of fish at age, time and position over the entire
life cycle of the species, the time period when environmental data are available and over
model domain respectively. The young bigeye distributions in the EPO are mostly driven
by the recruitment and ocean circulation. This result is attributed to mostly homogeneous
and highly favorable feeding habitat in this area. The moderate movement in the latitudes
10 — 20°N of the central Pacific, results in the presence of immature bigeye in the the
north Pacific gyre. The spatial structure is also different from those at recruitment in the
warmpool, where young bigeye are estimated to be highly exploited by the purse-seine
fisheries, which is clearly visible comparing the maps of this life stage with and without
fishing (Fig. 11).

The mature adult distributions are consistent with the spatial distribution of long-
line data. Given the similarity of estimations for key thermal and movement parameters
provided by TAGS and CLT models (Tablerefparameters), adult spatial structure seems
to be well constrained by the tag release-recapture data. The model clearly shows the
existence of three sub-stocks in bigeye Pacific population, with the largest adult sub-stock
in the tropical Pacific and two smaller sub-stocks in the sub-tropical zones of southern
and northern Pacific, with the latter extending towards tropics in the central Pacific and
south-east of Hawaii (see Fig 11). Note that high densities predicted in the Indonesian
EEZ and in the South China Sea are highly uncertain due to closed boundaries and coarse
resolutions used in the simulation.

6.3.1 Fisheries impact

Fishery impact estimated as FI = 1 — Bp(t)/Br-o(t) was computed from the total
biomass B(t) predicted by SEAPODYM with actual fishing mortality F and without
fishing F=0. Note that the simulations with and without fishing were run starting from
the same initial conditions representing the fished stock, so the fishing impact is eval-
uated only for the years 1998-2019. Since the stock was already reduced prior to 1998,
our estimations are likely lower than expected if the virgin stock was modelled starting
the simulation from pre-industrial times. The monthly percentage fishery impact on big-
eye depicted on Fig. 12, shows the evolution of fishery impact on immature and mature
adults, with an average value of 49% in early 2018. The maximal percentage fishery im-
pact on young bigeye is estimated to be 30% Pacific-wide, however, local fishery impacts
are estimated to be very high, up to 90%, in the warm pool area. Spatial maps of fishery
impact computed from SEAPODYM outputs for the adult life stage indicate local deple-
tion of adult biomass in 2019 from 35% in the sub-tropical fishing grounds to 65-75% in
the tropical areas, with lower values in the EPO.
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6.3.2 Pacific-wide stock estimation

SEAPODYM estimates bigeye stock biomass between 1.25-2.5Mt in the WCPO and
nearly the same biomass, 1.2-2.2Mt in the EPO (Fig. 13). Compared to the stock as-
sessment with the Multifan-CL model for WCPO [McKechnie et al., 2017], SEAPODYM
shows higher biomass in the beginning of time series and more rapidly declining stock
of bigeye in WCPO, with similar biomass estimations only in 2011. Although the rate
of decline depends mostly on the stock structure (in space and age dimensions) and the
impact of fishing, it should be noted that in the absence of forcing prior to 1998, the
initial condition for model state vector in SEAPODYM, i.e. the biomass in 1998 remains
uncertain. The increasing trend estimated by Multifan-CL starting 2012 is not captured
by SEAPODYM. This increasing trend in Multifan-CL is estimated to occur in region
4 (170°E-150°W, 10°S-20°N), region 5 (140°E-170°E,40°S-10°S) and region 7 (110°E-
140°E,10°S-20°N), while SEAPODYM indicates only a slowing of the decline in regions
3,5 and 7 (Fig. 14).

7 Conclusion

In the present study we used geo-referenced fisheries data and conventional tagging data
to inform parameters of spatiotemporal model SEAPODYM with the aim to build quan-
titative model for Pacific bigeye population. The global sensitivity analysis performed for
all types of data and all model parameters was very helpful in detecting, fixing unobserv-
able control parameters, configuring the optimisation runs and facilitating the process
of searching for global minimum. Thanks to conventional tagging data integrated into
the MLE method in SEAPODYM, we obtained improved estimates of model dynamics
parameters, better representation of population spatial structure and plausible fit to the
independent datasets.

Note, that as in all SEAPODYM reference models, the MLE solution is tightly linked
to the environmental forcing and the structure of data being used. It might be interesting
to test the GLORYS reanalysis based on data assimilation coupled with the biochemical
model providing primary production, euphotic depth and dissolved oxygen. Also, the
use of the high-resolution Japanese long-line CPUE data in the MLE approach might
better constrain the habitat parameters throughout the selected ages. The biases in the
estimation of feeding habitats of young tunas still need to be explored.

Other work and developments are planned to verify the robustness of the obtained
solution and to further improve the current bigeye model. They include incorporation of
linear trends parameters for catchabilities into parameter estimation; a better estimation
of the initial state vector using extended forcing time series and backtracking technique
relying on MLE estimates; the use of surface currents instead of mean epipelagic currents
to model the passive drift of larvae; estimation of the uncertainty of model predictions.
Additional analyses, such as evaluation of connectivity between identified bigeye sub-
stocks will be helpful in understanding the mechanism of their interactions.
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8 Tables

Table 1: Bigeye Fishing Dataset (DS2020). Definition of SEAPODYM fisheries in Pacific
Ocean. The column "Use’ indicates the catch prediction method: FE) with effort or CR)
catch removal.

ID Description Nation Resolution Use
L1 LL traditional BET target Japan, Korea 5%, month FE
L2 LL targeting BET China and Taiwan 5°, month FE
L3 LL targeting YFT Japan, Korea 5%, month FE
L4 LL targeting YFT China and Taiwan 5°, month FE
L5 Distant-water LL, albacore target Asian fleets 5°, month  CR
L6 LL targeting BET and YFT Vietnam, Philippines, In- 5°, month ~ CR
donesia
L7 Longline BET target USA, Australia, New 5° month FE
Zealand
L8 Mixed-target LL USA, Australia, New 5° month CR
Zealand
L7 Longline bigeye target PICs 5°, month FE
L10 Mixed-target longline PICs 5°, month  CR
L11 Albacore target LL PICs 5%, month CR
S12 PS free schools, WCPO Korea, Taiwan, PNG 1°, month FE
S13 PS free schools, Pacific Others 1°, month  CR
S14 PS logs, WCPO ALL 1°, month FE
S15 PS FADs, WCPO Korea, Taiwan, PNG, 1°, month FE
China
S16 PS FADs, Pacific Others 1°, month  CR
S17 PS FADs, CPO and EPO EC, SV flags 1°, month FE
S18 PS marine mammals, Pacific ALL 1°, month  CR
P19 Pole-end-line, Pacific ALL 5°, month CR
020 Domestic fisheries, multiple gears Philippines, Indonesia 5°, month  CR
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Table 2: Forcing variables used in current SEAPODYM application. Note that table shows
original resolutions, all variables were then interpolated onto SEAPODYM spatial and

temporal resolutions 2°, 30 days.

Variable Description Resolution

Time period

GLORYS-free
T, u,v Global ocean reanalyses without data as- ORCA025
similation, NEMO OGCM forced by at-
mospheric ECMWF reanalyses
Observations
P, Z EPPLEY-VGPM primary production 1/4° 7 days
and euphotic depth computed by Morel’s
model* from satellite-derived Chl-a

O, WOA monthly climatology 1/4°, 30 days
SEAPODYM-LMTL
F Simulated six micronekton groups** 1/4°, 7 days

1/1998 -12/2019

1/1998 -12/2019
clim. year

1/1998-12/2019

*Morel and Berthon, 1989; **QUID 2019.
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Table 3: Parameter estimates for the following model configuraions: CL-I - population
model with INTERIM forcing and likelihood with Catch and Length data only, TAGS-
I - tag density dynamics model with INTERIM environmental forcing and 2008-2010
tagging dataset in the likelihood, TAGS-G - tag density dynamics model with GLORYS-
free environmental forcing and 2008-2013 tagging dataset in the likelihood. Parameters
marked by asterisks were fixed in optimization run. Parameter with | or | were estimated

at their lower or upper boundary respectively.

#  Description CL-I TAGS CLT
Reproduction

oo standard deviation in temperature Gaussian function at 3] 3.75]
age 0, °C'

Ty optimal surface temperature for larvae, °C 28.9 [26.0

ap prey encounter rate in Holling (type III) function, day~!  0.073 0.024

ar Log-normal mean parameter predator-dependent func- [0.05 0.5
tion, g/m?

Br Log-normal shape parameter in predator-dependent func- 1.054 0.77
tion, g/m?

R reproduction rate in Beverton-Holt function, mo™! 0.0038 0.0065

b slope parameter in Beverton-Holt function, nb/km? 16.05* 15.73

Mortality

m, predation mortality rate age age 0, mo™! 0.05* 0.11

Bp slope coefficient in predation mortality 0.434 0.024

ms senescence mortality rate at age 0, mo 15 0.02 le-10

Bs slope coefficient in senescence mortality [0 3.85

e  variability of mortality rate with habitat index My € 0.5] 0.1%*
(L, M(1+ )

Habitats

o1 standard deviation in temperature Gaussian function at 5.5 4] 5.5]
first young age, °C

T optimal temperature (if Gaussian function), or tempera- [25 24.5 [23.2
ture range for the first young cohort, °C

or standard deviation in temperature Gaussian function at 6.5] [1 2.43
age K, °C

Tk optimal temperature (if Gaussian function), or tempera- [10 15] 15.48
ture range for the oldest adult cohort, °C'

br allometric power coefficient for thermal preferences at age [1 2.51 [0.7

O threshold value of dissolved oxygen, ml/I 0.758 [1.0 1.49

eF1 contribution of epipelagic forage to the habitat [0 [0.5 1]

eFyo contribution of upper mesopelagic forage to the habitat [0.1 3] 0.49

eFy1 contribution of migrant upper mesopelagic forage 0.05* 0.34 1]

eF33 contribution of lower mesopelagic forage to the habitat 0.005 0* 0*

eF39 contribution of migrant lower mesopelagic forage 0.05* 2] 0.37

eF31 contribution of highly migrant lower mesopelagic forage  0.079 [0 1]

Movement

V' velocity at maximal habitat gradient and A =1, BL/s 1.7895 0.13 0.15

A slope coefficient in allometric function for tuna velocity 0.75% 0.73* 0.75%

o multiplier for the maximal diffusion rate 1.4091 1le4 1.05

¢ coefficient of diffusion variability with habitat index 0.5% 0.93%* 0.9*
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Total annual bigeye catch aggregated from geo-referenced catch (Pacific-
wide) used in SEAPODYM analyses. Dashed line corresponds to total
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Spatial distributions of catches by decade and by gear: longline (orange),
purse-seine (blue), pole-and-line (green), and others (yellow). . . . . . . .
Top panel maps: number of bigeye tuna tagged and recaptured during con-
ventional tagging campaigns separated into two periods (using linear color
bar from white to blue indicating 0 to 40 and more tag returns respec-
tively). The recapture data from the later, 2007-2013, period were used
to inform SEAPODYM model parameters, while the recaptures from the
earlier, 2000-2007, period were used in the model validation. Center panel:
time at liberty histogram and the time at liberty of the tags depending
on their date of release. Bottom panel: bigeye size distributions at release
and recapture (black bars). The color-coded distributions and vertical lines
indicate the data used in optimization (blue) and validation (red). . . . .
Static model parameters, mean length and weight interpolated from the
Multifan-CL estimated functions (Harley et al., 2014) at the mid-point
of each age class indicated with the outer tick marks of the x-axis. The
inner ticks of the x-axis show the ages at which the habitat indices were
evaluated in the current reference model. . . . . . . . ... ...
Estimated functional relationships in main dynamical processes (repro-
duction, natural mortality and movement) of reference MLE model con-
strained by fisheries data only. Habitat temperature and movement rates
are computed as weighted spatio-temporal average with weights being the
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Predicted mean number of bigeye larvae in association with sea surface
temperature. . . . . ... oL L Lo
Mean monthly distributions of density of bigeye larval recruits (2001-2010
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Taylor diagram, providing three aggregated metrics of model fit to the
data: correlation (angular coordinates) between predictions and observa-
tions, standard deviation ratio (distance from (0,0) point depicts the ratio
between model and data standard deviation) and normalized mean squared
error (concentric circles with the green bullet being the center). Each point
on the graph shows three metrics of the fit to the catch data by each fish-
eries (Table 1). The metrics are evaluated using the fisheries data over
1998-2019. . . . . .
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right) dissolved oxygen climatology (source: World Ocean Atlac), inte-
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inhabiting respective pelagic layers. Maps show the mean variable over the
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Primary production and euphotic depth from GLORYS-free forcing of
SEAPODYM. Maps show the mean variable over decade 2001-2010. . . .
Six functional groups of micronekton, either resident in indicated pelagic
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OAT profiles of selectivity function parameters of SEAPODYM fisheries.
Green dots correspond to the lowest value of the likelihood function found
in the OAT SA simulations. . . . . . .. .. ... ... ... .. .....
Population structure estimated in the CLT model. The life stage propor-
tions of biomass are derived from the entire 1998-2019 simulation, the
age structure of the population with and without fishing in biomass units
(lower left panel) and in number of individuals (lower right panel). .

Monthly time series of observed (dashed) vs. predicted (solid) catch by
fishery and standardized residuals. Three statistical scores shown on the
plots are Pearson correlation coefficient (r) between predicted and observed
catches, mean (u) and variance (02) of standardized residuals). . . . . . .
Observed (grey) and predicted (red) length frequencies distribution and
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9 Figures
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Figure 2: Total annual bigeye catch aggregated from geo-referenced catch (Pacific-wide)
used in SEAPODYM analyses. Dashed line corresponds to total landings of bigeye (SPC
Yearbook, 2019).
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Figure 3: Spatial distributions of catches by decade and by gear: longline (orange), purse-
seine (blue), pole-and-line (green), and others (yellow).

30



20°N
10°N
o |

10°s |57

20°s

20°N

10°N

00

10°S |

20°S

Number of recaptures by time at liberty Time at liberty

° .

i 3
0 21 .
o 0
8 =}
5 2 327 s
3 3 5 t )
€ a s : . i;.'
= I S AN R T

] MR [ FTE
T T T 1T 1T 17T 1T 17T 17T 17T 1T T T T

12 36 60 84 108 132 156 2000-04 2004-04 2008-04 2012-04
months Date of release
Length at release Length at recapture
o o o o
8- S8 8 e
%) — — — —
= L L
palll = o 1= o
= T8 81 -8
[ - -
o)
E o ) o o
S Q - o Q - o
Z 0 < Yo} <
o e - o o - - o
T T T T T T T T T T
0 50 100 150 200 0 50 100 150 200
length (cm) length (cm)

Figure 4: Top panel maps: number of bigeye tuna tagged and recaptured during conven-
tional tagging campaigns separated into two periods (using linear color bar from white
to blue indicating 0 to 40 and more tag returns respectively). The recapture data from
the later, 2007-2013, period were used to inform SEAPODYM model parameters, while
the recaptures from the earlier, 2000-2007, period were used in the model validation.
Center panel: time at liberty histogram and the time at liberty of the tags depending
on their date of release. Bottom panel: bigeye size distributions at release and recapture
(black bars). The color-coded distributions and vertical lines indicate the data used in
optimization (blue) and validation (red).



Size of bigeye tuna
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Figure 5: Static model parameters, mean length and weight interpolated from the
Multifan-CL estimated functions (Harley et al., 2014) at the mid-point of each age class
indicated with the outer tick marks of the x-axis. The inner ticks of the x-axis show the
ages at which the habitat indices were evaluated in the current reference model.
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Figure 6: Estimated functional relationships in main dynamical processes (reproduction,
natural mortality and movement) of reference MLE model constrained by fisheries data
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Predicted bet larvae present at different SST
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Figure 7: Predicted mean number of bigeye larvae in association with sea surface tem-
perature.
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Figure 8: Mean monthly distributions of density of bigeye larval recruits (2001-2010 av-
erage).
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Taylor Diagram

L1 (0.74,0.89,0.51)
L2 (0.75,0.78,0.5)
1.3 (0.72,0.58,0.54)
L4 (0.65,0.58,0.6)
L5 (1,1,0.01)

W L6 (1,0.99,0.01)
W L7 (0.82,0.77,0.42)
o, W L8 (1,1,0)
%8, ® L9 (1,0.96,0.06)

%, L10 (1,0.98,0.05)
0.7 @ L11(1,0.99,0.03)
@ S12(0.73,0.48,0.54)
4 S13(0.89,0.36,0.47)
@ S14(0.78,0.52,0.49)
0.8 S15 (0.7,0.68,0.55)
A 516 (0.92,0.43,0.41)
A 517 (0.35,0.72,0.85)
A 518 (0.92,0.27,0.52)
A P19 (0.94,0.74,0.26)
0%09(1,0.93,0.07)

Standard deviation

_—- 0.95

0.99

15

Figure 9: Taylor diagram, providing three aggregated metrics of model fit to the data:
correlation (angular coordinates) between predictions and observations, standard devia-
tion ratio (distance from (0,0) point depicts the ratio between model and data standard
deviation) and normalized mean squared error (concentric circles with the green bullet
being the center). Each point on the graph shows three metrics of the fit to the catch
data by each fisheries (Table 1). The metrics are evaluated using the fisheries data over
1998-2019.
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Figure 10: a) Number of bigeye tuna recaptured between January 2000 and June 2007
(linear color bar from white to blue indicating 0 to 40 and more tag returns respectively).
b) Distribution of tag recaptures predicted with MLE parameters of current reference
model, estimated with fisheries data only. ¢) Distribution of tag recaptures predicted
with MLE solution obtained with the 2008-2013 sub-set of tagging data and GLORYS-
free forcing. d) Distribution of tag recaptur %predicted with MLE parameters estimated
including the 2008-2014 sub-set of tagging gata by the CLT model.
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Figure 11: From top to bottom: average density of larval (Nb/km?), young (mt/km?)
and adult (mt/km?) bigeye tuna predicted with (left) and without fishing (right). Note
different range of values of adult density shown for exploited and virgin stock.
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Fishery impact on bigeye tuna population
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Figure 12: Spatial fishing impact on young and adult population stages of bigeye. Contour
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lines show the index F‘)Tomf and colour shows the average biomass reduction due to
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Figure 13: Biomass of bigeye (in thousand metric tons) including immature and mature
individuals predicted by SEAPODYM (black) and estimated in WCPO by Multifan-CL
(red).
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Figure 14: Comparison between SEAPODYM (black) and Multifan-CL (red) stock as-
sessment model predictions for the Western and Central Pacific stock of mature adult

bigeye (in thousand metric tons).
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A Appendices

A.1 Model forcing
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Figure Al: left) Water temperature from GLORYS-free forcing of SEAPODYM, and
right) dissolved oxygen climatology (source: World Ocean Atlac), integrated over three
pelagic layers, epipelagic, upper and lower mesopelagic layers. These two variables control
species accessibility to prey organisms inhabiting respective pelagic layers. Maps show the
mean variable over the decade 2001-2010.
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Figure A2: Primary production and euphotic depth from GLORYS-free forcing of
SEAPODYM. Maps show the mean variable over decade 2001-2010.
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Figure A3: Six functional groups of micronekton, either resident in indicated pelagic layer
or migrating to above (migrant) or to sub-surface (highly migrant) pelagic layers at night,
simulated by SEAPODYM-LMTL model with GLORYS-free forcing.
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A.2 Sensitivity to selectivity parameters
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Figure A4: OAT profiles of selectivity function parameters of SEAPODYM fisheries.
Green dots correspond to the lowest value of the likelihood function found in the OAT
SA simulations.
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Ls, selectivity function of type II
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Figure A5: OAT profiles of selectivity function parameters of SEAPODYM fisheries.
Green dots correspond to the lowest value of the likelihood function found in the OAT
SA simulations.
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Ly, selectivity function of type III
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Figure A6: OAT profiles of selectivity function parameters of SEAPODYM fisheries.
Green dots correspond to the lowest value of the likelihood function found in the OAT
SA simulations.
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Si3, selectivity function of type III
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Figure A7: OAT profiles of selectivity function parameters of SEAPODYM fisheries.
Green dots correspond to the lowest value of the likelihood function found in the OAT
SA simulations.
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Si7, selectivity function of type II1
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Figure A8: OAT profiles of selectivity function parameters of SEAPODYM fisheries.
Green dots correspond to the lowest value of the likelihood function found in the OAT
SA simulations.
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A.3 Estimated population age structure
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Figure A9: Population structure estimated in the CLT model. The life stage proportions
of biomass are derived from the entire 1998-2019 simulation, the age structure of the
population with and without fishing in biomass units (lower left panel) and in number of
individuals (lower right panel).
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A.4 Fit to the fisheries data
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Figure A10: Monthly time series of observed (dashed) vs. predicted (solid) catch by
fishery and standardized residuals. Three statistical scores shown on the plots are Pearson
correlation coefficient (1) between predicted and observed catches, mean (u) and variance
(0?) of standardized residuals).
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Figure A10: Monthly time series of observed and predicted catch by fishery (Continued)
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o4



pred C P19 bet vs. obs C P19 pred C O20 bet vs. obs C 020

1.4 A ) r o r=0.99 r=1
J
- -
£ E
o o
(= o
o o
- -
T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018
Standardized residuals (Cobs—Cpred) Standardized residuals (Cobs—Cpred)
- u=0.1 . p=0.1 .
1.0 4 g R 0.4 2=0
0.5 . . L . 0.2 1
0.0 e e i i e B e Dy 0.0 {7 A A s o
-0.5 1 -0.2 4
-1.0 1 -0.4 4
T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018

Total predicted vs. observed catch

251

20 1

1000 mt

154

101

T T T T T T T T T T T T T T T T T T T T T
1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018

Standardized residuals (Cobs—Cpred)
1.5 A w=0.2

10 . ©Ldi=02 .

0.5 -

00"

-0.5

-1.0 4

-1.5 4

T T T T T T 1 T T T T T T T T T T T T T T T
1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018

Figure A10: Monthly time series of observed and predicted catch by fishery (Continued)

95



bet LF L1, all quarters bet LF L2, all quarters bet LF L3, all quarters

(bars — observed) (bars — observed) (bars — observed) "
o o g
g‘ (=]
rs
wn
oy
i - 2 - °
2 = 2 = 2 9 =
2 E B E B S E
2 2 8 2 8 2 5 3
] Ii‘ o ,i' © E Lf_
Y =R 500y -
L3
o
0]
wn
e
o
o
=k | =k | »g
50 100 150 50 100 150 50 100 150
length (cm) length (cm) length (cm)
Mean length for fishery L1 Mean length for fishery L2 Mean length for fishery L3
RMSE = 10.92 RMSE = 8.37 RMSE = 21.35
g P i)
o o o
27 27 _ = = 27
n”“ nl””'mr I £
\ LRONITL
c I < b SOV ALY _ -
IS) IS IS
o o o
& 21 & 21 & 21
o o (=3
3 3 3
2000 2005 2010 2015 2020 2000 2005 2010 2015 2020 2000 2005 2010 2015 2020
time time time
bet LF L4, all quarters bet LF L5, all quarters bet LF L6, all quarters
(bars — observed) (bars — observed) (bars — observed)
K] s <]
? M
- 8
L8 ° ~ 3
S 0 — 'g
wn
L =¥
m ° - I T ~ @ 8 ~
3 o £ S o ts £ E e =
2 E £ s & 2= £
2 w3 2 B g o 8
S ER &g i
Y 50y g5y S Y
LS re <]
o o b=
7 t8
»3 o~ S
o
(=] (=]
»§ o4 '8_ © '8.
o o
50 100 150 50 100 150 50 100 150
length (cm) length (cm) length (cm)
Mean length for fishery L4 Mean length for fishery L5 Mean length for fishery L6
RMSE = 16.36 RMSE = 18.44 RMSE = 11.04
o o o
91 D o
— — —
0
LR oy Y
£ £ £ K
j=2} j=2} j=2}
o o o
&S & S & S
(=3 (=3 (=3
3 3 3
2000 2005 2010 2015 2020 2000 2005 2010 2015 2020 2000 2005 2010 2015 2020
time time time

Figure A11: Observed (grey) and predicted (red) length frequencies distribution and mean
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Figure A11: Fit for the length frequencies data. Continued.

o8

T
2015

T
2020

LF pred (min)

LF pred (min)



bet LF P19, all quarters
(bars - observed)

o] \ 9
> E
. o
R
-
3 \ g
= . re
= . \ IS]
2 o / 3
[SEE] .
w Seeny,
- '.. 0
. (=]
. re
w ] * o
5
l \\ .
o . ‘e
sl re
T T T o
50 100 150
length (cm)
Mean length for fishery P19
RMSE = 47.24
(=]
8
L
IS)
c Qo
S S
o |
3

2010 2015 2020

time

2000 2005

LF pred (min)

LF obs (thous)

length

bet LF 020, all quarters
(bars - observed)

N n

o L8
1] °
S\ 3

/ : | g
s 5
o ro

. 5]

e

/ ., o
. e, =
., re

/ . S
0

= o
l re
o
~.| o
3
re
T T T S

50 100 150
length (cm)

Mean length for fishery 020
RMSE = 32.91

2010 2015 2020

time

2000 2005

LF pred (min)

Figure A11: Fit for the length frequencies data. Continued.

29



A.5 Fit to the tagging data

Observed tag recaptures
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Figure A12: Number of bigeye tuna recaptured between July 2007 to December 2010
(top). Distribution of tag recaptures predicted for the same time period by the CL refer-
ence model, i.e. with MLE parameters, estimated from fisheries data only (bottom).
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Figure A13: Number of bigeye tuna recaptured between July 2007 to December 2014
integrated into current reference model (top). Distribution of tag recaptures predicted for
the same time period by the CLT model with MLE parameters, estimated from fisheries
and tagging data (bottom).
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