Stock assessment of southwest Pacific swordfish

1. Pacific Community, Oceanic Fisheries Programme

Background

- 2017 assessment indicated non-ignorable risks that the stock was overfished (11\%) and undergoing overfishing (32\%) according to MSY based reference points $\left(\frac{S B_{\text {latest }}}{S B_{M S Y}}<1\right.$ \& $\frac{F_{\text {recent }}}{F_{M S Y}}>1$)
- Quarterly fishery and movement dynamics, annual population dynamics: 1952-2019
- 2 spatial regions
- 13 extraction fisheries \& 2 - 8 index fisheries

Relative spatial catch

2010

Fishery

Key developments

- New approach for developing model ensemble \& characterizing uncertainty (estimation + model) following WCPFC-SC17-2021/SA-WP-05
- Updates biological assumptions and reproductive potential.
- Implementation of index fishery approach \& inclusion of NZ index
- All data updated through 2019.
- Development of alternative sexdisaggregated model ensemble

Model development

- 2021 diagnostic case showed similar results through 2000s to previous \qquad assessment though recent stock status was more optimistic
- Model development showed that determination of stock status was influenced by:
- Updating biological assumptions
- Adopting index fishery approach

- Adding NZ index
- Removing JP \& TW indices

Key sensitivities

- Sex-structure: Sex-disaggregated model sensitive to choice of growth curve variability
- Catch scenarios: Sensitive to inclusion/exclusion of catches in the NE of assessment region.
- DWFN CPUE: Pre-1990 recruitment sensitive to inclusion of DWFN CPUE
- Movement: High rates of movement from Region $2 \rightarrow$ Region 1 result in more optimistic stock status.
- Natural mortality: Higher assumed values of M allow for greater levels of F

Model ensemble

- Combination of factorial and 'joint prior': 384 total models
- Factorial component: 48 unique combinations, replicated 8 times
- Choice of DWFN CPUE
- JP, TW, EU, or none
- Penalty on recruitment deviations from stock-recruit relationship
- CV = 0.3, 0.5, 0.7
- Natural mortality prior
- Based on VB life-history invariants or maximum-age based
- Growth - t0 prior
- Uniformative or informative and centered on 0
- Joint prior: unique parameter combinations for all 384 combinations
- Biology: Growth, M, movement, steepness, length-weight \& reproductive potential
- Data-weighting: LF scalar, WF scalar \& average CPUE CV

Key sensitivities

Model retention

1. Average spawning potential Region 1 (Tasman) < Region 2 (S. Pacific): $\mathrm{n}=152$
2. Spawning potential $2019<$ spawning potential 1952: $\mathrm{n}=110$
3. Spawning potential 1952 < 250,000 mt: n = 109
4. Effort deviates not estimated on parameter bound: $\mathrm{n}=105$
5. Selectivity parameters not estimated on bound: $\mathrm{n}=55$
6. $\sigma_{\text {Age }}<45 \mathrm{~cm}: \mathrm{n}=41$
7. Model achieves positive definite Hessian solution: $n=25$

Main conclusions

- Relative to 2017 assessment, median estimates of stock status are similar though overall the assessment is less certain. This is expected given the new approach for characterizing uncertainty.
- Uncertainty in the assumed movement rates, and natural mortality are the two predominant contributors to overall assessment uncertainty.
- Model and estimation uncertainty from the final ensemble indicate that the stock is at a 20% risk of undergoing overfishing according to $\frac{F_{\text {recent }}}{F_{M S Y}}>1$, and between a 10% 13% risk of being overfished according to $\frac{S B_{\text {latest }}}{S B_{M S Y}}<1$ and $\frac{S B_{\text {latest }}}{S B_{F=0}}<0.2$.
- A sex-disaggregated model ensemble indicated greater uncertainty in stock status with a greater risk (19\%) that the stock was overfished according to $\frac{S B_{\text {latest }}}{S B_{F=0}}<0.2$.
- Assessment challenges
- Representativeness of CPUE indices due to restricted spatio-temporal sampling or lack of operational gear covariates for standardization
- Uncertainty in movement dynamics and population connectivity with high catch regions to the northeast of SWPO
- Lack of sex-specific data for proper attribution of sex-specific catch/fishing mortality
- Key research recommendations
- Directed longitudinal tagging of swordfish to reduce movement uncertainty across SWPO \& stock structure uncertainty regarding high catch region in NE SWPO
- Feasibility study to determine if CKMR can improve estimates of total population scale and natural mortality
- Development of statistical sampling design for biological (sex-specific) samples
- Expand minimal reporting requirements for longline operational characteristics

Extra slides

Hindcast weighting

Ensemble weighting
\square Equiprobable
प| ロロ|
1/MASE
1/MASE ${ }^{2}$
1/MASE ${ }^{2}$
1/MASE
1/MASE
1/MASE ${ }^{10}$

Stock structure sensitivity

