
Scientific Committee
Sixteenth Regular Session

11-20 August 2020

Assessing trends in skipjack tuna abundance from purse seine catch and effort data in
the WCPO

WCPFC-SC16-2020/SA-IP-09 Rev 1

Tiffany Vidal1, Paul Hamer1, Lauriane Escalle1, Graham Pilling1

Revision 1: Corrections made to equation for Area Occupied statistics, as well as to associated text.
In addition, subscripts were added to the equation describing the minimum area to produce 90% of
the catch (D90), for clarification.

1Oceanic Fisheries Programme (OFP), The Pacific Community, Nouméa, New Caledonia



Contents

Executive Summary 3

1 Introduction 6

2 Methods 8
2.1 CPUE standardization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Catch and effort data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Model covariates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.3 Spatiotemporal model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Spatial distribution metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.1 Data and metric calculation . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Correlation with abundance . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Demographics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Results 17
3.1 CPUE standardization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 SDMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Length frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Discussion 24

5 Acknowledgments 26

6 References 28

A Appendix 34
A.1 Model specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
A.2 Supplemental figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2



Executive Summary

Developing a reliable index of relative abundance for skipjack, to inform the assessment model on
trends through time, is a priority given the contraction of the pole-and-line fishery. Catch rates
from the pole-and-line fishery have been a key input into the skipjack assessment models in the
past, but the fishery’s ability to provide the spatial and temporal coverage needed to adequately
assess changes in abundance has clearly degraded over time. The purse seine fleet is now the
major contributor to skipjack removals in the WCPO, and therefore, may serve as the best source
of information with which to continue monitoring and assessing skipjack trends. This paper
describes a spatiotemporal modeling approach for skipjack catch rate data collected by fishery
observers for the purse seine fishery. The main objective is to determine the potential of this
approach to provide a suitable relative abundance index for skipjack in the tropical WCPO.

Within the modeling framework, we have evaluated a suite of catchability covariates related
to vessel, gear, and fishing strategy characteristics. These covariates were ‘standardized out’ of
the model, to remove their effect on catch rates, and produce an index that is assumed to be
representative of the trends in skipjack abundance. In addition, the modeling framework we have
used allows for the inclusion of habitat covariates, predicted to influence relative skipjack density;
the model estimates are therefore conditioned upon these covariates. The model presented here
included vessel length, set type (i.e. associated with fish aggregating devices (FADs) or unassociated
free-schools), and a species composition cluster variable as catchability covariates, and the El Niño
Southern Oscillation index as a proxy covariate for spatiotemporal variation in preferred oceanic
habitat conditions. The estimated regional abundance indices suggested that skipjack biomass has
been relatively stable over the time series evaluated, 2010-2018.

Given concerns about potential hyperstability of a purse seine based CPUE abundance index,
we developed a suite of indicators, separate from the CPUE data, to provide a more holistic
representation of skipjack trends through time. This information was intended to lend support
to the inference from the CPUE analysis, if agreement was detected, or to highlight concerns
with the CPUE indices, if the information was in disagreement. We have presented a suite of
spatial distribution metrics (SDMs), developed from self-reported logsheet data, from 2000-2018.
We evaluated metrics associated with occupancy, aggregation, quantity, and distribution; and
assessed these metrics against biomass estimated from the previous stock assessment, with respect
to ecological theory. The SDMs were calculated separately for FAD and free-school sets, in an
attempt to highlight differences based on fishing strategy. Area occupied (fishing locations where
skipjack were caught) increased for both set types over the time series, as did the minimum area
required to account for 90% of the catch. Ecological theory would suggest that an increase in
these metrics is inconsistent with a significant decrease in biomass because they suggest spatial
dispersion as opposed to contraction into areas of optimal habitat, as would be expected for a
depleted population. The Gini index associated with aggregation, which provides a measure of the
spatial patchiness of catches, remained fairly stable over the time series, suggesting that patchiness
of tuna schools has not changed substantially. Lastly, we evaluated the proportion of sets with
catches classified as ‘high’, relative to catches for the time series. The proportion of high skipjack
catches was predicted to be positively correlated with abundance. The FAD sets showed an increase
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in proportion of high catch sets, whereas the free-school sets showed a modest decline.

In addition to the SDMs, we were interested in assessing trends in the center of gravity and inertia
of the skipjack distribution. Using logsheet data from 2000-2018, the center of gravity demonstrated
a slight shift south and east through time, an observation which may be related to the prevalence
of El Niño conditions over much of the past two decades. Aside from inter-annual shifts in the
center of the distribution, as well as the inertia around the distribution, there were no obvious
patterns in the location or expansion/contraction of the distribution. These conclusions are largely
qualitative at this point, and presented to serve as context for the CPUE-based trends. The length
frequency data showed inter-annual variability in the mode, but lacked directional shifts in the
distribution and did not suggest truncation of the size-structure over the time series.

The data and modeling results presented here suggest that over the recent time series, 2010-2018,
the skipjack population has been relatively stable. Ensuring reliability of the indices and metrics
presented are important for the continued sustainable management of skipjack tuna in the WCPO.
The CPUE standardization model described here is provided as a base case model to inform the
next skipjack assessment on abundance trends, but also as a platform from which to evaluate
additional analyses related to effort creep, FAD activity, and climate change. Incorporation of
purse seine catch rate data into the assessment and monitoring of skipjack is paramount, and
continued development of approaches to do so remains a high priority.

We invite WCPFC-SC16 to note the results of this analysis and recommendations for
future research:

Results

• This analysis presents a spatiotemporal model to standardize purse seine CPUE to better
inform the stock assessment models on skipjack abundance trends, across the main spatial
domain of the purse seine fishery.

• A suite of spatial distribution metrics have been explored as abundance indicators to buffer
against uncertainty associated with a potentially hyperstable CPUE index.

• Over the time series evaluated (2010-2018) skipjack tuna abundance trends appear to be
relatively stable, and the SDMs lend support to this result.

• Vessel, gear, and fishing strategy characteristics have been included in the model to capture
variability associated with effort creep in the fishery; however, additional research is recom-
mended to better address these changes.

Recommendations

• Prioritize continued research on the development of reliable indicators and proxies from
purse seine catch and effort data to monitor trends in skipjack tuna abundance.
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• Support continued research focused on developing methods to more reliably measure ef-
fort creep, including a fisher survey to better understand factors that have contributed to
efficiency changes in the purse seine fishery over time; information which will help refine
hypotheses and analytical methods to quantify effort creep.

• Explicitly evaluate the impacts of FADs on changes in catch rates and distribution of tropical
tunas. Specifically, evaluate the influence of FAD density on catch rates, and explore the
ecological-trap hypothesis with respect to the distribution of tropical tunas and drifting
FADs. In addition, explore the use of FAD-echo sounder data as a source of presence/absence
data to be used in conjunction with CPUE data, to better inform the model on ‘known’
absences in unfished strata.

• Explore the utility of VMS data to redefine the effort metric in the purse seine fishery. These
data could be used to understand changes in fishing behaviors and searching patterns over
time, changes potentially related to technological creep and efficiency gains.

• Recognize the importance of continued research on tuna biology and demographic processes
such as age/length compositions and maturation, and changes in these processes over time
for improved monitoring of skipjack.
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1 Introduction

Globally, it is estimated that bottom trawling and purse seining jointly account for more than half of
marine fisheries catches in recent years, with the purse seine sector contributing to approximately
29% of global harvest (Cashion et al., 2018). The western and central Pacific Ocean (WCPO)
supports the world’s largest and most valuable tuna fishery in the world. In 2018, harvest from
the Western and Central Pacific Fisheries Commission Convention Area (WCPFC-CA) comprised
55% of the global tuna harvest (4.9 mill mt), of which 71% was harvested by the purse seine fleet
(Williams and Reid, 2019). Despite the substantial and growing contribution of purse seine harvest
to global tuna removals, purse seine catch and effort time series have rarely been incorporated
into tuna stock assessment models (but see Bigelow et al., 2019; Vidal et al., 2019). This absence is
largely due to the perceived hyperstability in purse seine catch rates.

Quantitative stock assessment models often serve as the basis for sustainable management by
providing an assessment of population abundance and trends. Relative abundance indices serve as
a key input into stock assessment models, and are typically derived from design-based research
surveys or from catch and effort data from commercial fisheries, when fishery-independent
surveys are unavailable or impractical. Due to the fact that fishery data are not random, as
fishers intentionally target areas of high fish density, these data must be standardized prior
to use in assessment models to remove factors influencing catch rates, other than underlying
abundance trends (Hilborn and Walters, 1992). Effectively standardizing purse seine catch per unit
effort (CPUE) data is particularly challenging because fishing effort is concentrated on schooling
aggregations of fish, and therefore the potential for catch rates to remain high while abundance
declines (i.e. hyperstability) is an important concern.

Hyperstability has been implicated in masking population declines, and in some cases, the collapse
of fisheries (Rose and Kulka, 1999; Erisman et al., 2011; Hamilton et al., 2016), and is largely associ-
ated with fisheries that target predictable high density aggregations (e.g. spawning aggregations
and reef-associated fishes). The phenomenon of hyperstability may be more ubiquitous than
previously thought if we consider the distribution of marine fishes as a function of population
size and habitat suitability (MacCall, 1990). The basin model suggests that as abundance declines,
populations will contract into areas of favorable habitat (MacCall, 1990; Rose and Kulka, 1999;
Tremblay-Boyer et al., 2014), thereby creating the possibility for catch rates from targeted fisheries
to remain high if fishing effort is focused on the areas of most suitable habitat.

In the pelagic environment, schooling behavior of fishes is a common life history trait that has been
associated with predator avoidance (Godin, 1997; Zheng et al., 2005), increased forage opportunities
(Pitcher et al., 1982; Milne et al., 2005), reproductive success (de Mitcheson and Colin, 2011), and
energetic efficiency (Killen et al., 2012; Hemelrijk et al., 2015). Beginning around the 1960s, fishers
began to exploit the schooling behavior of tunas, by using purse seines to harvest large volumes of
fish thereby increasing their harvest efficiency (Miyake et al., 2004), but it wasn’t until the 1980s
that purse seine harvest contributed substantially to the regional tuna harvest (approximately 40%
of the total tuna catch by the mid-1980s; Williams and Reid, 2019).
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When CPUE is used as an input to stock assessment models, the traditional assumption is that
the index is proportional to biomass; however, this assumption is rarely met when using CPUE
from commercial fisheries (Harley et al., 2001). Effort, which is used to scale catch size, is not
straightforward to quantify because it is the product of many different variables, some known,
others potentially unknown. Examples of such variables include vessel power (Pascoe and Robinson,
1996), search technologies (Torres-Irineo et al., 2014), capture efficiency, but also skipper experience,
management regimes, and socioeconomic drivers. In many cases, policy measures aimed at
controlling fishing mortality through effort constraints (e.g. fleet capacity, vessel capacity, or
temporal limitations), have been unsuccessful due to effort creep, i.e. increases in fishing efficiency
through time (Pascoe and Coglan, 2000; Eigaard, 2009; Eigaard et al., 2014). Catch rates are typically
standardized to control for factors that influence the efficiency of a unit of fishing effort; however,
considerable variability may remain unaccounted for due to individual vessel effects or fishing
activities, which may be unmeasurable. Effective effort is therefore, the combined effect of the
measurable and unmeasurable (e.g. skipper effect, gear rigging, sophistication of electronics)
factors that influence a vessel’s efficiency (Hilborn, 1985; Marchal et al., 2007; Eigaard et al., 2014).
These factors must be accounted for, to the extent possible, in a standardization procedure to
ensure reliability of CPUE-based abundance indices.

The aim of this study is to address uncertainties related to CPUE for the tropical tuna purse
seine fishery in the WCPO. Skipjack tuna Katsuwonus pelamis is the primary target of purse
seine vessels in the WCPO, followed by yellowfin tuna Thunnus albacares, while small bigeye
tuna T. obesus are occasionally harvested, often while fishing around fish aggregating devices
(FADs). In 2018, 82% of skipjack and 56% of yellowfin harvested in the WCPO were landed by
purse seiners (Williams and Reid, 2019). Historically, data from the pole-and-line fishery have been
used to develop standardized indices of relative abundance for the skipjack stock assessments,
but participation in this fishery has waned in recent decades due to the proliferation of the more
efficient and profitable purse seine fishery, and therefore this fishery’s ability to provide a reliable
representation of the population dynamics across the WCPO has degraded. In the interest of
using purse seine fishery data to inform trends in skipjack tuna abundance, we looked to observer
collected data. Observers report set-level information on gear configurations, catch composition,
crew demographics, and detailed accounts of vessel activities throughout the day; data predicted
to be valuable in evaluating purse seine catch rates and developing an effective standardization
methodology.

Standardization procedures for fishery catch rates are commonly performed using delta generalized
linear models (GLMs), a.k.a. hurdle models. Delta-GLMs have long been viewed as the best-
practice for CPUE standardization (Maunder and Punt, 2004; Lynch et al., 2012). However, with the
development of accessible and efficient estimation algorithms (Thorson et al., 2015; Kristensen et al.,
2016), alternative approaches are proving useful for this task. One of the major pitfalls of using
traditional GLMs and delta-GLMs is the, often unreasonable, assumption of independence among
observations in space and time (but also see Thorson, 2017). In simulation studies, delta models
have performed well under a variety of conditions (Forrestal et al., 2019), but when sampling in
space and time is unbalanced or clustered, potentially leading to unsampled strata, spatiotemporal
models may outperform the more traditional GLMs (Ducharme-Barth et al., 2019). The focus of
this study was to address some of the major limitations to purse seine CPUE standardization by: 1)
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using observer data to more explicitly address effort creep and changes in catchability over time; 2)
incorporating habitat variables expected to influence relative skipjack density; and 3) employing a
spatiotemporal modeling framework to explicitly account for spatial and temporal correlation in
catch rates. To complement the CPUE analyses, we have evaluated a suite of spatial distribution
metrics (SDMs) as potential indicators of population dynamics, based on ecological theory. These
analyses are intended to provide a base case standardization approach for use in regional stock
assessment models. They may also provide the foundation for additional analyses related to CPUE
standardization, such as: further exploration of changes in effective effort, understanding the
effects of FAD density, addressing the influence of habitat suitability and oceanographic variation
on catchability and abundance.

2 Methods

2.1 CPUE standardization

2.1.1 Catch and effort data

Operational (set-level) fishing effort and catch data were obtained from the Pacific Islands Regional
Fisheries Observer Program data for the tuna purse seine fleets operating within the WCPO. As
of 2010, 100% of tuna purse seine trips in the region were required to carry a fisheries observer,
and therefore, the time series used for this analysis extended from 2010 through 2018. It should
be noted that observer data made available to the Pacific Community (SPC) may be up to 20%
less than the full coverage due to a suite of data issues (Williams et al., 2020). The skipjack stock
assessment region, extends roughly from 50◦N to 20◦S and from 110◦E to 150◦W; however, the
purse seine sector of the skipjack fishery primarily operates within the 2019 stock assessment
Regions 6-8 (Figures 1 and 2); and therefore, those were the focal regions for these analyses.
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Figure 1: Regional stock assessment structure for skipjack, from the most recent assessment
(2019). The regions highlighted in blue indicate the regions where the purse seine fishery is
predominantly active, and therefore the focal regions for this analysis.

Figure 2: Observer reported purse seine effort (sets), highlighted with density contours, from
2010-2018. Individual sets are plotted as gray points.
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Different fishing strategies are employed within the purse seine fleet, with the most salient
difference distinguishing between associated and unassociated sets. Associated sets are those made
in association with floating objects, either natural (e.g. logs, debris, whale sharks), or man-made (i.e.
FADs). Historically, FADs were primarily anchored to the seabed; however, it is more common in
the contemporary fishery for fishers to deploy and fish around drifting FADs (dFADs). Unassociated
sets (UNA) are those made on free-schooling tuna unassociated with floating objects. During the
time period of interest, dFAD and UNA sets compose the majority of the purse seine effort in the
WCPFC-CA, and therefore were the focus of this analysis (Figure 3). It has been suggested that
because of the substantial differences associated with fishing on FADs and unassociated schools,
that the two should be analyzed separately (Hoyle et al., 2014). However, given that a vessel will
commonly conduct both set types on the same trip, day, and in the same areas, and that both are
targeting the same underlying stock, we chose to model them simultaneously with the inclusion
of set type as a catchability covariate.

Figure 3: The distribution of skipjack catch rates by set type (mt/set; top), and the proportion of
sets associated with each, in each year-quarter time step (bottom). Set types: AFAD = anchored
FAD; ASSOT = associated other (e.g. logs, debris); ASSWH = associated with like whale; DFAD =
drifting FAD; and UNA = unassociated free-school set. The boxplot widths are scaled by sample
size (also noted in the x-axis labels). It should be noted, that observations have been filtered in
these figures to remove failed sets and sets with extreme catch outliers (>99th quantile of tuna
catches).

The full data set (n = 198,907 sets) was filtered to only include vessels between 50 and 80 m in length
which were active in the fishery for approximately 20% of the time series of interest (observed
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fishing activity in at least seven quarters between 2010 and 2018). To avoid a full exclusion of the
vessels that had only recently entered the fishery, we included vessels that entered the fishery
in 2017 or later if they had been active for at least four quarters (∼50% of the most recent two
years of the time series). The vessel length criteria was imposed because when the Vessel Day
Scheme (VDS), an effort-based management framework, was implemented in 2008, a fishing day
differential was imposed based on vessel length (Dunn et al., 2006; Parties to the Nauru Agreement,
2016). Vessels within the 50-80 m range were charged one vessel day for one fishing day, while
larger vessels were charged 1.5 vessel days per calendar day of fishing, and smaller vessels 0.5
days. Over the past decade, many of the largest vessels have left the fishery, leaving a fleet that is
dominated by the 50-80 m size class. Focusing on this size class of vessels will help ensure the
indicator is robust to future change in industry structure.

Sets, were identified as ‘failed’ sets if the total tuna catch was less than one mt, and removed
from the data set as they were not expected to be representative of local density. In addition,
extreme outlier catches (total tuna catch ≥99th quantile; 241 mt/set) were also removed. Lastly,
records were removed if any data values were missing. The resulting filtered data set (n = 101,724)
was used for the CPUE standardization. For a detailed description of the number of observations
removed at each step of the data filtering process, refer to Table 1.

Filtering criteria Removal % Removal #
Vessel participation (>20% of time series; ∼7 quarters) 11% 21,094
Vessels between 50 and 80 m 15% 30,500
Removal of failed sets (total tuna catch) < 1 mt 2% 3,191
Extreme catch outliers (>99th quantile) 1% 1,442
Remove records with missing data 21% 40,956

Table 1: Summary of data filtering criteria employed. Note that some observations would have
been excluded based onmultiple selection criteria; the numbers removed are based on sequential
filtering, and therefore may be an underestimate of observations relating to each criteria.

2.1.2 Model covariates

The R package VAST (Thorson et al., 2015) was used as the modeling framework. This model-
ing approach makes a distinction between covariates that affect catchability, and therefore are
‘standardized’ out of the estimated indices, and density covariates, which influence the abundance
estimates. Density covariates may be of particular importance when extrapolating to unsampled
areas; however, if true relationships are lacking, this model feature has the potential to introduce
bias.

The purse seine fishery, like most industrial fisheries, has demonstrated the ability to continually
evolve and adapt to changes in the resource as well as to management measures in an effort
to maximize catch rates. Such changes, within an effort-based management framework, can
undermine management and conservation objectives because catch rates may remain high as the
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underlying stock declines, due to efficiency gains, or changes in effective effort over time (effort
creep). Effective effort is not often directly measurable as it represents the combined effect of
many different factors, with variable importance and trends through time. However, at this point,
an effective multivariate or composite index which maps reliably to catchability, has not been
developed.

Therefore, we selected a suite of vessel, gear, and strategy-based characteristics (i.e. set type, vessel
length, gross registered tonnage, well capacity, skiff horsepower, net length, net depth, and a
species composition cluster variable) to capture variability associated with effort creep, some of
which were highly correlated (Figure 4). A k-means clustering algorithm was used to assign a
species composition variable to each set, based on the proportion of each of the three main tuna
species harvested in this fishery (skipjack, yellowfin, and bigeye). Two cluster groupings were
selected, which were largely associated with skipjack dominated and yellowfin dominated sets (the
two primary species harvested in this fishery). This species composition variable was predicted to
be important given that this is a multi-species fishery, and a set dominated by yellowfin may skew
our perception of the skipjack stock, if this variable is unaccounted for. From this set of potential
covariates, we selected a subset hypothesized to represent catchability differences among the fleet,
over time (Table 2).

In addition, we recognize the importance of oceanographic conditions (Table 2) in influencing
the distribution and local abundance of tunas (e.g. Howell and Kobayashi, 2006; Bigelow and
Maunder, 2007; Langley et al., 2009; Young et al., 2011). Temperature is often identified as one of
the most salient drivers of marine fish distribution and abundance; however for tunas, it is well
established that tuna aggregations often form along convergence zones where cold, saline waters
merge with warmer waters to create prey hotspots (Fiedler and Bernard, 1987; Lehodey et al., 1997;
Arrizabalaga et al., 2015; Lumban-Gaol et al., 2015). We compiled a suite of metrics relating to
variability in oceanographic conditions, predicted to influence catch rates. After assessing the
correlation among the metrics (Figure 4), we selected thermocline depth and ENSO to include
in the model evaluations. Thermocline depth was predicted to influence catch rates due to the
vertical compression of the upper mixed layer, and the associated vulnerability to a surface gear
such as purse seines. Whereas, the ENSO effect was predicted to have a spatially-varying effect on
density due to changes in sea surface temperature, and the location of the important east-west
convergence zone. Lastly, moon phase was evaluated as it has been shown to influence catch
rates in other tuna species (e.g. bigeye tuna), due to occupancy of deeper nighttime depths during
the full moon as opposed to lesser illuminated phases (Evans et al., 2008). Variability in vertical
aggregation due to moon phase was predicted to be of particular importance to FAD sets made
during the early hours of the day, typically pre-dawn (Harley et al., 2009). Oceanographic data were
obtained from the Global Ocean Data Assimilation System (GODAS), NOAA’s high resolution sea
surface temperature data (Banzon et al., 2019); and the E.U.’s Copernicus Marine Service, available
monthly at 1/12◦ spatial resolution.
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Figure 4: Hierarchical cluster correlation plots of the oceanographic and vessel characteristics
variables considered for inclusion as catchability and density covariates in the model. Variables
in the oceanographic data set (left) include: mean salinity in the upper 200mof thewater column
(mean.sal); thermocline depth (therm.depth; m); sea surface height anomalies (sea.height; m),
depth of the 20 degree isotherm (depth.20; m), sea surface temperature (sst, ◦C), variability in
salinity in the upper 200 m of the water column (var.sal), ENSO, and variability in temperature
in the upper 200 m. For the vessel-based characteristics we evaluated net depth (m), net length
(m), skiff horsepower, well capacity (mt), vessel length (loa; m), and gross registered tonnage
(grt).

Variable Description

Catchability covariates
Year-quarter Categorical: temporal variable related to inter-annual changes in

abundance
Vessel length Continuous: overall vessel length (m)
Net length Continuous: overall length of the purse seine net (m)
Species composition cluster Categorical: Indicates whether the set’s catch was dominated by

skipjack or yellowfin
Set type Categorical: unassociated or drifting FAD sets
Lunar phase Categorical: new moon, first quarter, full, last quarter
Thermocline depth Continuous: estimated depth of the thermocline from the Global

Ocean Data Assimilation System (m)
Density covariate
El Niño Southern Oscillation Continuous: ENSO anomaly from Niño Region 4 (5N-5S, 160E-150W)

Table 2: Description of catchability and density covariates selected for evaluation in the spa-
tiotemporal CPUE standardization models, after omitting highly correlated variables.
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Exploratory data analyses demonstrated an increase in vessel and net length over time, with
relatively consistent proportions of UNA sets and sets dominated by skipajck (Figure A.11). The
relationship between skipjack catch rates (CPUE) and the vessel, gear, and strategy-based charac-
teristics suggested: a positive, but variable, relationship between CPUE and vessel length; that
DFAD sets tended to have slightly higher catch rates than UNA sets; and that skipjack dominated
sets tended to produce larger catches, which is a natural construct of this variable. Non-linear
relationships between skipjack catch rates and net length and thermocline depth were detected
(Figure A.12), and therefore we evaluated the use of a zero-mean-constrained spline (Wood, 2015) to
model these effects, such that the splines did not influence the model intercept (i.e. the year-quarter
effect). Moon phase and ENSO showed little contrast in the raw CPUE data. These variables were
retained for evaluation in the suite of candidate models because ENSO, in particular, was expected
to have a variable effect across space (Yen et al., 2017), and therefore, the effect on CPUE may not
be apparent in the aggregated data. Moon phase was assessed under a similar hypothesis, such
that it may be influential when considered in combination with other explanatory variables.

2.1.3 Spatiotemporal model

We fit a suite of spatiotemporal delta generalized linear mixed models (GLMMs), using the VAST
package in R (Thorson et al., 2015). Spatiotemporal models implicitly account for spatial and
temporal autocorrelation in catch rates using smooth functions (Thorson et al., 2015), addressing
one of the potential pitfalls of traditional delta-GLMs. Each model component was estimated using
Gaussian Markov random fields, assuming geometric anisotropy (i.e. the degree of spatial autocor-
relation can vary based on directionality of neighboring knots) to allow for density predictions
based on aggregate impacts of the environment and biological factors, factors that may influence
the distribution of a given species as well as the catchability (Thorson, 2019b). Spatial locations
at which the effects were estimated (i.e. the knots; n=150) were uniformly distributed across the
spatial domain. This knot configuration results in an estimated spatial effect for approximately
every 3◦ x 3◦ spatial cell. Observed data points were assigned to the nearest knot for estimation
(Figure A.14), and density predictions are made using bilinear interpolation, averaging across the
neighboring knot predictions. The catch data were positively skewed with a high proportion of
zeros, owing to sets composed of yellowfin or even bigeye tuna, as failed sets were removed from
the data set. The probability of a positive catch was assumed to have a binomial error distribution,
while we assumed a gamma error distribution for the magnitude of positive catches. For a detailed
description of the model, see Appendix A.1.

Precise geographic position data at the set level were used for the model fitting, and an extrapolation
grid of 1◦ x 1◦ grid cells corresponding to Regions 6-8 of the 2019 skipjack assessment were used
for estimation of the regional indices. Eleven candidate models were run for evaluation and
comparison.
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2.2 Spatial distribution metrics

Spatial indicators and metrics of distribution have been employed for a range of research objectives
including to assess ecosystem services (Syrbe and Walz, 2012), evaluate indicators of abundance
for deep-sea stocks (Trenkel et al., 2013), detect biomass thresholds for marine fishes (Reuchlin-
Hugenholtz et al., 2015), assess changes in catchability due to fishing strategies (Tidd et al., 2017),
and for general surveillance of marine systems to inform management (Rufino et al., 2018). The
development of reliable, generalizable spatial indicators for monitoring abundance trends is still
lacking, however. We propose that such indicators can be employed as part of a ‘dashboard’
of tools that, when used together, could inform our understanding of population dynamics and
complement information from CPUE-based abundance trends.

2.2.1 Data and metric calculation

Many different (potentially redundant) spatial indicators have been proposed and employed for
different objectives, most of which can be grouped into three general categories: those relating to
occupancy, aggregation, or quantity (Rufino et al., 2018). Here, we assessed indicators associated
with each of the three categories of spatial distribution, using fisher-reported logsheet data, due to
the relatively long time-series available (as compared to the shorter but more reliable observer
data). We then compared the spatial distribution metrics (SDMs) to estimates of biomass from the
most recent stock assessment (Vincent et al., 2019). Lastly, we evaluated inference from the SDMs
(using logbook data) against the standardized CPUE indices from the purse seine fishery, using
observer data (described in section 2.1.3).

Using fisher-reported logsheet data from 2000-2018, we aggregated catch and effort from the
regions of purse seine activity (Regions 6-8; Figures 1 and 2) to 1◦ x 1◦ cells in each time step.
Fishing effort is not randomly distributed throughout the region, as fishers selectively target
regions of expected higher fish density. Following an approach laid out by Reuchlin-Hugenholtz
et al. (2015), we evaluated the following SDMs: 1) area occupied (occupancy/range), 2) the minimum
area containing 90% of the catch (aggregation); 3) Gini index of evenness (aggregation/evenness),
and 4) proportion of sets that fall into four categories relating to zero, low, medium, or high catch
levels (abundance). The SDM time series were then evaluated against biomass estimates from the
stock assessment.

The distributional range of fish species can be an important indicator of range shifts as well as
contraction or expansion in space. Area occupied (AO) is one measure of distributional range, and
reflects the proportion of the total fished area where skipjack was detected, in a given year y.

AOy =

∑Sy

s=1

xpsy
xys

As∑
Ays

where xpys is the number of sets in 1◦ cell s with positive catch, xys is the total number of sets per
cell s, and Ays is the area of cell s, whereas the denominator is the sum of the total fished area (all
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cells fished, by set type, during the time period). It should be noted that the area of each cell was
taken to equal to 1102 km2, a reasonable estimate for the equatorial region.

The minimum area containing 90% of the purse seine catches (D90) can be viewed as a metric of
aggregation or concentration of the catches. This quantity was calculated, by set type, by first
calculating the mean catch C̄ys size for each 1◦ x 1◦ cell s in each year y, weighting each cell by
the area associated, and then dividing by the summation of the area weighted average catches
across all fished cells.

WCys =

C̄ys ∗
Ays∑Sy

s=1Ays∑Sy

s=1

(
C̄ys ∗

Ays∑Sy

s=1Ays

)
Here A, refers to the area of each cell, which was assumed to be 1102 km2 for all cells throughout
the region. The weighted catches WCys were summed cumulatively, ordered by catch magnitude,
until 90% of the catch was achieved. The area associated with the minimum cells to produce 90% of
the total catch was then summed to yield the D90 metric. Given that all cells were of approximately
the same size, this equation can be simplified as follows.

WCys =
C̄ys∑Sy

s=1 C̄ys

As an alternative metric of aggregation, the Gini index was calculated, to quantify patchiness of
catches, but also to describe how evenly biomass (using catch as a proxy) is spread across the
region of interest. Gini index values range from 0 to 1, with increasing values suggesting greater
spatial concentration. Aggregate catch in each cell is compared to the cumulative sum of all catches
(C), in a given year. The index is estimated by the area between the Lorenz curve (Lx) and the 1:1
diagonal (even distribution of biomass). The Lorenz curve represents the cumulative proportion of
biomass relative to the cumulative proportion of area sampled multiplied by 2, and was calculated
using the R package OasisR (Tivadar, 2019).

Gy = 1 − 2

∫ 1

0

Lxdx

Lastly, we classified each set into one of four catch categories, based on magnitude: zero, low,
medium, and high. This classification was set type (UNA vs dFAD) specific, and was determined
using quantiles of the data. The quantiles were also species specific, such that a zero catch might
indicate no landed skipjack, but it’s possible the set produced a catch dominated by yellowfin. This
metric indicates the proportion of sets associated with four catch density categories: zero, low
(>0 and ≤ 33.3%), the medium (>33.3% and ≤66.7%), and the high (>66.7%). It should be noted
that sets with zeros (no skipjack catch) were removed prior to calculating the quantiles for the
non-zero catches.
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2.2.2 Correlation with abundance

To evaluate the relationship between the estimated SDMs and skipjack biomass B, we performed
a series of linear regressions. Non-linear regressions (not shown here) were evaluated, but were
outperformed by simple linear regression models.

By = β0 + β1 · SDMy

SDMs and biomass estimates were all standardized (Zm) by scaling to the maximum time series
value, prior to analysis, to facilitate comparison among different indicators.

Zm =
m

mmax

Identifying significant and reliable relationships between SDMs and biomass may be useful as
alternative metrics to assess stock status and to compare with inference from CPUE analyses.

2.3 Demographics

Demographic trends can be valuable when monitoring population dynamics, because general
patterns associated with compensatory responses have been detected, especially with respect
to fishing. For example, over time, truncation of the age and size-structure (Berkeley et al.,
2004b), increased variability in recruitment (Berkeley et al., 2004a; Anderson et al., 2008), and
maturation at younger ages and smaller sizes (DeCelles and Vidal, 2020) have all been associated
with overexploitation. Therefore, demographic information could be used to detect signs of
overexploitation even if biomass estimates remain high. Such changes are important, because it
has been shown that populations may become less resilient to adverse conditions or variability
in the environment when they lose the buffering capacity potentially associated with a broad
reproducing age structure (Ottersen et al., 2006; Hidalgo et al., 2011) or phenotypic and genetic
diversity (Hsieh et al., 2010; Ciannelli et al., 2013). Unfortunately, we do not have rich data sets on
changes in growth or maturation over a long time series, but we do have information on length
frequency data collected by observers. Observers typically collect length measurements (fork
length, cm) from five fish per brail on purse seine sets. These data were summarized, by set type,
to qualitatively assess changes to the size distribution, as harvested by the purse seine fishery.

3 Results

3.1 CPUE standardization

The standardized biomass indices were relatively stable over the time series, in the three regions
we evaluated (Figure 5). All of the candidate models, excepting one, converged on a solution;

17



and all demonstrated very similar trends in biomass (although the magnitude varied) over the
time series. Using AIC-based selection criteria, convergence statistics, and general interest in
interpretability (e.g. ensuring retention of a set type covariate), from the 11 models investigated
(Table 3) we identified model 10 as the preferred model. The model selection process is not of
great importance here as all models largely suggested similar patterns in relative abundance. The
preferred model included set type, species composition cluster, and vessel length as catchability
covariates, with ENSO as a proxy that influences habitat suitability. Seasonal variability is notable
in the indices, due in part to the seasonal FAD closure and reallocation of effort during those
months. The biomass in Region 8 is predicted to be substantially greater than in Regions 6 and 7,
largely due to the larger associated area.

Model Covariates AIC ∆ AIC
1 MP + CL + VL + ST + s(NL) + s(TD) + svc(ENSO) X
2 MP + VL + ST + s(NL) + s(TD) + svc(ENSO) 898471.2 41302.8
3 VL + ST + s(NL) + s(TD) + svc(ENSO) 898591.0 41422.6
4 ST + s(NL) + s(TD) + svc(ENSO) 898558.4 41390.0
5 ST + s(TD) + svc(ENSO) 898586.8 41418.4
6 VL + ST + s(TD) 898553.3 41384.9
7 CL + VL + ST + s(NL) + s(TD) + svc(ENSO) 898558.4 41390.0
8 CL + VL + ST + s(NL) + s(TD) 857179.0 10.6
9 CL + VL + ST + s(TD) + svc(ENSO) 857176.2 7.8
10 CL + VL + ST + svc(ENSO) 857168.4 0
11 900835.2 43666.8

Table 3: Suite of model configurations evaluated, with corresponding AIC values used for model
selection. Covariates are indicated by the following: MP = moon phase; CL = species composi-
tion cluster; VL = vessel length; ST = set type (FAD versus free-school); NL = net length; TD =
thermocline depth; and ENSO = El Niño Southern Oscillation index. An s() around the covariate
abbreviation indicates it was fitted as a spline, while svc() indicates a spatially varying coefficient.
Model 10, in bold font, was identified as the preferred model. An X in the AIC column indicates
the model failed to converge, and therefore was not considered as a viable candidate model.
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Figure 5: Area-weighted relative biomass indices (1000 mt) for Regions 6, 7, and 8 of the 2019
skipjack tuna stock assessment. Annual three-month FAD closure periods indicted with gray
rectangles.2

The relative biomass indices from the candidate models varied, largely due to covariates included;
however the mean-standardized abundance indices were nearly indistinguishable (Figure 6). In
all regions, abundance estimates fluctuated around the mean throughout the time series, but
lacked clear directional trends. The standardized indices smoothed through some of the variabil-
ity associated with the nominal index, but otherwise, the general patterns through time were
comparable.

2The FAD closure period is not all-inclusive, as there are exemptions during the main 3-month closure, and from
2013-2017, there was an additional closure throughout the month of October for vessels flagged to a CCM3without
specific FAD fishing limits (WCPFC, 2012).

3CCM = Cooperating Members, Cooperating non-members and Participating Territories of the WCPFC
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Figure 6: Comparison of mean-standardized candidate models, along with the nominal CPUE
(gray dashed line), by region from 2010-2018. The value of 1 on the y-axis represents the time
series mean.

The influence metrics (Bentley et al., 2012) for the covariates included, were minimal over the time
series (Figure 7). Vessel length showed a positive trend, suggesting the index would be higher in
recent years without the inclusion of vessel length in the model. The influence metrics for set type
were negligible, and for the species composition variable, the influence was variable through time,
but largely stable, lacking a directional trend. The large peaks in the cluster variable influence
are associated with time periods of relatively low skipjack catch, and relatively high yellowfin to
skipjack ratios.
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Figure 7: Influence plots for covariates included in the preferred model.

Residual patterns and the q-q plot suggested a reasonable model fit without any discernible
patterns suggesting violation of distributional assumptions (Figures A.15 and A.16) . Although the
standardized indices are fairly stable throughout the time series, there are seasonal and inter-annual
fluctuations in estimated relative density across the spatial domain (Figure A.17), due in part to
oscillations in the ENSO phase. For example, during much of 2010, 2015, 2016, and in the most
recent time period, high density areas were shifted more towards the eastern equatorial WCPO,
due to El Niño conditions, while during the La Niña phase, high density areas were more towards
the west. However, it should be noted that the El Niño phase has dominated for much of the past
two decades.

3.2 SDMs

The spatial distribution metrics were calculated across the entire study region (i.e. Regions 6-8 of
the skipjack stock assessment; Figure 1) as they were predicted to reflect overall stock dynamics
unrelated to the regional construct used for the assessment model. We did however, estimate the
proposed metrics for dFAD and free-school (UNA) sets separately, to try to determine whether the
set type influenced our perception of the spatial distribution of the stock.

Area occupied showed a positive trend for both dFAD and UNA sets, with a steeper trend observed
for dFAD sets (Figure 8). The minimum area containing 90% of the purse seine catches (D90), for
both dFAD and UNA sets showed a sharp increase over the time series, suggesting a broader spatial
distribution associated with skipjack catches. The Gini index was fairly stable at about 0.5 for both
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set types, while the proportion of ‘high’ catches showed opposite trends for dFAD and UNA sets.
The proportion of high catches from dFAD sets demonstrated a slight positive trend, while UNA
sets have shown a slight decline over time.

Figure 8: Time series of annual SDMs, by set type, from 2000-2018.

Figure 9 illustrates the regressions for which the SDMs were significant (p ≤ 0.05) in explaining
variability in skipjack biomass. Area occupied, minimum area to produce 90% of the catch, and
proportion of high catches were all positively related to biomass, as predicted. Therefore, as biomass
increases, the stock may be more dispersed through its range, with a greater area supporting
catches, and the probability of relatively high catches increasing. The Gini index did not explain
significant variability in biomass, which is not unexpected, given that the index was relatively
flat at about 0.5 throughout the time series. The relationships between the SDMs and biomass,
combined with the SDM time series, generally suggested that indicators positively associated with
biomass have been increasing over the recent time series.
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Figure 9: Significant linear regressions (slope parameters with p ≤ 0.05) predicting biomass from
SDMs, by set type, with the annual estimates plotted as points. AO = area occupied; D90 = min-
imum density to achieve 90% of the catch; and High = proportion of high catch sets. R-squared
values from the regressions are noted in the figures.

SDMs may be useful as proxy indicators, relating to biomass trends, but they may also play a role
with respect to climate change. Here, we have evaluated changes in the center of gravity of the
distribution and inertia (variability around the center of gravity) from 2000-2018, based on fishery
catch data. There was some evidence that the center of gravity has trended towards the south and
east (Figure A.18) in recent years, potentially due to the persistence of positive El Niño conditions.
Figures A.19 and A.20 illustrate the center of gravity and inertia of skipjack from UNA and dFAD
sets. In general, the two show similar patterns, although dFAD sets have a tendency for greater
inertia. There is also notable inter-annual variability in the equatorial spread of the distribution,
again, potentially related to the distribution of the western warm pool. It should be noted that
these analyses were also performed using effort (sets) as the response variable as opposed to catch,
with very similar results and interpretation. The one difference between the two approaches was
that the proportion of high drifting FAD effort was an insignificant predictor of biomass, whereas
the proportion of high free-school sets showed a positive relationship with biomass.

3.3 Length frequencies

The length frequency data (Figure 10) suggest that for skipjack the mode of the length distribution
varied year to year, perhaps in response to relatively strong cohorts moving through the population,
but there is no obvious unidirectional trend in the size structure. As expected, UNA sets tends to
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catch larger skipjack, while dFAD sets tend to catch the smaller size classes; however, the respective
set-specific size structures are relatively consistent throughout the time series.

Figure 10: Observer collected length frequency (fork length, cm) data for skipjack tuna from
dFAD and UNA purse seine sets, from 2010-2018.

4 Discussion

This analysis represents one of the first broad-scale efforts to standardize skipjack CPUE from the
purse seine fishery in the WCPO, for use in future stock assessment models. The standardized
indices suggest that biomass has been relatively stable since 2010, inference that is generally
supported by the spatial distribution metrics. The spatiotemporal modeling framework employed
offers a powerful unified framework for standardizing catch rates, which effectively controls
for autocorrelation in space and time which could arise due to tuna behavior, variability in the
environment, or impacts of management measures (e.g. FAD closure period). One of the potential
limitations, however, is that the spatial and spatio-temporal terms in the model tend to absorb
a substantial portion of the variability, variability that might otherwise be explained by model
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covariates. This implicit explanatory power of variability in the data may be valuable for effectively
estimating trends in biomass, potentially at the cost of disentangling the main drivers of those trends.
For example, in the models we have evaluated, the mean-standardized indices were relatively
insensitive to the catchability and density covariates included in the model, a situation similarly
observed in an analysis of yellowfin purse seine catch rates (Vidal and Hamer, 2020); however
the model without any covariates (Model 11) did deviate slightly from the models informed by
covariates on catchability (Figure 6).

The spatial distribution metrics and length data were included here to provide a ‘dashboard’ of
information with which to evaluate skipjack trends through time. Standardized catch rates can be
highly influential in assessment models, especially when there’s a paucity of reliable, alternative
or complementary, data sources (e.g. fishery-independent surveys, demographic information). By
incorporating multiple sources of information, we may be better able to buffer against uncertainty
and make more informed decisions related to long-term sustainable management. The relationships
between the SDMs and biomass were noisy; however, the general trends observed aligned with
expectations regarding changes in distribution of the population with changes in overall biomass,
and were inconsistent with a decreasing biomass trend. Specifically, area occupied and minimum
area to capture 90% of the catch (D90) demonstrated a positive relationship with biomass and
both have generally increased over the time series, albeit less so over the shorter-term time series
associated with the CPUE indices. There was also a notable increase in the minimum area to capture
90% of the catch around the implementation of the VDS, potentially due to the distribution of VDS
fishing days among PNA EEZs (and thus a distribution in effort) or perhaps, due to information
from echo-sounder FAD buoys. The proportion of high catch sets is interesting in that it increased
for dFAD sets while decreased for UNA sets. It should be noted that over the recent decade, high
catch free-school sets have generally increased, excepting 2017, which appeared to be a bit of an
anomaly. In general, the SDMs have suggested a relatively stable skipjack biomass over the time
series from 2010 to 2018, corroborating the inference from the CPUE-based indices.

We have interpreted the SDMs largely within the framing of the basin model (MacCall, 1990);
however, consideration needs to be given to the ecological-trap hypothesis (Marsac et al., 2000).
Given that FAD-associated SDMs and biomass were significant predictors of biomass, continued
investigations into the behavior of tunas around FADs and changes in catch rates with variable
FAD densities remains a priority. If FADs are effectively working to attract schooling tunas, even
in less favorable habitats, our perception of the relationship between the SDMs considered and
biomass may be skewed.

Hyperstability remains an important concerns with using purse seine catch rates as indices of
abundance, potentially masking population declines. Here, we have included covariates to explain
vessel and gear-based characteristics predicted to influence catchability over time, as well as a
set type covariate (UNA versus dFAD) to explain differences in catchability associated with the
two main purse seine fishing strategies. In addition, this modeling framework has the flexibility
to include habitat covariates, or proxies, predicted to influence density, a potentially valuable
feature for estimating density in unsampled strata. Although we have selected variables to capture
facets of effort creep, we acknowledge that the complexity associated with changes in effective
effort likely exceeds that which we have captured here. There have been great strides made in the
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sophistication of information technologies used for fishing, and such advancements are ongoing.
For example, vessels are now using dual-frequency echo-sounder FAD buoys (Escalle et al., 2020)
to better differentiate species composition associated with individual FAD buoys. This information
may be combined with information from oceanographic sensing tools, communication with other
vessels, and from land-based analysts, all of which may influence decision making and ultimately
catch rates and spatial patterns of fishing effort. Continually improving our understanding of the
factors that influence these decisions and the relative importance of each is an ongoing task as
long as the assessment and monitoring of tuna stocks is reliant on fishery-dependent information.
SPC is involved with several ongoing projects to better understand these dynamics, including the
development of a fisher survey; leveraging information from vessel monitoring system (VMS) data;
and statistical analyses of observer and logbook data aimed at partitioning variability in catch
rates using data-driven modeling approaches (Wichman et al., 2020).

The model presented here was intended to provide a ‘base case’ model for standardization of
skipjack CPUE from the purse seine fishery, and to serve as a platform from which to further
evaluate important questions related to catch rates and factors influencing them. For example:

• How does FAD density affect catch rates?;
• Can FAD-mounted echo-sounder data improve abundance estimates by providing estimates

of presence/absence of tunas in unfished areas (e.g. Grüss and Thorson, 2019)?;
• Can a variance-partitioning framework be used to better quantify the effect of effort creep

in the purse seine fishery?; and
• How can VMS data be used to reevaluate our definition of purse seine effort based on fishing

and searching behaviors?

At this stage, we invite SC16 to take note of the proposed approach to provide a purse seine CPUE-
based abundance index to inform the next skipjack tuna stock assessment and to lend support
for the proposed research to advance these analyses. Specifically, supporting continued efforts
to: improve monitoring of tuna populations through statistical analysis; to address effort creep
(e.g. Wichman et al., 2020); to collect detailed data on FAD activity and encourage data sharing,
including data collected by FAD-mounted electronics; and lastly, support increased biological
sampling/processing efforts, including an analysis of changes in maturation schedules over time
(and see also Macdonald et al., 2020 for proposed sampling approaches). These research efforts
will serve to improve these analyses and enhance our understanding of tuna dynamics.
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A Appendix

A.1 Model specification

The linear predictors for encounter probability and magnitude of positive catch rates (model
component, encounter probability or positive catch rate, is denoted as m) are modeled for knot s
and time step t, with the respective link functions (i.e. logit for the encounter probability and log
link for the positive catch rates), as

mi = βm(ti) + ηm(vi) + ωm(si) + εm(si, t) +

ηk∑
k=1

λkQ(i, k)

where β is the year-quarter effect, η(vi) is a random vessel effect, ω(si) is the spatial effect,
ε(si, t) is the spatio-temporal effect, and λk represents the fixed catchability effects for Q(i, k)
catchability covariates. The spatial variation terms ω(si) are assumed to come from a Gaussian
random field, and treated as random effects, assuming a Matern covariance matrix to account for
spatial autocorrelation.

ωm ∼ MVN(0, σ2
ωmRm)

Separate decorrelation rates Rm (related to the anisotropy) were estimated for each model com-
ponent (Thorson, 2019a). The spatio-temporal random effects ε(si, t) account for the interaction
between time and the model spatial structure.

A random vessel effect was included to account for overdispersion and is assumed to follow a
Gaussian distribution with a mean of zero and estimated variance parameter. Density at each knot
in each time period d(s, t) was estimated by obtaining the product of the back-transformed linear
predictors, after dropping the catchability terms. The abundance index is then calculated as the
sum of the area-weighted densities

I(t) =
Ns∑
s=1

a(s)d(s, t)

where a(s) is the area associated with knot s. Regional indices were calculated as the area in each
region associated with each knot, multiplied by the respective density; standard errors associated
with the indices are calculated internally in Template Model Builder (TMB) using the inverse
Hessian and the delta method (Thorson et al., 2016).

In addition, we evaluated the inclusion of a spatially-varying coefficient (SVC; γs) to explain spatial
variation in density associated with ENSO (Thorson and Haltuch, 2019),

mi = βm(ti) + ηm(vi) + ωm(si) + φm(si, t) +

ηk∑
k=1

λkQ(i, k) + γsE + εi

where
γs = γ0 + γx(s)
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γx ∼MVN(0,Σ)

and γo is the average slope across space, and γx is the zero-mean function representing spatial
variation in the response to ENSO. During warm phases (El Niño conditions) this convergence
zone is pushed farther to the east, while in La Niña phases, the convergence zone is more to the
west. As a result, the direction and magnitude of the effect of the ENSO phase on skipjack density
throughout the spatial domain of interest, may be highly variable (Yen et al., 2017). To address
this source of variability, instead of estimating a single slope parameter associated with the ENSO
covariate, SVCs were used to estimate a spatially varying random effect (Thorson, 2019c), thereby
allowing a range of density responses across space, in response to fluctuations in the ENSO index.
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A.2 Supplemental figures

Figure A.11: Distribution of observed vessel length, set type (drifting FAD (dFAD) or free-school
(UNA) set), species composition cluster (1=set was dominated by skipjack; 2 = set was dominated
by yellowfin), and net length (top), as well as the relationship between these variables and skip-
jack CPUE (mt/set; bottom), from the filtered data set.

Figure A.12: Skipjack CPUE (mt/set) plotted against the environmental covariates, thermocline
depth, ENSO, and moon phase, included in the candidate model suite, from the filtered data set.
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Figure A.13: Illustration of the nonlinear relationship between skipjack CPUE and the catchabil-
ity covariates, thermocline depth and net length, fitted using spline with k knots.

Figure A.14: Spatial knot placement (uniform; n=150) and mesh configuration used in the spa-
tiotemporal estimation model. Observation-level data points are color-coded based on the near-
est knot.
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Figure A.15: Mean Pearson residuals, by (1◦ x 1◦) extrapolation grid cell, for the encounter prob-
ability model component.

Figure A.16: Mean Pearson residuals, by (1◦ x 1◦) extrapolation grid cell, for the positive catch
rate model component.
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Figure A.17: Illustration of the variability in predicted skipjack relative density across space and
through time.

Figure A.18: Center of gravity estimated from the distribution of purse seine skipjack catches,
from 2000-2018.
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Figure A.19: Center of gravity and inertia of skipjack population from free-school (UNA) sets,
2000-2018. The asterisks indicate relative strength of the ENSO phase, where no asterisk repre-
sents a fairly neutral phase, and increasing number of asterisks represents increased strength of
the phase.
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Figure A.20: Center of gravity and inertia of skipjack population from dFAD sets, 2000-2018.
The asterisks indicate relative strength of the ENSO phase, where no asterisk represents a fairly
neutral phase, and increasing number of asterisks represents increased strength of the phase.
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