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Executive Summary 
 
In the Western & Central Pacific Fisheries Commission (WCPFC), uncertainty in 
management reference points are derived from one of two stock assessment modeling 
approaches: 1) one that solely incorporates the statistical (estimation) uncertainty from a single 
“best” model, or 2) one that characterizes the model uncertainty across a model ensemble 
or structural (model) uncertainty grid. Either approach, when considered independently, is likely 
to under-represent the uncertainty in management reference points. However, these 
approaches are not mutually exclusive and can be combined to characterize uncertainty 
in a more holistic and transparent manner. We encourage the SC to recommend that combining 
both the statistical and structural uncertainty across an ensemble of models be the standard 
approach for characterizing uncertainty for all assessed stocks under the management of the 
WCPFC. We also point the SC to the 2021 southwest Pacific Ocean swordfish assessment which 
applies this approach to a WCPFC assessment for the first time. This work also responds to concerns 
expressed at SC15 that approaches are needed to reduce the requirement to make subjective 
decisions on model weighting in structural uncertainty grids and provides a strong basis for 
addressing this issue (below). 
 
Adopting the approach of combining statistical and structural uncertainty across an ensemble 
necessitates having a sound framework for developing the ensemble. The principal criticisms levied 
against the structural uncertainty grid approach was that the choice of axis levels could be 
subjective, and that a clear approach for objectively weighting different models in the grid was 
lacking.  
 
In the current paper, we describe a framework for creating an ensemble that addresses both of 
these criticisms, and demonstrate it using the 2017 southwest Pacific Ocean swordfish 
stock assessment as a case-study. This approach centers on developing a joint prior 
distribution for parameters that are fixed within an assessment model. 
 
We invite the SC to: 

 Recommend that the WCPFC considers adopting a standard approach for presenting 
uncertainty in management reference points and that the standard approach combines the 
statistical and structural uncertainty across an ensemble of models. 

 Consider the merits of the framework outlined in this paper as a suitable approach for 
combining statistical and structural uncertainty across an ensemble of models for WCPFC 
assessments. 

 Note the application of this framework in the 2021 southwest Pacific Ocean swordfish 
assessment. 

 Support additional research into ensemble modeling and model weighting for the provision 
of management advice. 
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Abstract
Uncertainty in population status estimates from stock assessments are important for
providing a more comprehensive picture of current knowledge of a stock. The use of
ensemble models to encapsulate model uncertainty has become increasingly prevalent.
The incorporation of uncertainty of biological parameters that are often fixed in stock
assessment models can be incorporated through model ensembles. An ensemble can be
created by randomly drawing values from the likely parameter space (prior ensemble) or
fixed at either a high, medium, or low value that encapsulates the variability in the
parameter and applied in a fully factorial grid across the fixed parameters (factorial
ensemble). We calculated the management advice from a prior ensemble and a factorial
ensemble for Southwest Pacific Swordfish (Xiphias gladius) and compared reference
points which incorporated model uncertainty only, model and estimation uncertainty, or
both uncertainties weighted by sampling importance resampling. Median reference
points were not significantly different for the two ensembles, but the factorial ensemble
had a significantly larger estimate of model uncertainty than the prior ensemble. Stock
assessments with fixed biological parameters can characterize uncertainty in these
parameters more effectively using a prior ensemble approach. A factorial ensemble
approach is appropriate for comparing different model structure assumptions and
functional forms of relationships, but can be used in combination with a prior ensemble
approach. Incorporation of both model and estimation uncertainty in estimates of
reference points is important when providing management advice because including only
model uncertainty can lead to overestimation of the precision of estimates. Further work
is needed regarding appropriate weighting of ensembles which incorporate different data
sources or have different likelihood weightings.

Introduction 1

Modern management of exploited fisheries relies on estimates of historical trends in 2

population biomass and fishing mortality or reference points of these quantities. This 3

stock status information is then used by managers to set appropriate limits and targets 4

that are used to determine regulations on harvest. The most frequently used stock 5

assessment approach to estimate stock status is the integrated, statistical catch-at-age 6

model [1–4]. The complexity of these models has evolved and generally become greater 7
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through time [5]; recent catch at age models include sex-specific dynamics, and/or 8

spatially discrete areas with multiple stocks [6]. Hundreds to thousands of model 9

parameters are necessary in order to meet the parametric structure of these complex 10

integrated stock assessment models. In many instances there is not sufficient data to 11

internally estimate all parameters simultaneously so a subset are held fixed during the 12

analysis. Fixing parameters in an integrated assessment model makes a strong 13

assumption about the uncertainty (zero) associated with that particular parameter. 14

However, small changes in fixed biological parameters can result in large differences in 15

estimates of stock status [7]. Characterization and incorporation of uncertainty into 16

management advice is becoming more widespread as awareness of the magnitude of this 17

uncertainty in stock assessments increases [8]. 18

There are two main types of uncertainty that afflict fisheries management: scientific 19

uncertainty and management uncertainty [8]. This study focuses on the former, while 20

the latter can be addressed through Management Strategy Evaluation (MSE) [9]. 21

Scientific uncertainty arises due to imprecision and bias in the stock assessment process, 22

which can be further subdivided into four categories. First, observation uncertainty is 23

the measurement error in the observed quantities such as catch, length, weight, age 24

estimates, and catch-per-unit effort (CPUE). Second, process uncertainty is variability 25

in underlying stock dynamics such as stochasticity in recruitment or growth of fish. 26

Third, model uncertainty is the uncertainty or misspecification of fixed model 27

parameters or functional forms of assumed dynamics. Examples of model uncertainty 28

include biological assumptions such as the form of the spawner-recruit relationship or 29

somatic growth curves, fisheries assumptions such as functional forms of selectivity or 30

number of fisheries, and modeling assumptions such as different spatial structures or sex 31

specific dynamics. Fourth, estimation uncertainty is due to the imprecision or bias in 32

parameters estimated within the model. Some refer to estimation uncertainty as 33

parameter uncertainty but this creates ambiguity between model and estimation 34

uncertainties (e.g., multiple models that assume different fixed constant values of the 35

natural mortality parameter is model uncertainty). Therefore, we prefer the use of 36

estimation uncertainty and advocate for not using the term parameter uncertainty. 37

Historically, point estimates of stock status from a single model were used to provide 38

management advice and did not quantify the uncertainty in the estimates [10,11]. 39

Incorporation of estimation uncertainty into management advice first occurred as a 40

result of greater computational abilities to estimate variance of model quantities using 41

the covariance matrix and the delta method [12–14]. Monte Carlo and bootstrap 42

simulations have also been used to estimate uncertainty in estimated quantities for use 43

in management [15,16]. However, estimation uncertainty from a single model is now 44

generally thought to be modest compared to model uncertainty representing different 45

states of nature [17]. Use of ensemble model methods and superensembles [18] have led 46

to the expansion of incorporating uncertainty from multiple models into management 47

advice in recent years [17, 19–21]. These ensemble methods can more truthfully capture 48

the broader uncertainty from numerous models representing different states of nature, 49

and lead to greater stability in estimates [22,23]. 50

It is important to consider how model ensembles are combined to provide 51

management advice, because the chosen methodology can influence the estimated 52

uncertainty in stock status. The simplest approach is to assume that all models are 53

equally likely and thus all alternative states of nature have the same probability of 54

being true. The other alternative is to combine models according to a weighted average, 55

where the derivation of model weights can come from a subjective (based on expert 56

opinion), objective (based on model convergence or other diagnostics), or hybrid 57

approach [24]. Equally important to how management advice is presented and 58

combined, is the choice of models included within an ensemble [17,19,24]. However, a 59
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research gap exists as guidance regarding which models to include or exclude has 60

generally been left up to individual analysts to decide. Additionally, explicit examples 61

of incorporating inappropriate models within an ensemble and the resulting impact on 62

management advice have not been evaluated. Previous applications of model ensembles 63

used to provide management advice have generally used one of two different 64

methodologies to encapsulate uncertainty in biological parameters (e.g., natural 65

mortality or growth) that are fixed within the assessment models. 66

The first methodology to incorporate uncertainty into an ensemble is to randomly 67

draw values of biological parameters from distributions obtained by external 68

analyses [15–17,25]. This methodology is similar to creating prior distributions for 69

parameters within a Bayesian framework. Despite recent advances in algorithms for 70

mapping the posterior distributions [26–29], Bayesian analyses remain computationally 71

infeasible for use in complex age-structured stock assessments. However, this should not 72

prevent the creation of prior distributions in order to incorporate biological model 73

uncertainty within ensembles fit using maximum likelihood approaches. These prior 74

distributions can be formulated using a range of methodologies; the simplest approach 75

would use the estimate of uncertainty from a single study (e.g., growth curve estimate), 76

whereas a more complex method would be a meta-analytic approach of numerous 77

studies on similar species such as the one implemented in the R package 78

FishLife [30,31]. The second methodology to incorporate model uncertainty into an 79

ensemble involves bounding the uncertainty, typically using the associated 95% 80

confidence (credible) interval, of a fixed parameter. The high and low estimates of a 81

parameter would be combined with the point estimate of the analysis to represent the 82

uncertainty in the fixed parameter. This application of model ensembles has been 83

commonly used by the Western Central Pacific Fisheries Commission (WCPFC) to 84

formulate management advice [32,33]. Uncertainty in biological parameters is 85

incorporated into management advice by combining with other model (structural) 86

uncertainties in a full factorial combination of “axes of uncertainty”. 87

A comparison of these two methodologies has not been conducted on a set of 88

biological parameters, but theoretically the prior distribution method is superior in 89

many aspects. First, the full factorial method can result in combinations of parameters 90

that would be considered biologically implausible according to life history theory. For 91

example, a high level of natural mortality is unlikely with a lower level of growth 92

capacity (k in the von Bertalanffy growth curve). Conversely, the prior approach can be 93

constructed in a way that preserves the inherent correlation between parameters and 94

self-censors the ensemble to more likely parameter combinations. The implicit behavior 95

of the prior will give more weight to the most plausible parameter values, whereas the 96

full factorial approach will result in more weight in the tails compared to a distribution. 97

Finally, the full factorial method can quickly become computationally impractical to 98

conduct beyond 3-5 axes of uncertainty1. This computational restriction compels the 99

analyst to triage the potential sources of uncertainty, effectively ignoring the impact of 100

those sources of uncertainty deemed to be less important. In theory, the range of 101

uncertainty from the prior approach could be characterized in a more computationally 102

efficient manner using a smaller model ensemble (25-40 models) depending on the 103

departure from multivariate normality. 104

In the present study we attempt to address the apparent research gap by providing 105

guidance on the construction of model ensembles for integrated stock assessment. We 106

provide an explicit example of how model ensemble construction, and model ensemble 107

combination can impact the resulting management advice. This is accomplished by 108

addressing the following five objectives using the 2017 southwest Pacific Ocean (SWPO) 109

1This corresponds to an ensemble size of 27 - 243 models assuming 3 levels (high, median, and low)
per “axis”
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swordfish (Xiphias gladius) stock assessment as a case study: (i) we demonstrate the 110

difference in management advice arising from creating a model ensemble using the full 111

factorial and prior distribution approaches; (ii) using the prior distribution approach we 112

evaluate the number of models needed to characterize the model uncertainty; (iii) we 113

show how the prior distribution approach can be used to identify which fixed 114

parameters are most influential in the reference point estimates; (iv) we illustrate the 115

difference in management advice from ensembles that just characterize model 116

uncertainty versus ensembles that characterize both model and estimation uncertainty; 117

and (v) lastly we display how model ensemble construction can be combined with an 118

ensemble combination approach (equal weighting vs. Sampling Importance Resampling 119

(SIR) weighting) in calculating management reference points. 120

Methods 121

Case study description 122

Details of the SWPO swordfish stock assessment are presented in [32] and we refer 123

readers to this for a complete description of the model. For context, the 2017 SWPO 124

swordfish stock assessment was conducted using the integrated assessment platform 125

Multifan-CL [4], using data from 1952-2015. The model is spatially stratified into two 126

regions in the SWPO delineated at 165°E and uses 13 longline fisheries based on 127

sub-area boundaries, nationality, and time period. The assessment uses a size-based 128

(length and weight) statistical catch-at-age with a catch-errors method. Data used in 129

the swordfish assessment for the SWPO consisted of fishery-specific catch (in numbers) 130

and standardized effort data for the Japanese, Chinese Taipei, Australian and European 131

Union fleets (which provided indices of relative abundance), length-frequency data, and 132

weight-frequency data. Using this model as a baseline, we investigated model 133

uncertainty in five different biological assumptions that were fixed within the 2017 stock 134

assessment. For four of these assumptions, there was sufficient data to conduct external 135

analysis to estimate relationships to be used in our ensembles: growth, natural 136

mortality (M), length-weight relationship, and maturity (or spawning-potential) at 137

length relationship. There was not sufficient data to conduct an external analysis for 138

the stock-recruitment steepness parameter, which was the fifth biological uncertainty in 139

the ensemble. 140

Ensemble construction 141

Prior approach 142

The methods and data used to create the joint prior are of limited importance to the 143

conclusions drawn in this study and could be created through a variety of methods 144

depending on the species. For example, estimates of uncertainty in the biological 145

parameters could be created using the FishLife package [30], or any other multivariate 146

or meta-analytic approach [34]. Briefly, we describe the methods and data used in the 147

current analysis to create the joint prior, however we urge readers to consult the 2021 148

southwest Pacific Ocean swordfish stock assessment data inputs paper [35] for further 149

information and detail. Four independent Bayesian analyses, implemented in R using 150

the STAN package [26,36] were used to create posterior distributions for the parameters 151

needed to parametrize the growth, spawning potential, and length-weight relationships. 152

Growth was modeled as a von Bertalanffy growth relationship, spawning potential was 153

modeled as the product of the logistic relationship of maturity at length (lower jaw fork 154

length; LJFL) and the logistic relationship of sex-ratio at lower jaw fork length (LJFL), 155

and length-weight was modeled using an exponential relationship. The length-at-age 156
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and maturity-at-length data used to estimate these relationships were initially collected 157

from longline sampled swordfish captured in the Coral Sea [37–39], though the aging 158

and histological data come from a subsequent re-analysis [40]. Additionally, length and 159

weight data by sex of longline captured swordfish, taken as a part of the Pacific Islands 160

Regional Observer Program (PIRFO) were also used in the current analysis. 161

A joint posterior of these 3 relationships was created by randomly drawing 500 162

samples without replacement from each of the independent posteriors. These samples 163

were then used to calculate a prior distribution for the natural mortality at age, based 164

on the empirical relationship with the von Bertalanffy L∞ and k, using a combination 165

of the method described in [41–43]. Variability in the parameters in the Paulynls-T 166

relationship [41] was included when calculating the natural mortality by drawing from 167

their associated covariance matrix. This methodology encapsulates the uncertainty in 168

all of the modeled processes, and also preserves the parameter correlation from each 169

external analysis. Steepness was assumed to be independent of the other biological 170

processes and was drawn from a uniform distribution between 0.65 and 0.95 which 171

matched the range from the previous assessment [32]. The resulting distributions of the 172

biological relationships for the joint-prior ensemble are presented in Fig 1. The prior 173

ensemble approach created 500 models, each with a different set of biological 174

parameters that was fixed within the assessment model. All models were then fit to the 175

same data used in the 2017 stock assessment using the program MULTIFAN-CL. 176

Multiple prior ensembles were created in order to investigate how uncertainty in 177

management reference points changed with ensemble size. Thus, the 500 models from 178

the prior ensemble were sampled without replacement to create new ensembles with 179

sample sizes of 350, 243, 100, 75, 50, and 30. The sample size of 243 was chosen because 180

this was the size of the factorial ensemble approach (see below). The 243 model prior 181

ensemble was used in comparison with the factorial ensemble. 182

Three reference points commonly used to assess stock status, two based on maximum 183

sustainable yield (MSY) and one based on depletion from the unfished condition, were 184

calculated for each model in the prior ensemble. The two MSY based reference points 2, 185

SB/SBMSY and F/FMSY, show terminal spawning biomass (SB) and fishing mortality 186

(F) relative to the SB or F that produces MSY. The depletion based reference point, 187

SB/SBF=0, shows terminal SB relative to the unfished SB in the terminal year. A 188

generalized linear model of each reference point was created for the prior ensemble with 189

the 243 models. The model included all fixed biological parameters as covariates, scaled 190

to a mean of 0 and standard deviation of 1, against the selected reference point. The 191

effect and p-value of the regression were displayed graphically to determine which 192

biological relationship was most influential in stock status reference point estimates. 193

Factorial approach 194

The factorial approach typically assigns a high, medium and low value to be used for 195

each axis of uncertainty in the model ensemble. To this end, the 2.5, 50, and 97.5% 196

percentile from the joint prior were calculated for the growth, length-weight, spawning 197

potential, and natural mortality. The values of the biological relationship used in the 198

factorial ensembles are shown as the dotted and dashed lines in Fig 1. The value for 199

steepness was assumed to be either 0.65, 0.8, or 0.95. This created five axes of 200

uncertainty (growth, natural mortality, length-weight, spawning potential, and 201

steepness) with three options for the fixed parameters defining these relationships in the 202

assessment. A full factorial combination of these axes of uncertainty was conducted to 203

create a total of 243 models in the factorial ensemble. These models were fit to the data 204

using the program MULTIFAN-CL in the same manner as the prior ensemble. 205

2MSY is based on the average fishing mortality at age in the last 5 years of the model, excluding the
last year
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Ensemble Comparisons 206

Distributions of reference points were compared among the prior ensembles and the 207

factorial ensemble by boxplots of the converged and non-converged models. 208

Convergence was determined based on the presence of a positive definite Hessian 209

solution. Pairwise Wilcox tests for each ensemble were conducted to compare mean 210

estimates of reference points. Flinger tests were conducted between the ensembles to 211

determine differences in variance estimates of reference points. 212

Estimates of uncertainty for the two ensembles were calculated through three 213

methods, and density plots of each reference point are shown for converged models in 214

both ensembles. The first method incorporated only model uncertainty and the density 215

distribution is from the point estimates from converged models in each ensemble. The 216

second method incorporates both the model and estimation uncertainty, and follows the 217

approach taken by the International Pacific Halibut Commission (IPHC) [20,44]. For 218

each model retained in the ensemble, the estimation uncertainty for the three reference 219

points was generated by drawing 100 samples in a parametric bootstrap from a 220

distribution, where the mean was the estimate and the standard deviation the estimated 221

standard error computed using the delta method applied to the variance-covariance 222

matrix of the model parameters [12]. The MSY based reference points were drawn from 223

a normal distribution. However, the SB/SBF=0 reference point was estimated on a 224

natural logarithm-scale in MULTIFAN-CL, therefore a lognormal distribution was used 225

for this parameter. The third method uses the model uncertainty but weights each 226

model through sampling importance resampling (SIR) [45]. To conduct SIR, 8000 227

models were drawn from the ensemble with a probability of each model drawn as the 228

log-likelihood of the model divided by the sum of all log-likelihoods in the ensemble. 229

The sample size of 8000 was chosen to ensure that the maximum importance ratio was 230

less than 0.04 and the maximum single density was less than 1% [45]. The fourth 231

methodology is similar to the previous but incorporates both measures of uncertainty 232

and weights the models through SIR described above. From each sampled model in the 233

SIR 100 values were drawn for each reference point from the approximation based on 234

the estimated standard error. 235

Results 236

All models achieved the specified maximum gradient component stopping criteria of 237

10−3. The convergence rate of the full factorial ensemble (138 of 243 models; 57%) was 238

marginally lower than the rate for the prior ensemble (147 of 243 models; 60%). The 239

full factorial ensemble had problems with convergence for models with the combination 240

of low natural mortality, low growth, and high or medium length-weight. There were 241

not any specific parameters or combinations that resulted in poor convergence for the 242

ensemble models. The estimates of SB/SBF=0 from models in the full factorial ensemble 243

with a positive definite hessian had a median estimate of 0.374 and an interquartile 244

range of 0.030, whereas models without a positive definite hessian had a lower median 245

of 0.347 and a larger IQR of 0.035. For the fully factorial ensemble, the F/FMSY was 246

marginally higher for the models without a positive definite Hessian. Conversely, 247

SB/SBMSY was marginally lower for models without a positive definite Hessian 248

compared to models that had converged (Fig 2). 249

Sample size of the prior ensemble over the range investigated did not have a large 250

influence on the reference point estimates both in terms of the median and the 251

variability (Fig 2). The median and interquartile range of reference points were similar 252

for models that obtained a positive definite Hessian and those that did not for all prior 253

ensembles. For the converged prior ensembles for all sample sizes, median F/FMSY 254
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ranged between 0.767 and 0.818, median SB/SBMSY ranged between 1.633 and 1.757, 255

and median SB/SBF=0 ranged between 0.358 and 0.362. 256

Pairwise Wilcox tests on the mean of the three reference points across all ensembles 257

were not significantly different (P-value >0.1). A Flinger test between the factorial 258

ensemble and all sample sizes of the prior ensemble showed that the variance was 259

significantly larger for the factorial ensemble (P-value <0.001). Flinger tests among the 260

sample sizes of the prior ensemble were not significantly different. 261

Reference point estimates from models with a positive definite Hessian from the 262

prior ensemble with 243 models were regressed against the input biological parameters 263

for the model (Fig 3). SB/SBMSY was strongly positively correlated with steepness 264

(P-value <0.001). The hypothetical age where length is zero (t0), the Brody growth 265

coefficient (k), both length-weight relationship parameters (LW-a and LW-b), and the 266

length at 50% maturity (L50) were strongly correlated with SB/SBF=0 (P-value <0.001). 267

The k parameter had the largest positive coefficient and t0 was a similar magnitude but 268

negative for the SB/SBF=0 regression. The length weight parameters had the second 269

largest positive magnitude whereas L50 had a negative coefficient but was not very large. 270

SB/SBF=0 was also correlated with steepness and the slope of the maturity function 271

(P-value <0.01) and weakly correlated with Linf and the asymptotic value of the sex 272

ratio (P-value <0.1). F/FMSY was strongly negatively correlated with steepness, the 273

length weight parameters (LW-a and LW-b), and k, but was strongly positively 274

correlated with t0 and L50 (P-value <0.001). The reference point F/FMSY was also 275

positively correlated with the slope of the maturity function (P-value <0.01). 276

Uncertainty in estimates of the reference points for both the factorial and prior 277

ensembles were influenced depending on whether they included model uncertainty, 278

model and estimation uncertainty, or both uncertainties with SIR. The incorporation of 279

estimation uncertainty with the model uncertainty predictably resulted in less precise 280

estimates for all reference points and both ensembles (Fig 4). 281

The factorial ensemble distribution for SB/SBMSY was distinctly bimodal with peaks 282

around 1.75 and 4 when only model uncertainty was used (Fig 4). When estimation 283

uncertainty was incorporated into the density, the mode around 4 became much less 284

influential and the overall distribution became more similar to the density for the prior 285

ensemble. The distribution of SB/SBMSY for the SIR for model uncertainty only had 286

three models for the factorial ensemble and did not have a smooth distribution for the 287

prior ensemble. The distribution from the SIR with both estimation and model error 288

was nearly identical to the estimation and model error for both ensembles. 289

The distribution of SB/SBF=0 for the prior ensemble with only model uncertainty 290

was less variable than the factorial distribution and had a mode at a slightly lower value 291

(Fig 4). When estimation and model uncertainty were incorporated into SB/SBF=0, the 292

estimates of this reference point became much more uncertain, but more similar 293

between the two ensembles. The distributions for the SIR showed very similar 294

distributions to the corresponding errors without resampling. 295

The density of F/FMSY for the factorial ensemble contained three modes when only 296

model uncertainty was accounted for and was more variable than the prior ensemble 297

(Fig 4). The density of F/FMSYwith model and estimation uncertainty for the factorial 298

ensemble was bimodal but remained more variable than the prior ensemble. The density 299

curve for the sampling importance resampling for model uncertainty displayed a jagged 300

density curves and the number of distinct modes increased for both ensembles. The 301

distribution of F/FMSY from SIR with estimation and model uncertainty showed some 302

smoothing of the mode for both ensembles compared to the estimation and model error 303

distributions but overall were very similar. 304

The probability of reference points exceeding their respective chosen values 3 was 305

3These limits have not been agreed to for management purposes and are for illustrative purposes
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influenced mostly by the error type and to a lesser degree the ensemble (Table 1). In 306

the current case study, incorporation of estimation error into the reference points always 307

resulted in an increase in the probability of exceeding the limit reference point. 308

Reference points calculated only using model uncertainty showed zero probability of 309

exceeding the limits for SB/SBMSY and SB/SBF=0, but when estimation uncertainty 310

was included the probability increased to 5%. The incorporation of sampling 311

importance resampling had very similar probability of exceeding reference point limits 312

as the equal weighting of models for both ensembles. The factorial ensemble was more 313

likely to exceed the limits for SB/SBMSY and F/FMSY than the prior ensemble. 314

Discussion 315

In this study we investigated the difference in management advice that would be 316

provided from two model ensembles that used model uncertainty, model and estimation 317

uncertainty and both uncertainties with sampling importance resampling. The median 318

reference points were not statistically different between the two ensembles (or for prior 319

ensembles of different sizes), but the ensemble with the full factorial design showed 320

more uncertainty. The higher variance and bimodality seen in the factorial ensemble 321

could lead to different management advice depending of the probabilities of exceeding 322

limits which are used in decision making. This is likely due to the factorial ensemble 323

including biologically unreasonable parameter combinations, and the choice of using the 324

upper and lower bounds of the parameter 95% confidence interval to define the factorial 325

levels. Using a smaller confidence interval to define the parameter range (e.g. 50% 326

confidence interval) would not over-represent the tails of the distribution in the factorial 327

approach, however it would under represent the uncertainty associated with that 328

particular parameter. Additionally, our analysis also showed the prior approach was 329

computationally more efficient as reference point estimates (and associated model 330

uncertainty) were consistent across prior ensembles of varying sizes. Therefore,in this 331

case a prior ensemble could be created with as few as 30 models to capture uncertainty 332

in fixed biological parameters used within the assessment. Therefore, we recommend 333

creating an ensemble of models that draws fixed biological parameters from a prior 334

distribution. 335

An additional advantage of using the prior ensemble over the fully factorial approach 336

is the ability to regress the fixed model covariates against the reference points. This can 337

be useful to identify which parameters are influential on the model results. By 338

identifying which parameters are most influential on a model, future research on the 339

biology of a species can be prioritized to reduce uncertainty in management advice. For 340

example in the SWPO swordfish case study, a better understanding of the steepness of 341

the Beverton-Holt stock recruitment would reduce the variability in MSY based 342

reference points. Conversely, better understanding of the growth and length-weight 343

parameters would reduce variability in the SB/SBF=0 reference point the most. 344

The prior ensemble approach could be applied to the specification of operating 345

models within a MSE framework [9]. However, a MSE framework does not need to be in 346

place for an ensemble approach to be used. Additionally, even if current management 347

decisions do not incorporate uncertainty in reference point estimates, the presentation of 348

uncertainty in the reference points to managers should nevertheless occur. This will 349

provide a realistic picture of the current understanding of the stock and could lead to 350

management practices that incorporate the uncertainty explicitly consistent with the 351

precautionary approach. Uncertainty in biological parameters and input data have been 352

incorporated into management advice for numerous species under federal jurisdiction in 353

the southeast United States using a Monte Carlo bootstrap ensemble (MCBE) [16,25]. 354

Management of these species does not currently entail an MSE, but the uncertainty in 355
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reference points resulting from the uncertainty in biological parameters and data is 356

incorporated into setting the catch limits. Therefore, the methodology applied in this 357

paper can be used to provide robust advice to fisheries managers without a full MSE 358

framework. 359

Despite our recommendation to use ensembles from prior distributions, a fully 360

factorial ensemble is a valid and warranted approach for creating ensembles in some 361

scenarios. A fully factorial ensemble design should be used when there are discrete 362

choices between model structures that cannot be characterized as a distribution. A 363

good example of a fully factorial axis of uncertainty would be models with differing 364

hypotheses regarding the functional form of the stock recruitment relationship, e.g., 365

Ricker relationship, a Beverton-Holt relationship, or constant recruitment. Other 366

examples where a factorial ensemble approach would be applied could include the 367

functional forms of selectivity, spatial structure assumptions of the assessment, 368

alternative catch reconstruction time series and different standardization approaches of 369

CPUE indices. Model ensembles that are a hybrid between the factorial and prior 370

approach could easily be created to incorporate the uncertainty in fixed biological 371

parameters and competing hypotheses of states of nature. For example, a hybrid 372

ensemble could use parameter sets drawn from the joint prior for each of the axes or 373

models in the factorial design. 374

Uncertainty in management advice is generally thought to be greater from model 375

uncertainty than it is from estimation uncertainty [17,24]. However, this was not the 376

case for all reference points that are presented in this study. For the MSY based 377

reference points, the CV from model uncertainty was on the same scare or slightly 378

larger than the CV from estimation uncertainty (Table 2). However, for some individual 379

models the standard error for these reference points was larger than the standard 380

deviation of the model estimates. Conversely, the CV of SB/SBF=0 from the model 381

estimates was an order of magnitude smaller than the CV from the estimation error. 382

Thus in the current case, if only model uncertainty from the ensemble were used in the 383

creation of management advice for this reference point, then the uncertainty would be 384

underrepresented and could lead to risk prone management. The influence of including 385

estimation error will depend on the precision of the reference point estimates within the 386

assessment model, but will generally result in an increase in uncertainty. Therefore, the 387

incorporation of both model and estimation uncertainty into management advice is 388

necessary to accurately capture the current knowledge of stock status. 389

The reference point estimates from an ensemble can be combined through a 390

multitude of techniques. These methods can range from simple averaging, likelihood 391

weighting (e.g., AIC), or cross validation [17]. Simple averaging of reference points can 392

easily be conducted for a large number of models and can incorporate both estimation 393

and model uncertainty [46]. Simply averaging across models in a factorial ensemble is 394

implicitly assuming equal probability of the states of nature represented by all 395

models [24]. The prior method implicitly puts additional weight on combinations of 396

parameters that are the most representative of our current understanding of the biology 397

of the species given data external to the assessment model. Thus averaging across 398

models may be a reasonable assumption to make for the prior ensembles. Conversely, 399

the full factorial method may present different assumptions about modeled relationships 400

that have differing levels of plausibility. For example, the combination of the high 401

growth and high length-weight relationship from the factorial ensemble resulted in a 402

length at age and weight at age relationship which was well outside the range seen from 403

the prior method (top right Fig 1). This value outside the expected range is not 404

observed when looking at the growth or length-weight relationships individually. 405

However, this resulting interaction could potentially explain the difficulty in 406

convergence for certain combinations in the fully factorial ensemble. Assigning weights 407
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to various hypotheses in a fully factorial ensemble is difficult and typically is resolved 408

through ‘expert opinion’. These expert opinions (i.e., subjective weightings) regarding 409

the multiple hypotheses present in a full factorial ensemble should be assigned before 410

the results of the assessment are revealed. This reduces the possibility that the 411

weighting of the hypotheses are driven by the resulting stock status of the models. 412

However, this does not always prevent such bias from occurring because some modeling 413

assumptions can have predictable results (e.g., higher steepness will have a higher 414

FMSY). Thus difficult discussions regarding the incorporation and weighting of 415

uncertainty in stock assessments of managed species should occur on the front end of 416

the assessment process. This prevents political motivations from driving the advice that 417

is presented for management of a species and will be driven more by the understanding 418

of the biology of the species. Averaging of results based on expert opinion (even with 419

multiple experts) is less than ideal because the results would not be reproducible with a 420

different analyst or group of experts. Likelihood weighting methods have been proposed 421

as an alternative objective way of model averaging. However, these do not always select 422

the ‘correct’ model from the ensemble and could potentially lead to providing biased 423

management advice. Additionally, these methods only work when the same data and 424

likelihoods are used in the models [21]. Therefore, these methods cannot be used when 425

different data weightings are assumed in the ensemble or when different datasets are 426

used in an ensemble. Thus the applicability of these likelihood methods is limited for 427

most assessment ensemble contexts. Cross validation methods can be computationally 428

intensive and thus may not be practical for models that take a long time to converge or 429

for large ensembles [47]. Recent work using hindcasting has proposed the use of mean 430

absolute scaled error (MASE) as potential method for model ensemble weighting [48]. 431

However, the details of performing such weighting need additional evaluation for 432

determining which data source should be removed for hindcasting or whether all data 433

sources need to individually hindcast; additionally, investigation is needed in the correct 434

way to combine the metric across multiple CPUE indices or metrics from removing 435

different data sources. If estimation uncertainty and model uncertainty are at a similar 436

scale, then the different weighting methodologies will generally produce similar results if 437

both model uncertainty and estimation uncertainty are incorporated into management 438

advice. This was seen in this study when using the sampling importance resampling. 439

Management advice is only likely to be significantly different if model uncertainty is 440

much larger than the estimation uncertainty and model weighting removes models from 441

the tails of the distribution. However, it is always possible that different weighting 442

methods chosen could allow/prevent management criteria based on probability of 443

exceeding a reference point from being activated. Thus, further research on the best 444

method for ensemble averaging is required. 445

In conclusion, both model and estimation uncertainty should be included in 446

reference point calculations for management advice. This will allow the most accurate 447

representation of the current knowledge from the assessment models. Ensembles should 448

be created using a hybrid approach where fixed parameters are drawn from a prior and 449

competing hypotheses of functional forms of the states of nature should be included in a 450

fully factorial fashion. Further research on objective model averaging that can be used 451

in situations with differing likelihoods is required. 452
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Tables

Table 1. Probability reference points exceeding limits by error type. The
percent of the reference points (SB/SBMSY, SB/SBF=0, and F/FMSY) exceeding their
respective limits for the factorial and prior ensembles under the error distributions of
model only, model and estimation, and both weighted by sampling importance
resampling (SIR).

SB/SBMSY <1 SB/SBF=0 <0.3 F/FMSY >1
Error Type Factorial Prior Factorial Prior Factorial Prior
Model 0 0 0 0 12.3 6.1
Model and Estimation 5.4 4.9 28.5 30.2 16.5 13.7
SIR 5.4 5.1 27.8 30.6 16.4 13.3

Table 2. Model and Estimation Uncertainty for Ensembles. Model uncertainty
quantified by the coefficient of variation (CV) of reference points estimated from a
factorial and prior ensemble. Estimation uncertainty was quantified as the median
(maximum) of the CV estimated from the models in the ensembles for each reference
point.

SB/SBMSY SB/SBF=0 F/FMSY
Ensemble Model Estimation Model Estimation Model Estimation
Factorial 0.45 0.22 (0.25) 0.069 0.22 (0.26) 0.28 0.14 (0.17)
Prior 0.28 0.23 (0.26) 0.032 0.23 (0.26) 0.18 0.15 (0.17)
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Figures

Fig 1. Prior distributions of biological parameters. Plot of biological
relationships assumed within the ensembles where the solid grey lines are from the prior
ensemble, the red dashed line is the median used in the factorial ensemble and the two
blue dotted lines are the 95% confidence interval. Top left: growth relationship, top
center: natural mortality at age, top right: length at age from the von-Bertalanffy
against the weight-at-age, bottom left: length- weight relationship, bottom center:
spawning potential at length, bottom right: steepness of stock recruitment function,
where LJFL is lower jaw fork length.
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Fig 2. Reference points from ensembles. Boxplots of reference points from a full
factorial ensemble and a prior ensemble with different sample sizes given by P and the
number of the sample size, where the Prior ensemble has the same number of models as
the factorial ensemble (243). The boxes indicate the 25th and 75th percentiles, the
whiskers extend to two times the interquartile range, the thick black line is the median,
and outliers are plotted as points.
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Fig 3. Covariate estimates from generalized linear models. Estimated
covariates from a generalized linear model of biological parameters against reference
points where the color of the point is the p-value of the effect and warmer colors
indicate greater significance.
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Fig 4. Error distributions of reference points. Estimated distributions of
reference points for two ensembles where the left column is SB/SBMSY, the center
column is SB/SBF=0, and the right column is F/FMSY, the top row is for model
uncertainty only, the center row is the model and estimation uncertainty and the
bottom row is for the sampling importance resampling.
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