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1 Executive Summary

This paper describes the 2021 stock assessment of swordfish (Xiphias gladius) in the southwest

Pacific Ocean (SWPO) using a sex-aggregated model structure in MULTIFAN-CL. A further four

years of data were available since the last full stock assessment conducted in 2017, and the model

extends through to the end of 2019. New developments to the stock assessment include:

� A new approach for developing a model ensemble and characterizing uncertainty in man-

agement reference points, capturing both the model and estimation uncertainty based on

(Ducharme-Barth and Vincent, 2021).

� Updates to the biological assumptions and definition of reproductive potential.

� Implementation of an “index” fishery approach.

The assessment is supported by the development of a new framework for developing a model

ensemble and presenting the uncertainty in reference points (Ducharme-Barth and Vincent, 2021),

background analyses of biological parameters, preparation of the length-weight composition data

and definition of the fisheries structures (Ducharme-Barth et al., 2021b), re-analysis of tagging

data to create a movement prior for the stock assessment (Patterson et al., 2021), and a review of

swordfish biology, status and stock structure in the Pacific (Moore, 2020). Key changes made in

the progression from the 2017 to 2021 diagnostic case models include:

� Updating all data up to the end of 2019.

� Updating the biological assumptions, including defining reproductive potential as the product

of sex-ratio and female maturity at length.

� Implementation of the “index fishery” approach.

� Adding the New Zealand index fishery and removing the Japanese and Chinese Taipei index

fisheries from the diagnostic case model.

� Assuming that the population was at an unfished equilibrium at the start of the model period

in 1952.

In addition to the diagnostic case model, we report the results of one-off sensitivity models to ex-

plore the relative impacts of key data and model assumptions for the diagnostic case model on the

stock assessment results and conclusions. These one-off sensitivities included the development of a

sex-disaggregated model and a model that did not assume spatial structure. A model ensemble was

developed based on Ducharme-Barth and Vincent (2021) for consideration in developing manage-

ment advice where presented uncertainty is the combination of model (structural) and estimation

(statistical) uncertainty. This is a more holistic and transparent approach to presenting uncertainty

than has been previously considered in other WCPFC assessments.

As per recent Scientific Committee practice, it is recommended that management advice is for-

6



mulated from the results of the model ensemble. The initial ensemble of 384 models was filtered

to 25 final models by excluding models with estimation issues or those that produced nonsensical

results. Broadly speaking, the results from the current assessment are consistent with those from

the previous stock assessment (Takeuchi et al., 2017) in terms of the central tendency of estimates,

albeit more uncertain. This is expected given the change in approach for presenting uncertainty.

The most important factors contributing to the uncertainty around the estimated stock status are

the assumptions for movement rate, and natural mortality. Choice of distant water fishing nation

(DWFN) index, length frequency scalar, and average penalty for the Australian index were also

influential but to a lesser extent. Larger assumed values of natural mortality resulted in a smaller,

less depleted stock. High rates of movement from the South Pacific to the Tasman region, coupled

with low rates of movement in the inverse direction resulted in a larger, less depleted stock.

The main conclusions of the current assessment are summarized as follows:

� The model and estimation uncertainty from the final model ensemble indicate that the stock

is at a 20% risk of undergoing overfishing according to Frecent/FMSY > 1 (0.47 median; 0.25 –

1.29 80th quantile), a 13% risk that the stock is overfished according to SB latest/SBF=0 < 0.2

(0.39 median; 0.18 – 0.79 80th quantile) and a 10% risk that the stock is overfished according

to SB latest/SBMSY < 1 (2.95 median; 0.99 – 6.78 80th quantile).

� Comparison with the equivalent sex-disaggregated model ensemble indicated a more opti-

mistic stock status in terms of median SB latest/SBF=0 (0.45 median; 0.13 – 0.72 80th quan-

tile), with greater uncertainty resulting in a 19% risk that the stock is overfished according

to SB latest/SBF=0 < 0.2.

� The model ensemble predicts the stock to have gradually declined from the 1950s to the

mid-1990s before rapidly declining to an overall low point near 2010. Current stock status is

estimated to be at a similar level as the overall low with a declining trend in the terminal 4

years of the model.

� Directed longitudinal tagging of swordfish to reduce the uncertainty in movement rates, and

a feasibility study to explore applying Close-Kin Mark Recapture (CKMR) techniques to

SWPO swordfish are the two most critical research items.
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2 Acronyms and Abbreviations

AIC Akaike information criterion

ASPM Age-Structured Production Model

B Total biomass

CASAL C++ Algorithmic Stock Assessment Laboratory

CKMR Close-kin Mark Recapture

CPUE Catch-per-unit-of-effort

DWFN Distant-water fishing nation

EEZ Exclusive Economic Zone

EPO Eastern Pacific Ocean

ESS Effective sample size

EU European Union

F Fishing mortality

GAM Generalized Additive Model

GL(M)M Generalized Linear (Mixed) Model

h Stock-recruitment steepness

IATTC Inter American Tropical Tuna Commission

LJFL Lower-jaw fork length

LRP Limit reference point

M Natural mortality

MASE Mean absolute scaled error

MSE Management strategy evaluation

MSY Maximum sustainable yield

L∞ von Bertalanffy asymptotic maximum length

PAW SPC Pre-Assessment Workshop

PICT Pacific Island Country/Territory

PSAT Pop-up satellite archival tag

RMSE Root mean squared error
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SB Spawning potential (single sex model), spawning biomass (multi-sex model)

SC WCPFC Scientific Committee

SPC Pacific Community; WCPFC Scientific Services Provider

SRR Swordfish

SWO Swordfish

SWPO Southwest Pacific Ocean

VAST Vector Auto-regressive Spatio-Temporal

WCPFC Western and Central Pacific Fisheries Commission

WCPO Western and central Pacific Ocean

WW Whole weight
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3 Introduction

This paper presents the 2021 MULTIFAN-CL stock assessment of swordfish (Xiphias gladius; SWO)

in the SWPO (south of the Equator between 140◦E and 130◦W), including the area of overlap

between the WCPFC and IATTC convention areas. The first assessment of swordfish in the south

Pacific region, conducted in 2006, focused on the area 140◦E – 175◦W and used MULTIFAN-

CL (Kolody et al., 2006). This assessment was updated in 2008 by Kolody et al. again using

MULTIFAN-CL, while a CASAL-based assessment was performed for the south-central Pacific

area alone (140◦E – 130◦W; Davies et al. (2008)). In 2013 a new assessment was conducted using

MULTIFAN-CL (Davies et al., 2013), which assumed two model regions delineated at 165◦E in the

WCPFC area south of the equator (140◦E – 130◦W; Figure 1). This delineation was based upon

the results of electronic tagging programs (Evans et al., 2012). The most recent assessment was

conducted in 2017 (Takeuchi et al., 2017), using MULTIFAN-CL and applying the same two region

structure as the 2013 assessment. Follow up work was undertaken in 2018 to develop a multi-sex

model (Takeuchi et al., 2018). However, this model was not used to provide management advice.

The 2017 assessment included a structural uncertainty grid of 72 models incorporating natural

mortality, steepness, movement, and the size frequency likelihood weighting. The assessment esti-

mated that biomass had declined throughout the model period for all models in the grid, but the

decline was particularly steep in the last 15 years, and more so in region 2 (the eastern region). A

number of grid models (23 of 72) estimated that recent fishing mortality was exceeding FMSY and

some (8 of 72) estimated that spawning potential was less than SBMSY. While there is no formal

LRP for swordfish in the SWPO, none of the models estimated that recent spawning potential was

lower than 20% of what would be estimated in the absence of fishing (e.g. 20%SBF=0), and thus

not breaching the current WCPFC depletion based LRP for tuna species.

As in previous assessments, the objectives of the 2021 SWPO swordfish assessment are to estimate

population parameters, such as time series of recruitment, spawning potential, spawning potential

depletion and fishing mortality. These model estimated quantities indicate the stock status and

impacts of fishing. As previously mentioned there are no formal reference points adopted by the

WCPFC for SWPO swordfish and we summarize the stock status and fishing impacts in terms

of yield and depletion based reference points. The methodology used for the assessment is based

on the general approach of integrated modeling (Fournier et al., 1998; Maunder and Punt, 2013),

which is carried out using the stock assessment framework MULTIFAN-CL2 (Fournier et al., 1998;

Hampton and Fournier, 2001; Kleiber et al., 2019). MULTIFAN-CL implements a size-based, age-

and spatially-structured population model. Model parameters are estimated by maximizing an

objective function, consisting of both likelihood (data) and penalties constraining the estimates of

certain components.

Each new assessment involves updates to fishery input data, implementation of new features in the

2http://www.multifan-cl.org
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MULTIFAN-CL modeling software, and consideration of new information on biology, population

structure and other population parameters. These updates are an important part of efforts to

improve the modeling procedures and more accurately estimate stock status, fishing impacts, bio-

logical, and population processes. However, these updates can manifest in changes to the estimated

status of the stock and fishing impacts from previous assessments. It is important to recognize that

each new assessment represents a new estimation of the historic population dynamics, impacts of

fishing and stock status. Advice from the SC on previous assessments, and the annual PAW (Hamer

et al., 2021) guide this ongoing process.

A feature of previous stock assessments of SWPO swordfish is the use of an “uncertainty grid”.

The uncertainty grid is a group of models that are selected and run to explore the interactions

among key axes of uncertainty that relate to biological assumptions, data inputs, and data weight-

ing/treatment. This approach to representing uncertainty can be inefficient as the factorial combi-

nations quickly produce intractable numbers of models, including unrealistic factor combinations,

e.g., high M and high L∞. Furthermore, the approach can be ad-hoc, and subjective in relation

to weighting the models for management advice. For this assessment we apply a novel approach

to representing uncertainty in the model derived management quantities. The new approach is

described in detail in the supporting paper by Ducharme-Barth and Vincent (2021). In short the

approach involves developing a multivariate prior for the key parameters that are fixed in the stock

assessment model and then drawing from this prior to develop a correlated parameter set for each

model in the ensemble in order to capture structural or model -based uncertainty in the derived

management quantities. The approach propagates parameter uncertainty and correlation through

the stock assessment while providing an implicit model weighting based on the shape of the prior

distribution. The approach also incorporates the estimation uncertainty of individual models in

the ensemble by combining their statistical uncertainty in a parametric bootstrap. The presented

uncertainty therefore includes both estimation and model-based uncertainty in the management

quantities. This approach is seen as a more appropriate way to capturing uncertainty in model

outputs, and received strong support from the 2021 PAW (Hamer et al., 2021), to be applied for

the first time in this assessment.

The 2021 SWPO swordfish assessment incorporates data up until and including 2019 from longline

fisheries across the SWPO model region (Figure 1) and incorporates the new ensemble approach

for incorporating structural and statistical model uncertainty. Preparatory work on data for the

assessment is extensive and is described in limited detail in this report. We strongly advise that

this assessment report is read in conjunction with several supporting papers:

- Focusing on the front end: A framework for incorporating uncertainty in biological parameters

in model ensembles of integrated stock assessments (Ducharme-Barth and Vincent, 2021).

- Background analysis for the 2021 stock assessment of southwest Pacific swordfish (Ducharme-

Barth et al., 2021b)
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- Biology, stock structure, fisheries, and status of swordfish, Xiphias gladius, in the Pacific

ocean - a review (Moore, 2020)

- Broadbill swordfish movements and transition rates across stock assessment spatial regions

in the western and central Pacific (Patterson et al., 2021)

4 Background

4.1 Stock structure and movement

Swordfish are a highly mobile fish occurring in tropical and temperate waters in all global oceans

and large seas. In the Pacific Ocean they are one of the most widely distributed pelagic species

found from 50◦N to 50◦S and at all longitudes (Moore, 2020). Longline catch rate distributions

suggest three large, relatively high density areas, the North-West, South-West and Eastern Pa-

cific, which is in contrast to spawning distributions inferred from larval surveys, (Nishikawa and

Ueyanagi, 1974; Nishikawa et al., 1985) and studies of spawning and reproduction (Young et al.,

2003; Mejuto et al., 2008). These studies suggest spawning occurs in more localized regions pre-

dominantly in tropical and sub-tropical areas, with conspicuous absence from the Western Pacific

equatorial region, and the coastal regions of North and South America. Tagging studies provide

some confirmation that swordfish undergo directed seasonal migrations between temperate foraging

grounds and tropical spawning grounds, with perhaps less longitudinal movement (summarized in

Moore (2020)). It remains unclear how much site fidelity or philopatric behavior occurs, although

it has been demonstrated for some satellite tagged fish (Tracey and Pepperell, 2018). The degree

to which individuals migrate and sub-populations mix has implications for fisheries management

and stock assessment (i.e. localized depletion risk), but stock and meta-population structure in the

South Pacific still remains poorly understood.

Evans et al. (2014) analysed movement data from swordfish tagged with pop-up satellite tags

(PSATs) in the waters off eastern Australia, Cook Islands, and northeast of New Zealand between

Fiji and French Polynesia, as well as northern New Zealand (Holdsworth et al., 2007), and northern

Chile (Abascal et al., 2010). The analysis suggested a lack of movement between the southern and

northern regions of the WCPO, and between the WCPO and the far eastern EPO. Evans et al.

(2014) also identified cyclical latitudinal movements of fish tagged at multiple locations, but found

limited movement between the eastern and western areas of the Tasman and Coral Seas, delineated

at approximately 165◦E. This study led to the recommendation of the two model regions east and

west of 165◦E that have been adopted since the 2013 assessment (Davies et al., 2013). More recent

PSAT tagging of larger swordfish off the east coast of Tasmania showed that some fish do move

large distances from west to east across the 165◦E regional boundary (Tracey and Pepperell, 2018).

It was suggested that the difference between the observed movements in the two studies may relate

to the size of tagged fish, with the smaller fish in the Evans et al. (2014) study showing more

restricted movements.
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PSAT tagging studies however, typically involve very few fish and do not capture long-periods of

life due to the deployment duration of the tags. They also provide no information on movement

or dispersal of small juveniles and earlier life stages, and are generally inconclusive as to biological

stock structure or meta-population structure. Other approaches to studying stock structure; such

as genetics, otolith chemistry, parasites, and tissue stable isotopes have all been applied to swordfish

in the Pacific region and more broadly (reviewed in Moore (2020)). Most studies applying these

approaches have had limitations in either the method and or the sample coverage, although there is

now strong evidence from genetics that populations in the Indian and Pacific Oceans are separated

(Grewe et al., 2020). For the Pacific Ocean, Reeb et al. (2000) suggest a broad⊃ shaped connectivity

pattern, such that the south west and north west Pacific populations are the most distinct from each

other, with central and eastern populations intermediate between the two. Alvarado Bremer et al.

(2006) suggested that the south east Pacific population was also genetically distinct from the north

east and south west populations, and there was additional evidence to suggest that the south-central

Pacific may represent a population intermediate between the southwest and southeast, but this was

inconclusive due to the low sample sizes. More recent genetic studies have, however, found less

evidence for population structure across the Pacific (Lu et al., 2016). Overall, the stock structure

remains poorly understood for swordfish, movement behavior appears complex, and likely differs

by sex and size, and there is evidence of fidelity to particular areas (Burnett et al., 1987; Tracey

and Pepperell, 2018). As such there is likely to be sub-structure and migratory contingents within

any more broadly resolved stock structure. More research is required in this area to understand

the implications of spatio-temporal movement dynamics and regional fidelity for stock assessment.

4.2 Vertical movement behavior

An important aspect of swordfish behavior for understanding their ecology and how they interact

with fishing gear is vertical movement. Swordfish show diurnal vertical migration, moving up to

the surface waters at night and returning to mesopelagic depths, typically >300 m, during the day

(Abascal et al., 2010; Dewar et al., 2011). This typical behavior may be modified by spending

more time closer to the surface during the day where dissolved oxygen levels are lower, or at night

during the new moon phase when lunar illumination is low (Abascal et al., 2010). This vertical

migration is related to feeding behavior as swordfish follow the diurnal migrations of prey from the

deep scattering layer, primarily squids that are in-turn feeding on the deep scattering layer fish

community, to the surface at night. Targeting of swordfish with longlines can therefore be more

effective at night by setting lines closer to the surface, or deeper during the day. Gear setting

practices, especially factors affecting depth of fishing (hooks between floats, branch line length,

float line length, and/or line setting speed), bait type (e.g. squid v fish), and use of light sticks

can be influential on swordfish catch rates (Dell et al., 2020). Environmental factors such as degree

of lunar illumination or proximity to oceanographic fronts and convergence zones have also been

shown to influence swordfish catch rates (Bigelow et al., 1999; Poisson et al., 2010).
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4.3 Biological characteristics

Swordfish are sexually dimorphic, with females growing larger and faster than males (Young et al.,

2003; Mejuto and Garćıa-Cortés, 2014; Moore, 2020). Potential sexual differences in other life

history characteristics are less well known (e.g. migration patterns, natural mortality, etc.). There

have been a number of studies on swordfish growth rates and maturity in the Pacific (DeMartini

et al., 2000; Young et al., 2003; Mejuto et al., 2008; Valeiras et al., 2008) providing a range of

estimates for these key biological parameters that have contributed to stock assessment uncertainty.

WCPFC SC recommended that additional work on age, growth, age validation, and reproductive

biology be undertaken for the southwest Pacific swordfish stock (Project 71). That research and

its results are described in Farley et al. (2016), which indicated that swordfish lived longer and

grew slower than previously estimated. The age-length data-set from the Farley et al. (2016) study

is used in this assessment as part of the biological re-analysis to develop the joint prior for the

model ensemble (discussed in Ducharme-Barth et al., 2021b). The key findings of Farley et al.

(2016) include: southwest Pacific swordfish can live for at least 21 years, male and female growth

is similar until about age 3 years after which females reach larger sizes than males for the same

age, the size at 50% maturity for females is estimated to be around 160 cm eye orbital fork length

and age at 50% maturity is around 4-5 years. The spawning period in the southwest Pacific is

from August to May with a peak in December-January. Natural mortality is discussed further in

Section 6.2.5, but the review by Moore (2020) shows that annual M used in previous assessments

in the Pacific Ocean range from 0.22 - 0.48 depending on age and sex.

4.4 Fisheries

Due to the diurnal vertical migration behavior of swordfish, they are predominantly caught using

longline gear, with targeted fishing closer to the surface at night, or as bycatch in deeper longline

sets during the day that are likely targeting bigeye tuna. Squid bait is preferred over fish baits

and attaching light sticks periodically along the longline is a common tactic employed to increase

targeted catch rates (Bigelow et al., 1999; Hsu et al., 2015; Dell et al., 2020).

Fisheries for swordfish have operated in the SWPO since the early 1950s. Historically, the majority

of swordfish catches represented a valuable bycatch from the tuna-target longline fisheries. While

some of the recent catches are still considered valuable bycatch, particularly in deeper set longlines,

targeted catches slowly increased in the SWPO from the early 1970s up until the late 2000s-early

2010s, when catches peaked at between 9,000 and 11,000 mt (Figure 2). Early catches were primarily

by Japanese fleets, but from the mid-1990s to the early 2000s catch levels of other nations increased

rapidly, as more targeted fishing of swordfish in Australian and New Zealand waters developed,

influenced by the introduction of quotas for the species in these jurisdictions. From the mid-2000s,

catches by the European Union (Spanish) fleet increased as it started targeting swordfish in the

south-central Pacific Ocean (Figure 2). Since 2014 the catch of swordfish has declined across all

fleets in SWPO, with recent estimates indicating an annual catch of between approximately 7,000
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and 8,000 tons (Figure 2).

We note the request from the SC16 online discussion forum for a swordfish fishery characterization

that clarifies the catches taken as target and bycatch, within EEZs and on the high seas. It was

suggested that this characterization could be included in the 2021 stock assessment, however, we

feel that this would distract from the purpose of the stock assessment, and we do not separate

fisheries along these lines for stock assessment purposes. The requested information is detailed in

the paper SPC-OFP (2021). Briefly, since 2000, around 50% of the swordfish catch in the SWPO

has been taken in the tropical and sub-tropical waters north of 20◦S. Estimates of the proportions of

catch taken as targeted versus bycatch over the last 10 years indicate that for EEZs in the SWPO,

on average approximately 68% is targeted catch, and for the HS, 26% is targeted catch (SPC-OFP,

2021).

5 Data compilation

5.1 General notes

Data used in the SWPO swordfish assessment consist of catch, effort, length and weight-frequency

data for the fisheries (Table 2 & Table 3) defined in the analysis. Detailed summaries of the analyses

and methods of producing the necessary input data are detailed in the supporting papers referred

to previously. Full details of the inputs and related methods are not repeated here, rather we

provide a brief overview of the key features and direct readers to the relevant papers throughout

this section.

5.2 Spatial stratification

The broad geographic area considered in the 2021 SWPO swordfish assessment covers the southwest

Pacific Ocean from 140◦E to 130◦W, and from the equator to 50◦S, which includes the area of

overlap between the WCPFC and IATTC convention areas (Figure 1). Within this area there are

two spatial assessment regions and within each region, three fishery strata, consistent with the 2017

assessment. The delineation of these two regions at 165◦E followed Davies et al. (2013), based on

the tagging analysis by Evans et al. (2012, 2014). The three fishery strata in each region (northern,

central and southern) help account for within region size structure of the catch, and also for fishery

areas that have different flag/fleet and operational characteristics.

5.3 Temporal stratification

The time period covered by the assessment is 1952–2019 which includes all significant post-war

commercial fishing in the SWPO. Within this period, data were compiled into quarters (1; Jan–

Mar, 2; Apr–Jun, 3; Jul–Sep, 4; Oct–Dec). Modeled population dynamics (e.g. periodicity of

recruitment) were implemented with an annual time step, while movement between regions occurred

at a quarterly scale. The assessment does not include data from the most recent complete calendar
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year as this is considered incomplete at the time of formulating the assessment inputs. Recent year

data are also often subject to significant revision post-SC, in particular the longline data on which

this assessment depends.

5.4 Definition of fisheries

MULTIFAN-CL requires “fisheries” to be defined that consist of relatively homogeneous fishing

units. Ideally, the defined fisheries will have selectivity and catchability characteristics that do

not vary greatly over time and space. For most pelagic fisheries assessments, fisheries are defined

according to gear type, fishing method and region, and, in some cases, also by vessel flag or fleet.

The fishery sub-areas of the two model regions are also used to define the spatial boundaries of the

specific fisheries.

For this assessment we also apply an “index” fishery approach (Tremblay-Boyer et al., 2018;

Ducharme-Barth et al., 2020; Maunder et al., 2020; Vincent et al., 2020). In this approach there

are two fishery categories: “index” fisheries and “extraction” fisheries. Extraction fisheries are used

to account for removals from the population while “index” fisheries are constructed to provide the

trend for the population in each region.

5.4.1 Extraction fisheries

A total of 13 longline extraction fisheries were defined (Table 2), based on the sub-area boundaries,

flags and time periods. These fisheries can be summarized as vessels coming from Distant Water

Fishing Nations DWFNs, Pacific Island Countries and Territories PICTs, Australia, New Zealand,

or the European Union (predominantly Spanish vessels). For this assessment, the Vanuatu flag was

grouped with the DWFNs since most vessels are known to be ex-Chinese Taipei flagged vessels,

fishing throughout the SWPO and hence have characteristics more comparable to other “DWFN”

fleets. The catches by flag and size compositions of the various fisheries listed in Table 2 are

summarized in the inputs paper by Ducharme-Barth et al. (2021b).

5.4.2 Index fisheries

The index fisheries approach was not applied in the previous assessment. Defining the index fish-

eries for each model region for the new assessment was challenging, as a key criterion for grouping

flags/fleets into regional index fisheries is that they should have relatively similar and time invariant

selectivity and catchability. If catchability changes over space and time this needs to be accounted

for by the application of suitable covariates in a CPUE standardization procedure. Unfortunately

for most flags, historical collection of detailed data on operational gear settings (e.g. materials,

baits, etc.) is lacking and some flags have changed their spatial fishing patterns and targeting

practices, all of which have implications for swordfish catchability and encounter probability. In

other cases reporting procedures have changed which are thought to have led to differences in data

quality that could bias catch rate data, but can not be accounted for in catch rate standardization.
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Discussions in the PAW and with experienced fisheries staff in particular DWFNs helped iden-

tify time periods when changes in gear configurations, setting practices, reporting procedures and

spatio-temporal fishing patterns likely occurred. This information provided a basis for exploring

nominal catch rate data and supporting decisions on splitting catch and effort data in space and

time blocks to generate the various index fisheries. After considerable data exploration, 13 index

fisheries thought to best represent the underlying dynamics of the stock were created as follows

(Figure 3):

� Australia: Similar to the previous assessment, a single index fishery was defined for the Aus-

tralian domestic longline fishery operating in region 1. This index runs from 1998 – 2019,

and uses a delta-GLM approach to standardize nominal CPUE. (Campbell, 2019; Dell et al.,

2020). Indices were calculated by size category (recruits, pre-spawners, and mature), though

an average index across all sizes was used in the current assessment. Comprehensive, consis-

tent logbook coverage throughout the index period allows for a number of fishing practice,

environmental, and vessel competitive effects to be included in the standardization the model.

� New Zealand: New for the current stock assessment is the inclusion of a single index fishery

defined for the New Zealand domestic longline fishery operating in region 2. Concerns over

potential catchability changes brought on by the introduction of a swordfish catch quota

in 2004 led the PAW to recommend only including the portion of the index following the

introduction of the catch quota. The retained index (2004 – 2019) was developed by applying

a GAM to standardize operational level nominal CPUE (Finucci et al., 2021). Similar to the

analysis of the Australian longline CPUE data, extensive operational covariate information

is available in the New Zealand logbook. Vessel effects, hooks per basket, light stick use, and

night time setting all proved to be informative covariates.

� European Union: As in the previous assessment, a single index fishery was defined for the

EU (Spanish) longline fishery operating in region 2. This index was created by applying the

VAST modeling framework (Thorson, 2019) to EU (Spanish) operational logbook data from

2004 – 2019 (Ducharme-Barth et al., 2021b). Logbook reported operational covariates are

unavailable for this fishery which limited the standardization modeling.

� Japan: Six index fisheries were defined for the Japanese longline fishery, where indices were

split according to time period and model region. Follow-up investigation of the operational

longline data including summaries of operational setting characteristics from the Japanese ob-

server program, as well as discussion with Japanese scientists led to the determination of the

following three temporal periods: early (1952 – 1974), middle (1975 – 1993), and late (1994

– 2019). Several factors influenced the choice of these model periods including: 1) changes

in logbook reporting procedures that likely improved the quality of catch and effort data

from 1975, 2) the transition in mainline material (likely impacting the relationship between

hooks per basket and fishing depth) in the mid-1990s from kuralon rope to monofilament,

and 3) indication from the observer program data summaries that fishing and targeting prac-

17



tices differed for the Japanese fleet between regions 1 and 2. To account for these temporal

and spatial splits, four separate VAST standardization models were applied to the Japanese

operational longline data to generate the indices (Ducharme-Barth et al., 2021b).

� Chinese Taipei: Four index fisheries were defined for the Chinese Taipei longline fishery.

Similar to Japan, examination of the operational logbook data indicated apparent differences

in targeting, based on observed catch composition, between regions 1 and 2 that could not

be standardized out due to a lack of operational gear covariates. Additionally, the switch in

mainline material during the 1990s was believed to be universal across all longline fisheries,

though the exact timing of the change is uncertain. Accordingly, to account for this and a

perceived shift towards bigeye tuna targeting in region 2, the index was split into two time

periods for both regions: early (1965 – 1997), and late (1998 – 2019). To account for these

temporal and spatial splits, three separate VAST standardization models were applied to

the Chinese Taipei operational longline data to generate the indices (Ducharme-Barth et al.,

2021b).

In previous WCPO stock assessments (Tremblay-Boyer et al., 2018; Ducharme-Barth et al., 2020;

Vincent et al., 2020) the index fisheries also served to inform the scaling of biomass between

regions. However, this requires the assumption of shared catchability (and selectivity) between

index fisheries operating in the different spatial regions. This assumption could not be made for

any two sets of fisheries operating in different spatial regions, and so the index fisheries were unable

to directly inform relative biomass scale between regions.

5.5 Catch and effort data

5.5.1 General characteristics

Catch and effort data were compiled according to the fisheries defined in Table 2 & Table 3. For all

fisheries, except the EU fleets, catch data were expressed as the number of swordfish captured and

fishing effort as the number of hooks set. As catches submitted by the European Union vessels are

available in weight per set across the entire time period of activity3, a separate fishery was created

for this fleet using weight per set. Catch and effort data for all fisheries were aggregated within the

quarterly time intervals.

The internal structure in the current production version of MULTIFAN-CL, a catch-errors formu-

lation without an independent likelihood component for the index data, prevents a direct fit to

the standardized CPUE index via a formal likelihood component. Fitting to the index is done by

penalizing the estimated effort deviates to fit the input catch and effort4 data for a given fishery.

Modifications to the input catch for the index fisheries are needed so that these fisheries do not

impact the model through removals. This is done by setting the catch for these fisheries to a

3We note that the European Union has submitted catches as both numbers and weight in recent years.
4In this case effort is defined as standardized effort Catch

CPUE
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negligible value, 1 fish per quarter. Likewise, in order to avoid having the non-standardized effort

associated with the extraction fisheries influence the population trend, the effort deviate penalties

for these fisheries are set to be very small, equivalent to a CV of 20.

As virtually all the catch of swordfish is taken by longline this is the only fishing method considered

for this assessment. Although small recreational catches occur around Australia and New Zealand,

they have not been quantified, but are likely to be negligible in terms of overall fishing impact.

Swordfish discarding rates are not known for most of the catch history. As such, discards are not

explicitly included for most of the catch history used in this assessment. We assume, given the

value of swordfish, discarding rates would be low and unlikely to represent meaningful unaccounted

for fishing mortality. More recently, discard reporting has improved, and increased discarding may

occur in quota fisheries (e.g. Australia and New Zealand) if high grading is occurring or quotas

are met. For these fisheries, discards are a mandatory reporting requirement since 2016 and where

discards are reported in recent years they are included as catch.

Total annual catches for the WCPO area south of the equator and by model region are shown in

Figure 2. The spatial distributions of catch and effort over the past two decades are provided in

Figure 4. The catch and effort summaries for SWPO swordfish indicate a number of notable trends

in the fisheries over the model period, specifically:

� the distant water Asian fleets took most of the catch from the 1950s to the late 1990s, with

catches relatively evenly spread across model regions 1 and 2.

� from the late 1980s catches increased, largely due to the Australian fleet in region 1, and the

EU and DWFN fleets in region 2, with a smaller contribution from the New Zealand fleet.

� catches since 2000 in region 1 are dominated by the Australian fleet, and in region 2 by the

DWFNs, New Zealand and the emergence of the EU fleet.

� The highest catch areas are consistently off the central east coast of Australia, the north east

of New Zealand, and the north east corner of the model region 2, particularly around Kiribati

and the adjacent high seas. Catches have also increased since 2000 in the central high seas

area of region 2 to the east of New Zealand.

� Catches have declined across model regions and all fisheries since 2014.

� Effort in the longline fishery has increased overtime across all model regions, most notably in

the tropical region north of 20◦S.

� The higher catch areas off eastern Australia and northern New Zealand correspond to rela-

tively moderate effort levels, and the higher catches in the north east of region 2 correspond

to higher effort areas.

� The increased catches since 2000 in the central high seas area of region 2 correspond to a

moderate increase in effort since 2000.
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� Despite the high effort in central-western region from 10–20◦S, swordfish catches are low.

5.6 Size data

Swordfish size composition data have been collected from the fishery since the early 1990’s. These

data are characterized by inconsistent temporal and spatial resolution, may be subject to very

small sample sizes and consequently exhibit high variability in some periods (see Ducharme-Barth

et al., 2021b). The standard length measurement for swordfish is the lower-jaw fork length (LJFL)

in cm and the standard weight measurement is the whole weight (WW) in kg. Length and weight

measurements from the different port, observer and logbook sampling programs that were not

measured as LJFL or WW are converted according to the conversion factors listed in SPC-OFP

(2019). The previous assessment considered 29 length frequency bins (10 cm width, 30-310 cm

lower bin interval) and 31 weight frequnecy bins (10 kg width, 2-302 kg lower bin interval). Re-

examination of the size frequency data indicated that rounding of length measurements to 10 cm

intervals precluded considering a smaller length bin resolution for the current assessment. However,

there was no such issue found with the weight frequency data, and the bin size was subsequently

reduced to 5 kg for 62 total bins (2-307 kg lower bin interval).

Statistical re-weighting of size composition data are required as length and weight samples are

collected unevenly in space and time. The methods for re-weighting of the size composition data

are detailed in Ducharme-Barth et al. (2021b) and are based on those developed by McKechnie

(2014) for longline extraction fisheries, and Tremblay-Boyer et al. (2018) for longline index fisheries.

For the extraction fisheries, re-weighting of composition data by the 5◦×5◦ spatial catch is required

to ensure that sampling biases in space, time, and the fleets providing data, are minimized so that

size composition data better reflect the composition of the overall removals. Strata-specific size

data samples are therefore re-weighted by catch for the extraction fisheries. For the index fisheries,

re-weighting of composition data are required to ensure that the size composition of the abundance

indices reflect the size component of the population that is being sampled by the index fisheries

through time. Strata specific samples are therefore re-weighted by relative abundance using the

CPUE. An exception to this were the index fisheries for Australia and New Zealand for which

high resolution spatial standardized CPUE data were unavailable. For these two fisheries the same

preparation of composition data was used for both the extraction and the index fisheries. Given

that the same composition data were used for both the extraction and index fisheries, the observed

number of size-frequency samples input into the assessment was divided by two for each fishery.

5.7 Tagging data

Limited tagging data exists for swordfish in the SWPO. The most recent work was the large-scale,

collaborative PSAT study conducted by Evans et al. (2014). Their research suggested limited

east/west transfer across the Coral and Tasman Seas in the SWPO, and provided the basis for the

current two region assessment structure. This research also appeared to indicate the absence of
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mixing between the southern and northern WCPO, or the SWPO and EPO. However, it is worth

noting that these conclusions were drawn from a relatively restricted sample of 53 individuals with

short times at liberty (30 – 362 days), and predominantly tagged off the east coast of Australia.

Though not used directly in the stock assessment, these tagging data are used to derive fixed,

quarterly bulk transfer rates for movement between the two regions. A Hidden Markov Model

was used to estimate the transition probability of tagged individuals across the 165◦E regional

boundary, while also accounting for the uncertainty in the position locations of tagged individuals

(Patterson et al., 2021).

6 Model description

6.1 General characteristics

The model can be considered to consist of several components, (i) the population dynamics of

the stock; (ii) the fishery dynamics; (iii) the observation models for the data; (iv) the parameter

estimation procedure; and (v) stock assessment interpretations. Detailed technical descriptions of

components (i)–(iii) are given in Hampton and Fournier (2001) and Kleiber et al. (2019).

Here, we describe the procedures followed for estimating the parameters of the model and the way

in which stock assessment conclusions are drawn using a series of reference points.

6.1.1 Uncertainty characterization

The 2021 SWPO swordfish stock assessment introduces a new approach, described in Ducharme-

Barth and Vincent (2021), for characterizing the uncertainty in management reference points and

quantities of interest. Building off the familiar “structural uncertainty grid”, the new model en-

semble approach continues to consider the effects of “structural” uncertainty (termed model un-

certainty) while extending it to also account for the “statistical” (termed estimation) uncertainty

from each model in the ensemble. This allows for a more holistic and transparent description of

the uncertainty in estimates of stock status. Another key difference between the model ensem-

ble and the structural uncertainty grid is the relaxation of the full factorial design. Instead of

choosing set levels for certain fixed parameters (e.g. steepness ∈ {0.65, 0.8, 0.95}) which can be

parameterized using a distribution, a random set of the fixed parameters is drawn from a joint

prior distribution for each model in the ensemble. Drawing parameter sets from this joint prior

has some notable benefits: 1) sampling from a prior distribution implicitly weights the ensemble to

the most likely parameter combinations given the shape of the prior, 2) incorporating parameter

correlations in the construction of the joint prior self-censors the ensemble to exclude implausible

parameter combinations, and 3) model uncertainty in the choice of fixed parameters can be more

efficiently characterized using fewer models in the ensemble. For aspects of model uncertainty that

cannot be parameterized using the joint prior (e.g. fitting to alternate CPUE indices), the full

factorial approach is still used but now is overlaid on the parameter draws from the joint prior in
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a hybrid factorial ensemble.

The estimation uncertainty for each model was determined by calculating the Hessian matrix in

order to obtain an estimate of the covariance matrix, which is used in combination with the delta

method to compute approximate confidence intervals for quantities of interest (i.e. the biomass and

recruitment trajectories). This was done for all models in the model ensemble and the estimation

uncertainty was combined across models in a parametric bootstrap similar to the approach used in

stock assessments conducted by the International Pacific Halibut Commission (Stewart and Martell,

2014).

Similar to previous WCPO stock assessments, a representative diagnostic case is still used for model

development, diagnostic evaluation, and as the baseline configuration for the structural uncertainty

grid or model ensemble, in this case. Biological parameters assumed in the diagnostic case, and

the range of parameters considered in the model ensemble can be found in Table 4 and Figure 5.

6.2 Population dynamics

The model partitions the population into 2 spatial regions and 20 annual age-classes. The last

age-class comprises a “plus group” in which mortality and other characteristics are assumed to be

constant. The population is “monitored” in the model at annual time steps, extending through a

time window of 1952–2019. The main population dynamics processes are as follows.

6.2.1 Recruitment

Recruitment is defined as the appearance of age-class 1 year fish (e.g. fish averaging ∼ 98–110 cm

given current growth curves) in the population during the first quarter of the calendar year. In the

context of a stock recruit relationship, there is a one year lag between the calculation of the average

SB that produces recruits entering the model. The concept of SB for sex-aggregated assessments

is described further in Section 6.2.6.

Spatially-aggregated (across both spatial regions) recruitment was assumed to have a moderate

relationship with annual mean spawning potential via a Beverton and Holt stock-recruitment rela-

tionship (SRR) with a fixed value of steepness (h). Deviations in the estimated recruitments from

the average recruitment predicted by the SRR attract a penalty in the likelihood. A moderate

penalty was assumed in the diagnostic case model equivalent to annual recruitment having a CV of

0.5. Sensitivity to this parameter was explored and three levels were considered, recruitment CV

∈ {0.3, 0.5, 0.97}, as a factor in the model ensemble.

Steepness in a stock assessment context is defined as the ratio of the equilibrium recruitment

produced by 20% of the equilibrium unexploited spawning potential to that produced by the equi-

librium unexploited spawning potential (Francis, 1992; Harley, 2011). Typically, fisheries data are

not very informative about the steepness parameter of the SRR parameters (ISSF, 2011); hence,

the steepness parameter was fixed in the assessment. As in the previous assessment, the diagnostic
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case assumed a moderate steepness value of 0.8. For the model ensemble, a steepness prior was

created to account for the limited existing information available for swordfish (Myers et al., 1999).

Based on this information, a Beta prior (α = 17.34333, β = 2.65) was specified to have a median

of 0.88 and 95th percentile range (0.69–0.98) similar to what was considered for steepness in the

previous stock assessment (Table 4 & Figure 5 b).

The SRR was incorporated mainly so that yield analysis and population projections could be under-

taken for stock assessment purposes, particularly the determination of equilibrium- and depletion-

based reference points. The SRR was calculated over the full model period. As will later be made

evident in consideration of runs that did not include standardized CPUE from the Japanese or

Chinese Taipei longline, this had the effect of constraining the recruitments to be close to the aver-

age recruitment predicted from the stock recruit relationship since there was no other data in the

model to inform them.

In recent WCPO stock assessments the terminal recruitments have often been fixed at the mean

recruitment of the rest of the model period. This acknowledges that these estimates are poorly sup-

ported by data and if unconstrained can vary widely, with potentially large consequences for stock

projections. This approach has been continued here by fixing the 2 terminal years of recruitment

at the mean of the recruitments over the rest of the assessment period.

The distribution of recruitment among the model regions was estimated within the model and

allowed to vary over time in a relatively unconstrained fashion.

6.2.2 Initial population

The population age structure in the initial time period in each region was assumed to be in equi-

librium and determined as a function of the average total mortality during the first 2 years. This

assumption avoids having to treat the initial age structure, which is generally poorly determined,

as independent parameters in the model. Given the negligible catches observed in the first years

of the model and the lack of industrial fishing prior to the start of the model in 1952, this essen-

tially assumes that the model commences from an unfished equilibrium state based on the assumed

natural mortality.

As noted above, the population is partitioned into annual age-classes with an aggregate class for

the maximum age (plus-group). The aggregate age class makes possible the accumulation of old

and large fish, which is likely in the early years of the fishery when exploitation rates were very

low.

6.2.3 Growth

The standard assumptions for WCPO assessments fitted in MFCL were made concerning age and

growth: i) the lengths-at-age are normally distributed for each age-class with standard deviation

σAge; ii) the standard deviations of length (σLength) for each age-class are a log-linear function of
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the mean lengths-at-age; and 3) the probability distributions of weights-at-age are a determinis-

tic function of the lengths-at-age and a specified weight-length relationship. These processes are

assumed to be regionally and temporally invariant. The growth curves assume a von Bertalanffy

functional form and are defined in MULTIFAN-CL using L1 (length at first age-class), L2 (length

at terminal age-class), and growth coefficient k. All parameters were held fixed in the assessment

except the two growth variability parameters which were estimated internally.

Growth for the 2021 SWPO swordfish was derived from a re-analysis of the otolith aging data first

described by (Farley et al., 2016), where the annual ages were re-calculated as decimal ages using the

algorithm developed for bigeye tuna (Farley et al., 2020). Posterior distributions for sex-specific

parameter values were estimated using separate Bayesian models, with relatively uninformative

priors, to facilitate the consideration of a sex-disaggregated assessment model (Ducharme-Barth

et al., 2021b). The “classic” von Bertalanffy growth parameters, L∞, k, and t0 were estimated

before being converted to L1 and L2 for input into MULTIFAN-CL.

Discussion at the PAW noted that the model output appeared sensitive to the value of t0, and that

the estimated t0 value of ∼ −2 (i.e. age at hypothetical size 0cm) was far from the theoretical value

of 0. This could indicate a possible mis-specification either in the aging algorithm or the choice

of growth model. As uninformative priors were used in the initial estimation, it was suggested to

re-estimate the parameters with a more informative t0 centered on 0. Placing a more informative

prior on t0 predictably shifted the estimation of this parameter closer to zero. This resulted in larger

assumed values for k, and smaller assumed values for L1 and L2 relative to parameters estimated

from the model with the uninformative prior (Figure 6).

Sex-aggregated parameters were “averaged” across the sex-disaggregated parameters by re-estimating

a set of growth parameters from pairs of sex-specific growth curves. This was done for parameters

sets both with the informative and un-informative t0 prior. These two posterior distributions were

combined to create a single distribution accounting for both alternative states of nature. Random

draws from this sex-aggregated distribution was used in the model ensemble (Table 4 & Figure 5

a).

6.2.4 Movement

Movement between the two model regions was assumed to occur instantaneously at the beginning of

each quarter. Movement in MULTIFAN-CL is parameterized by a pair of bi-directional coefficients

for each region boundary, only one in the current case. Movement is possible in both directions

across the regional boundary in each of the four quarters, and in this case movement was assumed

to be constant across age classes and quarters.

As mentioned previously in Section 5.7, movement rates between regions were derived from the

PSAT tagging data. The estimated covariance structure from the Hidden Markov Model developed

by Patterson et al. (2021) was used to generate a correlated distribution of bi-directional movement
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rates from the “Tasman” region (1) to the “South Pacific” region (2), and vice-versa. Model

estimates were very uncertain, but tended to show an asymmetric movement pattern with fewer

fish traveling from the Tasman to the South Pacific, than from the South Pacific into the Tasman

region. This bivariate distribution was incorporated into the joint prior for the model ensemble

(Table 4 & Figure 5 b).

6.2.5 Natural mortality

Natural mortality (M) was assumed to be fixed in the model at age-specific values following the

Stock-Synthesis parameterization (Methot and Wetzel, 2013) of the Lorenzen (2000) natural mor-

tality curve. This formulation derives age-specific values of natural mortality using the growth

curve, and M at a reference length Mref , where the reference length was chosen to be the length

at the maximum age L2.

Recent work (Maunder et al. Submitted) suggests using either a maximum age based ( 5.4
Amax

; Hamel

and Cope Submitted) or life-history based (4.118k0.73L−0.33
∞ ; Then et al., 2015) approach for devel-

oping an estimate of M for mature individuals. Both methods were used to develop priors for Mref .

The maximum age based prior was defined by a lognormal distribution, Lognormal(µ =log(5.420 ),

σ = 0.1). To create the prior for the life-history based approach, correlated pairs of L∞ and k were

drawn from the ensemble joint prior distribution. Additionally, the coefficients from Then et al.

(2015) have their own uncertainty and a parametric bootstrap was used following the approach

from Lopez-Quintero et al. (2017) to incorporate the uncertainty in the life-history relationship.

Keeping track of the L∞, t0, and k that were used to derive L1, L2, and Mref allowed for the

creation of a correlated 6-tuple of parameters.

These two distributions for Mref were combined to create a single distribution for the model

ensemble. Random draws of Mref input into the Lorenzen (2000) equation allowed us to account

for uncertainty in the M -at-age in the model ensemble (Table 4 & Figure 5 a). This process was

also repeated using sex-specific growth parameters to produce sex-specific distributions of Mref and

M -at-age. Though distributions of Mref showed considerable overlap between the two approaches,

the maximum age based approach tended to produce higher values of Mref , and M -at-age than

the life-history based approach (Figure 7).

6.2.6 Reproductive potential

The reproductive potential ogive is an important component of the assessment structure as it

translates model estimates of total population biomass to the relevant management quantity, in

the sex-aggregated case, spawning potential (SB). In order to only account for female reproduc-

tive output in a sex-aggregated model, reproductive potential is defined as the product of female

maturity at age (or length) and female sex-ratio at age (or length). In a sex-disaggregated model,

the reproductive potential is simply equal to the female maturity at age (or length).
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Subsequent to the 2017 stock assessment, a new feature in MFCL was developed allowing the

reproductive potential ogive to be defined and input into the assessment as a function of length. This

length-based ogive is then converted internally to a reproductive potential-at-age using a smooth-

spline approximation (Davies et al., 2019). This allows for a more natural definition of reproductive

potential as the product of the two length-based processes: proportion females-at-length5 (sex-

ratio), and proportion of females mature-at-length6. An additional benefit to define reproductive

potential as a function of length is that it is growth invariant. Previous stock assessments using an

age-specific formulation had to redefine the reproductive potential-at-age ogive for each different

growth curve included in the assessment.

Parameters for the sex-ratio at length and female maturity at length were estimated using Bayesian

models (Ducharme-Barth et al., 2021b) in order to incorporate the sex-ratio and female maturity

relationships into the joint prior. Similar to the procedure for the growth and M parameters, a

correlated n-tuple of the maturity and sex-ratio parameters could be drawn from the joint posterior

in order to propagate uncertainty in the reproductive potential relationship in the model ensemble

(Figure 5 a).

6.2.7 Length-weight relationship

Parameters for the length-weight relationship were estimated using sex-specific Bayesian models

based on observer samples (Ducharme-Barth et al., 2021b) in order to incorporate uncertainty in

this relationship into the joint prior (Table 4 & Figure 5 a).

6.2.8 Sex structure

Swordfish are known to exhibit sexually dimorphic growth (Farley et al., 2016). One of the key rec-

ommendations of the previous assessment (Takeuchi et al., 2017) was to more explicitly model these

sex-specific characteristics in a sex-disaggregated model, and a follow-up analysis was conducted

in 2018 (Takeuchi et al.) to explore this capability in MULTIFAN-CL. The current assessment

maintains the development of the sex-aggregated model as the diagnostic case and as the basis for

providing management advice. However, equivalent sex-disaggregated diagnostic cases and model

ensembles were developed as sensitivities to explore the potential for bias in the management advice

from the sex-aggregated model.

6.3 Fishery dynamics

The interaction of the fisheries with the population occurs through fishing mortality. Fishing mor-

tality is assumed to be a composite of several separable processes - selectivity, which describes the

age-specific pattern of fishing mortality; catchability, which scales fishing effort to fishing mortality;

5For the current assessment, female sex-ratio-at-length was calculated from Regional Observer Program data in
SPC’s holdings through 2019.

6Taken from Farley et al. (2016).
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and effort deviations, which are a random effect in the fishing effort - fishing mortality relationship.

6.3.1 Selectivity

Selectivity is fishery-specific and assumed to be time-invariant and length-based, but modeled as

age-based (Kleiber et al., 2019). Though a regional structure was assumed in the current stock

assessment, differences in selectivities among fisheries operating in sub-areas of the same model

region may serve as a proxy for spatial structuring of the population by size.

Selectivity was modeled using cubic splines. This allows for greater flexibility than assuming a

functional relationship with age (e.g. logistic curve to model monotonically increasing selectivity

or double-normal to model fisheries that select neither the youngest nor oldest fish), and requires

fewer estimated parameters than modeling selectivity with separate age-specific coefficients. This

is a form of smoothing, and the number of parameters for each fishery is the number of cubic

spline “nodes” that are deemed sufficient to characterize selectivity over the age range. The current

assessment assumed 3 nodes for extraction fisheries and 5 nodes for index fisheries. Model sensitivity

to increasing the number of nodes was investigated but not pursued further as it did not result

in perceptible change to the estimated management quantities. Common terminal selectivity was

assumed to start from age class 16. Additionally, for the fisheries showing strong domed shaped

selectivity patterns (Fishery 8), selectivity was assumed to be fixed at zero beyond the age of shared

selectivity in order to prevent spurious selectivity estimation by the cubic spline beyond the range

of the observations.

Most fisheries in the assessment model were unrestricted in their estimates of selectivity. How-

ever, Fishery 9 (DWFN Region 1S) and all index fisheries were restricted to be non-decreasing.

Non-decreasing selectivity was assumed for the index fisheries as testing during model develop-

ment showed that unrealistic biomass estimates were produced when selectivity was unconstrained.

Though size frequency data for Fishery 9 was sparse, it sampled the largest individuals in the

assessment area so a non-decreasing selectivity was specified accordingly. Selectivity for Fishery 9

was also assumed to be zero for the first six age classes to prevent spurious estimation of selectivity

of non-observed individuals. Similarly, selectivity for the first age class was constrained to be zero

for Fishery 2 (DWFN Region 1C), though sensitivity to this assumption was tested and removing

this constraint did not improve the model fit.

As in the previous assessment, a selectivity time break was used in 2008 for Fishery 4 (Australia

Region 1) to account for a perceived change in selectivity due to a change from J-hooks to circle

hooks.

6.3.2 Catchability

Constant (time-invariant) catchability was assumed for the index fisheries that received standard-

ized indices of relative abundance. This assumption is similar to assuming that the CPUE for these
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fisheries indexes the exploitable abundance over time. Additionally, a seasonal catchability devi-

ate was estimated to account for seasonal patterns in catch rate likely due to seasonal latitudinal

migrations of individuals within regions.

The current assessment assumes a very high penalty on the fit to the catch (SD of residuals on

the log scale of 0.002) which is essentially equivalent to treating the catch as “error-free” as done

in “catch-conditioned” modeling approaches. Additionally, the effort deviates for the extraction

fishery were assigned a very low penalty so that the nominal cpue attributed to these fisheries

did not impact the model likelihood. As a result, there was no need to estimate both effort and

catchability deviates for the extraction fisheries.

6.3.3 Effort deviations

Effort deviations were used to model the random variation in the effort - fishing mortality rela-

tionship, and are constrained by pre-specified penalties (on the log-scale). The fleet-specific CPUE

indices implemented through the index fisheries represent the principal indices of stock abundance,

and the extent to which the model can deviate from the indices is moderated by the penalty weights

assigned to the standardized effort series. For these fisheries the effort deviates were set to have

a mean of zero and the CV was allowed to be time-variant and based on the variance estimates

derived from the associated CPUE standardization model. An exception to this was for the CVs

associated with the Australian longline index which were estimated to be incredibly small. These

were rescaled to a median CV of 0.2 so that this index would have a similar scale to the other

indices in the model. The index CVs were transformed to an effort deviate penalty for each CPUE

observation in MFCL. Penalties are inversely related to variance, such that lower effort penalties

are associated with indices having high variance, consequently these indices are less influential in

fitting the model. Sensitivity to altering the relative likelihood weights of the different indices (i.e.

increasing/decreasing the penalty on the fit to the different index fisheries) was explored and this

was accomplished by varying the mean CV associated with each fishery. In the model ensemble,

the mean CV for each index fishery was drawn from a uniform distribution U(0.1,0.8).

Lastly, for all the extraction fisheries (Table 2), the effort deviates were given extremely low penalties

equivalent to a CV of 20 to prevent the nominal CPUE for these fisheries (derived from the input

catch and effort data) from influencing the estimated population dynamics.

6.4 Likelihood components

There are three data components that contribute to the log-likelihood function for this assessment:

the total catch data, the length-frequency data, and the weight-frequency data. Fit to the CPUE

data does not influence the fit as an explicit likelihood component but rather as a penalty on the

effort deviates.

As mentioned previously, the observed total catch data are assumed to be unbiased and relatively
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precise, with the SD of residuals on the log scale being 0.002.

The probability distributions for the length- and weight-frequency proportions are assumed to be

approximated by robust normal distributions, with the variance determined by the effective sample

size (ESS) and the observed length-frequency proportion. Size frequency samples are assigned ESS

lower than the number of fish measured. Lower ESS recognize that (i) length- and weight-frequency

samples are not truly random (because of non-independence in the population with respect to size)

and would have higher variance as a result; and (ii) the model does not include all possible process

error, resulting in further under-estimation of variances. The observed sample sizes are capped at

1,000 internal to MULTIFAN-CL, and these were further divided by 20 (i.e. size composition scalar

of 20), resulting in a maximum ESS of 50 for each length and weight sample for a fishery. Fisheries

3 & 9 had length and weight composition scalars of 10 which increased the influence of this size

frequency data on the likelihood. The sample sizes for these fisheries were quite small in comparison

to the others, and increasing their relative likelihood contribution aided in the estimation of the

selectivity curves. Alternative scalars for specifying ESS were explored in sensitivity analyses. In

the model ensemble, the divisors for both the length and weight composition data were drawn from

a uniform distribution U(10,50).

6.5 Parameter estimation

The parameters of the model were estimated by maximizing the log-likelihood of all data compo-

nents plus the log of the probability density functions of the penalties specified in the model. The

maximization to a point of model convergence was performed by an efficient optimization using

exact derivatives with respect to the model parameters (auto-differentiation, Fournier et al., 2012).

Estimation was conducted in a series of phases, the first of which used relatively arbitrary starting

values for most parameters. A bash shell script, “doitall”, implements the phased procedure for

fitting the model.

6.6 Diagnostics

For highly complex population models fitted to large amounts of often conflicting data, it is com-

mon for there to be difficulties in estimating absolute abundance. As in the previous assessment,

likelihood profiling analyses were conducted for the marginal posterior likelihood in respect of the

total average population biomass as a measure of population scaling (Lee et al., 2014), with the

definition of this parameter detailed in Kleiber et al. (2019). Rationale for profiling the likelihood

with respect to total average population biomass instead of the total population scaling parameter,

along with a description of how this profile is generated can be found in Section 5.6 of the 2017

WCPO bigeye tuna assessment report (McKechnie et al., 2017). Reasonable contrast in the profile

obtained using this method is taken to indicate that sufficient information existed in the data for

estimating absolute abundance, and also offered confirmation that the maximum likelihood esti-

mate obtained represented a global solution, at least with respect to total population scaling. This
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procedure is presented in the Appendix (Section 12.1.1), including examination of the profiles for

the individual data components. Additional likelihood profiles were also conducted for average

adult biomass defined over the entire model period, average recent (2015–2019) adult biomass, and

the adult biomass in the terminal year of the model.

Retrospective analyses are also undertaken as a general test of the stability of the model. A

robust model, when rerun with data for the terminal year(s) sequentially excluded (Cadigan and

Farrell, 2005), should produce outputs without a systematic pattern in either the scaling or time-

series trends. The retrospective analyses for the 2021 diagnostic case model are presented in the

Appendix (Section 12.1.2). In conjunction with the retrospective analysis, we conducted additional

likelihood profiles over recent (terminal 5 years) and terminal (last year) adult biomass for each

retrospective “peel”. These additional likelihood profiles are particularly helpful in understanding

which data components are influencing any observed retrospective pattern.

Considerable efforts have been made in recent years to improve the level of diagnostic reporting

for WCPO stock assessments. Following the advice developed by Carvalho et al. (2017; 2021)

improved residual and goodness of fit diagnostics for the fits to the index and size frequency data

have been included. ASPM diagnostics (Minte-Vera et al., 2017) were also used to determine if the

production function or recruitments drive stock dynamics, and which components of data inform

the estimation of the recruitment deviates (Appendix Section 12.1.3). “Model-free” hindcasting

based on the CPUE indices (Kell et al., 2021) was conducted to evaluate the model prediction skill

and internal consistency (Appendix Section 12.1.4). Predictive performance from hindcasting, as

determined by MASE (Hyndman and Koehler, 2006) has been suggested (Kell et al., 2021) as a

way of objectively weighting models in an ensemble, and comparing model performance when the

data and likelihoods vary between models. Model-free hindcasting based on the CPUE indices was

conducted for all models in the model ensemble in order to develop an ensemble weight for each

model. These weights were then used to test the sensitivity of management reference points to

alternative model weighting schemes (equiprobable and hindcast weighted).

6.7 Stock assessment interpretation methods

Several ancillary analyses using the fitted model/suite of models were conducted in order to interpret

the results for stock assessment purposes. The methods involved are summarized below and further

details can be found in Kleiber et al. (2019).

6.7.1 Depletion and fishery impact

Many assessments estimate the ratio of recent to initial biomass (usually spawning potential) as

an index of fishery depletion. The problem with this approach is that recruitment may vary

considerably over the time series, and if either the initial or recent biomass estimates (or both)

are “non-representative” because of recruitment variability or uncertainty, then the ratio may not

measure fishery depletion, but simply reflect recruitment variability.
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We approach this problem by computing the spawning potential time series (at the region level)

using the estimated model parameters, but assuming that fishing mortality was zero. Because

both the estimated spawning potential SBt (with fishing), and the unexploited spawning potential

SBF=0[t], incorporate recruitment variability, their ratio at each quarterly time step (t) of the

analysis, SBt/SBF=0[t], can be interpreted as an index of fishery depletion. The computation of

unexploited biomass includes an adjustment in recruitment to acknowledge the possibility of a

reduction of recruitment in exploited populations through stock-recruitment effects. To achieve

this, the estimated recruitment deviations are multiplied by a scalar based on the difference in the

SRR between the estimated fished and unfished spawning potential estimates.

A similar approach can be used to estimate depletion associated with specific fisheries or groups of

fisheries. Here, fishery groups of interest are removed in-turn in separate simulations. The changes

in depletion observed in these runs are then indicative of the depletion caused by the removed

fisheries.

6.7.2 MSY based reference points

The yield analysis is the foundational component from which all MSY based metrics and reference

points are calculated. The yield analysis consists of computing equilibrium catch (or yield) and

biomass, conditional on a specified basal level of age-specific fishing mortality (Fa) for the entire

model domain, a series of fishing mortality multipliers (fmult), the natural mortality-at-age (Ma),

the mean weight-at-age (wa) and the SRR parameters. All of these parameters, apart from fmult,

which is arbitrarily specified over a range of 0–50 (in increments of 0.1), are available from the

parameter estimates of the model. The maximum yield with respect to fmult can easily be deter-

mined using the formulae given in Kleiber et al. (2019), and is equivalent to the MSY. Similarly the

spawning potential at MSY (SBMSY) can also be determined. The ratios of the current (or recent

average) levels of fishing mortality and biomass to their respective levels at MSY are determined for

all models of interest, including those in the structural uncertainty grid, and so alternative values

of steepness were assumed for the SRR in many of them.

Fishing mortality-at-age (Fa) for the calculation of the yield based reference points analysis was

determined as the mean over a recent period of time (2014–2018). We do not include the terminal

year in the average as fishing mortality tends to have high uncertainty for the terminal data year

of the analysis and the recruitments in this year are constrained to be the average over the full

time-series, which affects F for the youngest age-classes.

6.7.3 Majuro and Kobe plots

For the standard yield analysis (Section 6.7.2), the fishing mortality-at-age, Fa, is determined as

the average over some recent period of time (2015–2018 herein). In addition to this approach the

MSY-based reference points (Ft/FMSY, and SBt/SBMSY) and the depletion-based reference point

(SBt/SBF=0[t]) were also computed using the average annual Fa from each year included in the
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model (1952–2019) by repeating the yield analysis for each year in turn. This enabled temporal

trends in the reference point variables to be estimated taking account of the differences in MSY

levels under varying historical patterns of age-specific exploitation. This analysis is presented in

the form of dynamic Kobe plots and “Majuro plots”, which have been presented for all WCPO

stock assessments in recent years.

6.7.4 Reference points

The unfished spawning potential (SBF=0) in each time period was calculated given the estimated

recruitments and the Beverton-Holt SRR as outlined in Section 6.7.1. This offers a basis for

comparing the exploited population relative to the population subject to natural mortality only.

As the WCPFC has currently not yet adopted a formal LRP for billfish, both depletion based

(i.e. SB latest/SBF=0) and yield based (i.e. SB latest/SBMSY & Frecent/FMSY) reference points are

presented.

Though there is no formal LRP for billfish, the WCPFC adopted 20%SBF=0 as a limit reference

point (LRP) for the tropical tunas, where SBF=0 is calculated as the average over the period

2009–2018. Stock status was referenced against these points by calculating SB latest/SBF=0, where

SB latest is the estimated spawning potential in 2019 (Table 1).

The key fishing mortality reference point, Frecent/FMSY (Table 1), is the estimated average fishing

mortality over the assessment area in the recent time period (Frecent; 2015–2018 for this stock

assessment) divided by the fishing mortality producing MSY which is produced by the yield analysis

and has been detailed in Section 6.7.2.

6.7.5 Ensemble influence

The new method used for constructing the model ensemble necessitates a new approach for iden-

tifying which fixed parameters, or model configurations correspond higher or lower values of

the key management reference points. We used GLMs to regress reference point estimates (e.g.

SB latest/SBF=0) against all fixed parameters (e.g. Mref) and varying factor levels (e.g. choice of

DWFN CPUE index to fit to) from all models in the ensemble. Extracting the coefficients from

these GLMs allowed us to identify the magnitude and direction of influence of the different compo-

nents of the ensemble. These results can be an important tool in identifying areas to focus research

in order to reduce model uncertainty.

7 Model runs

Model development from the 2017 diagnostic case to the 2021 diagnostic case occurred incrementally

via successive changes. These stepwise changes were done in order to identify the impact of each

modification to the assessment outcomes. Changes made to the previous assessment model include:

additional input data for the years 2016-2019, refreshing the biological assumptions, moving to an
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index fisheries approach, updating the preparation of the size frequency data, and incorporation of

new features to MULTIFAN-CL developed since the last assessment. These changes occurred in

the following sequence of steps:

7.1 Developments from the last assessment

1. 2017 Diagnostic: The 2017 SWPO swordfish diagnostic case.

2. mfcl v2080 : Updating the MULTIFAN-CL executable to version 2.0.8.0, and aligning the

default model configuration with recent WCPO stock assessments.

3. update biology : Updating the biological assumptions to be more representative of the po-

tential parameter sets considered in the joint prior for the model ensemble, including defining

reproductive potential as a function of length and assuming a Lorenzen M-at-age relationship.

4. remove nominal effort : Remove the influence of the nominal effort on the model fit for

all fisheries without standardized effort, and remove the estimation of the newly redundant

time-varying catchability parameters for these fisheries.

5. index fishery : Define separate fisheries for the extraction and index fleets.

6. add NZ index : Include the New Zealand standardized CPUE in the model.

7. update AU & EU index : Update the standardized CPUE for the Australian and European

Union index fisheries.

8. int. age structure ∼ M : Make the assumption that the model starts from an unfished

equilibrium, where the starting age structure is just based on M.

9. remove JP & TW idx : Remove the Japanese and Chinese Taipei index fisheries from the

model.

10. estimate SDB : Estimate the second growth variability parameter (σLength), which scales

the standard deviations of length for each age-class as a log-linear function of the mean

lengths-at-age.

11. new extraction fleet : Define a new fisheries structure for the extraction fleets where the

EU longline fisheries in regions 1 & 2 are broken out from the others to define their catches

in metric tons. The DWFN extraction fisheries in region 2C were combined since the move

to an index fisheries structure no longer necessitated accounting for a catchability change

in this fishery. The previous assessment noted conflict between the Australian length and

weight composition data. The length-composition data for the Australian fisheries were also

excluded based on discussions at the PAW which intimated that the weight frequency data

which comes from port-sampling would be more representative.
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12. update to 2019 : Update all data in the model to the end of the current assessment period,

2019.

13. 5 kg wt bins: Increase the resolution of the weight frequency data from 10 kg bins to 5 kg

bins.

14. Peatman composition : Re-weight the composition data for the extraction fisheries so that

it is more representative of fishery removals, and for the index fisheries so that it is more

representative of the underlying stock.

15. 2021 diagnostic: Small changes to selectivity including: grouping the selectivity for the

EU longline fisheries, assuming constant selectivity after age class 16, removing the non-

decreasing penalty on Fishery 3 selectivity, and removing the restriction that selectivity was

0 at first age for most fleets.

7.2 Sensitivity analyses

During the course of model development for the 2021 SWPO swordfish stock assessment, sensitivity

models were run to explore the effects of changing the assumptions governing the population dy-

namics, fisheries dynamics, and weighting of data components in the likelihood. The presentation

of the results focuses on the subset of analyses that were most influential to the stock assessment

outcomes and/or those that were identified as questions of interest either in the previous assessment

or the 2021 PAW (Hamer et al., 2021).

One-off sensitivities were conducted as single stepwise changes from the 2021 diagnostic case. The

purpose of these sensitivity runs was not to provide absolute estimates of management quantities

but to assess the relative change that resulted from the various assumptions. For the one-off

sensitivities that also factor into the model ensemble, these can be interpreted as the marginal

effect of that component conditioned on the other parameters being held at the values fixed in the

diagnostic case.

7.2.1 Sex-structure

As mentioned earlier in the report, a parallel sex-structured model was developed to mirror the sex-

aggregated diagnostic case. This model assumed sex-disaggregated biology (growth, length-weight

relationship, natural mortality), defined reproductive potential as female maturity, and assumed a

50:50 sex-ratio at recruitment. Building upon the work of Takeuchi et al. (2018), the current model

also included new capability within MULTIFAN-CL to properly share the fishery effort deviates

across the two sexes. Selectivity was modeled as shared selectivity at length between the two

sexes, to account for the observed sexually dimorphic growth. All catch and size composition data

was shared evenly between the two sexes, therefore differences in the sex-specific catch and fishing

mortality are driven by the relationship between the growth curves and the size composition data.

This relationship was very sensitive to the assumed variance parameters (σAge & σLength), so a
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sensitivity to this assumption was evaluated.

7.2.2 Alternative catch scenarios

Though current scientific evidence suggests that the SWPO swordfish stock is separated from

stocks in the eastern Pacific Ocean and the north Pacific Ocean, there is uncertainty relates to the

specific boundaries of the SWPO swordfish stock, and the level of connectivity that exists. This

uncertainty is relevant in the context of the hot-spot of high catches around the north-east corner of

the assessment region in recent years. The connectivity of swordfish between this high catch region

and the rest of the SWPO has implications for the overall status of the stock. Five alternative catch

scenarios were developed to test the sensitivity of the location of the northern and eastern-most

assessment boundaries. Maintaining the same model structure as assumed in the diagnostic case:

1. add 5N : Catches occurring up to 5◦N, from 140◦E to 130◦W, were added to the model.

2. subtract 5S : Catches occurring between the equator and 5◦S, from 140◦E to 130◦W, were

subtracted from the model.

3. subtract 10S : Catches occurring between the equator and 10◦S, from 140◦E to 130◦W, were

subtracted from the model.

4. subtract 15S : Catches occurring between the equator and 15◦S, from 140◦E to 130◦W, were

subtracted from the model.

5. subtract 165W : Catches occurring between 165◦W and 130◦W, from 50◦S to the equator,

were subtracted from the model.

All catch scenarios assumed the same size composition data.

7.2.3 Alternative spatial structure

There are several reasons why it is desirable to model populations in a spatially explicit manner.

Conducting a stock assessment in such a way can more realistically represent complex dynamics,

and allow for the separation of selectivity into spatial availability (modeled by movement) and

size/age based vulnerability to the gear. It can also partition the population into quasi-distinct

components subject to different levels of fishing mortality. Despite these benefits, it is important

to get the movement dynamics correct.

Though based on the best available science, the estimated movement rates between the two assess-

ment regions remain very uncertain. In such a case, it may be more prudent and parsimonious to

assume a single, well-mixed stock given that the assumptions made for movement are likely to be

influential on the estimates of stock status. To explore this, a single region model that assumed

the same fisheries structure as the diagnostic case was developed for SWPO swordfish.
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7.2.4 Penalty on stock-recruit relationship

The variability of recruitment around the stock-recruit relationship is fixed in MULTIFAN-CL.

Though the degree of recruitment variability may not have a large effect on reference points based on

dynamic depletion (i.e. SB/SBF=0), it can have an important impact on the scaling of the estimated

stock-recruit relationship and the dependent yield based reference points. As a result, sensitivity to

the assumed recruitment variability around the stock-recruit relationship was explored. Five levels

of recruitment variability were considered, roughly equivalent to CVs of 2.2, 0.7, 0.5, 0.3 and 0.2.

7.2.5 DWFN CPUE scenario

In developing the index fisheries for the assessment model, it was hoped that simultaneously fitting

to the multiple, overlapping index fisheries would impose continuity on the estimated population

dynamics given the temporal discontinuities that existed for the indices. However, perhaps unsur-

prisingly, testing during model development indicated that the model had difficulty simultaneously

fitting to the 13 different index fisheries, given some observed divergences between indices. This

lack of coherence could in part be due to the paucity of operational gear characteristics available for

standardization, and the non-stationarity in spatial sampling for the three DWFN fleets (Japanese,

Chinese Taipei, and European Union). In order to minimize data conflicts, it was decided to only

fit to indices from a single DWFN fleet at a time, and sensitivity to the assumption of DWFN fleet

choice (or not including indices from a DWFN fleet) was explored. The European Union fishery

was retained for the diagnostic case as its selectivity was the most reliably estimated given the

comparatively larger sample size of size frequency data relative to Japan and Chinese Taipei.

7.2.6 CPUE average CV

As discussed in the previous section, it is likely that not all indices are equally reliable. Differences in

their ability to accurately index the underlying stock could arise due to the choice of standardization

approach, spatial sampling pattern and available standardization covariates. Given these potential

differences, it is preferable to give greater influence to more “reliable” indices, especially in cases

where conflicting trends exist. Iterative re-weighting of indices based on the predicted goodness of

fit and input CVs can be used to address this issue. This approach is relatively straightforward

to implement for a single model, however can sometimes result in the adjusted CVs alternating

between multiple stable states from iteration to iteration. The lack of a robust stopping criteria and

the need for analyst intervention makes implementation challenging in the context of a large model

ensemble and it was not feasible to do so for the current assessment. In spite of this, it remained

important to evaluate the sensitivity of stock assessment outcomes to the relative influence of each

index, and sensitivity to the average CV attributed to each index as evaluated in the context of the

diagnostic case. Thirty models were considered, and for each run the time-varying CVs for each

fishery were rescaled to a mean value drawn from a uniform distribution U(0.1,0.8).
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7.2.7 Size composition scalar

The difficulties in assigning weighting to the size-frequency data were discussed in Section 6.4. To

assess the sensitivity of model results to the weighting of these data, two sets of 30 models were

considered. The first set of models held the length composition scalar value fixed at the level

assumed in the diagnostic case, and allowed the scalar for the weight composition data for each

model to be drawn from a uniform distribution U(10,50). This was repeated for the second set of

models except in this case it was the scalar for the weight composition data that was held constant.

7.2.8 Movement

As described in Section 7.2.3, the movement assumption is a critical component of spatially explicit

stock assessment models. Using the diagnostic case model as a baseline, sensitivity of the stock

status to the movement assumptions was explored. A set of 30 models was considered, where the

bi-directional movement parameters were given by a random draw from the bivariate movement

prior.

7.2.9 Steepness

Steepness is a particularly difficult parameter to estimate in stock assessment models, but if it is

fixed in the model, the choice of value may have an important influence on yield based reference

points used for management. Sensitivity to the steepness assumption was investigated by running

a set of 30 models based on the diagnostic case where steepness for each model was fixed at a value

drawn from the steepness prior.

7.2.10 Natural mortality

Similar to steepness, the choice of natural mortality can be highly influential on yield based reference

points. Additionally, given that the stock is assumed to start at an unfished equilibrium, choice of

M can also influence initial population scale. Sensitivity to the assumedMref value was investigated

by running a set of 30 models based on the diagnostic case where Mref for each model was fixed

at a value drawn from the Mref prior.

7.2.11 Growth

As experienced in recent tropical tuna assessments (McKechnie et al., 2017; Vincent et al., 2020);

changes in the growth relationship, particularly L2, can have dramatic impacts on the estimated

stock status. Sensitivity of the stock status to the growth parameters was explored. A set of 30

models based on the diagnostic case was considered, where the growth parameters were given by a

correlated random draw from the joint prior.
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7.2.12 Length-weight relationship

Though uncertainty in this relationship is not often considered, the length-weight relationship is

important in reconciling fits between the length and weight composition data, as well as converting

catch in numbers to biomass. Sensitivity of the stock status to the length-weight parameters was

explored using a set of 30 models based on the diagnostic case, where the length-weight parameters

were provided from a correlated random draw from the joint prior.

7.2.13 Reproductive potential

Uncertainty in the reproductive potential relationship could result in differential stock status. If the

length at 50% maturity is increased, a greater reproductive burden is placed on larger individuals,

which are typically thought to be fully selected by longline fisheries, and translate to more pes-

simistic stock status. Sensitivity of the stock status to the differences in the reproductive potential

ogive was explored. A set of 30 models based on the diagnostic case was considered, where the

parameters defining the reproductive potential ogive were specified by a correlated random draw

from the joint prior.

7.3 Model ensemble

The model ensemble used as the basis for management advice for the SWPO swordfish stock

was constructed as the combination of a factorial grid of discrete factors, overlaid on correlated

parameter sets drawn from the joint prior. Relevant factors, and dimensions of the joint prior were

decided based on the sensitivity analyses and feedback received as a part of the 2021 PAW (Hamer

et al., 2021). The factorial component of the ensemble consisted of four “axes”: a DWFN CPUE

index scenario axis with four levels (Japanese index, Chinese Taipei index, European Union index,

or no DWFN index), a recruitment variability axis with three levels (CV ∈ {0.7, 0, 5, 0.3}), a growth
axis with two levels (informative and uninformative prior on t0), and a natural mortality axis with

two levels accounting for the two alternative approaches used to define Mref . This resulted in 48

unique factorial combinations.

Model testing indicated that the results were quite sensitive to the choice of movement parameters,

with a large proportion of runs having to be discarded due to implausible biomass estimates or

poor model convergence. Even though Ducharme-Barth and Vincent (2021) showed that a model

ensemble with as few as 30 models could effectively characterize the same level of uncertainty as

a much larger ensemble, this efficiency would likely not be realized in the current case given the

failure rate indicated in the movement sensitivity. To account for this, the unique 48 factorial

combinations were replicated eight times resulting in a starting model ensemble of 384 models,

where 384 was a balance between a large starting ensemble size and computational tractability.

For each of the 384 models in the ensemble a unique parameter set was drawn from the joint prior.
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8 Results

Development of the 2021 SWPO swordfish diagnostic case, model ensemble and associated diag-

nostics was a significant computational undertaking, totaling close to 33,350 hours of computation

time and 9,300 total runs. For the sake of brevity, only the most relevant results are discussed and

presented in this report.

8.1 Consequences of key model developments

The progression of model development from the 2017 diagnostic case model to the 2021 diagnostic

case model is outlined in Section 7.1 and results are displayed with respect to both the change in

spawning potential (SB) and the level of depletion of spawning potential relative to the unfished

condition (SBF=0). A summary of the consequences of this progression through the models is as

follows:

1. 2017 Diagnostic: The 2017 SWPO swordfish diagnostic case.

2. mfcl v2080 (Step 2; Figure 8) – Updating to the v2.0.8.0 MULTIFAN-CL executable

resulted in a slightly more pessimistic estimated depletion, due to marginally higher initial

and lower terminal spawning potential estimates.

3. update biology (Step 3; Figure 8) – Relative to the previous step, the depletion estimate was

marginally more optimistic following updating of the biological assumptions (growth, natural

mortality, length-weight, and reproductive potential). Spawning potential was estimated to be

noticeably lower, likely due to a shift in the reproductive potential ogive to larger individuals.

4. remove nominal effort (Step 4; Figure 8) – Removing the influence of the nominal effort

on the model resulted in a lower estimates of spawning potential and a more pessimistic level

of depletion.

5. index fishery (Step 5; Figure 8) – Transitioning to the index fishery approach resulted

in the lowest estimates of spawning potential and the most pessimistic depletion estimates.

Such a large change was unexpected given that the underlying data (standardized CPUE &

size composition) did not materially change. This large difference is likely attributed to a

change in the selectivity curves associated with the standardized CPUE, particularly for the

DWFN fishery in region 2C. When this fishery was split into equivalent extraction and index

fisheries, the standardized CPUE went from being associated with a dome shaped selectivity

curve to a non-decreasing selectivity curve which likely drove the more pessimistic estimate.

6. add NZ index (Step 6; Figure 8) – Including the New Zealand standardized CPUE as an

index fishery led to higher estimates of spawning potential and more optimistic depletion,

likely due to the model attempting to fit the increasing trend seen in the New Zealand index

from 2004 – 2015.
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7. update AU & EU index (Step 7; Figure 8) – Updating the Australian index in the

model resulted in negligible changes to stock status, given the consistency in standardization

approach and trend between the two assessments. Updating the European Union index using

the VAST modeling approach resulted in standardized CPUE trend that tended to increase

from 2004 – 2015, whereas the previous index was largely flat over the same period. This

again resulted in an upwards correction of both biomass and depletion.

8. int. age structure ∼ M (Step 8; Figure 8) – Assuming that the stock was at an unfished

equilibrium at the start of the model period (1952) did not meaningfully change terminal

depletion, or terminal spawning potential. However, this change did result in lower initial

population numbers, and lower initial spawning potential.

9. remove JP & TW idx (Step 9; Figure 8) – As discussed earlier in Section 7.2.5, the

model had particular difficulty simultaneously fitting to the three updated DWFN indices,

resulting in some odd estimated selectivity curves and poor fits to the length frequency data.

The decision was made at this step to only attempt to fit to a single DWFN index at a time

in order to minimize data-conflict but to consider the choice of index fishery to fit to as a

component of the model ensemble. Retaining only the European Union index, on the basis

of producing consistent fits to its length frequency data had implications for the spawning

potential trajectory prior to the mid-1990s. As there is no size-frequency data in the model

prior to this point, all of the trend in the spawning potential in the early part of the model

period was driven by the recruitment variability needed to fit the Japanese index, and to a

lesser degree the Chinese Taipei index. Removing the Japanese and Chinese Taipei CPUE

indices from the model resulted in pre-1990 recruitment estimates that did not deviate greatly

from the mean level of recruitment predicted under the assumed stock-recruit relationship.

This resulted in a larger initial population size, and a more optimistic level of depletion.

10. estimate SDB (Step 10; Figure 8) – In the process of attempting to simultaneously fit the

three DWFN indices a number of model configurations were considered in attempts to improve

the estimation of the selectivity curves and the fit to the associated length composition data.

One of the configurations considered was to relax the assumption of constant variability

around the growth curve as a function of age, and to allow variability to scale as a function

of length via the estimation of the σLength parameter. The estimation of this additional

parameter was retained on the basis of stepwise AIC model selection, and it resulted in

marginally lower estimates of biomass and depletion.

11. new extraction fleet (Step 11; Figure 8) – There were three notable changes to the

extraction fleet definitions from the previous stock assessment: 1) defining catches for the

European Union fishery in terms of metric tons, since this is their original unit of record;

2) aggregating the “early” and “late” DWFN fisheries in region 2C now that the use of

index fleets renders a catchability break meaningless for the extraction fisheries; and 3) the

exclusion of the Australian length composition data. These changes resulted in a higher
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estimate of initial biomass which translated to a more pessimistic terminal depletion relative

to the previous step.

12. update to 2019 (Step 12; Figure 8) – All input data were updated through the 2019

calendar year to correspond to the new stock assessment period. The additional four years of

data shifted the spawning potential trend down, but resulted in identical depletion through

2015. The standardized CPUE indices showed a decline following 2015, and both depletion

and spawning potential declined accordingly.

13. 5 kg wt bins (Step 13; Figure 8) – Increasing the resolution of the weight frequency data

in order to provide more information for the estimation of recruitments did not meaningfully

change the stock status. Both spawning potential and depletion shifted up slightly.

14. Peatman composition (Step 14; Figure 8) – Re-weighting the composition data for the

extraction fisheries so that it is more representative of fishery removals, and for the index

fisheries so that it is more representative of the underlying stock resulted in a slight reduction

of the biomass and depletion estimates slightly lower.

15. 2021 diagnostic (Step 15; Figure 8) – A number of small changes to selectivity were

considered on the basis of improving fits to the size-composition data including: grouping

the selectivity for the EU longline fisheries, assuming constant selectivity after age class 16,

removing the non-decreasing penalty on Fishery 3 selectivity, and removing the restriction

that selectivity was 0 at first age for most fleets. These changes were all retained on the

basis of stepwise AIC model selection, however both spawning potential and depletion were

essentially unchanged from the previous step.

Relative to the diagnostic case of the previous assessment, the diagnostic case for the current

assessment produced similar estimates of depletion for the SWPO swordfish stock through the

late-2000s. Beginning in 2010 the two models diverged, with the current diagnostic case estimating

higher terminal spawning potential and more optimistic levels of depletion.

8.2 Diagnostic case: Model fits

This section discusses model fits to the main input data components for the diagnostic case model,

defined by the final step in the stepwise model development (model 2021 diagnostic; Figure 8),

the final step described in Section 8.1. Additional diagnostics (likelihood profiles, retrospectives,

ASPM, hindcasting, and residual plots) are presented in Appendix Sections 12.1.1 – 12.1.5.

In terms of model convergence, the 2021 SWPO swordfish diagnostic case model achieved both a

low final gradient (7.12× 10−7) and a positive definite Hessian solution.
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8.2.1 Catch data

High penalties were applied to the catch data for all fisheries and so the catch is fit very closely,

with a SD of residuals on the log scale of 0.002 (Figure 9).

8.2.2 Standardized CPUE

There was substantial temporal variability in the standardized CPUE indices used in the assessment,

but despite this, the model-predicted CPUE fit the indices very well (Figure 10), with low RMSE

(< 0.3) for all index fisheries. In general, the model captures most of the seasonal variation

and is generally able to capture the long-term trend for all fisheries, with few estimated outliers

(Figure 11). However, there is some residual trend as the model tends to overestimate the decline in

the European Union index in terminal years, and underestimate the initial decline in the Australian

index. There is indication that the model is over-fitting the Australian index as the residual CV is

less than the mean input CV. This is likely due to the reinforcing signal from the large numbers of

weight frequency samples for this fishery which show a similar temporal pattern in median observed

size.

8.2.3 Weight frequency data

The weight frequency is generally well fit by the model, particularly for fisheries such as the Aus-

tralian longline (Fisheries 4 & 14) where there are substantial numbers of samples (Figure 12).

However, the model does appear to underestimate the modal size of encountered individuals for

the two PICT fisheries in region 2 (Fisheries 12 & 13). Since these fisheries have substantially

more length frequency data, the model appears to sacrifice a fit to the weight frequency data in

favor of the length frequency data. This indicates a data-conflict driven either by model misspeci-

fication (e.g. inappropriate length-weight relationship, or inappropriate processed length-standard

length/processed weight-standard weight conversion factors), or differences in the sampling pro-

grams that generated the length and weight observations. This mis-fit to the weight frequency

data for Fisheries 12 & 13 is even more apparent in the context of the temporal trend in mean

weight (Figure 13). For the other fisheries with observed weights, the model is able to better track

the temporal trend in average size. Additionally, we see that for the Australian fisheries, the trend

in mean size largely mirrors the trend in the standardized index.

8.2.4 Length frequency data

Fits to the length frequency data were generally found to be satisfactory when sample sizes were

high (Figure 14). However, fits to the DWFN longline fisheries tended to be poor, especially for

those operating in region 1 C & S. For these fisheries the model had difficulties fitting a large number

of small observed fish, smaller than the assumed L1, which could indicate a mis-specification in the

growth curve or selectivity specification. Tracing the source of these small fish indicates that they

came from a few observer records in recent years. Given the low levels of longline observer coverage
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for DWFN fleets and ephemeral presence in the record of observations, these small fish may not be

representative of the overall fishery selectivity patterns.

Few fisheries had enough consistency in temporal length frequency sampling to discern real trends

(Figure 15). While the overall trend appears to have been captured reasonably well for the New

Zealand fisheries, the predicted temporal trend for the PICT Fishery in Region 2N appears to be

biased high, particularly in recent years. As mentioned in the context of the fits to the weight

frequency data, there appears to be a conflict between the two types of size frequency data for this

particular fishery.

8.3 Diagnostic case: Estimated quantities

8.3.1 Selectivity

As mentioned previously in Section 6.3.1, selectivity curves were relatively unconstrained, though

most were estimated to fully select individuals of the oldest ages (Figure 16). Given the rapid rate

of growth leading to large size at recruitment to the modeled population, many fisheries estimated

moderate levels of selectivity even for the youngest age. Additionally, though a selectivity time-

block was estimated for Fishery 4 (Australian longline), it does not appear that the hook-type

change resulted in a meaningful change in selectivity given the similarity in the estimated curves.

8.3.2 Biomass

Trend and magnitude for the estimated biomass are largely similar to the previous stock assessment

(Figure 17). The stock is predicted to slowly decline over the first 40 years of the model period.

Beginning in the mid-1990s, biomass and spawning potential decrease rapidly to a low point at

the end of the 2000s. The stock showed signs of recovery up to the mid-2010s before declining

through to the end of the model period. Additionally, the magnitude of biomass and spawning

potential is larger in region 2 than region 1. As mentioned in Section 5.4.2 this result is achieve

independent of the index fisheries, and is driven primarily by the magnitude of catches between

the two regions. However, the larger population levels in region 2 are corroborated by the VAST

CPUE standardization models used to standardize the early period Japanese and Chinese Taipei

data (Ducharme-Barth et al., 2021b).

8.3.3 Recruitment

The overall trend in estimated recruitment was fairly flat though this is largely a product of the lack

of informative data in the early part of the time period and the decision to estimate mean levels of

recruitment for this period (Figure 17 & 18). However, beginning in the mid-1990s, the influence

of the index and composition data leads to a period of high variability with an average recruitment

slightly higher than the early period. This recent period of higher recruitment may contaminate

our interpretation of yield based reference points given that the yield simulations are based on a
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stock-recruit relationship that is defined over the entire model period. As such, SB latest/SBF=0

may be a more robust measure of stock status.

The proportions of recruitment in each region are freely estimated parameters, and region 1 is

estimated to have a higher level of recruitment for almost all model years. This however still

translates to a larger biomass in region 2 given the asymmetric movement assumptions in the

diagnostic case model.

8.3.4 Fishing mortality

Though total fishing mortality was estimated to be almost zero at the start of the model period, a

reflection of the almost non-existant initial catches, it gradually increased through to the mid-1990s

before dramatically increasing through the 2000s and leveling off in the last decade (Figure 19).

This dramatic increase in total fishing mortality appears to be driven mainly by the increase in

region 2 over the same period. Fishing mortality was always estimated to be comparatively higher

in region 1 given the larger initial catches and smaller estimated population size.

8.4 Diagnostic case: Further analyses of stock status

There are several ancillary analyses related to stock status that are typically undertaken on the

diagnostic case model (dynamic Majuro analyses, yield analyses, etc.). The use of multi-model

inference, defining management reference points based on the ensemble of grid runs, complicates

the presentation of these results for each individual model. These analyses are presented with

respect to the diagnostic case.

8.4.1 Fishery impacts

Fishery impact is measured at each time step as the ratio of the estimated spawning potential

relative to the spawning potential that is estimated to have occurred in the historical absence of

fishing. This is a useful quantity to monitor, as it can be computed both at the region level,

and for the SWPO as a whole. This information is plotted in two ways, firstly as the fished and

unfished spawning potential trajectories (Figure 20), and secondly as the depletion ratios themselves

(Figure 21). The latter is relevant for the agreed reference points and example plots of these values

are displayed for the diagnostic case model.

The diagnostic case model estimates that steady declines have occurred in both model regions

(Figure 22). In the early period, fishing impacts were greatest in region 1 as DWFN fleets expanded

south across the equator and into the Coral and Tasman seas. The bulk of this impact was

concentrated in the middle latitudes (20◦S – 40◦S). The emergence of domestic longline fisheries for

Australia and New Zealand had a large fisheries impact in region 1 at the turn of the millennium. In

region 2, and to a lesser degree region 1, large impacts have been made by an increase in equatorial

(0 – 10◦S) fishing activity by DWFN fleets such that this is the dominant sector in terms of impact
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in recent years. Despite developing and increasing capacity in the last two decades, PICT longline

fisheries do not have a meaningful impact on the SWPO swordfish stock. Fishing south of 40◦S is

also estimated to have a negligible impact on the stock.

It is worth noting that the general conclusions drawn from this analysis are conditioned on the his-

torical swordfish targeting, selectivity, and catchability patterns for these fisheries. These observed

impacts may not hold into the future if fisheries shift target species resulting in more directed or

by-caught swordfish (e.g. switch from albacore tuna to bigeye tuna targeting, given the similarities

in vertical diving/feeding behavior between bigeye tuna and swordfish).

8.4.2 Dynamic Majuro and Kobe plots

The section summarizing the model ensemble (Section 8.6) presents terminal estimates of stock

status in the form of Majuro and Kobe plots. Further analyses can estimate the time-series of

stock status in the form of dynamic Majuro or dynamic Kobe plots, the methods of which are

presented in Section 6.7.3. An example of the dynamic Majuro plot for the diagnostic case is

presented in Figure 23 . At the start of the assessment period, the SWPO swordfish stock was

predicted to essentially be in a virgin unfished condition. The F/FMSY was estimated to be nearly

zero indicating that initial fishing pressure at the start of the model period was negligible. Each of

these reference points progressively shifted towards the overfishing and overfished definitions over

the remaining period. The diagnostic case model shown never reaches 20%SBF=0 or an F/Fmsy of

one. These results are mirrored in the dynamic Kobe plot (Figure 24).

8.5 Multimodel inference: Sensitivities

8.5.1 Sex-structure

Sensitivity of the stock status to the sex-structure of the model was in itself sensitive to the

assumptions made in terms of the variability around the growth curve. A mini-factorial grid was

created to explore this where all combinations of σAge ∈ {5, 10, 15, 30} and σLength ∈ {0, 0.1, 0.2, 0.3}
were tested. Results showed that stock status was robust to the choice of σLength but not σAge

(Figure 25). When σAge = 5, stock status in terms of SB/SBF=0 was virtually identical between the

sex-disaggregated and sex-aggregated models. As σAge increased stock status became increasingly

pessimistic.

Investigation of the estimated sex-specific selectivities and fits to the sex-aggregated size composi-

tion split by sex for the most pessimistic scenario (σAge = 30) indicated the large growth variability

skewed the selectivity estimation to the larger females for fisheries that typically caught small fish

(more likely males given dimorphic growth). This resulted in very low estimated selectivity for

males given the shared selectivity at length and very poor fits to the “male” size composition data.

Given this estimated selectivity curve the model assumed males to be “quasi”-invulnerable, result-

ing in almost all of the sex-aggregated catch, and thus fishing mortality, to be attributed to females.
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This result seemed unlikely given that these fisheries tended to catch smaller individuals.

These results indicate that if variability in growth is assumed to be low, sex-aggregated and sex-

disaggregated models produce comparable results despite the large differences in growth. Assuming

a larger variability in growth skewed the selectivity estimation towards larger sizes, leading to more

pessimistic outcomes. To further explore the impacts that this has on management advice, an

equivalent sex-disaggregated model ensemble was developed. The results of which are presented in

Appendix Section 12.3.

8.5.2 Alternative catch scenarios

Estimated initial population scale was sensitive to the assumed catch scenarios (Figure 26 a). Sce-

narios which assumed greater levels of total removals from the system (add 5N ), relative to the

diagnostic case, showed higher estimated population scale. Conversely, as the level of fisheries re-

movals decreased (subtract 5S - subtract 165W ) population scale was estimated to be lower.

Model convergence also appeared sensitive to the assumed catch scenario and level of estimated

population scale. Models with the three lowest estimated population scales (subtract 10S , sub-

tract 15S , and subtract 165W ) all failed to achieve a positive definite Hessian solution. In terms

of the estimated depletion, subtracting catches occurring north of 5◦S & 10◦S did not greatly change

the impact from the 2021 diagnostic case (Figure 26 b), though only considering catches occurring

south of 15◦S lead to a noticeably more optimistic status. Assuming that catches occurring just

outside of the SWPO swordfish assessment region (to 5◦N) were from the same stock resulted in a

much more pessimistic outcome. The removal of high catches east of 165◦W unexpectedly resulted

in a more pessimistic depletion trajectory. This was driven by the more pessimistic estimated de-

pletion for region 1 given that catches in this region were unchanged, but the total population scale

was estimated to be lower.

8.5.3 Alternative spatial structure

The model appeared to be fairly robust to simplifying the spatial structure of the stock assess-

ment model. The estimated spawning potential trajectory was shifted lower, and resulted in a

more pessimistic estimation of fisheries depletion (Figure 26: single region). However, both esti-

mates were well within the range of stock statuses estimated as a part of the movement sensitivity

(Section 8.5.8).

8.5.4 Penalty on stock-recruit relationship

Model estimates of both spawning potential and fisheries depletion over the last 25 years were

robust to the choice of penalty on the stock-recruit relationship (Figure 27), as were depletion

based reference points. However lowering the penalty, relative to the diagnostic case level (CV =

0.5) allowed for a greater variability in recruitment and trend in the estimated recruitment during

the early, uninformative period (Figure 28). This resulted in an estimated stock-recruit relationship
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with lower asymptotic recruitment. Accordingly, yield based reference points were sensitive to the

assumed penalty value.

8.5.5 DWFN CPUE scenario

Estimated biomass and depletion appeared quite variable to the choice of DWFN index fishery

included in the model with the clear outlier being the Japanese index (Figure 29). This is most

notably manifested by the highly variable patterns in recruitment that are estimated during the

early period which are needed to fit the different observed patterns for the Japanese and Chinese

Taipei indices (Figure 30). Recruitment in recent years appears to be relatively insensitive to the

choice of DWFN index apart from the Japan index, indicating that information from the domestic

longline indices (Australia/New Zealand) or the size frequency data are driving the recruitment

estimates.

8.5.6 CPUE average CV

Model outputs, biomass and depletion, appeared relatively insensitive to the relative influence of

either the Australian or European Union index. In the context of the diagnostic case model, the

New Zealand index was the most influential. This is most obvious by looking at model outputs

according to the ratio of the mean Australian index CV to the mean New Zealand index CV

(Figure 31). When this ratio is large it means that the model fits more closely to the New Zealand

index given that a smaller CV translates to a larger penalty. When the ratio is small the inverse

occurrs, and the Australian index is fit more closely. When the New Zealand index has a greater

influence, the model has to estimate a larger, more productive population in order to match the

almost two-fold increase in the New Zealand standardized CPUE from 2004 - 2014. This larger

estimated population, given that input catch levels were the same across all models, translates into

more optimistic levels of depletion. Models with more influence placed on the Australian index

conversely resulted in more pessimistic stock status.

8.5.7 Size composition scalar

Sensitivity to the size composition scalars for length and weight confirmed the conflicting signals

indicated by these two data types. When the length composition data were assumed to have a

greater influence on the likelihood (lower scalar), spawning potential was estimated to be higher

and depletion was more optimistic (Figure 32). However, when the influence of the weight frequency

data was evaluated, the opposite pattern emerged. A lower weight frequency scalar (greater in-

fluence on the likelihood) resulted in a lower estimated spawning potential, and more pessimistic

depletion (Figure 33). It is also worth noting that the model seemed to have difficulty converging

for models that estimated lower biomass levels, similar to what was noted in Section 8.5.2.

47



8.5.8 Movement

Parameterizing models using correlated pairs of movement rates from the joint prior developed by

Patterson et al. (2021) resulted in a very broad range of both estimated spawning potential and

fisheries depletion. Uncertainty in movement rates were asymmetrical, with the rate of movement

from the South Pacific into the Tasman region predicted to have a much greater variance and

strongly right skewed distribution. Many of these large values for movement from the South Pacific

into the Tasman region simply could not be reconciled by the data and either resulted in implausible

estimates or model convergence failure. Some models with larger rates of movement from the South

Pacific into the Tasman region were able to converge, however these models also assumed larger

movements from the Tasman into the South Pacific region. As seen in Figure 34, in order to

reconcile the larger ratio for the movement rate from the South Pacific into the Tasman region

given the available data, the model had to estimate high levels of spawning biomass. These larger

spawning potential levels and coincidentally more optimistic levels of depletion are not necessarily

plausible in the context of the relative biomass scale between regions.

Relative biomass scale between regions was unconstrained in the model, so the model had consid-

erable flexibility to manipulate biomass and recruitment in order to make the various movement

scenarios work given the available data. There was almost perfect, 1:1 correlation between the ratio

of spawning potential between regions (SBTasman/SBS.Pacific) and the ratio of movement from the

South Pacific into the Tasman region. However, it would seem unrealistic for swordfish biomass to

be greater in the Tasman region given the discrepancy in region size. Indeed a larger South Pacific

region biomass is supported by the VAST CPUE standardization models used to standardize the

early period Japanese and Chinese Taipei data (Ducharme-Barth et al., 2021b). Additionally, the

2017 stock assessment (Takeuchi et al., 2017) also estimated biomass and spawning potential to be

larger in the South Pacific rather than Tasman regions and this result was considered reasonable

by SC13. Constraining the interpretation of results accordingly, we see that movement scenarios

where a greater proportion of individuals move from the South Pacific into the Tasman region

than from the Tasman into the South Pacific are not supported by the other sources of data in the

stock assessment (Figure 35), and that the remaining scenarios tend to estimate lower spawning

potential and more pessimistic depletion. This does not mean that the net movement of indi-

viduals is similarly constrained. In fact, the net movement of individuals from the South Pacific

region into the Tasman region can still be positive given that; a) the population is estimated to be

larger in the South Pacific region than the Tasman region, and b) more recruitment is predicted to

occur in the Tasman region.

8.5.9 Steepness

Model outputs appeared insensitive to the assumed value for steepness, though models assuming a

higher steepness values resulted in marginally lower spawning potential estimates and marginally

more optimistic estimates of terminal depletion (Figure 36). Inspection of the model total likeli-
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hoods showed that there was very little information in the data to support one particular steepness

value over another, though the model with the best objective function value assumed the high-

est steepness value. However, models assuming higher steepness values showed convergence issues

which manifested as the lack of a positive definite Hessian solution.

8.5.10 Natural mortality

Assumed natural mortality had a clear impact on the estimated trends of depletion and spawning

potential. Given that the population was assumed to be at an unfished equilibrium at the start

of the model period, lower values of Mref corresponded to larger less productive stocks which

showed steep declines in spawning potential and more pessimistic depletion trajectories (Figure 37).

Higher values of assumed Mref resulted in more gradually declines in spawning potential and more

optimistic depletion trajectories. Given the other sources of data included in the stock assessment,

there appears to be some information available in the CPUE indices, included in the diagnostic

case, to inform an estimate of Mref (Figure 38). The available data appear to support a value of

M ∼0.35–0.45 which is towards the upper bound of the range of Mref in the joint prior, and more

in line with the maximum age based prior.

8.5.11 Growth

Estimated fishing depletion did not appear to be overly sensitive to changes in the three fixed growth

parameters (L1, L2, or k) considering the range of each parameter in the joint prior (Table 4).

However, the magnitude of estimated spawning potential appeared to be quite sensitive to the

assumed parameter values. Of the three parameters, L1 showed the clearest trend between the

assumed value and stock status (Figure 39). L1 was also the parameter that showed the most

contrast in total likelihood over the range of values considered (Figure 40) with the most likely

value ∼ 105 cm. The data did not appear to support the use of an informative t0 prior as the

L1 values estimated from that model tended to be less than 100 cm. Large values of L1 typically

correlated to model runs with the lowest estimated spawning potential and the most pessimistic

depletion. This is likely due to the large size at initial recruitment, meaning that recruits were

immediately subject to higher levels of fishing pressure.

8.5.12 Length-weight relationship

Model outputs in terms of both spawning potential and depletion appeared insensitive to the

assumed values for α & β (Figure 41).

8.5.13 Reproductive potential

Model outputs in terms of both spawning potential and depletion appeared insensitive to the

different reproductive potential ogives developed from correlated parameter draws from the joint

prior (Figure 42).
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8.6 Multimodel inference: Model ensemble

A hybrid ensemble of 384 initial models was considered as the basis for providing management

advice for SWPO swordfish. As seen from the one-off sensitivities (Section 8.5), several dimensions

of the model ensemble either propagated a lot of uncertainty into the estimated stock assessment

outcomes or resulted in models that were poorly determined (i.e. lack of convergence as determined

by a non-positive definite Hessian solution).

8.6.1 Ensemble influence

Generalized linear models were used to regress reference point estimates against all fixed parameters

and varying factor levels from all 384 models in the ensemble in order to identify which parameters

were most influential to key management reference points. Regression against SB latest/SBF=0

indicated that the most influential components of the ensemble were Mref , the two movement rate

parameters, inclusion of Japanese CPUE, and to a lesser extent the scalar on the length frequency

and average CV for the Australian CPUE index (Figure 43). Models with a large Mref , high

movement rate from the South Pacific into the Tasman region, and/or that included the Japanese

CPUE index tended to show more optimistic levels of depletion, whereas models with high rates of

movement from the Tasman to the South Pacific region, a reduced influence of the length frequency

data on the likelihood, and greater influence on the Australian CPUE index typically showed more

pessimistic depletion levels.

Repeating this analysis for the yield based reference points, Frecent/FMSY and SB latest/SBMSY iden-

tified a similar set of influential components. For Frecent/FMSY, the most influential components

of the ensemble were Mref , the two movement rate parameters, steepness, and to a lesser extent

the scalar on the length frequency and average CV for the Australian CPUE index (Figure 44).

Larger values for steepness, Mref , and movement rate from the South Pacific into the Tasman

region contributed to a reduced chance of overfishing according to Frecent/FMSY. Higher movement

from the Tasman into the South Pacific region, reduced influence of the length frequency data,

and increased influence of the Australian CPUE index led to higher chance that overfishing was

occurring according to Frecent/FMSY.

In terms of SB latest/SBMSY, the same components of the ensemble were influential and led to similar

effects, except in the risk of the stock being classified as overfished according to SB latest/SBMSY

(Figure 45). However, additional factors were also found to have a statistically significant effect

on SB latest/SBMSY: inclusion of either the Japanese or Chinese Taipei CPUE typically led to the

stock being estimated to have a high spawning potential relative to SBMSY, while assuming high

penalty on the stock-recruitment relationship resulted in lower values of SB latest/SBMSY.

This GLM approach for identifying which components of the ensemble are most influential to man-

agement quantities can also be used to identify which components of the ensemble are more likely to

result in poorly estimated results (e.g. large maximum gradient component or non-positive definite
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solution), or implausible biological estimates. In the context of this ensemble, all models converged

to a fairly small gradient (≤ 7.59 × 10−6), however certain combinations of growth parameters

tended to result in a greater chance of a non-positive definite Hessian solution (Figure 46). These

were typically models that drew parameters from the component of the joint prior that assumed

an informative, zero-centered prior on t0, and/or those that assumed a small t0, large k and large

L∞. Similarly, aspects of the ensemble leading to unrealistic biomass estimates could also be iden-

tified. As discussed in Section 8.5.8, it does not appear reasonable for the model to estimate a

larger average spawning potential in region 1 than region 2. Unsurprisingly, the two movement rate

parameters (high movement from the South Pacific into the Tasman, and low reciprocal movement

from the Tasman back to the South Pacific) are the main drivers behind models with this result

(Figure 47). Additionally, given the stock is assumed to start from an unfished equilibrium, and

was subject to 68 years of direct and in-direct industrial fishing pressure, it is reasonable to assume

that the latest spawning biomass estimate is less than it was in 1952. Models that fail to meet

this assumption are again those with unrealistic assumed movement, and those that fit to either

the Japanese or Chinese Taipei CPUE indices (Figure 48). Both of these indices showed large

increases in the early model period (∼ 1970 for Japan and ∼ 1980 for Chinese Taipei), which the

model interpreted as a basis for increasing biomass. However, neither of these increases is seen in

the index of the other DWFN fishery operating in the same time period. This conflict between

the two DWFN indices in the early period indicates that either one index or the other (or both)

is not representative of the overall stock dynamics. This lack of coherence in the contemporaneous

indices could be either due to picking up a localized trend in abundance due to a bias in spatial

sampling, or poor standardization due to a lack of operational covariates.

8.6.2 Model retention

A post-hoc filter was applied to remove models that showed clear issues in the estimation or

unrealistic estimates of spawning potential. The following steps were applied, and the effect of

applying each filter to management metrics (Figure 49) or components of the joint prior (Figure 50)

are summarized.

1. SBTasman/SBS.Pacific < 1: Applying this filter removed 232 models from the ensemble, with

152 models remaining. Removed models typically estimated larger spawning potential, lower

values of fishing mortality, and more optimistic levels of terminal depletion. These were also

models that usually assumed high rates of South Pacific to Tasman movement, and low rates

of Tasman to South Pacific movement.

2. SB2019/SB0 < 1: Applying this filter7 removed an additional 42 models (one model fitting to

the European Union index, 27 models fitting to the Japanese index, and 14 models fitting the

Chinese Taipei index), with 110 models remaining. Removed models tended to have similar

7Omitting this filtration step would result in a similar final model ensemble, as models that fail to meet this
criteria are largely removed in the following steps.
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characteristics in terms of management reference points as those removed in the previous

step.

3. SB0 < 250, 000 mt: Applying this filter removed a single model (109 remaining) which had a

terminal spawning potential estimate > 2.5× the maximum estimated SB0 from the previous

stock assessment. This filter did not appreciably change the distribution of the estimated

management quantities or of the retained component of the joint prior.

4. Remove models with effort deviates on bound : Applying this filter removed 4 models, with 105

models remaining. This filter did not appreciably change the distribution of the estimated

management quantities or of the retained component of the joint prior.

5. Remove models with selectivity parameters on bound : Applying this filter removed 50 models,

with 55 models remaining. This filter did result in a marginally more pessimistic distribution

of depletion, and retained component of the joint prior that contained growth parameter

combinations which predominantly came from the model that assumed an uninformative

prior on t0.

6. Retain models with σAge < 45 cm: A large standard deviation around the growth curve was

needed in order to accommodate the discrepancy between the sex-disaggregated estimates of

L2 and the sex-aggregated estimate of L2. An upper limit of 45 cm for σAge was imposed.

This value was broad enough to allow for both the median female L2 and the median male L2

to be within one standard deviation from the median sex-aggregated L2. This step removed

14 models, with 41 models remaining. Removed models were exclusively those that assumed

an informative, zero-centered prior for t0.

7. Remove models that do not have positive definite hessian solution: Models that did not

satisfy the convergence criteria as defined by achieving a positive definite hessian solution

were removed. This resulted in 16 models being removed for a final ensemble of 25 retained

models. This filter did not appreciably change the distribution of the estimated management

quantities or of the retained component of the joint prior.

This post-hoc filtering process resulted in 25 models being retained for analysis. After the first two

filters were applied, the distributions for the management metrics appeared robust to the remaining

filtration steps. The elements of the joint prior that were pruned most heavily were: parameter

combinations with a high movement from the South Pacific to the Tasman, low movement from

the Tasman to the South Pacific, parameters from the model that assumed an informative, zero-

centered prior for t0, and models that fit to either the Japanese or Chinese Taipei indices.

8.6.3 Uncertainty characterization: Model & Estimation uncertainty

Uncertainty in management quantities is characterized as the combination of model uncertainty

(different aspects of the joint prior), and the statistical estimation uncertainty from each of the
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retained models in the joint prior. A parametric bootstrap of the dependent variables, using the

estimated variance from each model’s covariance matrix, was used to generate a distribution of 500

predictions for each management quantity of interest. These distributions were combined across

models to simultaneously capture the model and estimation uncertainty. Though uncertainty in

management quantities appear larger than in previous assessments, it is important to emphasize

that uncertainty in previous assessments was likely an under-representation given that it did not

present the statistical uncertainty across the ensemble of models. This is clearly shown in Figure 51.

Large uncertainty aside, there is a clear trend that stock status, as determined by SB/SBF=0,

declined sharply from the mid-1990s to the late 2000’s (Figure 52 a). Relative to that low point,

the current status is estimated to be similar but the prevailing trend over the last five years is one

of decline. This aggregate trend in stock status is largely repeated at the regional level, though

there is greater uncertainty in the stock status in region 1 than region 2 (Figure 52 b). At this

stage it is difficult to identify if the recent decreasing trend in spawing potential and depletion will

continue into the future. The longer term decline in total biomass appears to level-off in recent

years but this may be due to the two terminal years of recruitments being fixed at the mean level

(Figure 53). However, prior to being fixed, median recruitment did appear to increase slightly from

a low point ∼ 2015.

The SWPO swordfish stock lacks formal, agreed upon reference points. Accordingly, stock status

is summarized in terms of both depletion and maximum-yield based reference points (Table 5).

On average, the SWPO stock is not estimated to be in an overfished state according to either

SB latest/SBF=0 (0.39 median; 0.18 – 0.79 80th quantile) or SB latest/SBMSY (2.95 median; 0.99

– 6.78 80th quantile), and is not currently estimated to be undergoing overfishing according to

Frecent/FMSY (0.47 median; 0.25 – 1.29 80th quantile). However, it is misleading to characterize

the stock status only based on measures of central tendency and it is important to consider the

uncertainty in those estimates. This is perhaps best conveyed by examining the Majuro (Figure 54)

and Kobe (Figure 55) plots. Considering the full range of uncertainty, we see that there is a non-

trivial risk that the stock is currently undergoing overfishing (20% Frecent/FMSY > 1) and a risk

that the stock is in an overfished state (13% SB latest/SBF=0 < 0.2 & 10% SB latest/SBMSY < 1).

9 Discussion and conclusions

9.1 General remarks

The 2021 SWPO swordfish stock assessment estimates the median stock status, in terms of spawn-

ing potential depletion (SB latest/SBF=0), to be comparable to the 2017 assessment (Takeuchi et al.,

2017) used to provide management advice for the stock. Stock status as assessed by yield based

reference points (Frecent/FMSY & SB latest/SBMSY) was more optimistic than the 2017 assessment.

Yield based reference points are particularly sensitive to the assumptions surrounding the produc-

tion function so a more optimistic yield based outlook is not unexpected given that the current
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model ensemble generally assumed higher values of steepness and natural mortality than the 2017

stock assessment. Compared to the previous stock assessment, stock status is characterized to be

less certain and with a non-trivial chance of being considered overfished or undergoing overfishing.

Again, this broader uncertainty is not unexpected as the previous stock assessment only considered

model uncertainty, and did not consider estimation uncertainty.

Taking a historical perspective of the trajectory of the stock, depletion appears to have been

relatively low through the first 40 years of the model period, and a decline in spawning potential

appears to be largely driven by the observed removals. Uncertainty in this early period is large

given the lack of informative data during this period. What appears more certain is that beginning

in the mid-to-late 1990s, the stock appears to decline quite rapidly to a low-point at the end of

the 2000s. This coincides with the development of directed domestic longline fisheries in both

Australia and New Zealand, the emergence of a targeted fishery by the European Union and also

a considerable increase in the catch of typically smaller swordfish in tropical waters in the north-

east of the assessment region. The stock appeared to rebound slightly following this low-point as

catches stabilized at a high level, though the recent trend indicates a decline in both stock status

and catches.

Recruitment in the early period prior to availability of composition data or the start of the Aus-

tralian CPUE index was very uncertain, and restricted to be near the average value as predicted

by the stock-recruit relationship (∼500,000 individuals). Starting in the mid-1990s when the in-

formation content in the model increased, recruitment estimates were predicted to be more certain

and increasing. However, the last years of estimated recruitment were predicted to be considerably

lower, below both recent and average levels.

9.2 Improvements to the assessment

The process of conducting a stock assessment is one of iterative and continued improvement, picking

up the development where the previous assessment left off and incorporating new model features,

updated data, and an improved understanding of biological processes. The 2021 swordfish stock

assessment was no exception. Relative to previous assessments, the most notable improvement

was the approach used to more fully, and transparently capture the uncertainty in stock status

following the framework developed by Ducharme-Barth and Vincent (2021). As a part of this

process, biological assumptions were updated in the creation of the joint prior. This included an

improvement to the calculation of decimal age for the otolith age data, following Farley et al.

(2020), without making a common birth date assumption, and modeling reproductive potential as

a function of length. The use of the joint prior to underpin the model ensemble also allowed for

the consideration of additional sources of uncertainty (e.g. length-weight relationship, reproductive

potential, and relative weighting between input CPUE indices) not typically considered in the

full-factorial structural uncertainty grids.

Additionally, a number of other small improvements were made to the model including applying
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spatiotemporal modeling techniques to the standardization of DWFN CPUE data, the move to an

index fishery approach, and re-weighting the composition data to be more representative to either

the extracted catch or the indexed population (Ducharme-Barth et al., 2021b). Moving to the

index fishery approach also allowed us to completely remove the impact of the non-standardized

effort on the estimated population trajectory.

It is worth noting that the relatively rapid run-time of the SWPO swordfish stock assessment

model 8 allowed considerable freedom to explore a large number9 of different model configurations,

sensitivities, and diagnostic approaches. The most computationally demanding component was

the calculation of ensemble model weights using hindcast predictions of CPUE as this required an

additional 10 models for each grid model to be run. In order for such an approach to be feasible

for application to other WCPFC assessments, two conditions must be met10: 1) the model ensem-

ble should be kept small and 2) models should run quickly. Applying the framework outlined by

Ducharme-Barth and Vincent (2021) is a good place to start for keeping ensemble size manageable.

The equivalent full factorial ensemble, assuming 3 levels for each main component of the joint

prior, would have required at least 944,784 models!! It has already been identified that at least

the WCPO bigeye tuna & yellowfin tuna stock assessments are likely overly complex and in need

of simplification (Ducharme-Barth et al., 2020; Vincent et al., 2020). While simplification of these

assessment models to a more appropriate model structure will hopefully lead to more well deter-

mined solutions with better diagnostics, it should also have the added benefit of reducing model

run time. Naturally there is a trade-off between these two factors such that faster run-time will

allow for a larger ensemble to remain tractable. Assuming both of these conditions are met, there

is no reason why such an approach could not be applied to all other WCPFC stock assessments.

9.3 Challenges

Development of the 2021 SWPO swordfish stock assessment was not without its challenges, and a

number of questions were raised related to the quality of the input data, assumptions made, and

modeling approaches taken.

One of the key assumptions made in most stock assessments is that input data are un-biased and

representative of the underlying stock, and assessment outcomes are conditioned on that assumption

being met. While this assumption may be safe to make in assessments with well designed fisheries

independent sampling programs, it could be problematic in assessments such as SWPO swordfish

where most, if not all, input data come from fisheries-dependent data sources which have the

potential for bias. In the context of the relative abundance indices which drive the population

dynamics, these potential biases can be corrected through the application of standardization models.

8∼3 hours run time for model convergence to a small maximum gradient component (∼≤ 1× 10−5) and Hessian
calculation.

9∼9,300 models
10An unstated assumption is that the analyst has access to some basic level of scientific computing capabilities (e.g.

dedicated high-performance multi-core machine/server, locally hosted or cloud-based like Amazon Web Services; or
a distributed computing network like HTCondor).
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Though advancements have been made in the standardization procedures applied to generate indices

of relative abundance, the quality of the indices will always be limited by the underlying data. In

the case of SWPO swordfish, there was evidence of conflict between the different considered indices.

Similarly, conflicts also existed between the observations of size-frequency data between and within

fisheries. Conflict in data components is generally believed to arise as a product of model mis-

specification, and this possibility should be thoroughly explored. However, data conflicts can also

arise if the input data do not representatively characterize the underlying population in an unbiased

way. Though it may not be realistic to develop a fisheries independent data collection program for

swordfish across the entire SWPO, efforts should be made to impose a statistically robust sampling

design on the collection of fisheries dependent data for use in stock assessment.

Given the rigorous standardization approaches applied to the Australian and New Zealand abun-

dance indices, made possible by extensive and comprehensive operational characteristics recorded

in the logbook, these indices were considered to be the most representative indicators of change in

relative abundance for the sampled swordfish stock. However, these fisheries operate in a relatively

restricted range and may not completely capture the totality of stock dynamics. Additional indices

were considered which sampled the stock across a broader geographic distribution, though these

were also not without issue. The European Union index showed strong seasonal confounding with

spatial location of sampling. This non-stationarity in spatial sampling can pose problems even for

spatiotemporal standardization approaches which explicitly seek to account for the spatial location

of observations (Ducharme-Barth et al. Submitted). Seasonal-spatial confounding could indicate

a fishery which tracks a high population density of the target species along a migration pathway,

and be prone to hyper-stability in CPUE. Non-stationarity in spatial sampling was also an issue

for the Japanese and Chinese Taipei indices, particularly as fishing effort has contracted spatially

over the last decade. Alternative sources of relative abundance information will likely need to

be considered in future assessments. Lastly, the comprehensive operational covariate information

available for Australia and New Zealand, and the importance of some of these covariates in the

standardization model underscores the need to enhance the minimum data reporting requirements

for longline vessels operating in the WCPFC convention area for this purpose.

The high catches seen in recent years off the coasts of both Australia and New Zealand, despite the

relatively low effort, appears to be a clear confirmation of the directed swordfish targeting of the

domestic longline fisheries operating in the region. Conversely, the lack of high swordfish catches in

the high effort, western-central region from 10–20◦S coincides with our belief that longline vessels in

this area typically target south Pacific albacore and are unlikely to encounter swordfish as a result.

The explanation for the very high catches seen in recent years in the waters around the north-east

corner of region 2, despite moderate levels of effort, is less clear. These high catches could be due

to a number of reasons: 1) environmental factors in the south central and eastern Pacific Ocean

(thermocline/oxycline depth) leading to swordfish foraging at depths where they could be more

vulnerable to longline gear; 2) increases in swordfish targeting by longlines operating in this sector,
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either directly or indirectly through increased targeting of bigeye tuna which have a similar diurnal

diving behavior; 3) a genuine increase in the abundance of the stock in this area. Directed research

is needed to resolve this issue, as it has implications for the reliability of fisheries dependent CPUE

data coming from this region used to index abundance. This directed research could take the

form of a fisheries independent survey, which is sorely needed for all WCPO species faced with

uncertain fisheries dependent CPUE. At a minimum, expanded reporting of operational covariates

in the logbook would greatly enhance our ability to account for this in a CPUE standardization.

Useful covariates for swordfish would include: a priori target species, light stick use, bait type,

setting time (or fraction of night time soak), and gear settings that influence fishing depth (e.g.

hooks between floats, branch line length, float line length, and/or line setting speed). Cognizant

of the reporting requirements already placed on vessel operators, some of the burden related to

expanding the reporting of operational characteristics could potentially be alleviated via more

widespread adoption of electronic logbooks or electronic monitoring systems.

Sensitivity explorations to the inclusion of additional catches just outside of the WCPFC assessment

boundaries for SWPO swordfish or the simplification of the model to a single region, indicate that

the stock status summarized in Table 5 could be too optimistic. However, the more pessimistic

conclusions drawn from both add 5N and the single region scenario are contingent on the

assumed stock structure, and movement assumptions. In the add 5N model, the increase in

fishing pressure caused by the inclusion of additional catches is applied to all of region 2 leading to

the more depleted state. A different regional structure which assumes that this high catch area is a

spatially distinct component of the stock (e.g. a three region model with an additional longitudinal

boundary at 165◦W) could result in a different outcome. The lack of understanding on this area

of high swordfish catches at the northeast of the model region and how it relates to the greater

SWPO stock in terms of genetics and movement, does not allow us to validate or refute such a

spatial hypothesis. Assuming a single region and a well-mixed stock as done in the single region

model could be a reasonable starting point for the next SWPO swordfish stock assessment given

the uncertainty in movement estimates (Patterson et al., 2021) and our current understanding that

the SWPO swordfish stock is a single genetic population (Evans et al., 2021). We note that if

there is significant as-of-yet undetected spatial structure, such a simplification could bias results

since fishing pressure is not equal across the spatial domain. In future assessments, implications for

management advice could be more thoroughly explored by including catch scenarios and/or spatial

structure in the model ensemble.

A re-occurring theme in this report has been the sensitivity of model outputs to fundamental aspects

of the stocks dynamics or biology given the lack of information in the model to properly estimate

population scale. Lack of precision in movement estimates and natural mortality clearly translates

to large uncertainties in the model ensemble, and/or implausible estimates (Section 8.6.1). Ambi-

guity about stock structure and population connectivity could lead to inappropriate management

advice if the assessment model is mis-specified with respect to the unobserved “true” state of na-
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ture. Such fundamental uncertainties can be addressed in one of two ways: 1) additional directed

research on stock structure, movement dynamics, and natural mortality; 2) use of a Management

Strategy Evaluation (MSE) procedure to develop a harvest strategy for the SWPO that is robust

to such uncertainty. While the implementation of a harvest strategy should enable the achievement

of fishery objectives, it will not reduce the uncertainty in the stock assessment. Prior to the next

SWPO stock assessment, directed longitudinal genetic sampling and tagging of individuals across

the SWPO (e.g. French Polynesia, Cook Islands, Kiribati, Tonga, Fiji, New Zealand, New Caledo-

nia, and Australia) is needed to properly determine: 1) the connectivity of the high exploitation

zone in the northeast of the SWPO to the rest of the SWPO11, 2) if the 165◦E boundary needs

revising given the genetic similarity between Australian and New Zealand individuals, 3) better

estimates of movement between assessment regions, if a spatially explicit model is still the most

appropriate. If possible, tagging studies should endeavor to produce long term estimates of move-

ment (1+ years at liberty), and be structured so as to be representative of the movement dynamics

of the population as a whole and not a particular age or size based subset of the population.

Exploration of a sex-disaggregated model showed that changes in the assumed growth variability

resulted in quite different estimated selectivities. Models with smaller assumed values for σAge

appeared to produce more reasonable shared selectivity estimates. However, in most fisheries,

males were never fully selected due to the larger female size and non-decreasing nature of most

estimated selectivity curves. Given the dearth of sex-specific catch or composition information, the

shared selectivity at length assumption is required in order to partition the aggregated catch and

composition data by sex. The lack of full vulnerability to longline fisheries for large 200 cm males

could potentially be justifiable from a behavioral standpoint, but becomes more difficult to justify

strictly on the basis of length especially when we generally consider that other longline vulnerable

species (e.g. tropical tunas & albacore) are fully vulnerable at sizes less than 200 cm. Even though

depletion is based only on female biomass, male selectivity is still important to get right as it has

implications for dis-aggregating the aggregated catch by sex, which in turn impacts the sex-specific

fishing mortalities. Substantial collection of sex-specific catch and composition data are needed to

improve the quality of any future sex-disaggregated stock assessment.

A common thread through all of these issues is that genetic sampling and techniques can offer

a way to address these challenges, reduce model uncertainty, and improve the structure of the

stock assessment. As previously discussed, concerted genetic sampling across the spatial domain

of the SWPO could contribute to solving unanswered questions on stock structure. Application of

Close-Kin Mark-Recapture (CKMR) techniques could provide badly needed fisheries independent

information on population scale and natural mortality (Bravington et al., 2016). Fisheries indepen-

dent estimates of total population scale from CKMR could be fit to directly within MULTIFAN-CL

if the structure of the model were modified, or it could be used as an independent external estimate

to identify implausible models. Lastly, investigation of the swordfish genome for a sex-specific seg-

11As well as connectivity of this region to the other swordfish stocks in the norther and eastern Pacific Ocean.

58



ment could aid in catch and size composition by sex reconstruction from longline port sampling.

However, before engaging in any new sampling program it is important that it be well thought out

and designed so that it can meet the desired objectives. On-board swordfish processing techniques

(“trunking”) may make it difficult to collect otoliths to age genetically sampled individuals for a

CKMR model, which may necessitate the development of an alternative ageing protocol (i.e. epige-

netic ageing). The spatial structure of the population in terms of locations of juveniles and adults

available for sampling will also need to be assessed to determine if CKMR is even feasible. In order

to improve the quality of the stock assessment it is likely worthwhile to conduct a feasibility study,

similar to Bravington et al. (2020, 2021), on the application of CKMR and other genetic techniques

for SWPO swordfish.

9.4 Stock assessment modeling considerations

The previous section identified many challenges related to the current assessment, but addressing

those issues may take time as many require the collection of new data. In the interim, there are a

number of modeling based approaches which were identified as fertile areas of future investigation,

but were unable to be explored in the current assessment.

� Composition data for many of the fisheries were sparse, and in the mixed-flag fisheries came

from a variety of different sampling programs. Aggregating all of these different sources of

composition together could be a source for some of the data conflict seen in the assessment.

It may be worth re-exploring these fisheries definitions, using a data-driven approach such as

the one used to define the EPO fisheries in the 2021 South Pacific albacore stock assessment

(Lennert-Cody et al., 2010; Vidal et al., 2021).

� The composition data re-weighting approach that is described in Ducharme-Barth et al.

(2021b) made assumptions as to the threshold value applied for excluding composition data

that corresponded to low levels of the total catch for a fishery. This was done to remove

temporal variation as a result of limited or unbalanced sampling. Alternative model runs

assuming different applied threshold values should be explored.

� For the index fisheries, it is desirable that the size composition be standardized such that

it is representative of changes in abundance and not changes in spatial sampling (Maunder

et al., 2020). While it may not be possible to apply such an approach for DWFN fisheries

where there are low levels of size frequency samples or the data are not spatially resolved,

this approach could be considered for standardizing the composition data associated with the

domestic and PICT longline fisheries.

� The current approach allowed for uncertainty in the data weighting of the different compo-

nents, and represented a step forward from previous assessments. Results indicated that the

model outputs were not overly influenced by changes to the data weighting relative to other

aspects of the ensemble. However this approach to incorporating uncertainty in data weight-
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ing is overly simplistic and more work is needed to develop an efficient approach for dealing

with data weighting in a model ensemble context. If iterative re-weighting approaches are

to be applied in an ensemble, robust stopping criteria are needed; this would improve the

automation, transparency, and repeatability for applying iterative type approaches.

� Related to data-weighting, the Self-Scaling Multinomial with Auto-correlated Random Effects

likelihood for the size composition data should be tested prior to the next stock assessment

to see if it is feasible for use in a production stock assessment, and to determine how sensitive

it is to different fleet groupings and configurations.

� Exploration of marginal likelihood profiles forM and L1 indicated that there may be sufficient

information content in the data to freely estimate these parameters. Whether these are

estimable simultaneously, in conjunction with the other growth parameters, and/or across

the different model configurations in the ensemble needs further evaluation. The new decimal

age estimates from the otolith data should be incorporated into the stock assessment if serious

attempts at estimating these parameters are made.

� Given the new approach for characterizing uncertainty as model and estimation uncertainty,

there is a need to make sure all relevant management quantities and reference points are in-

cluded in the variance estimation routine for dependent variables in MULTIFAN-CL. Scrupu-

lous readers of this report will notice that fewer reference points and management quantities

of interest are reported in Table 5 than in years past, and those that are missing are those

that we were unable to calculate the statistical uncertainty for given the current production

version of MULTIFAN-CL. Deciding on a common, key set of reference points that should

be presented will be useful in ensuring that future versions of MULTIFAN-CL report the

uncertainty for the relevant quantities.

9.5 Main assessment conclusions

The main conclusions of this assessment are summarized as follows:

� The model and estimation uncertainty from the final model ensemble indicate that the stock

is at a 20% risk of undergoing overfishing according to Frecent/FMSY > 1 (median 0.47; 0.25 –

1.29 80th quantile), a 13% risk that the stock is overfished according to SB latest/SBF=0 < 0.2

(median 0.39; 0.18 – 0.79 80th quantile) and a 10% risk that the stock is overfished according

to SB latest/SBMSY < 1 (median 2.95; 0.99 – 6.78 80th quantile).

� Comparison with the equivalent sex-disaggregated model ensemble (Appendix Section 12.3)

indicated a more optimistic stock status in terms of median SB latest/SBF=0 (median 0.45;

0.13 – 0.72 80th quantile), with greater uncertainty resulting in a 19% risk that the stock is

overfished according to SB latest/SBF=0 < 0.2.

� The model ensemble predicts the stock to have gradually declined from the 1950s to the

60



mid-1990s before rapidly declining to an overall low point near 2010. Current stock status is

estimated to be at a similar level as the overall low with a declining trend in the terminal 4

years of the model.

� Uncertainty in the movement rates, and natural mortality are major contributors to the

overall assessment uncertainty.

9.6 Summary of research recommendations

A brief summary of the research and modeling recommendations made elsewhere in this report:

� Development of a statistically robust sampling plan for the collection of fisheries dependent

biological samples, including but not limited to size frequency data (by sex), and genetic

samples.

� Expand minimum reporting requirements for longline operational characteristics to include:

a priori target species, light stick use, bait type, setting time (or fraction of night time soak),

and gear settings that influence fishing depth (e.g. hooks between floats, branch line length,

float line length, and/or line setting speed).

� Directed longitudinal genetic sampling and tagging of individuals across the SWPO (e.g.

French Polynesia, Cook Islands, Kiribati, Tonga, Fiji, New Zealand, New Caledonia, and

Australia) is needed to properly determine: 1) the connectivity of the high exploitation

zone in the northeast of the SWPO to the rest of the SWPO, 2) if the 165◦E boundary

needs revising given the genetic similarity between Australian and New Zealand individuals,

3) better estimates of movement between assessment regions given the high uncertainty in

movement and the impact on management quantities.

� Improved collection of sex-specific catch and length composition to improve estimates of sex

specific selectivity in a sex-disaggregated model.

� Conduct a feasibility study to see if a Close-Kin Mark-Recapture approach can be applied

to swordfish to provide information on total population scale and natural mortality, two

components of the model that have large uncertainty.
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10 Tables

Table 1: Description of symbols used in the yield and stock status analyses. For the purpose of this
assessment, “recent” is the average over the period 2015–2018 for F related metrics and 2016–2019
for metrics related to SB while “latest” is 2019.

Symbol Description
C latest Catch in the last year of the assessment (2019)

Y Frecent Equilibrium yield at average fishing mortality for a recent period (2015–2018)
MSY Equilibrium yield at FMSY

Frecent/FMSY Average fishing mortality-at-age for a recent period (2015–2018) relative to FMSY

SB0 Equilibrium unexploited spawning potential
SB latest Spawning potential in the latest time period (2019)
SBrecent Spawning potential for a recent period (2016–2019)
SBMSY Spawning potential that will produce the maximum sustainable yield (MSY)

SB latest/SBF=0 Spawning potential in the latest time period (2019) relative to the average spawning potential
predicted to occur in the absence of fishing for the period 2009–2018

SB latest/SBMSY Spawning potential in the latest time period (2019) relative to that which will produce
the maximum sustainable yield (MSY)

SBrecent/SBMSY Spawning potential for a recent period (2016–2019) relative to that which will produce
the maximum sustainable yield (MSY)

20%SBF=0 WCPFC adopted limit reference point for tropical tunas – 20% of spawning potential in the
absence of fishing averaged over years t− 10 to t− 1 (2009–2018)
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Table 2: Fishery definitions, selectivity groupings, and increasing selectivity with age constraint
for extraction fisheries used in the 2021 SWPO swordfish stock assessment. Flag/fleets: AU =
Australia; DWFN = Distant Water Fishing Nations; EU = European Union; NZ = New Zealand;
PICT = Pacific Islands Countries and Territories.

Fishery Nationality Region Group Increasing
01 DW 1N DWFN 1 1 N
02 DW 1C DWFN 1 2 N
03 DW 1S DWFN 1 3 N
04 AU 1 AU 1 4 N
05 EU 1 EU 1 5 N
06 Other 1 PICT 1 6 N
07 DW 2N DWFN 2 7 N
08 DW 2C DWFN 2 8 N
09 DW 2S DWF 2 9 Y
10 NZ 2 NZ 2 10 N
11 EU 2 EU 2 5 N
12 Other 2N PICT 2 11 N
13 Other 2C PICT 2 12 N

Table 3: Fishery definitions, selectivity groupings, and increasing selectivity with age constraint for
index fisheries used in the 2021 SWPO swordfish stock assessment. Flag/fleets: AU = Australia;
EU = European Union; JP = Japan; NZ = New Zealand; TW = Chinese Taipei.

Fishery Nationality Region Group Increasing

14 idx AU AU 1 13 Y
15 idx NZ NZ 2 14 Y
16 idx EU EU 2 15 Y
17 idx JPearly 1 JP 1 16 Y
18 idx JPearly 2 JP 2 17 Y
19 idx JP mid 1 JP 1 16 Y
20 idx JP mid 2 JP 2 17 Y
21 idx JP late 1 JP 1 16 Y
22 idx JP late 2 JP 2 17 Y
23 idx TW early 1 TW 1 18 Y
24 idx TW early 2 TW 2 19 Y
25 idx TW late 1 TW 1 18 Y
26 idx TW late 2 TW 2 19 Y
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Table 4: Summary of fixed biological assumptions made in both the diagnostic case and model
ensemble. The minimum, maximum, median and 80th percentile are given for the ensemble param-
eters.

Diagnostic Min 10 Median 90 Max

Steepness 0.8 0.603 0.771 0.883 0.95 0.987
α 1.35e-05 1.02e-05 1.14e-05 1.27e-05 1.42e-05 1.62e-05
β 3 2.96 2.98 3 3.02 3.04
L1 109 93.5 98 103 110 113
L2 241 217 224 233 243 250
k 0.191 0.157 0.174 0.228 0.274 0.298
σAge 27.9 24.4 26.7 38.8 60 60
σLength 0.297 0.145 0.28 0.763 1.27 1.39
M̄ 0.295 0.103 0.189 0.295 0.361 0.49
Tasman ⇒ S. Pacific 0.075 0.00268 0.00851 0.0213 0.0489 0.127
S. Pacific ⇒ Tasman 0.025 0.00225 0.00826 0.03 0.0932 0.507

Table 5: Summary of reference points (measures of central tendency & relevant percentiles) in-
cluding model and estimation uncertainty from the 25 models in the final ensemble. Models were
equally weighted in the ensemble.

Mean Median 01 10 90 99

C latest 7,772 7,723 7,364 7,524 8,259 8,453
Y Frecent 6,558 6,608 3,351 4,964 8,106 9,347
MSY 9,922 9,543 3,869 5,470 14,738 22,278
Frecent/FMSY 0.67 0.47 0.16 0.25 1.29 2.34
SB0 83,853 69,390 16,491 31,472 145,944 334,518
SB latest 38,287 31,517 10,588 16,096 69,370 125,681
SBrecent 41,916 38,106 14,975 18,956 68,550 99,304
SBMSY 12,507 11,480 2,427 5,212 21,722 29,297
SB latest/SBMSY 3.7 2.95 0.44 0.99 6.78 18
SBrecent/SBMSY 4.1 3.61 0.64 1.23 7.39 16
SB latest/SB0 0.59 0.46 0.1 0.2 1.09 2.49
SB latest/SBF=0 0.45 0.39 0.08 0.18 0.79 1.42
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11 Figures

Figure 1: Spatial structure for the 2021 SWPO swordfish stock assessment. Sub-regions used to
differentiate fisheries are shown with the dotted lines.
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Figure 2: Catch (in mt) of the extraction fisheries for each assessment region.
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Figure 3: Standardized CPUE by index fishery, scaled to a mean of 1. The colored points indicate
the observed quarterly CPUE, while the white line indicates the smoothed trend through the data.
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(a) Relative spatial catch by fishery.

(b) Relative spatial effort by fishery.

Figure 4: Spatial patterns in relative swordfish catch and longline fishing effort by extraction fishery
and decade for the SWPO swordfish assessment region and immediately surrounding waters.
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(a) Uncertainty in assumed biological relationships.

(b) Uncertainty in steepness and regional movement rates.

Figure 5: Uncertainty in the assumed biological relationships, steepness, and movement rates
considered in the model ensemble is shown by the gray lines. The values assumed in the diagnostic
case are shown either with the black points in panel a) or the vertical black line in panel b).
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Figure 6: Growth curves considered in the model ensemble based on an un-informative prior for t0
(black), and a more informative prior, centered on zero, for t0 (red).

78



(a) M prior by approach: maximum-age (orange) and life-history based (blue) .

(b) M prior combining the two approaches: maximum-age and life-history based.

Figure 7: Prior distributions for natural mortality (M) considered in the model ensemble with
breakdown by M at age 1, 20 (Mref ) and average over all ages.
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(a) Stepwise change in spawning potential from 2017 diagnostic model to 2021 diagnostic model.

(b) Stepwise change in depletion from 2017 diagnostic model to 2021 diagnostic model.

Figure 8: Model progression from the 2017 to 2021 diagnostic cases in terms of spawning potential
and depletion.
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Figure 9: Model fit (gray line) to the observed catch (points) by fishery. The color of the point
denotes the unit of catch: orange (biomass) and blue (numbers).
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Figure 10: Model fit (black line) to the observed standardized CPUE (points) by index fishery.
The color of the point denotes the input penalty associated with that observation. A large penalty
indicates greater precision in the estimate which should pull the estimate closer to the observation.
Within each panel the median input penalty weight, equivalent median input CV, and the RMSE
of the fit is shown for each fishery.
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Figure 11: Joint residual plot following Winker et al. (2018) combining standardized residuals of
the fit to the CPUE where color denotes the fishery, boxplots indicating the median and quantiles
across all residuals by time step, and a smoothed spline through all residuals showing the overall
trend of the fit. Additionally, the light gray background box indicates the 3σ rule used to identify
outliers.
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Figure 12: Histograms of the observed weight samples by 5kg bin, where the predicted numbers
are shown by the red line. For each fishery the input sample size is given along with the RMSE of
the fit calculated on the basis of observed and predicted numbers.
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Figure 13: Temporal trend in observed (points) and predicted (line) average weight. The average
observed weight is given by the colored point (color indicates input sample size), with the vertical
line segment indicating the 50th quantile of observations. The RMSE calculated on the basis of the
observed and predicted proportions at weight, along with the mean weight RMSE calculated on
the basis of observed and predicted average weight are given for each fishery.
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Figure 14: Histograms of the observed length samples by 10cm bin, where the predicted numbers
are shown by the red line. For each fishery the input sample size is given along with the RMSE of
the fit calculated on the basis of observed and predicted numbers.
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Figure 15: Temporal trend in observed (points) and predicted (line) average length. The average
observed length is given by the colored point (color indicates input sample size), with the vertical
line segment indicating the 50th quantile of observations. The RMSE calculated on the basis of the
observed and predicted proportions at length, along with the mean length RMSE calculated on the
basis of observed and predicted average length are given for each fishery.
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(a) Selectivity-at-age by fishery.

(b) Selectivity-at-length by fishery.

Figure 16: Estimated selectivity curves by fishery, presented as a function of (a) age and (b) length
for the diagnostic case model.
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Figure 17: Estimated total biomass (top panel), spawning potential (middle panel), and recruitment
(lower panel) for the diagnostic case model. Color indicates the model region: region 1 (orange)
and region 2 (blue).
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(a) Total recruitment in region 1 (blue) and region 2 (orange) with aggregate trend (black).

(b) Beverton-Holt stock recruitment relationship.

Figure 18: Total estimated regional recruitment (a) and the stock-recruit relationship (b) for the
diagnostic case model.
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Figure 19: Fishing mortality by age (color) and region (panel: region 1 - left, region 2 - center, and
total - right).
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Figure 20: Comparison of the estimated fished (blue) and unfished (orange) trajectories for the
total assessment area and by region.
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(a) Total depletion.

(b) Depletion by region.

Figure 21: Estimated depletion in spawning potential SBt/SBt,F=0. The dotted line indicates
20%SBF=0.
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Figure 22: Estimates of reduction in spawning potential due to fishing (fishery impact = 1 −
SBt/SBt,F=0) for the total assessment area and by region. Impact is attributed to the DWFN
fisheries (operating in the northern, central, and southern regions), domestic longline (Australia
and New Zealand) fisheries, and PICT longline fisheries.
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Figure 23: Time-dynamic Majuro plot for the diagnostic case model representing stock status in
terms of spawning potential depletion and fishing mortality. The red zone indicates spawning
levels lower than 20%SBF=0. The orange region is for Frecent/FMSY levels greater than 1. The
green point indicates the condition in 1952, with points getting progressively lighter until the blue
point indicates the status in the terminal year (2019).
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Figure 24: Time-dynamic Kobe plot for the diagnostic case model representing stock status in
terms of spawning potential depletion and fishing mortality. The red zone indicates SBt/SBt,MSY

less than 1 and Frecent/FMSY levels greater than 1. The green point indicates the condition in 1952,
with points getting progressively lighter until the blue point indicates the status in the terminal
year (2019).
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Figure 25: Depletion trajectories for female biomass from the sex-disaggregated model sensitivity
(lines) where the color indicates the assumed σAge. The panels specify the assumption for σLength.
In each panel the depletion trajectory for spawning potential from the sex-aggregated 2021 SWPO
swordfish diagnostic case is shown for comparison (black points).
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(a) Spawning potential.

(b) Depletion.

Figure 26: Estimated spawning potential and depletion for the alternative catch & spatial scenarios,
where the color indicates the scenario. Line type indicates model convergence (solid), or lack thereof
(dashed), according to the presence of a postive definite Hessian solution. The 2021 diagnostic case
is given by the black line.
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(a) Spawning potential.

(b) Depletion.

Figure 27: Estimated spawning potential and depletion for the sensitivity of the penalty on the
stock-recruit relationship. Line type indicates model convergence (solid), or lack thereof (dashed),
according to the presence of a postive definite Hessian solution. The 2021 diagnostic case (CV =
0.5) is given by the black points.
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Figure 28: Estimated Beverton-Holt stock recruit relationship for the sensitivity of the penalty
on the stock-recruit relationship, where color indicates the magnitude of the penalty. The 2021
diagnostic case (CV = 0.5) is given by the black line.
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(a) Spawning potential.

(b) Depletion.

Figure 29: Estimated spawning potential and depletion for the considered DWFN index scenarios.
Line type indicates model convergence (solid), or lack thereof (dashed), according to the presence
of a postive definite Hessian solution. The 2021 diagnostic case is given by the black points.
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Figure 30: Estimated recruitment for the considered DWFN index scenarios. Line type indicates
model convergence (solid), or lack thereof (dashed), according to the presence of a postive definite
Hessian solution. The 2021 diagnostic case is given by the black points.
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(a) Spawning potential.

(b) Depletion.

Figure 31: Estimated spawning potential and depletion for the sensitivity to average CV associated
with the indices included in the diagnostic case. The color of the line indicates the ratio of the
average CV assumed for the Australian index relative to the average CV assumed for the New
Zealand index. Line type indicates model convergence (solid), or lack thereof (dashed), according
to the presence of a postive definite Hessian solution. The 2021 diagnostic case is given by the
black points.
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(a) Spawning potential.

(b) Depletion.

Figure 32: Estimated spawning potential and depletion for the sensitivity to the assumed scalar for
the length frequency data. The color of the line indicates the scalar assumed. Line type indicates
model convergence (solid), or lack thereof (dashed), according to the presence of a postive definite
Hessian solution. The 2021 diagnostic case is given by the black points.
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(a) Spawning potential.

(b) Depletion.

Figure 33: Estimated spawning potential and depletion for the sensitivity to the assumed scalar for
the weight frequency data. The color of the line indicates the scalar assumed. Line type indicates
model convergence (solid), or lack thereof (dashed), according to the presence of a postive definite
Hessian solution. The 2021 diagnostic case is given by the black points.
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(a) Spawning potential.

(b) Depletion.

Figure 34: Estimated spawning potential and depletion for the sensitivity to the assumed regional
movement. The color of the line indicates the ratio of movement from the South Pacific region
into the Tasman region. Line type indicates model convergence (solid), or lack thereof (dashed),
according to the presence of a postive definite Hessian solution. The 2021 diagnostic case is given
by the black points.
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Figure 35: Bivariate plot showing the change (∆) in Total likelihood given the assumed bi-
directional movement rates. Better fits to the data are indicated by smaller ∆ Total likelihood
values (cooler) colors.
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(a) Spawning potential.

(b) Depletion.

Figure 36: Estimated spawning potential and depletion for the sensitivity to the assumed steepness.
The color of the line indicates the assumed steepness value. Line type indicates model convergence
(solid), or lack thereof (dashed), according to the presence of a postive definite Hessian solution.
The 2021 diagnostic case is given by the black points.
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(a) Spawning potential.

(b) Depletion.

Figure 37: Estimated spawning potential and depletion for the sensitivity to the assumed Mref

value. The color of the line indicates the assumed M value for the oldest age. Line type indicates
model convergence (solid), or lack thereof (dashed), according to the presence of a postive definite
Hessian solution. The 2021 diagnostic case is given by the black points.
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Figure 38: Likelihood profile on natural mortality (M) by likelihood component (panel) and as-
sumed steepness value (line color).
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(a) Spawning potential.

(b) Depletion.

Figure 39: Estimated spawning potential and depletion for the sensitivity to the assumed growth
parameters: L1, L2, and k. The color of the line indicates the assumed L1 value. Line type indicates
model convergence (solid), or lack thereof (dashed), according to the presence of a postive definite
Hessian solution. The 2021 diagnostic case is given by the black points.
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Figure 40: The change (∆) in Total likelihood given the assumed growth parameters: L1, L2, and
k. Better fits to the data are indicated by smaller ∆ Total likelihood values. The color of the point
indicates the terminal estimated SB/SBF=0 for each model.

112



(a) Spawning potential.

(b) Depletion.

Figure 41: Estimated spawning potential and depletion for the sensitivity to the assumed length-
weight relationship parameters: α and β. The 2021 diagnostic case is given by the black points.
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(a) Spawning potential.

(b) Depletion.

Figure 42: Estimated spawning potential and depletion for the sensitivity to different assumptions
for the reproductive potential ogive. The 2021 diagnostic case is given by the black points.
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Figure 43: Estimated covariates from a generalized linear model of biological parameters against
SB latest/SBF=0 where the color of the point is the p-value of the effect and cooler colors indicate
greater significance.
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Figure 44: Estimated covariates from a generalized linear model of biological parameters against
Frecent/FMSY where the color of the point is the p-value of the effect and cooler colors indicate
greater significance.
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Figure 45: Estimated covariates from a generalized linear model of biological parameters against
SB latest/SBMSY where the color of the point is the p-value of the effect and cooler colors indicate
greater significance.
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Figure 46: Estimated covariates from a binomial generalized linear model of biological parameters
against a non-positive definite Hessian solution where the color of the point is the p-value of the
effect and cooler colors indicate greater significance.
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Figure 47: Estimated covariates from a binomial generalized linear model of biological parameters
against a solution where SBTasman/SBS.Pacific > 1. The color of the point is the p-value of the
effect and cooler colors indicate greater significance.
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Figure 48: Estimated covariates from a binomial generalized linear model of biological parameters
against a solution where SB2019/SB0 > 1. The color of the point is the p-value of the effect and
cooler colors indicate greater significance.
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Figure 49: Distributions of key management quantities showing the effects of the post-hoc filtration
leading to the final models retained in the ensemble. The final distribution is outlined by the white
dotted line.
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Figure 50: Distributions of key components of the joint prior showing the effects of the post-hoc
filtration leading to the final models retained in the ensemble. The final distribution is outlined by
the white dotted line.
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Figure 51: Distributions key management quantities contrasting the uncertainty captured only by
the ensemble (model; orange) and the more holistic definition of uncertainty (model + ensemble;
blue)
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(a) Total depletion.

(b) Regional depletion.

Figure 52: Uncertainty in depletion where uncertainty is characterized as model + estimation
uncertainty. The median is showed by the dark line, the 50th quantile showed by the dark band,
and the 80th quantile showed by the light band. The median and quantiles for total SB latest/SBF=0

are shown in panel (a). For reference, the WCPFC tropical tuna LRP 20%SBF=0 is shown with
the dotted line.
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Figure 53: Temporal uncertainty in total biomass (left), spawning potential (center) and recruit-
ment (right). Uncertainty is characterized as model + estimation uncertainty. The median is
showed by the dark line, the 50th quantile showed by the dark band, and the 80th quantile showed
by the light band.
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Figure 54: Uncertainty in terminal stock status, based on the 12,500 bootstrap samples charac-
terizing the model + estimation uncertainty. Warmer colors indicate a greater density of samples,
while cooler colors show the fringe of the distribution.

126



Figure 55: Uncertainty in terminal stock status, based on the 12,500 bootstrap samples charac-
terizing the model + estimation uncertainty. Warmer colors indicate a greater density of samples,
while cooler colors show the fringe of the distribution.

127



12 Appendix

12.1 Diagnostic Case

12.1.1 Likelihood profiles

Calculation of the likelihood profile (Figure 56) on average adult biomass for the diagnostic case

indicated conflict between the different data components, with the overall fit resulting from a

compromise between the different data sets. The standardized CPUE, length composition, and

stock-recruitment penalty indicated a preference for the highest estimated adult biomass (∼ 70,000

mt) while the weight composition data and other penalty components indicated a lower estimate

of average adult biomass (∼ 15,000 mt). An examination of the fisheries specific breakdown of

the likelihood profile (Figure 57) shows that this fit is largely driven by data from only a few

fisheries. The Australian weight frequency and standardized CPUE data prefer a lower estimate

of average adult biomass, the New Zealand standardized CPUE a higher adult biomass, and the

EU standardized index an intermediate level of adult biomass. Length composition across all fleets

generally prefer higher estimated biomass levels. These patterns are consistent when considering

likelihood profiles for average total biomass, recent adult (total) biomass, and latest adult (total)

biomass.

Conflict between the different data components is indicative of potential model or data mis-

specification. Disagreement between the two types of size-frequency data could be an indicator

that there is an issue with the conversion factors used to prepare the length frequency data. It is

also possible that this disagreement is a product of the length and weight frequency data coming

from distinct groups of fisheries targeting different segments of the population or with different data

collection programs (e.g. weight frequency data are more likely to come from port sampling for some

fisheries). The effect of recruitment variability around the estimated stock-recruitment relationship

was non-negligible on estimated stock status. This is consistent with the higher penalty assumed

in the diagnostic case relative to WCPO tropical tuna stock assessments, though uncertainty in the

assumed penalty value is considered in the model ensemble.

The asymmetric nature of the total likelihood profile indicates that the model is more certain about

the lower bound on the estimate of average adult biomass, and less certain on the higher end given

the structural assumptions made in the diagnostic case.
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Figure 56: Likelihood profile with respect to average adult biomass for the diagnostic case. The
total likelihood (black) is shown along with the influence of each likelihood componenent: weight
frequency (purple), length frequency (blue), CPUE/effort deviates (green), the recruitment vari-
ability (light blue), and other penalties including the catch likelihood (gray).
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Figure 57: Likelihood profile by fishery with respect to average adult biomass for the diagnostic
case. The total likelihood (black) is shown along with the influence of each likelihood componenent:
weight frequency (purple), length frequency (blue), CPUE/effort deviates (green), the recruitment
variability (light blue), and other penalties including the catch likelihood (gray).
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12.1.2 Retrospective analyses

An additional diagnostic, the retrospective analysis, was used to assess the overall stability of the

2021 diagnostic case model and to identify any persistent biases in estimated quantities as a result

of possible model mis-specification. A series of 9 additional models were fitted starting with the

removal of one year of data from the model, followed by models with that sequentially “peeled”

away all input data for the years 2018-2009. The models are named below by the final year of

data included (e.g. 2009-2018). A comparison of the spawning biomass, depletion, and recruitment

trajectories are shown in Figure 58. Additionally, Mohn’s ρ was calculated to ascertain the degree

of retrospective bias (Hurtado-Ferro et al., 2015). Values of ρ for SBt/SBt, F = 0 & recruitment12

(SBt/SBt, F = 0 = 0.08156; recruitment = 0.08651) were less than ±0.2, and did not indicate

strong retrospective bias. However, there did appear to be a large retrospective pattern in SB

(ρ =0.34396) which indicated that the model lacked strong information to inform total population

scale, and was sensitive to the excluded CPUE and/or size composition data in terminal years.

Indeed, likelihood profiling on adult terminal biomass for each retrospective “peel” (Figure 59)

indicated that a shift in the profile for the CPUE component was driving the higher/lower estimates

of terminal adult biomass. An examination of the fishery specific components indicated that this

shift was driven by the fit to the New Zealand CPUE index which increased, and subsequently

decreased drastically over the retrospective period. Predictably, when terminal New Zealand CPUE

was high or close to its peak, the model estimated a larger total population scale to accommodate

the high values from the New Zealand index. Repeating the retrospective likelihood analysis on

average adult biomass indicated a similar pattern in influence from the New Zealand CPUE, but

also showed influence to changes in the Australian weight composition data as well.

12Since recruitments in the final 2 years were fixed at the mean level, Mohn’s ρ was calculated based off of the year
of last estimated recruitment, and as such the two most recent years for each model are not shown in Figure 58.
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(a) Spawning potential retrospective

(b) Depletion retrospective

(c) Recruitment retrospective

Figure 58: Estimated (a) spawning potential, (b) fishery depletion (SBt/SBt, F = 0), and (c)
recruitment for each of the retrospective models.
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Figure 59: Likelihood profile on terminal adult biomass by retrospective “peel” (color) and likeli-
hood component (panel).
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12.1.3 Age-structured production model

An Age-structured production model (ASPM) analysis was explored for the diagnostic case. This

was accomplished by removing the influence of the size data on the model likelihood, fixing selectiv-

ity to be equal to those estimated from the full model, and not estimating recruitment deviations.

Additionally, regional recruitments were estimated to be the identical for both regions. A variant of

the ASPM, the ASPM-R allows for full estimation of regional recruitment deviates and proportion

of recruitments in each region, and was also examined here.

The basic ASPM did not return sensible biomass estimates indicating that the CPUE and catch

for the diagnostic case did not contain enough information to estimate a production function.

However, this could also be due to the assumption of identical recruitment by region which was likely

incompatible with the assumed movement dynamics. Further testing should explore the ASPM

either with a single region formulation for the model or with regional recruitment partitioning

estimated to see if this improves the estimation.

The ASPM-R version produced results that were remarkably similar to the full diagnostic case

model (Figure 60). This indicated that recruitment variability is strongly informed by the CPUE

data, not the size composition data, and recent trends are driven by patterns in recruitment.
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(a) Spawning potential retrospective

(b) Depletion retrospective

(c) Recruitment retrospective

Figure 60: Estimated (a) spawning potential, (b) fishery depletion (SBt/SBt, F = 0), and (c)
recruitment from the ASPM analysis.
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12.1.4 Hindcasting

“Model-free” hindcasting was done according to the approach outlined in Kell et al. (2021), where

the influence of all the CPUE on the model likelihood was retrospectively removed (by simultane-

ously applying an extremely low penalty to the fit to the CPUE indices for terminal years), with all

other aspects of the model unchanged. This is equivalent to physically removing the CPUE from

the assessment model though it makes the calculations of predicted CPUE in the hindcast period

considerably easier. Hindcasting was done over a 10 year interval (2009-2018), and CPUE was pre-

dicted ahead 1 – 5 (hwindow) years from the last year of the CPUE “peel”. Predictive performance

and internally consistency were assessed using Mean Absolute Square Error (MASE) (Hyndman

and Koehler, 2006) between the hindcast predicted CPUE and the observed CPUE value. Larger

values of MASE indicate poor predictive ability and internal consistency, and MASE values less

than 1 indicate that the model has greater predictive ability than a naive-predictor. The predicted

CPUE for the naive predictor was assumed to be equal to the last observed value from the hindcast

(i.e CPUEpred,2019 = CPUEobs,2018 for a one year ahead naive prediction).

Hindcast prediction tended to improve across larger hwindow prediction intervals (Table 6 & Fig-

ure 61) indicating that as observed CPUE changed, the other components of the model (catch & size

composition) were “internally consistent” with the CPUE data that were excluded from the model

likelihood. Additionally, MASE tended to indicate better performance than the naive-predictor as

the prediction window increased. On average, the observed CPUE for Australia (MASE = 0.92)

and New Zealand (MASE = 0.54) were well predicted by the other data components in the model.

The European Union index was found to be less consistent with the other data components in the

model.

Table 6: MASE from “Model-free” hindcasting with 1–5 year prediction periods (hwindow) for each
index fishery in the 2021 diagnostic case model

Index fishery hwindow MASE

1 14 AU idx 1 1.04
2 15 NZ idx 1 0.77
3 16 EU idx 1 1.293
4 14 AU idx 2 0.986
5 15 NZ idx 2 0.749
6 16 EU idx 2 1.271
7 14 AU idx 3 0.747
8 15 NZ idx 3 0.585
9 16 EU idx 3 1.227
10 14 AU idx 4 0.782
11 15 NZ idx 4 0.388
12 16 EU idx 4 0.996
13 14 AU idx 5 1.05
14 15 NZ idx 5 0.256
15 16 EU idx 5 0.915
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(a) One year hindcast predictions

(b) Three year hindcast predictions

(c) Five year hindcast predictions

Figure 61: Hindcast predictions of CPUE for (a) one, (b) three, and (c) five year prediction windows.
Indices are broken into quarterly panels for interpretability. Line color indicates last year of CPUE
influence on model estimates.
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12.1.5 Residual plots

Additional residual diagnostics for the fit to the standardized CPUE, weight composition, and

length composition data for the 2021 SWPO swordfish diagnostic case model (Section 8.2).

Figure 62: Standardized residuals of the fit to the index fishery CPUE data. The color of the
point denotes the input penalty associated with that observation. A large penalty indicates greater
precision in the estimate which should pull the estimate closer to the observation. Within each
panel the median input CV, the RMSE of the fit, and the results of a “runs”-test (Carvalho et al.,
2021) for non-random residual variation is shown for each fishery. Additionally, the light gray
background box indicates the 3σ rule used to identify outliers.
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Figure 63: Residual bubble plot of the fit to the weight composition data by fishery. Circle size
denotes the number of observations in a given composition bin and temporal strata. The color
indicates an underestimate (blue) or an overestimate (red).
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Figure 64: Standardized residuals of the fit to the mean weight frequency data by fishery. The
color of the point denotes whether or not the observation is an outlier according to the 3σ rule.
Within each panel the RMSE calculated on the basis of the observed and predicted proporitions at
weight, and the results of a “runs”-test (Carvalho et al., 2021) for non-random residual variation
is shown for each fishery.
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Figure 65: Joint residual plot following Winker et al. (2018) combining standardized residuals of
the fit to the average weight where color denotes the fishery, boxplots indicate the median and
quantiles across all residuals by time step, and a smoothed spline through all residuals shows the
overall trend of the fit. Additionally, the light gray background box indicates the 3σ rule used to
identify outliers.
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Figure 66: Residual bubble plot of the fit to the length composition data by fishery. Circle size
denotes the number of observations in a given composition bin and temporal strata. The color
indicates an underestimate (blue) or an overestimate (red).
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Figure 67: Standardized residuals of the fit to the mean length frequency data by fishery. The color
of the point denotes whether or not the observation is an outlier according to the 3σ rule. Within
each panel the RMSE calculated on the basis of the observed and predicted proporitions at length,
and the results of a “runs”-test (Carvalho et al., 2021) for non-random residual variation is shown
for each fishery.
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Figure 68: Joint residual plot following Winker et al. (2018) combining standardized residuals of
the fit to the average length where color denotes the fishery, boxplots indicate the median and
quantiles across all residuals by time step, and a smoothed spline through all residuals shows the
overall trend of the fit. Additionally, the light gray background box indicates the 3σ rule used to
identify outliers.
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12.2 Ensemble weighting

Sensitivity in management reference points relative to choice of ensemble weighting scheme was

evaluated. An objective, diagnostic based approach for weighting the ensemble was developed

using hindcast predictions of CPUE. Given that the data and likelihoods changed from model to

model in the grid, other likelihood based approaches such as Sample-Importance Resampling would

have been inappropriate to consider. Since CPUE was found to be an important driver of model

dynamics via the predicted recruitments (Section 12.1.3), good hindcast predictability of observed

CPUE was felt to be a more appropriate indicator of model performance and internal consistency

than the ability to predict other data components of the model such as the size frequency data.

Hindcast predictions of CPUE were conducted across all models in the structural uncertainty grid

in the manner shown in Appendix Section 12.1.4. Ensemble weights were then constructed as the

inverse of the average MASE across all CPUE indices and prediction windows for a single model.

This construction ensured that models with lower average MASE (better predictive performance

and internal consistency) received a higher ensemble weighting. Model and estimation uncertainty

were combined as described in Section 6.1.1 but the number of bootstrap samples used to propagate

the estimation uncertainty for each model was adjusted in proportion to the derived model weight.

Sensitivity to the weighting construction was also explored, and weights were constructed by taking

the inverse of MASEn. Raising the MASE to larger powers of n had the effect of increasing model

weights for models with better performance and decreasing models with poorer performance.

Using the final 25 model ensemble, results were robust to the weighting scheme used unless n

was very large (i.e n = 10; Figure 69). The most extreme n = 10 weighting scheme resulted in

distributions that were more dramatically skewed towards the outcomes of models that had good

MASE scores. Analysis of MASE scores relative to model configuration (Figure 70) indicated that

these models typically were those that downweighted the New Zealand CPUE index (similarly up

weighting the Australian index & not fitting to either Japan or Chinese Taipei CPUE), increased

the weighting on the composition data, assumed larger values of Mref , larger values of steepness,

and lower recruitment variability around the stock-recruit relationship. Increasing the weighting

towards these models typically resulted in a more pessimistic stock status.

Ensemble weighting using strong weights (n = 10) also corroborated the post-hoc filtration scheme

applied to retain models for the final model ensemble (Figure 71). Applying a strong re-weighting to

the full unfiltered ensemble (384 models) resulted in similar distributions of the management metrics

(except Frecent/FMSY) to the un-weighted but filtered final ensemble (25 models). This suggests

that the filtration scheme applied is also justifiable on the basis that it predominantly excluded

models that have poor hindcast predictive performance. Using the full unfiltered model ensemble

with strong weighting as the basis for management advice would result in a more pessimistic stock

status (Table 7).

More research is needed into the most appropriate ensemble weighting method. As demonstrated
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here, even using an objective diagnostic based approach such as hindcast performance still required

a subjective decision as to how to best construct the weight (i.e choice of n). Additionally, choice of

hwindow to consider, or even to conduct hindcast predictions on a different component of the model

(i.e. length composition) could lead to a different weighting and perhaps to different management

advice.

Table 7: Summary of reference points (measures of central tendency & relevant percentiles) includ-
ing model and estimation uncertainty from the full 384 model ensemble. Models were weighted
inversely proportional to the average Mean Absolute Square Error (MASE) from model-free hind-
casting of the relative abundance indices.

Mean Median 01 10 90 99

C latest 7,750 7,810 7,364 7,560 7,831 8,444
Y Frecent 6,598 6,550 3,953 5,207 8,058 9,373
MSY 8,961 7,281 4,344 5,514 15,020 21,746
Frecent/FMSY 0.75 0.84 0.15 0.26 1.14 2.14
SB0 97,018 87,773 18,975 38,729 157,805 283,242
SB latest 37,238 31,645 11,163 17,365 63,803 116,686
SBrecent 40,015 35,666 15,401 20,867 64,977 94,616
SBMSY 14,688 15,857 3,101 6,514 21,404 25,589
SB latest/SBMSY 3.07 1.99 0.49 1.02 6.36 14
SBrecent/SBMSY 3.43 1.99 0.72 1.29 6.89 16
SB latest/SB0 0.48 0.35 0.11 0.18 0.88 2.21
SB latest/SBF=0 0.4 0.33 0.1 0.19 0.7 1.33
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Figure 69: Distributions of key management quantities showing the effects of different assumed
ensemble weights for the final models retained in the ensemble.
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Figure 70: Estimated covariates from a generalized linear model of biological parameters against
MASE where the color of the point is the p-value of the effect and cooler colors indicate greater
significance.
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Figure 71: Distributions of key management quantities showing the effects of applying filtering
and/or re-weighting the ensemble.
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12.3 Sex-disaggregated model ensemble

To explore the effects of model mis-specification in terms of the sex-structure on the management

advice, the full 384 model ensemble was replicated assuming a sex-disaggregated structure following

the approach described in Section 7.2.1. In this ensemble, each sex assumed distinct biological

characteristics drawn from sex-specific joint priors and the growth variability parameters were fixed

since these were shown to be poorly estimated given the lack of sex-disaggregated composition data.

For σAge these were held fixed at the estimated standard deviation from the Bayesian analysis used

to construct the prior (Ducharme-Barth et al., 2021b), and for σLength these were assumed to come

from a uniform distribution U(0,0.3). The sex-disaggregated ensemble was subsequently filtered

applying the same criteria as for the sex-aggregated ensemble, though omitting the filter for σAge

as this parameter was fixed for each sex. This resulted in a final sex-disaggregated ensemble of

58 models. The distributions (incorporating model and estimation uncertainty) of SB latest/SBF=0

for this ensemble, the sex-disaggregated version of the 25 models retained for the sex-aggregated

ensemble, and the final sex-aggregated ensemble were compared (Figure 72). These showed similar

distributions and central tendencies, though the sex-disaggregated distributions appeared to be

more uncertain relative to the sex-aggregated ensemble.

This application is the furthest that the multi-sex formulation has been pushed in MULTIFAN-

CL, and venturing into relatively uncharted areas of the source code is not without surprises.

Unfortunately, it was found that estimation uncertainty for yield based reference points was not

being calculated properly, thus precluding the use of a sex-disaggregated model for management

advice at this time. However, our limited comparison shows that on the basis of SB latest/SBF=0,

the sex-aggregated model ensemble does not appear to be producing substantially different advice

to the advice from the sex-disaggregated ensemble.
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Figure 72: Distributions of SB latest/SBF=0 showing the effects of using either a sex-aggregated or
sex-disaggregated structure in the model ensemble.
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