

SCIENTIFIC COMMITTEE

FINAL REPORT Project 97

2021-2025 Shark Research Plan

August 2020

Stephen Brouwer¹ and Paul Hamer²

¹ Saggitus Consulting

² Oceanic Fisheries Programme, The Pacific Community (SPC)

Contents

E	cecuti	ve Summary	ii
1	Intr	oduction	1
2	WC 2.1 2.2 2.3	PFC Shark Data WCPFC data holdings	1 2 3 4
3	Cur 3.1 3.2	Cuidelines for assessment reporting metrics Cuidelines Report Cards Cuidelines	4 4 5
4	202 1 4.1 4.2 4.3 4.4 4.5	-2025 SRP DirectionProposed objectives for the SRP2021-2025 Direction2021-2025 Schedule of workObserver data collectionRecommendations	6 7 7 7 8
R	eferen	ces	9
Ta	bles		11
Fi	gures		21
A]	ppend	ix I - Country specific plots 1	39
A]	ppend	ix II - Review of the 2016-2020 SRP 1	94

Executive Summary

This document represents a proposal for the WCPFCs third Shark Research Plan (SRP) covering the years 2021-2025. The SRP was developed with input from an online Informal Working Group (SRP-IWG) comprised of Commission Members, Cooperating non-Members, and participating Territories (CCMs) and observers. This document includes a review of the previous plan (Appendix II). For each of the WCPFC Key Sharks, the plan summarises the available data; the current stock status; and presents report cards that summarise the assessment information and research requirements for each species. In addition, this proposal suggests guidelines for metrics to be included in assessments to ensure consistency in reporting and ease of comparison among species; and proposes a number of objectives for the SRP.

The document outlines a proposal for the 2021-2025 SRP direction and tables a project plan. Finally we make the following recommendations for the Scientific Committee's consideration:

- 1. SC adopt objectives to direct the 2021-2025 SRP.
- 2. SC adopt standardised assessment reporting metrics for Data Rich Assessments, and as a minimum report F/F_{MSY} and SB/SB_{MSY} or B/B_{MSY} or SB/SB_0 or B/B_0 .
- 3. Where possible Data Rich Assessments should report depletion estimates $(SB/SB_{F=0})$.
- 4. To improve our understanding of Medium Data Assessment metrics, Data Rich Assessments are encouraged to, in addition to the above metrics, report F_{msm} , F_{lim} and F_{crash} , and present the ratios of F_{msm}/F_{crash} and F_{lim}/F_{crash} and F/F_{crash} for comparison with conventional metrics.
- 5. Medium Data Assessments that are unable to estimate the F/F_{MSY} due to a lack of fishery and/or biological data, are encouraged to report F_{msm} , F_{lim} and F_{crash} , and present the ratios of F_{msm}/F_{crash} and F_{lim}/F_{crash} and F/F_{crash} .
- 6. To facilitate future reporting, when undertaking the annual review of progress at the SC, the ISG should rate projects as complete, partial, ongoing and not done and provide a score to measure performance.
- 7. The SC develop an "agreed suite" of biological parameters (or upper and lower bounds) and units of measurement (e.g. total length) for use in WCPFC assessments and update the information sheets accordingly.
- 8. The SC review and agree on the data certainty criteria (Table 6) for the report cards and confirm a certainty rating for each species, when reviewing the report cards.
- 9. The SC review, and update annually if needed, the "agreed suite" of biological parameters; the report cards; and information sheets.
- 10. The SC is invited to consider the schedule of work outlined in Table 7 and Table 9 for 2021-2025.
- 11. The SC is invited to review the specific projects proposed in Table 7 and Table 9 for 2021 for finalisation prior to developing the SC budget.

SRP 2021-2025 project list. * indicates projects on the "long list" from Chin and Simpfendorfer (2019). ** indicates projects added in at SC16. Note: these projects may differ from the final agreed list at each SC.

Title	Priority	Start year	End year
1. Stock assess	ment		
(a) Determine the stock status for WCPFC Key Sharks			
i) Southwest Pacific blue shark assessment	High	2020	2021
ii) Northwest Pacific blue shark assessment	High	2021	2022
iii) Northwest Pacific shortfin mako shark assessment	High	2023	2024
iv) WCPO silky shark assessment	High	2022	2023
v) Pacific silky shark assessment	Medium	2022	2023
vi) Pacific bigeye thresher shark assessment	Medium	2021	2022
vii) Pacific whale shark assessment	Medium	2022	2023
vii)** Southwest Pacific mako shark assessment	High	2021	2022
(b) Develop reliable catch histories for WCPFC Key Sharks	s as far back	in time as feasi	ible
i) Redefining the fleets currently assumed in the BSH NP	Medium	2021	2022
stock assessment			
ii) The development of alternative approaches to catch	Medium	2024	2025
reconstructions based on estimates of the global fin trade			
(c) Test and improve Medium and Data Poor assessment m	ethods to in	form manageme	ent decisions
i) Test and improve data poor assessment methods	Medium	2024	2025
ii) Include data poor assessment metrics as standard out-	High	Ongoing	Ongoing
outs for data rich assessments			
2. Mitigatio	n		
(a) Provide advice on mitigation Sharks with non-retention	policies and	l unwanted elasi	mobranchs
i) Investigate effective mitigation for WCPFC Key Sharks	Medium	2023	2025
ii) Investigate mitigation method trade-offs between miti-	Medium	2023	2025
gation methods for sharks, seabirds and sea turtles			
(b) Provide advice on safe release methods and assess relea	se survival o	of WCPFC Key	Sharks
i) Estimate longline silky and oceanic whitetip shark post	High	2021	2023
release survival*	TT: 1	2021	2022
1) Estimatepurse seine whale shark post release survival*	High	2021	2023
3. Biological data imj	provements		1
(a) Increase the understanding of important biological para	meters of w	OPFC Key Sna	1rks
i) Sinky shark and oceanic winterip shark reproductive	піgn	2023	2023
ii) Piclory and life higtory of hammarhood sharks*	Uich	2022	2025
iii) Persolving blue shark reproductive biology*	Modium	2023	2025
iv) Biology of the longfin make shark*	Medium	2023	2025
x) Life history of thresher sharks*	Medium	2023	2025
vi) Validated life history biology and stock structure of	Medium	2023	2025
the shortfin make in the south Pacific *	Wiedrum	2025	2020
vii) Age validation and stock structure of the silky shark	Low	2023	2025
and oceanic whitetin shark*	LOW	2020	2020
viji) Stock structure and life history of southern hemi-	Low	2023	2025
sphere porbeagle shark*	LOW	2020	2020
4. Observer data c	ollection		
(a) Improve spatio-temporal observer data for informing sc	ientific need	s	
i) Training observers in the WCPO to be proficient in	High	Ongoing	Ongoing
species identification	8		
ii) Training observers for extraction and storage of verte-	High	2021	Ongoing
brae and shark reproductive material	0		0 0
iii) Training observers for on-deck reproductive staging	High	2021	Ongoing
iv) Measuring elasmobranchs on purse seine and longline	High	Ongoing	Ongoing
vessels for length-length and length-weight conversion factor	0	0 0	0 0
dvelopement			

1 Introduction

The first Western and Central Pacific Fisheries Commission (WCPFC) Shark Research Plan (SRP) was developed to design, plan and co-ordinate research relevant to the management of elasmobranchs in the Western and Central Pacific Ocean (WCPO) (Clarke and Harley, 2010). At the 11^{th} meeting of the WCPFC Scientific Committee (SC) the SC agreed on the second phase of the SRP (Brouwer and Harley, 2015). The second SRP is due to end in 2020. This paper outlines a proposal for the 2021-2025 (3^{rd}) SRP. The 2021-2025 SRP builds on the previous two plans and the detailed review of the most recent plan, that is included as Appendix II.

The 2021-2025 SRP is a living document that can change as the information needs of the WCPFC evolve. The plan is assessed annually by the SC usually through an Informal Small Group (ISG) and the following years' work is finalised by the SC. It is anticipated that this document will be finalised at SC16, as will the 2021 project list. This plan was developed with input from an online Informal Working Group (SRP-IWG). Commission Members, Cooperating non-Members, and participating Territories (CCMs), and after consultation with the SRP-IWG, WCPFC Observers were invited to participate in the SRP-IWG. Seven CCMs, four WCPFC Observers, the WCPFC Secretariat and the WCPFC Science Service Provider participated in the SRP-IWG (Table 2).

This plan falls within the umbrella of Articles 5(d) and 10.1(c) of the Convention which state that: "the members of the Commission shall... assess the impacts of fishing, other human activities and environmental factors on target stocks, non-target species, and species belonging to the same ecosystem or dependent upon or associated with the target stocks..." and "... the functions of the Commission shall be to adopt, where necessary, conservation and management measures (CMMs) and recommendations for non-target species and species dependent on or associated with the target stocks, with a view to maintaining or restoring populations of such species above levels at which their reproduction may become seriously threatened." to this end the key focus of this plan are the WCPFC Key Sharks, but it does not preclude other elasmobranchs should the need arise for information on any other species. As with its forerunners this plan could also support the efforts of the WCPFC budget may not be sufficient (nor is it expected) to complete all the recommended work for successful implementation of the plan. Member countries and other organisations are encouraged to undertake some of the work through funding external to the WCPFC.

For each of the WCPFC Key Sharks, the plan will summarise the available data; the current stock status; and present report cards that summarise the assessment information and research requirements for each species. In addition, the plan proposes guidelines for metrics to be included in assessments to ensure consistency in reporting and ease of comparison between species; finally we outline a proposal for the 2021-2025 SRP direction and project plan; and make some overall recommendations for the 2021-2025 period. The species considered in this document along with their scientific names and species codes are listed in Table 3.

2 WCPFC Shark Data

For effective planning SC members should be aware of the data available for analysis. To this end, a data compilation is presented here. This data compilation is not intended as a detailed analysis of trends, but rather a compendium of the data available to inform the research planning process. In order to assess what data are available for analysis, the data held by the Pacific Community (SPC) were extracted. This included longline and purse seine logsheet and observer data. These data were collated in R (R-Core Team, 2020) and are presented for information. Note, for manta and mobulid rays, the data summaries, report cards and information sheets only include giant manta and giant devilrays, the remaining species are not included as there few data available for compilation, however please also note the work by Tremblay-Boyer and Hamer (2020) that is reviewing data available for assessment approaches for mobulids. As there has been a recent taxonomic re-definition of the species *Mobula mobular* (formally *Mobula japanica*) (White et al., 2018), all data entries as the code RMJ were changed to RMM for the analyses, and to be consistent with Park et al. (2019). In addition, while some WCPFC Key Sharks are defined as species groups, species specific data are presented here as biological information for a species group is generally of limited value. Finally, while the stock structure of most species is not well understood each species is considered as a single WCPO stock except for blue and shortfin mako sharks which are separated into

stocks north and south of the equator for assessment purposes.

2.1 WCPFC data holdings

Figure 1 to Figure 18 show the WCPFC data availability for each species from 1990-2019 showing the data type, and the number of samples collected annually. These include length, biological data (including the number of samples housed in the WCPFC tissue bank (https://www.spc.int/ofp/PacificSpecimenBank); as well as observed and reported catch. Broadly speaking these data show that most of the data have been collected in the last decade. The analysis also shows large gaps in the biological data required for assessing the status of stocks. Some data, mostly liver, muscle and stomach samples were collected in the early 2000s, but the WCPFC has no ageing material for any of the Key Sharks. While some biological analyses have been conducted on some stocks outside of the SRP (Joung et al., 2018, Fujinami et al., 2019), the WCPFC has directed no sampling of its own. Longline observed catch data are frequently recorded, but logsheet data are less common. For species that are frequently recorded by observers in longline sets, such as blue shark, observed catch and the number of length samples are high (Figure 1, Figure 2, Figure 3, Figure 4).

More detail on length data are presented in Figure 19 to Figure 34 for longline and Figure 35 to Figure 50 for purse seine. These data were cleaned of errors, where any data greater than 10% higher than the globally recognised maximum size or below the length at birth were removed. On longline vessels different observer programmes use different length measurements, therefore conversion factors between these length measurements are needed, while some exist more data are required for most species. For the length plots presented here, lengths were all converted to upper jaw to caudal fork length (UF), using the data presented in Macdonald et al. (2020) and Table 4. For all length codes see Table 4. Overall the number of samples collected annually is increasing, with higher numbers of samples and better sex specific recording in the longline fishery when compared to the purse seine data. But for some species such as winghead sharks and manta rays few samples exist, making any detailed assessment of changes to the populations currently impossible. While sex specific data were not available for the purse seine catch, the longline length data show broadly similar trends for both male and female fish. In the longline fishery for blue, shortfin and longfin makes, and porbeagle sharks overall the fish size does not seem to be changing. However, silky, oceanic whitetip (possibly), and common, bigeye and pelagic thresher sharks all appear to be declining in size. In contrast, silky and oceanic whitetip sharks appear to be increasing in size in the purse seine fishery (this could be related to a switch from FAD to freeschool sets in the more recent years). Whale shark size seems to have declined after 2016 which may be as a result of prohibitions on setting on whale sharks, where in recent years, most of the whale shark catch is from a few freeschool sets that inadvertently catch juveniles which were unseen before the set commenced. Comparisons of trends in length need to be examined stock wide as spatial changes in observer coverage can influence length composition data.

Observed and reported longline catch rate data are shown in Figure 51 to Figure 64 for two periods separating the historic (1995-2004) and recent (2015-2019) periods. Commonly caught and reported species such as blue, silky and oceanic whitetip sharks have similar observed and reported distributions, and are broadly similar between time periods (Figure 51, Figure 52, Figure 53). For others, however, such as shortfin and longfin make and common thresher sharks the observed and reported catch rates differs in space and time (Figure 54, Figure 55, Figure 56). The distribution data for porbeagle sharks is somewhat concerning (Figure 59), in both time periods the observed catch appears in New Zealand, the Tasman Sea and some catch in the Australian Exclusive Economic Zone (EEZ), but the reported catch is widespread and much of it is north of 25°S. As porbeagle sharks are unlikely to occur north of 25°S, this indicates that there is widespread misidentification of catch being reported as porbeagle shark in logsheets and that these data should be treated with caution. More detailed analysis of data by fleet and targeted re-training of skippers is required, as is the distribution of the newly completed *Shark and ray identification manual for observers and crew of the western and central Pacific tuna fisheries* (Park et al., 2019).

Observed catch data are presented as part of the stock specific information sheets (Figure 65 to Figure 82). For many species there is a large increase in the most recent years, which is likely a result of increased observer coverage rather than increased catch. These data also show that a large portion of the observed catch is from the longline fishery, but large observed catch is recorded in the purse seine catch for silky sharks, whale sharks and manta rays (Figure 67, Figure 80, Figure 81). The accompanying CPUE data show decreases in CPUE for a number of species. Somewhat concerning is the declining CPUE with

increasing catch for blue sharks in both the north and south Pacific, silky and oceanic whitetip sharks and to a lesser extent shortfin make sharks in the south Pacific. Both silky and oceanic whitetip sharks are experiencing overfishing, but Tremblay-Boyer and Neubauer (2019) noted a slight increase in CPUE in the most recent years for oceanic whitetip sharks. The declining trend for South Pacific blue sharks stresses the need to resolve the uncertainties in the assessment of that stock (Takeuchi et al., 2016). In addition, undertaking an assessment for shortfin make sharks in the south Pacific should be prioritised as that stock has never been assessed. If an assessment is undertaken for shortfin make sharks in the south Pacific, note should be taken of the misidentification of porbeagle sharks shown above as they are most likely shortfin make sharks and catch re-classification will need to be considered for porbeagle sharks north of 25° S.

2.2 Biological data

The stock specific information sheets (Figure 65 to Figure 82) contain a summary of the available life history information for each species, along with catch, CPUE, size data, stock status information, relevant International Conventions that apply and WCPFC Conservation and Management Measures (CMMs). Definitions for the metrics used in the information sheets can be found in Table 5.

The biological aspects of these sheets have been compiled from a number of sources, largely from data compilations like Clarke et al. (2015), Chin and Simpfendorfer (2019) and Coelho et al. (2019) but also some specific species reports (Joung et al., 2018 and Fujinami et al., 2017). It is strongly recommended that analysts planning and undertaking new work check for updated investigations before relying on the parameters referenced here as work is ongoing worldwide. In addition, the parameters in this table are presented as a range, not necessarily the preferred value, which needs to be determined. Acknowledging that some geographical variability of biological parameters is likely it is recommended that the SC develop an "agreed suite" of values (or upper and lower bounds - for application to assessment grids), as well as the agreed units (fork length or total length etc.) for these measurements to populate these sheets. Noting that using the best available estimate is preferable over a "grid approach" for assessment inputs, but the grid could be used, where appropriate, for sensitivity analysis. The sheets should be updated by the SC as new information comes to light.

Blue sharks are widely distributed throughout the WCPO and are the most commonly caught species, while a number of biological investigations have been undertaken, there are no broad scale studies using the same methods to investigate their biology covering both the north and south Pacific. Fujinami et al. (2019) has undertaken a broad scale study of growth and maturity of blue sharks in the north Pacific and is likely the most reliable source of growth and maturity estimates for blue sharks in the north Pacific. South of the Equator, Joung et al. (2018) undertook an analysis of blue shark growth, but used different methods to that of Fujinami et al. (2019). There would be value in coordinating analyses using standard methods when undertaking these broad scale studies. These parameters, in particular the reproductive schedule, have a large impact on population modelling and therefore the WCPFC needs to be confident in their estimates. Recent work by Kai (2019) has demonstrated that evaluating the impacts of biological uncertainties using a numerical approach for estimating steepness for elasmobranchs could be a useful tool for estimating the stock recruit relationships.

Improving our understanding of stock structure for blue and shortfin mako sharks is still needed. Corrigan et al. (2018) investigated the stock structure of shortfin mako sharks using genetics and satellite tagging. However, that study had limited samples from the Pacific Ocean and is not able to conclusively resolve any stock structure within the Pacific. Despite this, the Corrigan et al. (2018) analysis suggests separation of stocks north and south of the Equator and there appears to be distinct populations in the southeastern and southwestern Pacific. Generally for the WCPFC Key Sharks, stock structures are either assumed or unknown and resolving stock structure should be a high priority for research. The expansion of satellite tagging using longer-term deployments of pop-up satellite tags would be useful for providing information on shark movement and connectivity. This work could also be linked to post-release mortality work using the same techniques. Close kin mark-recapture using genetic analysis and other genetic techniques could provide insights into stock structure. A feasibility study is currently underway and progressing this research should be considered in the light of that analysis.

The silky and oceanic whitetip shark assessments would benefit from more reliable, stock specific, information on age, growth, reproduction and maturity. Porbeagle and the thresher sharks have some information, but a single reliable set of biological information from the WCPO would be helpful as would

information on the age-at-recruitment for all three species. There is a paucity of biological information on longfin make and the hammerhead sharks, but catch of these species is less frequent, making a dedicated sampling programme challenging.

Information on whale sharks is sparse, and there are no useful growth parameters, little is known about the age-at-maturity or age-at-recruitment¹ nor the reproductive cycle. There is almost no information for manta rays, some studies have inferred data from other species, but species specific information is lacking. Any biological information from these species would be valuable. While efforts are made to release these charismatic megafauna alive, when incidental mortalities occur obtaining biological samples should be seen as a priority.

Reliable biological information along with reliable catch histories are probably the biggest data gaps for the WCPFC Key Sharks. Chin and Simpfendorfer (2019) reviewed the biological data gaps for the shark species including considering the logistics of data collection for biological work. They noted considerable challenges regarding the physical moving of samples around the Pacific, and collecting the samples when large sharks are cut free from longlines. However, these logistical issues are surmountable and should not be a deterrent to attempting to improve the biological estimates. To achieve this, additional observer training may be required, see below.

2.3 Fate and Condition data

The fate of sharks on longline vessels was assessed, as was the condition at capture and release (Figure 83 to Figure 97). These data show that for most species there is an increasing trend for sharks to be discarded, this is particularly evident for silky and oceanic whitetip sharks (Figure 85 and Figure 86), both of which have release policies in place in the Convention Area (CMM2011-04, CMM2013-08). While the condition on capture has not really changed over the analysis period, there is an increasing trend for releases to be alive and in good condition e.g. (Figure 84). These trends are probably a result of vessels taking up the release requirements of the Commission, but also national policies that apply more broadly than just silky and oceanic whitetip sharks, and also hint at improved handling of sharks in recent years.

3 Current Stock status

Four Key Sharks namely silky, oceanic whitetip, shortfin mako in the north Pacific, and blue sharks in the north Pacific have had Data Rich assessments² accepted by the WCPFC SC. South Pacific blue sharks have been assessed (Takeuchi et al., 2016) but the assessment had a high number of uncertainties which prohibited the SC from using it for making conclusive statements about the stock status and management recommendations. In addition, Medium Data assessments have been conducted on Pacific bigeye thresher and Southern Ocean porbeagle sharks and a Data Poor assessment has been undertaken for Pacific whale shark. All of the WCPFC Key Sharks have also been included in broad Ecological Risk Assessments (Kirby and Hobday, 2007 and Kirby, 2008).

The Data Rich assessment outcomes are presented in a Kobe plot (Figure 98). These data show that shortfin mako, and blue sharks in the north Pacific are not overfished and overfishing is not taking place. Silky sharks are overfished and oceanic whitetip sharks are overfished and overfishing is taking place. While there is considerable spread in the data for those assessments the stock status results are fairly unambiguous.

3.1 Guidelines for assessment reporting metrics

Reviewing both the Data Rich and Medium Data assessments it is apparent that there is a lack of standardised reporting making comparison between species difficult. Given that there is variability in SC participants understanding of complex stock assessments, standardised reporting would facilitate better comprehension and comparison of the outcomes. For Data Rich assessments this should be relatively

¹Note: age-at-recruitment refers to the age-at-first capture and a better term in the context of non-target species could be age-at-first-vulnerability (AFV).

²Data Rich Assessments = full integrated stock assessment model using multiple sources of data including catch, effort and biological information in a model such as MULTIFAN-CL, Stock Syntheses or similar; Medium Data Assessment = Model that uses catch and effort data with/or without some biological parameters to get an estimate of fishing mortality (F) such as Surplus Production models; Data Poor Assessments = Analyses that estimate a level of risk but do not derive estimates of F.

straight forward and while the assessment teams are free to report any metrics they believe are informative, it is recommended that at a minimum Data Rich assessments report F/F_{MSY} and SB/SB_{MSY} or B/B_{MSY} , where possible reporting of depletion estimates $(SB/SB_{F=0})$ is also recommended. For the Medium and Data Poor assessments the results are often unclear and there are no standard method or ways to present these results. This makes it difficult for the SC to easily understand the results, and it makes it difficult to compare the results between species. Zhou et al. (2019) undertook an analysis of the reference points for elasmobranchs and recommended F_{msm} , F_{lim} and F_{crash} as reference points, however, this paper was not fully considered at SC15 it was considered that more work was required. While reference points have not been formally adopted by the WCPFC for elasmobranchs, in the interim the stock status metrics F_{msm} , F_{lim} and F_{crash} would be useful to include as standard metrics for Medium Data assessment reporting.

Using alternative metrics from Medium Data assessments, requires Members to understand their meaning and equivalents to conventional metrics. The values for these alternatives cannot be easily compared between species and little attention has been given to providing metrics such as F_{lim} and F_{crash} in a way that is easy for fishery managers to understand. One way to overcome this is to present them as ratios relative to F_{crash} (e.g. F/F_{crash}). The Zoom plot (Figure 99) has been developed as a proposal to visualise alternative reference points to facilitate consistency in their reporting to managers. In this plot the estimates are presented as ratios relative to F_{crash} ; where F_{risk} is simply 10% below F_{crash} ; and the remaining metrics F_{msm} and F_{lim} are ratios F_{msm}/F_{crash} and F_{lim}/F_{crash} . If F is estimated it can then be plotted as F/F_{crash} . This will allow easy comparison between species and a comparative visual for assessment outputs. It is recommended that the SC consider using these standard metrics for reporting purposes for Medium Data Assessments. While other metrics can still be reported (and should be, when exploring new assessment methods), it is recommended that some standardisation is considered for inclusion in all assessments.

Finally, Medium and Data Poor assessments, often use a number of metrics and report the results in different ways clouding ones understanding of the actual stock status. Therefore, reporting of some of these metrics alongside more familiar metrics would be a big step in increasing the SCs understanding of Medium and Data Poor metrics. Tremblay-Boyer and Neubauer (2019) noted that reporting alternative reference points such as F_{lim} , F_{crash} , F/F_{lim} and F/F_{crash} should be included in all assessments. It is therefore recommended that these be included in future Data Rich assessments alongside the conventional stock status metrics.

3.2 Report Cards

When reviewing the "Analysis of observer and logbook data pertaining to Key Shark Species in the Western and Central Pacific Ocean" (Rice, 2017) at SC13, the ISG requested that the author develop a series of report cards. These were initially presented in Rice (2018) and have been revised and updated here. Figure 100 presents an explanatory card, for each Key Shark the top bar of the card is colour coded for the priority given to it by the ISG at SC15, the card is then divided into three information sections for "Data Rich"; "Medium Data"; and "Data Poor" assessment types (see footnote 1 above for definitions). Within each of these groups there is a general list of data types, data required, comments as to weather or not the data are available within the WCPO and a ranking of the data certainty with an associated explanatory table (Table 6). There is a comment about the recommended assessment that could be attempted, and finally a list of the research needs for each species. Note that some fields such as stock structure and natural mortality, may have a "No" for the "Do we have it" column, but in the Degree of certainty field there may be a certainty rating. In these cases, there may be data available to estimate the parameter but the analysis has not been undertaken or accepted by the SC (e.g. Figure 101).

Figure 101 to Figure 118 present the species specific report cards. At SC15 the ISG ranked six species as having a high priority for research (South Pacific blue shark; blue sharks in the north Pacific; silky; oceanic whitetip; and shortfin mako in the north and south Pacific), three as medium priority (bigeye thresher; whale sharks; and giant manta rays), and the remaining nine species were assigned a low priority. SC16 should review these priorities. Of the high priority species all but two (South Pacific blue sharks and mako in the south Pacific) have had successful Data Rich assessments undertaken. This highlights the challenges of undertaking Data Rich assessments for sharks in the WCPO and possibly emphasises the importance of developing reliable Medium Data assessment methods.

Medium Data assessment methods such as those presented in Zhou et al. (2019) are possibly achievable for most Key Sharks at this stage, but many of these methods are new and in need of testing before they can he relied on for making management decisions. As noted above presenting their outputs as part of Data Rich assessments would be helpful.

Data Poor methods such as Ecological Risk Assessments have largely been done in the WCPO (Kirby and Hobday, 2007 and Kirby, 2008). As these methods provide little leverage or guidance for management action they are of limited value. Risk analyses that are more quantitative such as Zhou and Griffiths (2008) and ABNJ (2018c) are probably slightly more informative provided that data exist to undertake the analysis. Generally speaking Data Poor assessments should be seen as a last resort and only considered if a Medium Data assessment in not possible.

Overall the report cards along with the information sheets highlight the data gaps for the WCPFC Key Sharks and should be used to guide the 2021-2025 SRP. The SC should comment on the preferred assessment type for each species which would allow the ISG to decide on a path to assessment and also where to stop. For example for South Pacific blue sharks a Data Rich assessment should be technically possible, the aim here should therefore be to resolve the uncertainties highlighted by Takeuchi et al. (2016) and move toward a Data Rich assessment. However, for bigeye thresher sharks, where there are a number of life history uncertainties and catch data are relatively sparse resolving the data uncertainties to a level where a Medium Data Assessment is achievable should be the target in the short- to medium-term. The SC (through the ISG) should review the report cards; the data certainty criteria; and agree on the final assessment type (report card "Can we do it?" column) within the scope of this SRP as this would provide the direction for the underlying data collection priorities.

4 2021-2025 SRP Direction

4.1 Proposed objectives for the SRP

The previous SRP did not have any objectives but rather a number of broad themes under which projects fell, namely: Stock Assessment; Stock Structure; Biology; Mitigation; Data Improvements; and Review. While these themes were largely sensible, in order to respond directly to the management needs we feel that developing a set of objectives would be a more constructive approach under which to plan and direct the Commissions work. Noting the needs of the Commission will change, and that the development of Harvest Strategies will include an objective setting process that may include objectives for bycatch species, it is recommended that these objectives be considered draft at this stage.

To this end the following interim objectives are proposed under four broad areas of work for the 2021-2025 SRP:

1. Stock Assessment

- (a) Determine the stock status for WCPFC Key Sharks.
- (b) Develop reliable catch histories for WCPFC Key Sharks as far back in time as feasible.
- (c) Test and improve Medium and Data Poor assessment methods so that the results can inform management decisions.
- 2. Mitigation
 - (a) Provide advice on mitigation for WCPFC Key Sharks with non-retention policies and unwanted elasmobranchs.
 - (b) Provide advice on safe release methods, their application rates, and post-release survival of WCPFC Key Sharks.
- 3. Biological data improvements
 - (a) Increase the understanding of important biological parameters of WCPFC Key Sharks such as growth, reproduction, stock structure and natural mortality rates.
- 4. Observer data collection
 - (a) Improve spatio-temporal observer data for informing scientific needs.

The stock assessment objectives are intended to directly inform the WCPFC of the stock status of the relevant species, as well as include opportunities to refine the assessment methods and develop catch

histories that will feed into the assessments, making them more reliable. The mitigation objectives should facilitate the development of effective mitigation of elasmobranch catch in both purse seine and longline fisheries, as well as ensure high survival of released individuals. Biological objectives are included to enhance our understanding of the biology and provide reliable biological parameters for stock assessments. The objective aimed at observers is specifically intended to improve biological data collection and ensure that the data collected are representative of the stock.

We believe that projects that are developed under this plan should attempt to address the objectives above and the new project list is therefore presented by objective in Table 7.

4.2 2021-2025 Direction

To address the proposed objectives the SRP will aim to undertake a number of stock assessments; and test and develop Medium Data assessment methods. The stock specific information sheets (Figure 65 to Figure 82) indicate that there is a paucity of information on release survival rates from fishing vessels and that stock specific life history information is deficient for most species. Finally, the fishery observers, who have a heavy workload that needs to be prioritised, play a vital role in data collection and the SRP needs to indicate where additional training is required and what data should be prioritised for collection.

4.3 2021-2025 Schedule of work

The 2021-2025 SRP schedule of work is outlined in Table 7 and in order to avoid duplication, work that is being undertaken outside of the SRP is listed in Table 8. This schedule needs to be considered along with the other work being undertaken within the WCPFC and the stock assessments in particular (Table 9) should be coordinated with the tuna assessments to ensure there are personnel and the budget available to undertake the work. The SC is invited to review the project list, and schedule for the 2021-2025 period. Once a final list of projects is agreed for 2021 the project specifications and budget will be developed. A draft list of projects for 2021 can be agreed intersessionally prior to SC and specifications for those can be drafted ahead of the SC if the IWG agrees on a 2021 project list.

The work programme within this SRP should be achievable, as a result some aspects of work that have been recommended by the stock assessments (e.g. Tremblay-Boyer and Neubauer, 2019) are included in that list while others, such as assessing the spatial trends in shark length for the longline dataset, have not been included as these could be taken up in the next assessment. If the work is required prior to, and in addition to, the assessment, that may need to be scheduled separately.

4.4 Observer data collection

Observers, when free to do so, are encouraged to collect biological material from dead Key Sharks. This data collection should include the collection of length, weight (when possible), ageing material (vertebrate samples), clasper length, uterine condition, number of embryos, embryo lengths. These data are important for assessing growth rates, maturity, fecundity and pupping areas. All these metrics are important when undertaking stock assessments and have been successfully collected by some observer programmes (e.g. Joung et al., 2018). CCMs observer programmes should train observers and encourage the collection of these data. These samples should be submitted to the WCPFC tissue bank and made available for analysis through the WCPFC. Developing and effective method of sample transfer to SPC will also need to be considered. When there are enough samples this will also provide an opportunity for staff of Pacific Island State members to access the material for post graduate studies and should be viewed as a beneficial capacity building opportunity.

Observer sampling, while essential, can be biased as observer coverage is not always spatially and temporally representative of fishing effort or the population distributions of non-target species. This bias in sample collection may vary by species, area, time and observer programme undertaking the collection. For example, the sampling coverage may be unbalanced between the North and South Pacific. So, priority should also be given to improving the spatial representation of observer programmes. It is important to note here that many WCPFC CCMs are meeting or exceeding their required observer coverage, but this requirement is for a percentage cover by year and there is no requirement to ensure that that is evenly spread over the fleet in time and space. Biological data such as growth and maturity information, do not need to be collected continuously, rather getting a large sample from a single species periodically is valuable. For the commonly caught species, consideration should therefore be given to focusing these collections targeting one or two species per year to maximise the data collection across the WCPO. This programme can then be rotated in a similar way to the stock assessments. However, for species caught infrequently, opportunistic (continuous) sampling may still need to be relied on. This may also be complicated for those species listed in the Appendix II of CITES and species with WCPFC non-retention policies, while allowances for sampling of dead fish have been included in CMMs non-detriment findings may be required to transport samples across international boundaries for some species.

It has been suggested that the length of any trailing branchlines when released, is one of the factors which affect post-release survival. Additionally, the branchline material may be influential. Estimates of the range and frequency of trailing line length and branchline type would be useful information. An ABNJ study in four countries is currently underway assessing the impact of trailing branchlines on release survival. Trailing branchlines are one influential factor, therefore considering the variety of variable operational patterns by fleet, size of shark, and the prevailing environment surrounding the release, it is necessary to identify the influential factors influencing post-release survival and then to develop best handling practice.

Depredation rates and general interactions between sharks and gear is not well studied. A part of mitigation is to asses whether it is feasible to reduce the interactions by changes to fishing methods etc. Depredation is currently not included as a source of mortality in stock assessment. Observers currently collect information on depredation by sharks, cetaceans and squid. An assessment of the unaccounted mortality would be valuable as would investigations into the rates of and ways to reduce depredation on longline sets.

In addition, the collection of electronic monitoring programmes is expanding and becoming more effective around the Pacific. Therefore in addition to physical the collection of information by observers. programmes should be developed to effectively collect relevant information on shark biology such as length, as well as capture and release fate and condition to the extent possible.

Four considerations for observers are listed in Table 7 all are a high priority, two are currently ongoing and the others should begin in 2021. However, consideration will need to be made of the CCMs other sampling needs and the observers work load when considering this additional training and sampling work.

4.5 Recommendations

- 1. SC adopt objectives to direct the 2021-2025 SRP.
- 2. SC adopt standardises assessment reporting metrics for Data Rich Assessments, and as a minimum report F/F_{MSY} and SB/SB_{MSY} or B/B_{MSY} , or SB/SB_0 or B/B_0 .
- 3. Where possible Data Rich Assessments should report depletion estimates $(SB/SB_{F=0})$.
- 4. To improve our understanding of Medium Data Assessment metrics, Data Rich Assessments are encouraged to, in addition to the above metrics, report F_{msm} , F_{lim} and F_{crash} , and present the ratios of F_{msm}/F_{crash} and F_{lim}/F_{crash} and F/F_{crash} for comparison with conventional metrics.
- 5. Medium Data Assessments that are unable to estimate the F/F_{MSY} due to a lack of fishery and/or biological data, are encouraged to report F_{msm} , F_{lim} and F_{crash} , and present the ratios of F_{msm}/F_{crash} and F_{lim}/F_{crash} and F/F_{crash} .
- 6. To facilitate future reporting, when undertaking the annual review of progress at the SC, the ISG should rate projects as complete, partial, ongoing and not done and provide a score to measure performance.
- 7. The SC develop an "agreed suite" of biological parameters (or upper and lower bounds) and units of measurement (e.g. total length) for use in WCPFC assessments and update the information sheets accordingly.
- 8. The SC review and agree on the data certainty criteria (Table 6) for the report cards and confirm a certainty rating for each species, when reviewing the report cards.
- 9. The SC review, and update annually if needed, the "agreed suite" of biological parameters; the report cards; and information sheets.
- 10. The SC is invited to consider the schedule of work outlined in Table 7 and Table 9 for 2021-2025.

11. The SC is invited to review the specific projects proposed in Table 7 and Table 9 for 2021 for finalisation prior to developing the SC budget.

Acknowledgements

The authors would like to thank the SPC data team for providing all the data used in this analysis and the members of the Shark Research Plan Informal Working Group for the constructive input into the development of this plan. We would also like to thank Sam McKechnie and Graham Pilling for useful comments on earlier drafts of this paper, and Jack for his ongoing support.

References

- ABNJ (2018a). Pacific-wide silky shark (*Carcharhinus falciformis*) stock status assessment. Technical Report SC14-SA-WP-08, WCPFC.
- ABNJ (2018c). Risk to the Indo-Pacific Ocean whale shark population from interactions with Pacific Ocean purse-seine fisheries. Technical Report SC14-SA-WP-12, WCPFC.
- Brouwer, S. and Harley, S. (2015). Draft Shark Research Plan: 2016-2020. Technical Report SC11-EB-WP-01, WCPFC.
- Chin, A. and Simpfendorfer, C. (2019). Operational planning for shark biological data improvement. Technical Report SC15-EB-IP-04, WCPFC.
- Clarke, S., Coelho, R., Francis, M., Kai, M., Kohin, S., Liu, K. M., Simpfendorfer, C., Tovar-Avila, J., Rigby, C., and Smart, J. (2015). Report of the Pacific shark life history expert panel workshio, 28-30 April 2015. Technical Report SC11-EB-IP-13, WCPFC.
- Clarke, S. and Harley, S. J. (2010). A proposal for a Research Plan to determine the status of the Key Shark Species. Technical Report SC6-EB-WP-01, WCPFC.
- Clarke, S. and Harley, S. (2014). A proposal for a research plan to determine the status of the Key Shark Species. Technical Report SC10-EB-IP-06, WCPFC.
- Coelho, R., Apostolaki, P., Bach, P., Brunel, T., Davies, T., Díez, G., Ellis, J., Escalle, L., Lopez, J., Merino, G., Mitchell, R., Macias, D., Murua, H., Overzee, H., Poos, J. J., Richardson, H., Rosa, D., Sánchez, S., Santos, C., Séret, B., Urbina, J. O., and Walker, N. (2019). Specific Contract No 1: Improving scientific advice for the conservation and management of oceanicsharks and rays. Technical Report EASME/EMFF/2016/008, European Commission, B-1049 Brussels.
- Corrigan, S., Lowther, A. D., Beheregaray, L. B., Bruce, B. D., Cliff, G., Duffy, C. A., Foulis, A., Francis, M. P., Goldsworthy, S. D., Hyde, J. R., and Jabado, R. W. (2018). Population connectivity of the highly migratory shortfin mako (*Isurus oxyrinchus* Rafinesque 1810) and implications for management in the Southern Hemisphere. *Frontiers in Ecology and Evolution*, (6):187.
- Fu, D., Roux, M. J., Clarke, S., Francis, M., Dunn, A., and Hoyle, S. (2016). Pacific-wide bigeye thresher shark (*Alopias superciliosus*) sustainability status assessment: introduction, datasets and methodology. Technical Report SC12-SA-IP-17, WCPFC.
- Fujinami, F., Semba, Y., and Tanaka, S. (2019). Age determination and growth of the blue shark (*Prionace glauca*) in the western North Pacific Ocean. *Fishery Bulliten*, (117):107–120.
- Fujinami, Y., Semba, Y., Okamoto, H., Ohshimo, S., and Tanaka, S. (2017). Reproductive biology of the blue shark (*Prionace glauca*) in the western North Pacific Ocean. *Marine and Freshwater Research*, (68):2018–2027.
- ISC (2017). Stock assessment and future projections of blue shark in the North Pacific Ocean through 2015. Technical Report SC13-SA-WP-10, WCPFC.
- ISC (2018b). Stock assessment of shortfin make shark in the North Pacific Ocean through 2016. Technical Report SC14-SA-WP-11, WCPFC.
- Joung, S. J., Lyu, G. T., Hsu, H. H., Liu, K. M., and Wang, S. B. (2018). Age and growth estimates of the blue shark *Prionace glauca* in the central South Pacific Ocean. *Marine and Freshwater Research*.

- Kai, M. (2019). Numerical approach for evaluating impacts of biological uncertainties on estimates of stock-recruitment relationships in elasmobranchs: example of the North Pacific shortfin mako. *ICES Journal of Marine Science*, (77):200–215.
- Kirby, D. and Hobday, A. (2007). Ecological Risk Assessment for the effects of fishing in the Western & Central Pacific Ocean: productivity-susceptibility analysis. Technical Report SC3-EB-WP-01, WCPFC.
- Kirby, D. S. (2008). Ecological risk assessment (ERA) progress report (2007/8) and work plan (2008/9). Technical Report SC4-EB-WP-01, WCPFC.
- Macdonald, J., Williams, P., Sanchez, C., Schneiter, E., Ghergariu, M., Hosken, M., Panizza, A., and Park, T. (2020). Project 90 update: Better data on fish weights and lengths for scientific analyses. Technical Report WCPFC-SC16-2020/ST-IP-06, WCPFC.
- Park, T., Marshall, L., Desurmont, A., Colas, B., and Smith, N. (2019). Shark and ray identification manual for observers and crew of the western and central Pacific tuna fisheries. Technical report, Pacific Community, Noumea, New Caledonia.
- R-Core Team (2020). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
- Rice, J. and Harley, S. (2012d). Stock assessment of silky sharks in the Western and Central Pacific Ocean. Technical Report SC8-SA-WP-07, WCPFC
- Rice, J. (2017). Progress report for Project 78: Analysis of observer and logbook data pertaining to Key Shark Species in the Western and Central Pacific Ocean. Technical Report SC13-EB-WP-07, WCPFC.
- Rice, J. (2018). Report for Project 78: Analysis of observer and logbook data pertaining to Key Shark Species in the Western and Central Pacific Ocean. Technical Report SC14-EB-WP-02, WCPFC.
- Takeuchi, Y., Tremblay-Boyer, L., Pilling, G. M., and Hampton, J. (2016). Assessment of blue shark in the southwestern Pacific. Technical Report SC12-SA-WP-08, WCPFC.
- Tremblay-Boyer, L. and Hamer, P. (2020). Data review and potential assessment approaches for Mobulids in the WCPO. Technical Report SC16-SA-IP-12, WCPFC.
- Tremblay-Boyer, L. and Neubauer, P. (2019). Historical catch reconstruction and CPUE standardization for the stock assessment of oceanic whitetip shark in the Western and Central Pacic Ocean. Technical Report SC15-SA-IP-17, WCPFC.
- White, W. T., Corrigan, S., Yang, L., Henderson, A. C., Bazinet, A. L., Swofford, D. L., and Naylor, G. J. P. (2018). Phylogeny of the manta and devilrays (Chondrichthyes: mobulidae), with an updated taxonomic arrangement for the family. *Zoological Journal of the Linnean Society*, (182):50–75.
- Zhou, S. and Griffiths, S. P. (2008). Sustainability Assessment for Fishing Effects (SAFE): A new quantitative ecological risk assessment method and its application to elasmobranch bycatch in an Australian trawl fishery. *Fisheries Research*, (91):56–68.
- Zhou, S., Deng, R. A., Hoyle, S., and Dunn, M. (2019). Identifying appropriate referencepoints for elasmobranchs within the WCPFC. Technical Report WCPFC-SC15-2019/MI-IP-04, WCPFC.

Tables

Name	Affiliation
Francisco Abascal	EU
Orlando Fachada	${ m EU}$
Stamatios Varsamos	${ m EU}$
Julie Lloyd	FFA
Mikihiko kai	JP
Francois Prioul	NC
John Annala	NZ
Hilary Ayrton	NZ
Glen Holmes	PEW
Sangaa Clark	PNA
Stephen Brouwer	SPC
Paul Hamer	SPC
Joy Hsiangyi Yu	TW
Keith Bigelow	US
Felipe Carvalho	US
Melanie Hutchinson	US
Michael Kinney	US
Yonat Swimmer	$_{ m US}$
Vu Duyen Hai	VN
Elaine Garvilles	WCPFC
SungKwon Soh	WCPFC
Bubba Cook	WWF

Table 2: Participants in the Shark Research Plan Informal Working Group.

English name	Scientific name	Code
Pelagic thresher	Alopias pelagicus	PTH
Bigeye thresher	Alopias superciliosus	BTH
Common thresher	Alopias vulpinus	ALV
Silky shark	Carcharhinus falciformis	FAL
Oceanic whitetip shark	$Carcharhinus\ longimanus$	OCS
Winghead shark	Eusphyra blochii	EUB
Shortfin mako - NP	Isurus oxyrinchus	SMA_NP
Shortfin mako - SP	Isurus oxyrinchus	SMA_SP
Longfin mako	Isurus paucus	LMA
Porbeagle shark	Lamna nasus	POR
Blue shark - SP	Prionace glauca	BSH_NP
Blue shark - NP	Prionace glauca	BSH_SP
Whale shark	Rhincodon typus	RHN
Scalloped hammerhead	Sphyrna lewini	SPL
Great hammerhead	Sphyrna mokarran	SPK
Smooth hammerhead	Sphyrna zygaena	SPZ
Giant manta	Mobula birostris	RMB
Giant devilray	$Mobula\ mobular$	RMM
Chilean devilray	$Mobula\ tarapacana$	RMT
Reef manta	$Mobula \ alfredi$	RMA
Manta and mobulid rays	Mobulidae	RMV
Generic shark code		SHK
Mako sharks		MAK
Thresher sharks		THR
Generic manta code		MAN

Table 3: Species names and codes used in this document. SP = South Pacific, NP = North Pacific.

Table 4: Conversion factors used to convert lengths from Macdonald et al. (2020). LF = Lower jaw to fork in tail; PC = Nose to caudal peduncle; PF = Anterior base of pectoral fin to fork in tail; TL = Tip of snout to posterior end of dorsal caudal lobe; UF = tip of snout to caudal fork.

Species code	а	b	Conversion	Formula
ALV	0.53300	1.2007	TL to UF	a*TL-b
BSH	0.83130	1.3900	TL to UF	$a^{*}TL+b$
BTH	0.55980	17.6660	TL to UF	$a^{*}TL+b$
EUB				All UF
FAL				No TL or LF to UF (used
				only UF)
LMA				None (used only UF)
OCS	1.13477	12.5374	TL to UF	(TL-b)/a
POR	0.88960	0.3369	TL to UF	$a^{*}TL+b$
PTH	1.85000	123.1200	TL to UF	(TL-b)/a
RHN				No LF to UF (used only UF)
SMA	0.89000	0.9520	TL to UF	$a^{*}TL+b$
SPK	1.25330	3.4720	TL to UF	(TL-b)/a
SPL	1.30000	1.2800	TL to UF	(TL-b)/a
SPZ	0.84000	12.7200	TL to UF	$a^{*}TL+b$

Parameter	Definition
Assessment Type	Assessment type as per the report cards e.g. Figure 101
Stock Status	Stock status as agreed to the Scientific Committee in the assessment year
L max	L infinity as defined by a growth equation or if not available the maximum observed length
k	Growth coefficient (the rate at which length approached L infinity)
Len birth	Birth length
LO	The age at which the organisms would have had zero size
Max age	Maximum age
Age recruit	Age at recruitment to the fishery
Age mat	Age at maturity
Len mat	Length at maturity
Repro cycle	Number of months between births
Gestation	Length of the gestation period (months)
Litter size	Number of pups in a single letter
Pupping	Pupping season
Spawning	Mating season
Μ	Natural mortality estimate
r	Intrinsic rate of population increase
Conv factors	Do any conversion factors exist for length to weight and between different length measurements
Sex specific parameters	Are the biological parameters above defined by sex
Stock delineation	Stock management unit
Steepness	Measure of the stock recruit relationship
Release mortality	Percentage of observed releases that died
CITES	Convention on International Trade in Endangered Species of Wild Fauna and Flora
CMS	The Convention on the Conservation of Migratory Species of Wild Animals
IUCN red list	The International Union for Conservation of Nature Red List of Threatened Species

Table 5: Definitions of parameters in the species information sheets e.g. Figure 65.

Data	High Certainty	Medium Certainty	Low Certainty
		Data Rich	
Age	Stock specific, direct validation	Validated, estimates from neighbouring	Not validated or from outside Pacific
		stock	
Maturity	Stock specific	Neighbouring stock	Outside Pacific
Stock structure	Definitive work based on a dedicated	Estimated from observed catch	Estimated from catch
	study		
Μ	Age specific model estimates	Estimated from reliable biological pa-	Estimated from catch curve with unreli-
		rameters	able estimate of F, or similar
Catch	≥ 20 years accurate reported or observed	Reconstructed catch ≥ 20 years	<20 years observed or reported catch
	catch		
Effort	≥ 20 years accurate reported or observed	≥ 20 years accurate reported effort	<20 years observed or reported effort
	effort in primary fisheries		
Length	>20 years of length measurements, >100	>20 years of length measurements, <100	Some length measurements
	samples per year	samples per year	
Weight	High numbers of stock specific individ-	Length/weight regression and high num-	Some measured individual weights
	ual weights or length/weight regression	bers of length measurements	
		Medium data	
Age	Stock specific	Estimates from neighbouring stock	Estimates from outside Pacific
Maturity	Stock specific	Neighbouring stock	Outside Pacific
Stock structure	Observed from tagging or genetics	Estimated from observed catch	Estimated from catch
Catch and Effort	≥ 10 years accurate reported or observed	Reconstructed catch ≥ 10 years with re-	<10 years observed or reported catch
	catch and effort	ported effort	and effort data
Length	>10 years of length measurements, >100	>10 years of length measurements, <100	Some length measurements
	samples per year	samples per year	
Weight	High numbers of stock specific individ-	Length/weight regression	Some measured individual weights
	ual weights or length/weight regression		
		Data Poor	
Catch observations	Observed catch high spatial coverage in	Observed catch reasonable coverage in	Some observed catch
	relevant fisheries	relevant fisheries	
Expert advice	Productivity and susceptibility estimates	s developed by a group of experts or not	

Table 6: SRP report card (e.g. Figure 101) data certainty criteria.

Title	Priority	Start year	End year						
1. Stock assessment									
(a) Determine the stock status for WCPFC Key Sharks									
i) Southwest Pacific blue shark assessment	High	2020	2021						
ii) Northwest Pacific blue shark assessment	High	2021	2022						
iii) Northwest Pacific shortfin mako shark assessment	High	2023	2024						
iv) WCPO silky shark assessment	High	2022	2023						
v) Pacific silky shark assessment	Medium	2022	2023						
vi) Pacific bigeye thresher shark assessment	Medium	2021	2022						
vii) Pacific whale shark assessment	Medium	2022	2023						
(b) Develop reliable catch histories for WCPFC Key Sharks	s as far back	in time as fea	sible						
i) Redefining the fleets currently assumed in the BSH NP	Medium	2021	2022						
stock assessment									
ii) The development of alternative approaches to catch	Medium	2024	2025						
reconstructions based on estimates of the global fin trade									
(c) Test and improve Medium and Data Poor assessment m	ethods to in	form managen	ient decisions						
i) Test and improve data poor assessment methods	Medium	2024	2025						
ii) Include data poor assessment metrics as standard out-	High	Ongoing	Ongoing						
outs for data rich assessments									
2. Mitigatio	n								
(a) Provide advice on mitigation Sharks with non-retention	(a) Provide advice on mitigation Sharks with non-retention policies and unwanted elasmobranchs								
i) Investigate effective mitigation for WCPEC Key Sharks Medium 2023 2025									
i) Investigate effective mitigation for WCPFC Key Sharks	Medium	2023	2025						
i) Investigate effective mitigation for WCPFC Key Sharks ii) Investigate mitigation method trade-offs between miti-	Medium Medium	2023 2023	$2025 \\ 2025$						
i) Investigate effective mitigation for WCPFC Key Sharks ii) Investigate mitigation method trade-offs between miti- gation methods for sharks, seabirds and sea turtles	Medium Medium	2023 2023	2025 2025						
 i) Investigate effective mitigation for WCPFC Key Sharks ii) Investigate mitigation method trade-offs between mitigation methods for sharks, seabirds and sea turtles (b) Provide advice on safe release methods and assess release 	Medium Medium se survival o	2023 2023 of WCPFC Key	2025 2025 7 Sharks						
 i) Investigate effective mitigation for WCPFC Key Sharks ii) Investigate mitigation method trade-offs between mitigation methods for sharks, seabirds and sea turtles (b) Provide advice on safe release methods and assess relea i) Estimate silky and oceanic whitetip shark post release 	Medium Medium se survival o High	2023 2023 of WCPFC Key 2021	2025 2025 7 Sharks 2023						
 i) Investigate effective mitigation for WCPFC Key Sharks ii) Investigate mitigation method trade-offs between mitigation methods for sharks, seabirds and sea turtles (b) Provide advice on safe release methods and assess relea i) Estimate silky and oceanic whitetip shark post release survival from WCPO longline fisheries* 	Medium Medium se survival o High	2023 2023 of WCPFC Key 2021	2025 2025 7 Sharks 2023						
 i) Investigate effective mitigation for WCPFC Key Sharks ii) Investigate mitigation method trade-offs between mitigation methods for sharks, seabirds and sea turtles (b) Provide advice on safe release methods and assess relea i) Estimate silky and oceanic whitetip shark post release survival from WCPO longline fisheries* ii) Estimate whale shark post release survival from WCPO 	Medium Medium se survival o High High	2023 2023 of WCPFC Key 2021 2021	2025 2025 7 Sharks 2023 2023						
 i) Investigate effective mitigation for WCPFC Key Sharks ii) Investigate mitigation method trade-offs between mitigation methods for sharks, seabirds and sea turtles (b) Provide advice on safe release methods and assess relea i) Estimate silky and oceanic whitetip shark post release survival from WCPO longline fisheries* ii) Estimate whale shark post release survival from WCPO purse seine fisheries* 	Medium Medium se survival o High High	2023 2023 of WCPFC Key 2021 2021	2025 2025 7 Sharks 2023 2023						
 i) Investigate effective mitigation for WCPFC Key Sharks ii) Investigate mitigation method trade-offs between mitigation methods for sharks, seabirds and sea turtles (b) Provide advice on safe release methods and assess relea i) Estimate silky and oceanic whitetip shark post release survival from WCPO longline fisheries* ii) Estimate whale shark post release survival from WCPO purse seine fisheries* 3. Biological data imp 	Medium Medium se survival o High High	2023 2023 of WCPFC Key 2021 2021	2025 2025 7 Sharks 2023 2023						
 i) Investigate effective mitigation for WCPFC Key Sharks ii) Investigate mitigation method trade-offs between mitigation methods for sharks, seabirds and sea turtles (b) Provide advice on safe release methods and assess relea i) Estimate silky and oceanic whitetip shark post release survival from WCPO longline fisheries* ii) Estimate whale shark post release survival from WCPO purse seine fisheries* 3. Biological data imp (a) Increase the understanding of important biological para 	Medium Medium se survival o High High provements meters of W	2023 2023 of WCPFC Key 2021 2021 /CPFC Key Sh	2025 2025 7 Sharks 2023 2023 arks						
 i) Investigate effective mitigation for WCPFC Key Sharks ii) Investigate mitigation method trade-offs between mitigation methods for sharks, seabirds and sea turtles (b) Provide advice on safe release methods and assess relea i) Estimate silky and oceanic whitetip shark post release survival from WCPO longline fisheries* ii) Estimate whale shark post release survival from WCPO purse seine fisheries* 3. Biological data imp (a) Increase the understanding of important biological para i) Silky shark and oceanic whitetip shark reproductive 	Medium Medium se survival o High High provements meters of W High	2023 2023 of WCPFC Key 2021 2021 /CPFC Key Sh 2023	2025 2025 7 Sharks 2023 2023 arks 2025						
 i) Investigate effective mitigation for WCPFC Key Sharks ii) Investigate mitigation method trade-offs between mitigation methods for sharks, seabirds and sea turtles (b) Provide advice on safe release methods and assess relea i) Estimate silky and oceanic whitetip shark post release survival from WCPO longline fisheries* ii) Estimate whale shark post release survival from WCPO purse seine fisheries* (a) Increase the understanding of important biological para i) Silky shark and oceanic whitetip shark reproductive biology and longevity* 	Medium Medium se survival o High High provements meters of W High	2023 2023 of WCPFC Key 2021 2021 7CPFC Key Sh 2023	2025 2025 7 Sharks 2023 2023 arks 2025						
 i) Investigate effective mitigation for WCPFC Key Sharks ii) Investigate mitigation method trade-offs between mitigation methods for sharks, seabirds and sea turtles (b) Provide advice on safe release methods and assess relea i) Estimate silky and oceanic whitetip shark post release survival from WCPO longline fisheries* ii) Estimate whale shark post release survival from WCPO purse seine fisheries* 3. Biological data imp (a) Increase the understanding of important biological para i) Silky shark and oceanic whitetip shark reproductive biology and longevity* ii) Biology and life history of hammerhead sharks* 	Medium Medium se survival o High High provements meters of W High High	2023 2023 of WCPFC Key 2021 2021 /CPFC Key Sh 2023 2023	2025 2025 7 Sharks 2023 2023 arks 2025 2025						
 i) Investigate effective mitigation for WCPFC Key Sharks ii) Investigate mitigation method trade-offs between mitigation methods for sharks, seabirds and sea turtles (b) Provide advice on safe release methods and assess relea i) Estimate silky and oceanic whitetip shark post release survival from WCPO longline fisheries* ii) Estimate whale shark post release survival from WCPO purse seine fisheries* (a) Increase the understanding of important biological para i) Silky shark and oceanic whitetip shark reproductive biology and longevity* ii) Biology and life history of hammerhead sharks* iii) Resolving blue shark reproductive biology and repro- 	Medium Medium se survival o High High provements meters of W High High High	2023 2023 of WCPFC Key 2021 2021 7CPFC Key Sh 2023 2023 2023	2025 2025 7 Sharks 2023 2023 arks 2025 2025 2025 2025						
 i) Investigate effective mitigation for WCPFC Key Sharks ii) Investigate mitigation method trade-offs between mitigation methods for sharks, seabirds and sea turtles (b) Provide advice on safe release methods and assess relea i) Estimate silky and oceanic whitetip shark post release survival from WCPO longline fisheries* ii) Estimate whale shark post release survival from WCPO purse seine fisheries* (a) Increase the understanding of important biological para i) Silky shark and oceanic whitetip shark reproductive biology and longevity* ii) Biology and life history of hammerhead sharks* iii) Resolving blue shark reproductive biology and reproductive schedule* 	Medium Medium se survival o High High provements meters of W High High High Medium	2023 2023 of WCPFC Key 2021 2021 /CPFC Key Sh 2023 2023 2023	2025 2025 7 Sharks 2023 2023 arks 2025 2025 2025 2025 2025						
 i) Investigate effective mitigation for WCPFC Key Sharks ii) Investigate mitigation method trade-offs between mitigation methods for sharks, seabirds and sea turtles (b) Provide advice on safe release methods and assess relea i) Estimate silky and oceanic whitetip shark post release survival from WCPO longline fisheries* ii) Estimate whale shark post release survival from WCPO purse seine fisheries* (a) Increase the understanding of important biological para i) Silky shark and oceanic whitetip shark reproductive biology and longevity* ii) Biology and life history of hammerhead sharks* iii) Resolving blue shark reproductive biology and reproductive schedule* iv) Biology of the longfin mako shark* 	Medium Medium se survival o High High provements meters of W High High Medium Medium	2023 2023 of WCPFC Key 2021 2021 /CPFC Key Sh 2023 2023 2023 2023 2023	2025 2025 7 Sharks 2023 2023 arks 2025 2025 2025 2025 2025 2025						

Table 7: SRP 2021-2025 project list. * indicates projects on the "long list" from Chin and Simpfendorfer (2019)

vi) Validated life history, biology, and stock structure of	Medium	2023	2025
the shortfin make in the south Pacific * vii) Age validation and stock structure of the silky shark	Low	2023	2025
and oceanic whitetip shark*	How	2020	2020
viii) Stock structure and life history of southern hemi-	Low	2023	2025
sphere porbeagle shark [*]			
4. Observer data c	ollection		
(a) Improve spatio-temporal observer data for informing sc	ientific need	s	
i) Training observers in the WCPO to be proficient in	High	Ongoing	Ongoing
species identification			
ii) Training observers for extraction and storage of verte-	High	2021	Ongoing
brae and shark reproductive material			
iii) Training observers for on-deck reproductive staging of	High	2021	Ongoing
elasmobranchs			
iv) Measuring elasmobranchs on purse seine and longline	High	Ongoing	Ongoing
vessels for length-length and length-weight conversion factor			
duelonement			

ССМ	Institute	Contact	e-mail	Species	Research topic	Start year	End year
Australia	CSIRO	Toby Patterson, Mark Bravington	Toby.Patterson@csiro.au; Mark.Bravington@csiro.au	Pelagic sharks of interest	Future project of interest: CKMR design and scoping of pelagic sharks in WCPFC	TBC	TBC
JP	National Research In- stitute of Far Seas Fisheries	Yasuko Semba	senbamak@affrc.go.jp	Pelagic shark species (incl. Mobula spp.)	Improvement of species identifica- tion using partial external charac- teristics and genetic information	2018	2025 (ten- tative)
JP	National Research In- stitute of Far Seas Fisheries	Yasuko Semba	senbamak@affrc.go.jp	Blue shark, Short- fin mako	Stock structure using genome data?(overlapped in other RFMO&ISC's Shark Research Plan)	2016	2025 (ten- tative)
JP	National Research In- stitute of Far Seas Fisheries	Yasuko Semba	senbamak@affrc.go.jp	Shortfin mako	Trophic status of adult SMA	2019	2025 (ten- tative)
JP	National Research In- stitute of Far Seas Fisheries	Mikihiko Kai	kaim@affrc.go.jp	Blue shark	Spatio-temporal patterns in sex-and- age-specific natural mortality rate	2019	2025 (ten- tative)
JP, MX, TW, US	ISC	Mikihiko Kai	kaim@affrc.go.jp	Blue sharks Shortfin- mako	Spatial distribution by sex and growth stages using Isotope analysis	2020	2024
JP, TW, US	ISC	Mikihiko Kai	kaim@affrc.go.jp	Blue sharks Shortfin- mako	Spatial distribution by sex and growth stages and stock boundary using tagging study	2020	2024
JP, US	ISC	Mikihiko Kai	kaim@affrc.go.jp	Shortfin mako	Age-and-growth study using cross- reading of vertebrae	2020	2024
JP, MX, TW, US	ISC	Mikihiko Kai	kaim@affrc.go.jp	Blue sharks Shortfin- mako	Redefinition of fleets with spatiotem- poral consideration using cluster analysis with size data of each fleets	2019	2024
JP, MX, TW, US	ISC	Mikihiko Kai	kaim@affrc.go.jp	Blue sharks Shortfin- mako	CPUE prediction in the entire north Pacific using the R-Package of spa- tiotemporal model (VAST)	2021	2025
JP, TW, US	ISC	Mikihiko Kai	kaim@affrc.go.jp	Blue sharks Shortfin- mako	Spatial distribution by sex and growth stage using parasite	2021	2025
NC	FIU	Jmy J. Kiszka		All species	FinPrint	2015	
NC	IRD	Laurent Vignola		All species	APEX	2015	
NZ	TBC	John Annala	John.Annala@mpi.govt.nz	All	Determination of mitigation options for shark species taken as bycatch in NZ surface longline fisheries	TBC	TBC

Table 8: Ongoing elasmobranch research in the WCPO outside of the SRP.

Table 8: (continued)

CCM	Institute	Contact	e-mail	Species	Research topic	Start year	End year
USA	NOAA	Felipe Carvalho	felipe.carvalho@noaa.gov	All	Project 101 - Updated Monte Carlo simulations of the potential of long- line shark mitigation approaches with improved data on gear configu- rations, catch rates, and post-release mortality levels.	TBC	TBC
USA	NOAA	Felipe Carvalho	felipe.carvalho@noaa.gov	All	Review available data regarding safe handling and release guidelines for sharks with the goal to identify best handling practices that can be rec- ommended for adoption and imple- mentation by the WCPFC.	TBC	TBC
USA	Hawaii Insti- tute of Marine Biology (HIMB)	Melanie Hutchin- son	melanier@hawaii.edu	Scalloped ham- merhead	Habitat use and movement be- haviour around Hawaii	2009	2020
USA	Joint Institute for Marine & Atmospheric Research (JIMAR)	Melanie Hutchin- son	melanier@hawaii.edu	OCS, FAL	Habitat use and movement be- haviour around Hawaii	2016	2024
USA	HIMB/ Hawaii Uncharted Research Collective	Melanie Hutchin- son	Pacificsharktagger@gmail.com	OCS	Photo identification for demography	2005	No end
USA	JIMAR/HIMB	Melanie Hutchin- son	melanier@hawaii.edu	OCS, FAL, SMA, BTH, BSH	Post release survival rates of sharks captured in tuna longline fisheries and identifying best handling prac- tictes	2014	2021
USA	JIMAR/HIMB	Melanie Hutchin- son	melanier@hawaii.edu	OCS, FAL, SMA, BTH, BSH	Habitat use and movement be- haviour identifying environmental drivers and preferred habitat using archival tags and fishery data	2017	2022
USA	JIMAR/HIMB	Melanie Hutchin- son	melanier@hawaii.edu	OCS, FAL, SMA, BTH, BSH	Winners and losers in a changing cli- mate - habitat availability and how that may effect vulnerability	2019	2020

CCM	Institute	Contact	e-mail	Species	Research topic	Start year	End year
USA	International	Melanie Hutchin-	melanier@hawaii.edu	RMT	Post release survival rates of Mobula	2018	2020
	Seafood Sus-	son			tarapacana captured in a purse seine		
	tainability						
	Foundation						
	(ISSF)/ JI-						
	MAR						
USA	HIMB	Derek Kraft	kraftd@hawaii.edu	FAL	Global population structure of FAL	2012	2020
USA	ISSF/JIMAR	Melanie Hutchin-	melanier@hawaii.edu	FAL	Global analysis of FAL movements	2012	2021
		son			in IO, WCPO, ETP, ATL with an		
					emphasis on vulnerability to drifting		
					FAD entanglements.		
USA	PIFSC	Michael Kinney	Michael.kinney@noaa.gov	Blue Shark	Redefining fleet definitions of north	2019	2021
					Pacific fisheries with spatiotemporal		
					consideration of blue shark size data.		
TW	National Tai-	K. M. Liu.	kmliu@mail.ntou.edu.tw	All	Studies of shark bycatch, abundance	TBC	TBC
	wan Ocean				index and non-detriment findings in		
	University				the three Oceans		

Table 8: (continued)

Species	Stock	Last assessment	2021	2022	2023	2024	2025
Blue shark	Southwest Pacific	2016	Х				
	Northwest Pacific	2017		Х			
Mako shark	Southwest Pacific	-					
	Northwest Pacific	2018				Х	
Porbeagle	Southwest Pacific	-					
	Southern Ocean	2017		?			
Silky shark	WCPO	2018			Х		
	Pacific	2018			Х		
Oceanic whitetip	WCPO	2019				Х	
shark							
Pelagic thresher	WCPO	-					
Bigeye thresher	Pacific	2017		Х			
Common thresher	WCPO	-					
Greater hammerhead	WCPO	-					
Smooth hammerhead	WCPO	-					
Scalloped hammer-	WCPO	-					
head							
Winghead shark	WCPO	-					
Whale shark	WCPO	-					
	Pacific	2018			Х		
Giant manta	WCPO	-					
Reef manta	WCPO	-					
Spinetail mobula	WCPO	-					
General shark work	WCPO	-					

Table 9: WCPFC SC shark stock assessment schedule 2021-2025. X = scheduled.

Figures

Figure 1: WCPFC data availability for blue sharks in the north Pacific from 1990-2019 showing the data type, and the maximum number of annual samples collected, the width of the line represents the amount of data available relative to the biggest annual sample (number to the right). The vertical dashed line is the start year of each of the first two shark research plans. LL and PS observer and logsheet are the number of observed and reported individuals from the longline and purse seine fisheries respectively; Muscle, Liver and Stomach are the number of samples housed in the WCPFC tissue bank (https://www.spc.int/ofp/PacificSpecimenBank).

Figure 2: WCPFC data availability for South Pacific blue sharks from 1990-2019 showing the data type, and the maximum number of annual samples collected, the width of the line represents the amount of data available relative to the biggest annual sample (number to the right). The vertical dashed line is the start year of each of the first two shark research plans. LL and PS observer and logsheet are the number of observed and reported individuals from the longline and purse seine fisheries respectively; Muscle, Liver and Stomach are the number of samples housed in the WCPFC tissue bank (https://www.spc.int/ofp/PacificSpecimenBank).

Figure 3: WCPFC data availability for silky sharks from 1990-2019 showing the data type, and the maximum number of annual samples collected, the width of the line represents the amount of data available relative to the biggest annual sample (number to the right). The vertical dashed line is the start year of each of the first two shark research plans. LL and PS observer and logsheet are the number of observed and reported individuals from the longline and purse seine fisheries respectively; Muscle, Liver and Stomach are the number of samples housed in the WCPFC tissue bank (https://www.spc.int/ofp/PacificSpecimenBank).

Figure 4: WCPFC data availability for oceanic whitetip sharks from 1990-2019 showing the data type, and the maximum number of annual samples collected, the width of the line represents the amount of data available relative to the biggest annual sample (number to the right). The vertical dashed line is the start year of each of the first two shark research plans. LL and PS observer and logsheet are the number of observed and reported individuals from the longline and purse seine fisheries respectively; Muscle, Liver and Stomach are the number of samples housed in the WCPFC tissue bank (https://www.spc.int/ofp/PacificSpecimenBank).

Figure 5: WCPFC data availability for shortfin make sharks in the south Pacific from 1990-2019 showing the data type, and the maximum number of annual samples collected, the width of the line represents the amount of data available relative to the biggest annual sample (number to the right). The vertical dashed line is the start year of each of the first two shark research plans. LL and PS observer and logsheet are the number of observed and reported individuals from the longline and purse seine fisheries respectively; Muscle, Liver and Stomach are the number of samples housed in the WCPFC tissue bank (https://www.spc.int/ofp/PacificSpecimenBank).

Figure 6: WCPFC data availability for shortfin make sharks in the south Pacific from 1990-2019 showing the data type, and the maximum number of annual samples collected, the width of the line represents the amount of data available relative to the biggest annual sample (number to the right). The vertical dashed line is the start year of each of the first two shark research plans. LL and PS observer and logsheet are the number of observed and reported individuals from the longline and purse seine fisheries respectively; Muscle, Liver and Stomach are the number of samples housed in the WCPFC tissue bank (https://www.spc.int/ofp/PacificSpecimenBank).

Figure 7: WCPFC data availability for longfin make sharks from 1990-2019 showing the data type, and the maximum number of annual samples collected, the width of the line represents the amount of data available relative to the biggest annual sample (number to the right). The vertical dashed line is the start year of each of the first two shark research plans. LL and PS observer and logsheet are the number of observed and reported individuals from the longline and purse seine fisheries respectively; Muscle, Liver and Stomach are the number of samples housed in the WCPFC tissue bank (https://www.spc.int/ofp/PacificSpecimenBank).

Figure 8: WCPFC data availability for common thresher sharks from 1990-2019 showing the data type, and the maximum number of annual samples collected, the width of the line represents the amount of data available relative to the biggest annual sample (number to the right). The vertical dashed line is the start year of each of the first two shark research plans. LL and PS observer and logsheet are the number of observed and reported individuals from the longline and purse seine fisheries respectively; Muscle, Liver and Stomach are the number of samples housed in the WCPFC tissue bank (https://www.spc.int/ofp/PacificSpecimenBank).

Figure 9: WCPFC data availability for bigeye thresher sharks from 1990-2019 showing the data type, and the maximum number of annual samples collected, the width of the line represents the amount of data available relative to the biggest annual sample (number to the right). The vertical dashed line is the start year of each of the first two shark research plans. LL and PS observer and logsheet are the number of observed and reported individuals from the longline and purse seine fisheries respectively; Muscle, Liver and Stomach are the number of samples housed in the WCPFC tissue bank (https://www.spc.int/ofp/PacificSpecimenBank).

Figure 10: WCPFC data availability for pelagic thresher sharks from 1990-2019 showing the data type, and the maximum number of annual samples collected, the width of the line represents the amount of data available relative to the biggest annual sample (number to the right). The vertical dashed line is the start year of each of the first two shark research plans. LL and PS observer and logsheet are the number of observed and reported individuals from the longline and purse seine fisheries respectively; Muscle, Liver and Stomach are the number of samples housed in the WCPFC tissue bank (https://www.spc.int/ofp/PacificSpecimenBank).

Figure 11: WCPFC data availability for porbeagle sharks from 1990-2019 showing the data type, and the maximum number of annual samples collected, the width of the line represents the amount of data available relative to the biggest annual sample (number to the right). The vertical dashed line is the start year of each of the first two shark research plans. LL and PS observer and logsheet are the number of observed and reported individuals from the longline and purse seine fisheries respectively; Muscle, Liver and Stomach are the number of samples housed in the WCPFC tissue bank (https://www.spc.int/ofp/PacificSpecimenBank).

Figure 12: WCPFC data availability for great hammerhead sharks from 1990-2019 showing the data type, and the maximum number of annual samples collected, the width of the line represents the amount of data available relative to the biggest annual sample (number to the right). The vertical dashed line is the start year of each of the first two shark research plans. LL and PS observer and logsheet are the number of observed and reported individuals from the longline and purse seine fisheries respectively; Muscle, Liver and Stomach are the number of samples housed in the WCPFC tissue bank (https://www.spc.int/ofp/PacificSpecimenBank).

Figure 13: WCPFC data availability for scalloped hammerhead sharks from 1990-2019 showing the data type, and the maximum number of annual samples collected, the width of the line represents the amount of data available relative to the biggest annual sample (number to the right). The vertical dashed line is the start year of each of the first two shark research plans. LL and PS observer and logsheet are the number of observed and reported individuals from the longline and purse seine fisheries respectively; Muscle, Liver and Stomach are the number of samples housed in the WCPFC tissue bank (https://www.spc.int/ofp/PacificSpecimenBank).

Figure 14: WCPFC data availability for smooth hammerhead sharks from 1990-2019 showing the data type, and the maximum number of annual samples collected, the width of the line represents the amount of data available relative to the biggest annual sample (number to the right). The vertical dashed line is the start year of each of the first two shark research plans. LL and PS observer and logsheet are the number of observed and reported individuals from the longline and purse seine fisheries respectively; Muscle, Liver and Stomach are the number of samples housed in the WCPFC tissue bank (https://www.spc.int/ofp/PacificSpecimenBank).

Data avaliability summary EUB

Figure 15: WCPFC data availability for winghead sharks from 1990-2019 showing the data type, and the maximum number of annual samples collected, the width of the line represents the amount of data available relative to the biggest annual sample (number to the right). The vertical dashed line is the start year of each of the first two shark research plans. LL and PS observer and logsheet are the number of observed and reported individuals from the longline and purse seine fisheries respectively; Muscle, Liver and Stomach are the number of samples housed in the WCPFC tissue bank (https://www.spc.int/ofp/PacificSpecimenBank).

Figure 16: WCPFC data availability for whale sharks from 1990-2019 showing the data type, and the maximum number of annual samples collected, the width of the line represents the amount of data available relative to the biggest annual sample (number to the right). The vertical dashed line is the start year of each of the first two shark research plans. LL and PS observer and logsheet are the number of observed and reported individuals from the longline and purse seine fisheries respectively; Muscle, Liver and Stomach are the number of samples housed in the WCPFC tissue bank (https://www.spc.int/ofp/PacificSpecimenBank).

Figure 17: WCPFC data availability for giant manta rays from 1990-2019 showing the data type, and the maximum number of annual samples collected, the width of the line represents the amount of data available relative to the biggest annual sample (number to the right). The vertical dashed line is the start year of each of the first two shark research plans. LL and PS observer and logsheet are the number of observed and reported individuals from the longline and purse seine fisheries respectively; Muscle, Liver and Stomach are the number of samples housed in the WCPFC tissue bank (https://www.spc.int/ofp/PacificSpecimenBank).

Data avaliability summary RMM

Figure 18: WCPFC data availability for giant devilray from 1990-2019 showing the data type, and the maximum number of annual samples collected, the width of the line represents the amount of data available relative to the biggest annual sample (number to the right). The vertical dashed line is the start year of each of the first two shark research plans. LL and PS observer and logsheet are the number of observed and reported individuals from the longline and purse seine fisheries respectively; Muscle, Liver and Stomach are the number of samples housed in the WCPFC tissue bank (https://www.spc.int/ofp/PacificSpecimenBank).

Figure 19: WCPFC observed longline length data for blue sharks in the north Pacific, showing the length measurement type (top left); distribution of annual length measurements (top right); number of length samples by sex from each year (bottom left); and the length frequency distribution by sex (bottom right). The boxes show the median (black line), lower 25^{th} and upper 75^{th} percentile values of the distributions, the whiskers indicate the range in which most of the values fall and the points indicate outliers. M = Male; F = Female; I = Immature; U = Unknown.

Blue shark (SP)

Figure 20: WCPFC observed longline length data for South Pacific blue sharks, showing the length measurement type (top left); distribution of annual length measurements (top right); number of length samples by sex from each year (bottom left); and the length frequency distribution by sex (bottom right). The boxes show the median (black line), lower 25^{th} and upper 75^{th} percentile values of the distributions, the whiskers indicate the range in which most of the values fall and the points indicate outliers. M = Male; F = Female; I = Immature; U = Unknown.

Silky shark

Figure 21: WCPFC observed longline length data for silky sharks, showing the length measurement type (top left); distribution of annual length measurements (top right); number of length samples by sex from each year (bottom left); and the length frequency distribution by sex (bottom right). The boxes show the median (black line), lower 25^{th} and upper 75^{th} percentile values of the distributions, the whiskers indicate the range in which most of the values fall and the points indicate outliers. M = Male; F = Female; I = Immature; U = Unknown.

Oceanic whitetip shark

Figure 22: WCPFC observed longline length data for oceanic whitetip sharks, showing the length measurement type (top left); distribution of annual length measurements (top right); number of length samples by sex from each year (bottom left); and the length frequency distribution by sex (bottom right). The boxes show the median (black line), lower 25^{th} and upper 75^{th} percentile values of the distributions, the whiskers indicate the range in which most of the values fall and the points indicate outliers. M = Male; F = Female; I = Immature; U = Unknown.

Shortfin mako shark (NP)

Figure 23: WCPFC observed longline length data for shortfin make sharks in the north Pacific, showing the length measurement type (top left); distribution of annual length measurements (top right); number of length samples by sex from each year (bottom left); and the length frequency distribution by sex (bottom right). The boxes show the median (black line), lower 25^{th} and upper 75^{th} percentile values of the distributions, the whiskers indicate the range in which most of the values fall and the points indicate outliers. M = Male; F = Female; I = Immature; U = Unknown.

Figure 24: WCPFC observed longline length data for shortfin make sharks in the south Pacific, showing the length measurement type (top left); distribution of annual length measurements (top right); number of length samples by sex from each year (bottom left); and the length frequency distribution by sex (bottom right). The boxes show the median (black line), lower 25^{th} and upper 75^{th} percentile values of the distributions, the whiskers indicate the range in which most of the values fall and the points indicate outliers. M = Male; F = Female; I = Immature; U = Unknown.

Longfin mako shark

Figure 25: WCPFC observed longline length data for longfin make sharks, showing the length measurement type (top left); distribution of annual length measurements (top right); number of length samples by sex from each year (bottom left); and the length frequency distribution by sex (bottom right). The boxes show the median (black line), lower 25^{th} and upper 75^{th} percentile values of the distributions, the whiskers indicate the range in which most of the values fall and the points indicate outliers. M = Male; F = Female; I = Immature; U = Unknown.

Common thresher shark

Figure 26: WCPFC observed longline length data for common thresher sharks, showing the length measurement type (top left); distribution of annual length measurements (top right); number of length samples by sex from each year (bottom left); and the length frequency distribution by sex (bottom right). The boxes show the median (black line), lower 25^{th} and upper 75^{th} percentile values of the distributions, the whiskers indicate the range in which most of the values fall and the points indicate outliers. M = Male; F = Female; I = Immature; U = Unknown.

Bigeye thresher shark

Figure 27: WCPFC observed longline length data for bigeye thresher sharks, showing the length measurement type (top left); distribution of annual length measurements (top right); number of length samples by sex from each year (bottom left); and the length frequency distribution by sex (bottom right). The boxes show the median (black line), lower 25^{th} and upper 75^{th} percentile values of the distributions, the whiskers indicate the range in which most of the values fall and the points indicate outliers. M = Male; F = Female; I = Immature; U = Unknown.

Pelagic thresher

Figure 28: WCPFC observed longline length data for pelagic thresher sharks, showing the length measurement type (top left); distribution of annual length measurements (top right); number of length samples by sex from each year (bottom left); and the length frequency distribution by sex (bottom right). The boxes show the median (black line), lower 25^{th} and upper 75^{th} percentile values of the distributions, the whiskers indicate the range in which most of the values fall and the points indicate outliers. M = Male; F = Female; I = Immature; U = Unknown.

Porbeagle shark

Figure 29: WCPFC observed longline length data for porbeagle sharks, showing the length measurement type (top left); distribution of annual length measurements (top right); number of length samples by sex from each year (bottom left); and the length frequency distribution by sex (bottom right). The boxes show the median (black line), lower 25^{th} and upper 75^{th} percentile values of the distributions, the whiskers indicate the range in which most of the values fall and the points indicate outliers. M = Male; F = Female; I = Immature; U = Unknown.

Great hammerhead shark

Figure 30: WCPFC observed longline length data for great hammerhead sharks, showing the length measurement type (top left); distribution of annual length measurements (top right); number of length samples by sex from each year (bottom left); and the length frequency distribution by sex (bottom right). The boxes show the median (black line), lower 25^{th} and upper 75^{th} percentile values of the distributions, the whiskers indicate the range in which most of the values fall and the points indicate outliers. M = Male; F = Female; I = Immature; U = Unknown.

Scalloped hammerhead shark

Figure 31: WCPFC observed longline length data for scalloped hammerhead sharks, showing the length measurement type (top left); distribution of annual length measurements (top right); number of length samples by sex from each year (bottom left); and the length frequency distribution by sex (bottom right). The boxes show the median (black line), lower 25^{th} and upper 75^{th} percentile values of the distributions, the whiskers indicate the range in which most of the values fall and the points indicate outliers. M = Male; F = Female; I = Immature; U = Unknown.

Smooth hammerhead shark

Figure 32: WCPFC observed longline length data for smooth hammerhead sharks, showing the length measurement type (top left); distribution of annual length measurements (top right); number of length samples by sex from each year (bottom left); and the length frequency distribution by sex (bottom right). The boxes show the median (black line), lower 25^{th} and upper 75^{th} percentile values of the distributions, the whiskers indicate the range in which most of the values fall and the points indicate outliers. M = Male; F = Female; I = Immature; U = Unknown.

Winghead shark

Figure 33: WCPFC observed longline length data for winghead sharks, showing the length measurement type (top left); distribution of annual length measurements (top right); number of length samples by sex from each year (bottom left); and the length frequency distribution by sex (bottom right). The boxes show the median (black line), lower 25^{th} and upper 75^{th} percentile values of the distributions, the whiskers indicate the range in which most of the values fall and the points indicate outliers. M = Male; F = Female; I = Immature; U = Unknown.

Whale shark

Figure 34: WCPFC observed longline length data for whale sharks, showing the length measurement type (top left); distribution of annual length measurements (top right); number of length samples by sex from each year (bottom left); and the length frequency distribution by sex (bottom right). The boxes show the median (black line), lower 25^{th} and upper 75^{th} percentile values of the distributions, the whiskers indicate the range in which most of the values fall and the points indicate outliers. M = Male; F = Female; I = Immature; U = Unknown.

Figure 35: WCPFC observed purse seine length data for blue sharks in the north Pacific, showing the distribution of annual length measurements (top left); number of length sample from each year (top right); and the length frequency distribution (bottom left). The boxes show the median (black line), lower 25^{th} and upper 75^{th} percentile values of the distributions, the whiskers indicate the range in which most of the values fall and the points indicate outliers.

Figure 36: WCPFC observed purse seine length data for South Pacific blue sharks, showing the distribution of annual length measurements (top left); number of length sample from each year (top right); and the length frequency distribution (bottom left). The boxes show the median (black line), lower 25^{th} and upper 75^{th} percentile values of the distributions, the whiskers indicate the range in which most of the values fall and the points indicate outliers.

Figure 37: WCPFC observed purse seine length data for silky sharks, showing the distribution of annual length measurements (top left); number of length sample from each year (top right); and the length frequency distribution (bottom left). The boxes show the median (black line), lower 25^{th} and upper 75^{th} percentile values of the distributions, the whiskers indicate the range in which most of the values fall and the points indicate outliers.

Figure 38: WCPFC observed purse seine length data for oceanic whitetip sharks, showing the distribution of annual length measurements (top left); number of length sample from each year (top right); and the length frequency distribution (bottom left). The boxes show the median (black line), lower 25^{th} and upper 75^{th} percentile values of the distributions, the whiskers indicate the range in which most of the values fall and the points indicate outliers.

Figure 39: WCPFC observed purse seine length data for shortfin make sharks in the north Pacific, showing the distribution of annual length measurements (top left); number of length sample from each year (top right); and the length frequency distribution (bottom left). The boxes show the median (black line), lower 25^{th} and upper 75^{th} percentile values of the distributions, the whiskers indicate the range in which most of the values fall and the points indicate outliers.

Figure 40: WCPFC observed purse seine length data for shortfin make sharks in the south Pacific, showing the distribution of annual length measurements (top left); number of length sample from each year (top right); and the length frequency distribution (bottom left). The boxes show the median (black line), lower 25^{th} and upper 75^{th} percentile values of the distributions, the whiskers indicate the range in which most of the values fall and the points indicate outliers.

Length (cm)

Figure 41: WCPFC observed purse seine length data for longfin make sharks, showing the distribution of annual length measurements (top left); number of length sample from each year (top right); and the length frequency distribution (bottom left). The boxes show the median (black line), lower 25^{th} and upper 75^{th} percentile values of the distributions, the whiskers indicate the range in which most of the values fall and the points indicate outliers.

Figure 42: WCPFC observed purse seine length data for common thresher sharks, showing the distribution of annual length measurements (top left); number of length sample from each year (top right); and the length frequency distribution (bottom left). The boxes show the median (black line), lower 25^{th} and upper 75^{th} percentile values of the distributions, the whiskers indicate the range in which most of the values fall and the points indicate outliers.

Figure 43: WCPFC observed purse seine length data for bigeye thresher sharks, showing the distribution of annual length measurements (top left); number of length sample from each year (top right); and the length frequency distribution (bottom left). The boxes show the median (black line), lower 25^{th} and upper 75^{th} percentile values of the distributions, the whiskers indicate the range in which most of the values fall and the points indicate outliers.

Figure 44: WCPFC observed purse seine length data for pelagic thresher sharks, showing the distribution of annual length measurements (top left); number of length sample from each year (top right); and the length frequency distribution (bottom left). The boxes show the median (black line), lower 25^{th} and upper 75^{th} percentile values of the distributions, the whiskers indicate the range in which most of the values fall and the points indicate outliers.

Figure 45: WCPFC observed purse seine length data for great hammerhead sharks, showing the distribution of annual length measurements (top left); number of length sample from each year (top right); and the length frequency distribution (bottom left). The boxes show the median (black line), lower 25^{th} and upper 75^{th} percentile values of the distributions, the whiskers indicate the range in which most of the values fall and the points indicate outliers.

Figure 46: WCPFC observed purse seine length data for scalloped hammerhead sharks, showing the distribution of annual length measurements (top left); number of length sample from each year (top right); and the length frequency distribution (bottom left). The boxes show the median (black line), lower 25^{th} and upper 75^{th} percentile values of the distributions, the whiskers indicate the range in which most of the values fall and the points indicate outliers.

Figure 47: WCPFC observed purse seine length data for smooth hammerhead sharks, showing the distribution of annual length measurements (top left); number of length sample from each year (top right); and the length frequency distribution (bottom left). The boxes show the median (black line), lower 25^{th} and upper 75^{th} percentile values of the distributions, the whiskers indicate the range in which most of the values fall and the points indicate outliers.

Figure 48: WCPFC observed purse seine length data for whale sharks, showing the distribution of annual length measurements (top left); number of length sample from each year (top right); and the length frequency distribution (bottom left). The boxes show the median (black line), lower 25^{th} and upper 75^{th} percentile values of the distributions, the whiskers indicate the range in which most of the values fall and the points indicate outliers.

Figure 49: WCPFC observed purse seine length data for giant manta rays, showing the distribution of annual length measurements (top left); number of length sample from each year (top right); and the length frequency distribution (bottom left). The boxes show the median (black line), lower 25^{th} and upper 75^{th} percentile values of the distributions, the whiskers indicate the range in which most of the values fall and the points indicate outliers.

Figure 50: WCPFC observed purse seine length data for devilrays, showing the distribution of annual length measurements (top left); number of length sample from each year (top right); and the length frequency distribution (bottom left). The boxes show the median (black line), lower 25^{th} and upper 75^{th} percentile values of the distributions, the whiskers indicate the range in which most of the values fall and the points indicate outliers.

Figure 51: WCPFC distribution of the longline reported (top) and observed catch (bottom) for blue sharks from 1995-2019 presented as observed individuals per observed hooks set, shown for two time periods 1995-2014 (left) and 2015-2019 (right).

Figure 52: WCPFC distribution of the longline reported (top) and observed catch (bottom) for silky sharks from 1995-2019 presented as observed individuals per observed hooks set, shown for two time periods 1995-2014 (left) and 2015-2019 (right).

Figure 53: WCPFC distribution of the longline reported (top) and observed catch (bottom) for oceanic whitetip sharks from 1995-2019 presented as observed individuals per observed hooks set, shown for two time periods 1995-2014 (left) and 2015-2019 (right).

Figure 54: WCPFC distribution of the longline reported (top) and observed catch (bottom) for shortfin make sharks from 1995-2019 presented as observed individuals per observed hooks set, shown for two time periods 1995-2014 (left) and 2015-2019 (right).

Figure 55: WCPFC distribution of the longline reported (top) and observed catch (bottom) for longfin make sharks from 1995-2019 presented as observed individuals per observed hooks set, shown for two time periods 1995-2014 (left) and 2015-2019 (right).

Figure 56: WCPFC distribution of the longline reported (top) and observed catch (bottom) for common thresher sharks from 1995-2019 presented as observed individuals per observed hooks set, shown for two time periods 1995-2014 (left) and 2015-2019 (right).

Figure 57: WCPFC distribution of the longline reported (top) and observed catch (bottom) for bigeye thresher sharks from 1995-2019 presented as observed individuals per observed hooks set, shown for two time periods 1995-2014 (left) and 2015-2019 (right).

Figure 58: WCPFC distribution of the longline reported (top) and observed catch (bottom) for pelagic thresher sharks from 1995-2019 presented as observed individuals per observed hooks set, shown for two time periods 1995-2014 (left) and 2015-2019 (right).

Figure 59: WCPFC distribution of the longline reported (top) and observed catch (bottom) for porbeagle sharks from 1995-2019 presented as observed individuals per observed hooks set, shown for two time periods 1995-2014 (left) and 2015-2019 (right).

Figure 60: WCPFC distribution of the longline reported (top) and observed catch (bottom) for great hammerhead sharks from 1995-2019 presented as observed individuals per observed hooks set, shown for two time periods 1995-2014 (left) and 2015-2019 (right).

Figure 61: WCPFC distribution of the longline reported (top) and observed catch (bottom) for scalloped hammerhead sharks from 1995-2019 presented as observed individuals per observed hooks set, shown for two time periods 1995-2014 (left) and 2015-2019 (right).

Figure 62: WCPFC distribution of the longline reported (top) and observed catch (bottom) for smooth hammerhead sharks from 1995-2019 presented as observed individuals per observed hooks set, shown for two time periods 1995-2014 (left) and 2015-2019 (right).

Figure 63: WCPFC distribution of the longline reported (top) and observed catch (bottom) for winghead sharks from 1995-2019 presented as observed individuals per observed hooks set, shown for two time periods 1995-2014 (left) and 2015-2019 (right).

Figure 64: WCPFC distribution of the longline reported (top) and observed catch (bottom) for whale sharks from 1995-2019 presented as observed individuals per observed hooks set, shown for two time periods 1995-2014 (left) and 2015-2019 (right).

Figure 65: WCPFC research information summary sheet for blue shark in the north Pacific. This table presents the observed CPUE distribution (top left); length data by sex (top right); unstandardised CPUE (bottom left); and catch by gear (bottom right) where PS = purse seine and LL = longline. Definitions of the terms used in the sheet can be found in Table 5. Most data derived from the figures presented in Clarke et al. (2015), Chin and Simpfendorfer (2019), Fujinami et al. (2017), ISC (2017) and Fujinami et al. (2019).

Figure 66: WCPFC research information summary sheet for South Pacific blue shark. This table presents the observed CPUE distribution (top left); length data by sex (top right); unstandardised CPUE (bottom left); and catch by gear (bottom right) where PS = purse seine and LL = longline. Definitions of the terms used in the sheet can be found in Table 5. Most data derived from the figures presented in Clarke et al. (2015), Chin and Simpfendorfer (2019), Joung et al., 2018 and Takeuchi et al., 2016.

Figure 67: WCPFC research information summary sheet for silky shark. This table presents the observed CPUE distribution (top left); length data by sex (top right); unstandardised CPUE (bottom left); and catch by gear (bottom right) where PS = purse seine and LL = longline. Definitions of the terms used in the sheet can be found in Table 5. Most data derived from the figures presented in ABNJ (2018a), Clarke et al. (2015), Chin and Simpfendorfer (2019) and Rice and Harley (2012d).

Figure 68: WCPFC research information summary sheet for oceanic whitetip shark. This table presents the observed CPUE distribution (top left); length data by sex (top right); unstandardised CPUE (bottom left); and catch by gear (bottom right) where PS = purse seine and LL = longline. Definitions of the terms used in the sheet can be found in Table 5. Most data derived from the figures presented in Clarke et al. (2015), Chin and Simpfendorfer (2019) and Tremblay-Boyer and Neubauer (2019).

L max	231–375	Max age	13–30	Repro cycle	36	Spawning	Jan-Sep
k	0.05–0.25	Age recruit	0–1	Gestation	9–25	М	0.078-0.242
Len birth	59–74	Age mat	5–19	Litter size	4–17	r	1.047–1.088
LO	-6.083.65	Len mat	180–278	Pupping	Year round	Conv factors	Various
Sex specific parameters		Some		Steepness		Unknown	
Stock delineation		Unknown		Release mortality (%)		30 (LL)	
International conventions							
CITES				Appendix II			
CMS				Appendix II			
IUCN Red list				Endangered			
WCPFC CMMs							
CMM2014-05; CMM2010-07; CMM2019-04							

Figure 69: WCPFC research information summary sheet for shortfin make shark in the north Pacific. This table presents the observed CPUE distribution (top left); length data by sex (top right); unstandardised CPUE (bottom left); and catch by gear (bottom right) where PS = purse seine and LL = longline. Definitions of the terms used in the sheet can be found in Table 5. Most data derived from the figures presented in Clarke et al. (2015), Chin and Simpfendorfer (2019) and ISC (2018b).

Stock delineation	Tropics to warm temperate	Release mortality (%)	Unknown			
International conventions						
СП	ËS	Appendix II				
CI	лs	Appendix II				
IUCN F	Red list	Endangered				
WCPFC CMMs						
CMM2014–05; CMM2010–07; CMM2019–04						

Figure 70: WCPFC research information summary sheet for shortfin make shark in the south Pacific. This table presents the observed CPUE distribution (top left); length data by sex (top right); unstandardised CPUE (bottom left); and catch by gear (bottom right) where PS = purse seine and LL = longline. Definitions of the terms used in the sheet can be found in Table 5. Most data derived from the figures presented in Clarke et al. (2015), Chin and Simpfendorfer (2019) and Coelho et al. (2019).

Figure 71: WCPFC research information summary sheet for longfin make shark. This table presents the observed CPUE distribution (top left); length data by sex (top right); unstandardised CPUE (bottom left); and catch by gear (bottom right) where PS = purse seine and LL = longline. Definitions of the terms used in the sheet can be found in Table 5. Most data derived from the figures presented in Clarke et al. (2015), Chin and Simpfendorfer (2019) and Coelho et al. (2019).

Life theory							
L max	610–760	Max age	38–50	Repro cycle	Annual	Spawning	Unknown
k	0.108–0.129	Age recruit	Unknown	Gestation	9	М	0.176
Len birth	111–158	Age mat	3–9	Litter size	2–4	r	1.078–1.178
LO	-2.88	Len mat	260-400	Pupping	Jun–Apr (NA)	Conv factors	Some
Sex specific parameters		No		Steepness		Unknown	
Stock delineation		Unknown		Release mortality (%)		Unknown	
International conventions							
CITES Appendix II							
CMS				Appendix II			
IUCN Red list				Vulnerable			
WCPFC CMMs							
CMM2014-05; CMM2010-07; CMM2019-04							

Figure 72: WCPFC research information summary sheet for common thresher shark. This table presents the observed CPUE distribution (top left); length data by sex (top right); unstandardised CPUE (bottom left); and catch by gear (bottom right) where PS = purse seine and LL = longline. Definitions of the terms used in the sheet can be found in Table 5. Most data derived from the figures presented in Clarke et al. (2015), Chin and Simpfendorfer (2019) and Coelho et al. (2019).

Figure 73: WCPFC research information summary sheet for bigeye thresher shark. This table presents the observed CPUE distribution (top left); length data by sex (top right); unstandardised CPUE (bottom left); and catch by gear (bottom right) where PS = purse seine and LL = longline. Definitions of the terms used in the sheet can be found in Table 5. Most data derived from the figures presented in Clarke et al. (2015), Chin and Simpfendorfer (2019) and Fu et al. (2016).

Figure 74: WCPFC research information summary sheet for pelagic thresher shark. This table presents the observed CPUE distribution (top left); length data by sex (top right); unstandardised CPUE (bottom left); and catch by gear (bottom right) where PS = purse seine and LL = longline. Definitions of the terms used in the sheet can be found in Table 5. Most data derived from the figures presented in Clarke et al. (2015), Chin and Simpfendorfer (2019) and Coelho et al. (2019).

Figure 75: WCPFC research information summary sheet for porbeagle shark. This table presents the observed CPUE distribution (top left); length data by sex (top right); unstandardised CPUE (bottom left); and catch by gear (bottom right) where PS = purse seine and LL = longline. Definitions of the terms used in the sheet can be found in Table 5. Most data derived from the figures presented in Clarke et al. (2015), Chin and Simpfendorfer (2019) and Coelho et al. (2019).

Figure 76: WCPFC research information summary sheet for great hammerhead shark. This table presents the observed CPUE distribution (top left); length data by sex (top right); unstandardised CPUE (bottom left); and catch by gear (bottom right) where PS = purse seine and LL = longline. Definitions of the terms used in the sheet can be found in Table 5. Most data derived from the figures presented in Clarke et al. (2015), Chin and Simpfendorfer (2019) and Coelho et al. (2019).

Figure 77: WCPFC research information summary sheet for scalloped hammerhead shark. This table presents the observed CPUE distribution (top left); length data by sex (top right); unstandardised CPUE (bottom left); and catch by gear (bottom right) where PS = purse seine and LL = longline. Definitions of the terms used in the sheet can be found in Table 5. Most data derived from the figures presented in Clarke et al. (2015), Chin and Simpfendorfer (2019) and Coelho et al. (2019).

Figure 78: WCPFC research information summary sheet for smooth hammerhead shark. This table presents the observed CPUE distribution (top left); length data by sex (top right); unstandardised CPUE (bottom left); and catch by gear (bottom right) where PS = purse seine and LL = longline. Definitions of the terms used in the sheet can be found in Table 5. Most data derived from the figures presented in Clarke et al. (2015), Chin and Simpfendorfer (2019) and Coelho et al. (2019).

Figure 79: WCPFC research information summary winghead shark. This table presents the observed CPUE distribution (top left); length data by sex (top right); unstandardised CPUE (bottom left); and catch by gear (bottom right) where PS = purse seine and LL = longline. Definitions of the terms used in the sheet can be found in Table 5. Most data derived from the figures presented in Clarke et al. (2015), Chin and Simpfendorfer (2019) and Coelho et al. (2019).

Figure 80: WCPFC research information summary sheet for whale shark. This table presents the observed CPUE distribution (top left); length data by sex (top right); unstandardised CPUE (bottom left); and catch by gear (bottom right) where PS = purse seine and LL = longline. Definitions of the terms used in the sheet can be found in Table 5. Most data derived from the figures presented in Clarke et al. (2015), Chin and Simpfendorfer (2019) and Coelho et al. (2019).

Figure 81: WCPFC research information summary sheet for giant manta ray. This table presents the observed CPUE distribution (top left); length data by sex (top right); unstandardised CPUE (bottom left); and catch by gear (bottom right) where PS = purse seine and LL = longline. Definitions of the terms used in the sheet can be found in Table 5. Most data derived from the figures presented in Clarke et al. (2015), Chin and Simpfendorfer (2019) and Coelho et al. (2019).

Figure 82: WCPFC research information summary sheet for giant devilray. This table presents the observed CPUE distribution (top left); length data by sex (top right); unstandardised CPUE (bottom left); and catch by gear (bottom right) where PS = purse seine and LL = longline. Definitions of the terms used in the sheet can be found in Table 5. Most data derived from the figures presented in Clarke et al. (2015), Chin and Simpfendorfer (2019) and Coelho et al. (2019).

Figure 83: The fate (top); condition at capture (middle); and the condition at release (bottom) of longline caught blue sharks in the north Pacific. DIS = Discarded; RET = Retained; ECS = Escaped.

Figure 84: The fate (top); condition at capture (middle); and the condition at release (bottom) of longline caught South Pacific blue sharks. DIS = Discarded; RET = Retained; ECS = Escaped.

Figure 85: The fate (top); condition at capture (middle); and the condition at release (bottom) of longline caught silky sharks. DIS = Discarded; RET = Retained; ECS = Escaped.

Figure 86: The fate (top); condition at capture (middle); and the condition at release (bottom) of longline caught oceanic whitetip sharks. DIS = Discarded; RET = Retained; ECS = Escaped.

Figure 87: The fate (top); condition at capture (middle); and the condition at release (bottom) of longline caught shortfin make sharks in the north Pacific. DIS = Discarded; RET = Retained; ECS = Escaped.

Figure 88: The fate (top); condition at capture (middle); and the condition at release (bottom) of longline caught shortfin make sharks in the south Pacific. DIS = Discarded; RET = Retained; ECS = Escaped.

Figure 89: The fate (top); condition at capture (middle); and the condition at release (bottom) of longline caught longfin make sharks. DIS = Discarded; RET = Retained; ECS = Escaped.

Figure 90: The fate (top); condition at capture (middle); and the condition at release (bottom) of longline caught common thresher sharks. DIS = Discarded; RET = Retained; ECS = Escaped.

Figure 91: The fate (top); condition at capture (middle); and the condition at release (bottom) of longline bigeye thresher sharks. DIS = Discarded; RET = Retained; ECS = Escaped.

Figure 92: The fate (top); condition at capture (middle); and the condition at release (bottom) of longline caught pelagic thresher sharks. DIS = Discarded; RET = Retained; ECS = Escaped.

Figure 93: The fate (top); condition at capture (middle); and the condition at release (bottom) of longline caught porbeagle sharks. DIS = Discarded; RET = Retained; ECS = Escaped.

Figure 94: The fate (top); condition at capture (middle); and the condition at release (bottom) of longline caught great hammerhead sharks. DIS = Discarded; RET = Retained; ECS = Escaped.

Figure 95: The fate (top); condition at capture (middle); and the condition at release (bottom) of longline caught scalloped hammerhead sharks. DIS = Discarded; RET = Retained; ECS = Escaped.

Figure 96: The fate (top); condition at capture (middle); and the condition at release (bottom) of longline caught smooth hammerhead sharks. DIS = Discarded; RET = Retained; ECS = Escaped.

Figure 97: The fate (top); condition at capture (middle); and the condition at release (bottom) of longline caught winghead sharks. DIS = Discarded; RET = Retained; ECS = Escaped.

WCPO shark stock status

Figure 98: Kobe plot showing the agreed stock status for WCPFC stocks assessed with Data Rich assessments.

Low information metrics from Zhou et al. (2019) Table 4

Figure 99: Zoom plot showing the productivity and Fishing Mortality metrics rescaled from Zhou et al. (2019) as a ratio relative to F_{crash} for WCPFC stocks for medium and data assessments. F_{risk} is not reported in Zhou et al. (2019) but simply shown here as 10% below F_{crash} . The cyan points are estimated F converted to F/F_{risk} . Note as yet these metrics have not been agreed by the WCPFC nor the SC, but are shown here for illustrative purposes as a potential means to illustrate stock status for medium and data assessments.

Name (Species name) colour coded for high, medium and low as per SC15 priority									
Assessment type	Inp	uts	Data needs	Do we have it	Data certainty	Can we do it? If yes, should we?			
		Age	Reliable age-length	This coulum describes	How reliable are	Can we do an			
	Biology	Marurity	Marurity schedule	whether or not we	these data based on	assessment with level			
	Diology	Structure	Understand Structure	have the data	the criteria specified	of data?			
Dich data		М	Reliable M	required for this type of	in Table 5.	If yes, should we do it?			
Richuala		Catch	Catch history >=20 yr	assesment.		Or would a lower level			
	Fisheries	Effort	Effort data			of information be			
		Length	Length from fisheries			appropriate?			
		Weight	Weight from fisheries						
		Growth	Reliable age-length						
	Biology	Maturity	Marurity schedule						
Modium data		Structure	Understand Structure						
ivieulum uala		Catch/effort	Catch/effort >=10 yr						
	Fisheries	Length	Length						
		Weight	Weight						
Poor data	Dick	Catch obs.	Catch location						
1 UUI Uala	IN SIV	Exp. advice	Prod. & sust. estimates						
Research needs	List of the to	p 3 or 4 rese	arch needs						

Figure 100: WCPFC research report card explanatory card. The colour bar at the top shows the research priority as agreed at SC15: red = high; gold = medium; blue = low; and the definitions for the data certainty criteria can be found in Table 6.

Blue shark (NP) (Prionace glauca) high priority								
Assessment type	Inp	uts	Data needs	Do we have it	Data certainty	Can we do it? If yes, should we?		
		Age	Reliable age-length	Yes	High	Can de done		
	Biology	Marurity	Marurity schedule	Yes	High	SC13-SA-WP-10		
	Diology	Structure	Understand Structure	No	Medium	Should be repeated		
Dich data		М	Reliable M	Yes	High	Gaps in observer data		
Richuala		Catch	Catch history >=20 yr	Yes	High	inhibit accurate catch		
Fi	Fisheries	Effort	Effort data	Yes	High	history estimation.		
		Length	Length from fisheries	Yes	High			
		Weight	Weight from fisheries	Yes	High			
		Growth	Reliable age-length	Yes	High	Can de done		
	Biology	Maturity	Marurity schedule	Yes	High	Should include medium		
Madium data		Structure	Understand Structure	No	Medium	information metrics		
medium data		Catch/effort	Catch/effort >=10 yr	Yes	High	if data rich assessment		
	Fisheries	Length	Length	Yes	High	done.		
		Weight	Weight	Yes	High]		
Door data	Dick	Catch obs.	Catch location	Yes	High	Not required if above		
POULOII	RISK	Exp. advice	Prod. & sust. estimates	Yes	SC3-EB SWG/WP-01	done		
Research needs	Spatio-temp Develop cato Resolve unc	Spatio-temporal representative observer coverage, refine stock structure information Develop catch history throughout range in WCPO. Collect length-weight and length-length data						

Figure 101: WCPFC research report card for blue shark in the north Pacific. The colour bar at the top shows the research priority as agreed at SC15: red = high; gold = medium; blue = low; and the definitions for the data certainty criteria can be found in Table 6.

Blue shark (SP) (Prionace glauca) high priority								
Assessment type	Inp	outs	Data needs	Do we have it	Data certainty	Can we do it? If yes, should we?		
		Age	Reliable age-length	Yes	High	Can be done if data		
	Biology	Marurity	Marurity schedule	Yes	High	Improves		
	Diology	Structure	Understand Structure	No	Medium			
Dich data		M	Reliable M	Yes	Medium	Gaps in observer data		
Rich uala		Catch	Catch history >=20 yr	Yes	Medium	inhibit accurate catch		
	Fisheries	Effort	Effort data	Yes	High	history estimation.		
		Length	Length from fisheries	Yes	Medium			
		Weight	Weight from fisheries	Yes	Medium			
		Growth	Reliable age-length	Yes	High	Can de done		
	Biology	Maturity	Marurity schedule	Yes	Medium	Estimates of Flim		
Modium data		Structure	Understand Structure	No	Medium	and Fcrash or		
iviedium data		Catch/effort	Catch/effort >=10 yr	Yes	Medium	Surplus production mode		
	Fisheries	Length	Length	Yes	High			
		Weight	Weight	Yes	Medium]		
Door data	Dick	Catch obs.	Catch location	Yes	High	Not required if above		
Poor data	RISK	Exp. advice	Prod. & sust. estimates	Yes	SC3-EB SWG/WP-01	done		
Desearch	Develop cate	ch history thr	oughout range in WCPO					
needs	Collect lengt	th-weight and	length-length data, and ag	ge data throughout the ran	ge			
needs	Resolve unc	ertainties in r	eproductive schedule					

Figure 102: WCPFC research report card for South Pacific blue shark. The colour bar at the top shows the research priority as agreed at SC15: red = high; gold = medium; blue = low; and the definitions for the data certainty criteria can be found in Table 6.

Silky shark (Carcharhinus falciformis) high priority								
Assessment type	Inp	uts	Data needs	Do we have it	Data certainty	Can we do it? If yes, should we?		
		Age	Reliable age-length	Yes	Medium	Can de done		
	Biology	Marurity	Marurity schedule	Yes	High	SC9-SA-WP-03		
	Diology	Structure	Understand Structure	No	Medium	Should be repeated		
Dich data		М	Reliable M	Yes	Medium	Gaps in observer data		
Ricii udid		Catch	Catch history >=20 yr	Yes	High	inhibit accurate catch		
Fi	Fisheries	Effort	Effort data	Yes	High	history estimation.		
		Length	Length from fisheries	Yes	Medium			
		Weight	Weight from fisheries	Yes	Medium			
		Growth	Reliable age-length	Yes	High	Can de done		
	Biology	Maturity	Marurity schedule	Yes	High	Should include medium		
Modium data		Structure	Understand Structure	Yes	High	information metrics		
medium data		Catch/effort	Catch/effort >=10 yr	Yes	High	if data rich assessment		
	Fisheries	Length	Length	Yes	High	done.		
		Weight	Weight	Yes	high]		
Door data	Dick	Catch obs.	Catch location	Yes	High	Not required if above		
FUUI Uala	RISK	Exp. advice	Prod. & sust. estimates	Yes	SC3-EB SWG/WP-01	done		
Research needs	Spatio-temp Develop cato Collect lengt	Spatio-temporal representative observer coverage, release mortality estimates Develop catch history throughout range in WCPO. Determine the reproductive schedule and periodicity						

Figure 103: WCPFC research report card for silky shark. The colour bar at the top shows the research priority as agreed at SC15: red = high; gold = medium; blue = low; and the definitions for the data certainty criteria can be found in Table 6.

Oceanic whitetip shark (Carcharhinus longimanus) high priority								
Assessment type	Inp	uts	Data needs	Do we have it	Data certainty	Can we do it? If yes, should we?		
		Age	Reliable age-length	Yes	Medium	Can de done		
	Biology	Marurity	Marurity schedule	Yes	Medium	SC15-SA-WP-06		
	biology	Structure	Understand Structure	No	Medium	Should be repeated		
Dich data		М	Reliable M	Yes	Medium	Gaps in observer data		
Rich data		Catch	Catch history >=20 yr	Yes	Medium	inhibit accurate catch		
Fis	Fisheries	Effort	Effort data	Yes	High	history estimation.		
		Length	Length from fisheries	Yes	High			
		Weight	Weight from fisheries	Yes	High			
		Growth	Reliable age-length	Yes	High	Can de done		
	Biology	Maturity	Marurity schedule	Yes	High	Should include medium		
Madium data		Structure	Understand Structure	No		information metrics		
iviedium data		Catch/effort	Catch/effort >=10 yr	Yes	Medium	if data rich assessment		
	Fisheries	Length	Length	Yes	High	done.		
		Weight	Weight	Yes	High]		
Door data	Dick	Catch obs.	Catch location	Yes	High	Not required if above		
POULOII	RISK	Exp. advice	Prod. & sust. estimates	Yes	SC3-EB SWG/WP-01	done		
Research needs	Spatio-temp Develop cato Collect lengt	Spatio-temporal representative observer coverage, refine stock structure information Develop catch history throughout range in WCPO. Collect region-specific life history parameters						

Figure 104: WCPFC research report card for oceanic whitetip shark. The colour bar at the top shows the research priority as agreed at SC15: red = high; gold = medium; blue = low; and the definitions for the data certainty criteria can be found in Table 6.

Shortfin mako - NP (Isurus oxyrinchus) high priority								
Assessment type	Inp	uts	Data needs	Do we have it	Data certainty	Can we do it? If yes, should we?		
		Age	Reliable age-length	Yes	Medium	Can de done		
	Biology	Marurity	Marurity schedule	Yes	Medium	SC14-SA-WP-11		
	Diology	Structure	Understand Structure	No	Medium	Should be repeated		
Dich data		М	Reliable M	Yes	Low	Gaps in observer data		
Rich uala		Catch	Catch history >=20 yr	Yes	Medium	inhibit accurate catch		
F	Fisheries	Effort	Effort data	Yes	High	history estimation.		
		Length	Length from fisheries	Yes	Medium]		
		Weight	Weight from fisheries	Yes	Medium			
		Growth	Reliable age-length	Yes	Medium	Can de done		
	Biology	Maturity	Marurity schedule	Yes	Medium	Should include medium		
Modium data		Structure	Understand Structure	No	Medium	information metrics		
ivieurum uata		Catch/effort	Catch/effort >=10 yr	Yes	High	if data rich assessment		
	Fisheries	Length	Length	Yes	Medium	done.		
		Weight	Weight	Yes	Medium			
Door data	Dick	Catch obs.	Catch location	Yes	Medium	Not required if above		
FUULDALA	RISK	Exp. advice	Prod. & sust. estimates	Yes	SC3-EB SWG/WP-01	done		
Research needs	Spatio-temp Develop cato Resolve unc	Spatio-temporal representative observer coverage, refine stock structure information Develop catch history throughout range in WCPO. Collect length-weight and length-length data						

Figure 105: WCPFC research report card for shortfin make shark in the north Pacific. The colour bar at the top shows the research priority as agreed at SC15: red = high; gold = medium; blue = low; and the definitions for the data certainty criteria can be found in Table 6.

Shortfin mako - SP (Isurus oxyrinchus) high priority								
Assessment type	Inp	uts	Data needs	Do we have it	Data certainty	Can we do it? If yes, should we?		
		Age	Reliable age-length	Yes	Medium	Can be done if data		
	Biology	Marurity	Marurity schedule	Yes	Medium	Improves		
	Diology	Structure	Understand Structure	No	Medium			
Dich data		М	Reliable M	Yes	Low	Gaps in observer data		
Rich dala		Catch	Catch history >=20 yr	Yes	Medium	inhibit accurate catch		
	Fisheries	Effort	Effort data	Yes	High	history estimation.		
		Length	Length from fisheries	Yes	Medium]		
		Weight	Weight from fisheries	Yes	Medium	1		
		Growth	Reliable age-length	Yes	Medium	YES		
	Biology	Maturity	Marurity schedule	Yes	Medium	Should be done		
Madium data		Structure	Understand Structure	No	Medium			
medium data		Catch/effort	Catch/effort >=10 yr	Yes	Medium	Could be done as		
	Fisheries	Length	Length	Yes	Medium	indicator analysis		
		Weight	Weight	Yes	Medium]		
Door data	Dick	Catch obs.	Catch location	Yes	Medium	Not required if above		
Poor data	RISK	Exp. advice	Prod. & sust. estimates	Yes	SC3-EB SWG/WP-01	done		
Research needs	Spatio-temp Develop cato Collect lengt	Spatio-temporal representative observer coverage, refine stock structure information Develop catch history throughout range in WCPO. Collect region-specific life history parameters						

Figure 106: WCPFC research report card for shortfin make shark in the south Pacific. The colour bar at the top shows the research priority as agreed at SC15: red = high; gold = medium; blue = low; and the definitions for the data certainty criteria can be found in Table 6.

Longfin mako (Isurus paucus) low priority								
Assessment type	Inp	uts	Data needs	Do we have it	Data certainty	Can we do it? If yes, should we?		
		Age	Reliable age-length	No		NO		
	Biology	Marurity	Marurity schedule	No				
	Diology	Structure	Understand Structure	No				
Dich data		М	Reliable M	No				
Richuala		Catch	Catch history >=20 yr	Yes	Low			
	Fisheries	Effort	Effort data	Yes	High			
		Length	Length from fisheries	Yes	Low			
		Weight	Weight from fisheries	Yes	Low			
		Growth	Reliable age-length	No		NO		
	Biology	Maturity	Marurity schedule	No				
Madium data		Structure	Understand Structure	No				
medium data		Catch/effort	Catch/effort >=10 yr	Yes	Low			
	Fisheries	Length	Length	Yes	Medium			
		Weight	Weight	Yes	Low			
Door data	Dick	Catch obs.	Catch location	Yes	Medium	EASI-Fish, SAFE		
Poor data	RISK	Exp. advice	Prod. & sust. estimates	Yes	SC3-EB SWG/WP-01	or similar		
Research needs	Spatio-temp Develop cato	Spatio-temporal representative observer coverage, refine stock structure information Develop catch history throughout range in WCPO, improve biological estimates						

Figure 107: WCPFC research report card for longfin make shark. The colour bar at the top shows the research priority as agreed at SC15: red = high; gold = medium; blue = low; and the definitions for the data certainty criteria can be found in Table 6.

Common thresher (Alopias vulpinus) low priority								
Assessment type	Inp	uts	Data needs	Do we have it	Data certainty	Can we do it? If yes, should we?		
		Age	Reliable age-length	Yes	Medium	No		
	Biology	Marurity	Marurity schedule	Yes	Low			
	Diology	Structure	Understand Structure	No	Low			
Dich data		М	Reliable M	Yes	Low			
Rich uala		Catch	Catch history >=20 yr	Yes	Low			
	Fisheries	Effort	Effort data	Yes	High			
		Length	Length from fisheries	Yes	Low			
		Weight	Weight from fisheries	Yes	Low			
		Growth	Reliable age-length	Yes	High	Can de done		
	Biology	Maturity	Marurity schedule	Yes	Low	Estimates of Flim		
Modium data		Structure	Understand Structure	No	Low	and Fcrash		
iviedium data		Catch/effort	Catch/effort >=10 yr	Yes	Medium			
	Fisheries	Length	Length	Yes	Low			
		Weight	Weight	Yes	Medium			
Poor data	Dick	Catch obs.	Catch location	Yes	Medium	EASI-Fish, SAFE		
FUUI Udid	NISK	Exp. advice	Prod. & sust. estimates	Yes	SC3-EB SWG/WP-01	or similar		
Research needs	Spatio-temp Develop cato Collect lengt	Spatio-temporal representative observer coverage, refine stock structure information Develop catch history throughout range in WCPO. Collect region-specific life history parameters Collect length weight and length length data						

Figure 108: WCPFC research report card for common thresher shark. The colour bar at the top shows the research priority as agreed at SC15: red = high; gold = medium; blue = low; and the definitions for the data certainty criteria can be found in Table 6.

Bigeye thresher (Alopias superciliosus) medium priority								
Assessment type	Inp	uts	Data needs	Do we have it	Data certainty	Can we do it? If yes, should we?		
		Age	Reliable age-length	Yes	Medium	NO		
	Biology	Marurity	Marurity schedule	Yes	Medium			
	Diology	Structure	Understand Structure	No				
Dich data		М	Reliable M	No	Low			
Richuala		Catch	Catch history >=20 yr	Yes	Medium			
	Ficharias	Effort	Effort data	Yes	High			
	FISHEIRES	Length	Length from fisheries	Yes	Medium			
		Weight	Weight from fisheries	Yes	Low]		
		Growth	Reliable age-length	Yes	Low	Can de done		
	Biology	Maturity	Marurity schedule	Yes	Low	Estimates of Flim		
Madium data		Structure	Understand Structure	No		and Fcrash or		
medium data		Catch/effort	Catch/effort >=10 yr	Yes	Medium	Surplus production mode		
	Fisheries	Length	Length	Yes	High	SC13-SA-WP-11		
		Weight	Weight	Yes	Medium	1		
Door data	Dick	Catch obs.	Catch location	Yes	High	Not required if above		
Poor data	RISK	Exp. advice	Prod. & sust. estimates	Yes	SC3-EB SWG/WP-01	done		
Research needs	Spatio-temp Develop cato Collect lengt	Spatio-temporal representative observer coverage, refine stock structure information Develop catch history throughout range in WCPO. Collect region-specific life history parameters						

Figure 109: WCPFC research report card for bigeye thresher shark. The colour bar at the top shows the research priority as agreed at SC15: red = high; gold = medium; blue = low; and the definitions for the data certainty criteria can be found in Table 6.

Pelagic thresher (Alopias pelagicus) low priority								
Assessment type	Inp	uts	Data needs	Do we have it	Data certainty	Can we do it? If yes, should we?		
		Age	Reliable age-length	Yes	Medium	NO		
	Biology	Marurity	Marurity schedule	Yes	Medium			
	Diology	Structure	Understand Structure	No	Low			
Dich data		М	Reliable M	No				
Richudia		Catch	Catch history >=20 yr	Yes	Medium			
Fie	Fisheries	Effort	Effort data	Yes	High			
		Length	Length from fisheries	Yes	Low			
		Weight	Weight from fisheries	Yes	Low			
		Growth	Reliable age-length	Yes	Medium	Can de done		
	Biology	Maturity	Marurity schedule	Yes	Medium	Estimates of Flim		
Madium data		Structure	Understand Structure	No	Low	and Fcrash		
medium data		Catch/effort	Catch/effort >=10 yr	Yes	Low			
	Fisheries	Length	Length	Yes	Medium			
		Weight	Weight	Yes	Medium]		
Door data	Dick	Catch obs.	Catch location	Yes	Medium	EASI-Fish, SAFE		
POULOAIA	RISK	Exp. advice	Prod. & sust. estimates	Yes	SC3-EB SWG/WP-01	or similar		
Research needs	Spatio-temp Develop cato Collect lengt	Spatio-temporal representative observer coverage, refine stock structure information Develop catch history throughout range in WCPO, improve biological estimates						

Figure 110: WCPFC research report card for pelagic thresher shark. The colour bar at the top shows the research priority as agreed at SC15: red = high; gold = medium; blue = low; and the definitions for the data certainty criteria can be found in Table 6.

Porbeagle shark (Lamna nasus) low priority								
Assessment type	Inp	uts	Data needs	Do we have it	Data certainty	Can we do it? If yes, should we?		
		Age	Reliable age-length	Yes	High	NO		
	Biology	Marurity	Marurity schedule	Yes	High			
	Diology	Structure	Understand Structure	Yes	Medium			
Dich data		М	Reliable M	Yes	Medium			
Richuala		Catch	Catch history >=20 yr	Yes	High			
-	Fisheries	Effort	Effort data	Yes	High			
		Length	Length from fisheries	Yes	Medium			
		Weight	Weight from fisheries	Yes	Medium			
		Growth	Reliable age-length	Yes	High	Can de done		
	Biology	Maturity	Marurity schedule	Yes	High	Estimates of Flim		
Madium data		Structure	Understand Structure	Yes	High	and Fcrash or		
medium data		Catch/effort	Catch/effort >=10 yr	Yes	Medium	Surplus production model		
	Fisheries	Length	Length	Yes	High			
		Weight	Weight	Yes	Medium]		
Door data	Dick	Catch obs.	Catch location	Yes	Medium	Not required if above		
POULOII	RISK	Exp. advice	Prod. & sust. estimates	Yes	SC3-EB SWG/WP-01	done		
Research needs	Spatio-temp Develop cato Resolve life l	Spatio-temporal representative observer coverage Develop catch history throughout range in WCPO						

Figure 111: WCPFC research report card for porbeagle shark. The colour bar at the top shows the research priority as agreed at SC15: red = high; gold = medium; blue = low; and the definitions for the data certainty criteria can be found in Table 6.

Great hammerhead (Sphyrna mokarran) low priority								
Assessment type	Inputs		Data needs	Do we have it	Data certainty	Can we do it? If yes, should we?		
		Age	Reliable age-length	Yes	Low	NO		
	Biology	Marurity	Marurity schedule	Yes	Low			
	Diology	Structure	Understand Structure	No	Low			
Dich data		М	Reliable M	No	Low			
Rich uala	Fisheries	Catch	Catch history >=20 yr	Yes	Low			
		Effort	Effort data	Yes	Medium			
		Length	Length from fisheries	Yes	Low			
		Weight	Weight from fisheries	Yes	Low			
	Biology	Growth	Reliable age-length	No		Can de done		
		Maturity	Marurity schedule	No		Estimates of Flim		
Modium data		Structure	Understand Structure	No	Low	and Fcrash		
iviedium data		Catch/effort	Catch/effort >=10 yr	Yes	Low			
	Fisheries	Length	Length	Yes	Low			
		Weight	Weight	Yes	Low			
Door data	Dick	Catch obs.	Catch location	Yes	Low	EASI-Fish, SAFE		
Poor data	RISK	Exp. advice	Prod. & sust. estimates	Yes	SC3-EB SWG/WP-01	or similar		
Besearch	Spatio-temp	oral represen	tative observer coverage, r	efine stock structure inforr	nation			
needs	Develop cate	ch history thr	oughout range in WCPO. (Collect region-specific life I	history parameters			
needs	Collect length-weight and length-length data, improve biological estimates							

Figure 112: WCPFC research report card for great hammerhead shark. The colour bar at the top shows the research priority as agreed at SC15: red = high; gold = medium; blue = low; and the definitions for the data certainty criteria can be found in Table 6.

Scalloped hammerhead (Sphyrna lewini) low priority								
Assessment type	Inputs		Data needs	Do we have it	Data certainty	Can we do it? If yes, should we?		
		Age	Reliable age-length	Yes	Low	NO		
	Biology	Marurity	Marurity schedule	Yes	Low			
	Diology	Structure	Understand Structure	No	Low			
Dich data		М	Reliable M	Yes	Medium			
Richuala	Fisheries	Catch	Catch history >=20 yr	Yes	Low			
		Effort	Effort data	Yes	Medium			
		Length	Length from fisheries	Yes	Low			
		Weight	Weight from fisheries	Yes	Low			
	Biology	Growth	Reliable age-length	No		Can de done		
		Maturity	Marurity schedule	No		Estimates of Flim		
Madium data		Structure	Understand Structure	No		and Fcrash		
medium data	Fisheries	Catch/effort	Catch/effort >=10 yr	Yes	Medium			
		Length	Length	Yes	Medium			
		Weight	Weight	Yes	Medium			
Door data	Risk	Catch obs.	Catch location	Yes	Medium	EASI-Fish, SAFE		
Poor data		Exp. advice	Prod. & sust. estimates	Yes	SC3-EB SWG/WP-01	or similar		
Research needs	Spatio-temporal representative observer coverage, refine stock structure information Develop catch history throughout range in WCPO. Collect region-specific life history parameters							

Figure 113: WCPFC research report card for scalloped hammerhead shark. The colour bar at the top shows the research priority as agreed at SC15: red = high; gold = medium; blue = low; and the definitions for the data certainty criteria can be found in Table 6.

Smooth hammerhead (Sphyrna zygaena) low priority								
Assessment type	Inputs		Data needs	Do we have it	Data certainty	Can we do it? If yes, should we?		
		Age	Reliable age-length	Yes	Low	NO		
	Biology	Marurity	Marurity schedule	Yes	Low			
	Diology	Structure	Understand Structure	Yes	Low			
Dich data		М	Reliable M	No	Low			
Rich uala	Fisheries	Catch	Catch history >=20 yr	Yes	Low			
		Effort	Effort data	Yes	Medium			
		Length	Length from fisheries	Yes	Low			
		Weight	Weight from fisheries	Yes	Low			
	Biology	Growth	Reliable age-length	No		Can de done		
		Maturity	Marurity schedule	No		Estimates of Flim		
Modium data		Structure	Understand Structure	No		and Fcrash		
iviedium data		Catch/effort	Catch/effort >=10 yr	Yes	Medium			
	Fisheries	Length	Length	Yes	Low			
		Weight	Weight	Yes	Low			
Door data	Dick	Catch obs.	Catch location	Yes	Low	EASI-Fish, SAFE		
Poor data	RISK	Exp. advice	Prod. & sust. estimates	Yes	SC3-EB SWG/WP-01	or similar		
Desearch	Spatio-temp	oral represen	tative observer coverage, r	efine stock structure inforr	nation			
needs	Develop cate	ch history thr	oughout range in WCPO, i	mprove coastal fishery cat	ch estimates			
needs	Collect length-weight and length-length data, improve biological estimates							

Figure 114: WCPFC research report card for smooth hammerhead shark. The colour bar at the top shows the research priority as agreed at SC15: red = high; gold = medium; blue = low; and the definitions for the data certainty criteria can be found in Table 6.

Winghead shark (Eusphyra blochii) low priority								
Assessment type	Inputs		Data needs	Do we have it	Data certainty	Can we do it? If yes, should we?		
		Age	Reliable age-length	Yes	Low	NO		
	Biology	Marurity	Marurity schedule	Yes	Low			
	Diology	Structure	Understand Structure	No	Low			
Dich data		М	Reliable M	No	Low			
Richudia	Fisheries	Catch	Catch history >=20 yr	Yes	Low			
		Effort	Effort data	Yes	Medium			
		Length	Length from fisheries	Yes	Low			
		Weight	Weight from fisheries	Yes	Low			
	Biology	Growth	Reliable age-length	No		NO		
		Maturity	Marurity schedule	No				
Medium data		Structure	Understand Structure	No				
medium data	Fisheries	Catch/effort	Catch/effort >=10 yr	Yes	Low			
		Length	Length	Yes	Low			
		Weight	Weight	Yes	Low			
Poor data	Risk	Catch obs.	Catch location	Yes	Low	EASI-Fish, SAFE		
Poor data		Exp. advice	Prod. & sust. estimates	Yes	SC3-EB SWG/WP-01	or similar		
Research needs	Spatio-temporal representative observer coverage, refine stock structure information Develop catch history throughout range in WCPO. Collect region-specific life history parameters							

Figure 115: WCPFC research report card for winghead shark. The colour bar at the top shows the research priority as agreed at SC15: red = high; gold = medium; blue = low; and the definitions for the data certainty criteria can be found in Table 6.

Whale shark (Rhincodon typus) low priority								
Assessment type	Inputs		Data needs	Do we have it	Data certainty	Can we do it? If yes, should we?		
		Age	Reliable age-length	Yes	Low	NO		
	Biology	Marurity	Marurity schedule	Yes	Low			
	Diology	Structure	Understand Structure	Yes	Low			
Dich data		М	Reliable M	Yes	Low			
Rich data	Fisheries	Catch	Catch history >=20 yr	Yes	Medium			
		Effort	Effort data	Yes	High]		
		Length	Length from fisheries	Yes	Low]		
		Weight	Weight from fisheries	No]		
	Biology	Growth	Reliable age-length	Yes	Low	NO		
		Maturity	Marurity schedule	Yes	Low			
Modium data		Structure	Understand Structure	Yes	Low			
medium data		Catch/effort	Catch/effort >=10 yr	Yes	High]		
	Fisheries	Length	Length	Yes	Low			
		Weight	Weight	No				
Door data	Risk	Catch obs.	Catch location	Yes	High	EASI-Fish, SAFE		
Poor data		Exp. advice	Prod. & sust. estimates	Yes	SC3-EB SWG/WP-01	or similar		
Research needs	Refine stock structure information Improve biological estimates							
	Quantify the post release survival of released whale sharks in the WCPO purse seine fishery							

Figure 116: WCPFC research report card for whale shark. The colour bar at the top shows the research priority as agreed at SC15: red = high; gold = medium; blue = low; and the definitions for the data certainty criteria can be found in Table 6.

Giant manta (Manta birostris) medium priority								
Assessment type	Inputs		Data needs	Do we have it	Data certainty	Can we do it? If yes, should we?		
		Age	Reliable age-length	No		NO		
	Biology	Marurity	Marurity schedule	No				
	Diology	Structure	Understand Structure	No				
Dich data		М	Reliable M	No				
RICII Uala	Fisheries	Catch	Catch history >=20 yr	Yes	Low			
		Effort	Effort data	Yes	High			
		Length	Length from fisheries	No				
		Weight	Weight from fisheries	No				
	Biology	Growth	Reliable age-length	No		NO		
		Maturity	Marurity schedule	No				
Madium data		Structure	Understand Structure	No				
wedium data		Catch/effort	Catch/effort >=10 yr	Yes	Low			
	Fisheries	Length	Length	Yes	Low			
		Weight	Weight	No				
Poor data	Risk	Catch obs.	Catch location	Yes	Low	EASI-Fish, SAFE		
Poor data		Exp. advice	Prod. & sust. estimates	Yes	SC3-EB SWG/WP-01	or similar		
Research needs	Assess species composition of generic codes, develop catch histories Improve biological estimates							

Figure 117: WCPFC research report card for giant manta ray. The colour bar at the top shows the research priority as agreed at SC15: red = high; gold = medium; blue = low; and the definitions for the data certainty criteria can be found in Table 6.

Spinetail devil ray (Mobula mobula) medium priority								
Assessment type	Inputs		Data needs	Do we have it	Data certainty	Can we do it? If yes, should we?		
		Age	Reliable age-length	No		NO		
	Biology	Marurity	Marurity schedule	No				
	Diology	Structure	Understand Structure	No				
Dich data		М	Reliable M	No				
RICII Uala	Fisheries	Catch	Catch history >=20 yr	Yes	Low			
		Effort	Effort data	Yes	Medium			
		Length	Length from fisheries	No				
		Weight	Weight from fisheries	No				
	Biology	Growth	Reliable age-length	No		NO		
		Maturity	Marurity schedule	No				
Madium data		Structure	Understand Structure	No				
wedium data	Fisheries	Catch/effort	Catch/effort >=10 yr	Yes	Low			
		Length	Length	Yes	Low			
		Weight	Weight	No				
Poor data	Risk	Catch obs.	Catch location	Yes	Low	EASI-Fish, SAFE		
Poor data		Exp. advice	Prod. & sust. estimates	Yes	SC3-EB SWG/WP-01	or similar		
Research needs	Assess species composition of generic codes, develop catch histories Improve biological estimates							

Figure 118: WCPFC research report card for giant devilray. The colour bar at the top shows the research priority as agreed at SC15: red = high; gold = medium; blue = low; and the definitions for the data certainty criteria can be found in Table 6.

Appendix I - Country specific plots

WCPFC reported longline shark catch - AS

Figure AI - 1: Longline logsheet reporting data for American Samoan flagged vessels showing the number of sharks reported by species and species group.

WCPFC reported longline shark catch - AU

Figure AI - 2: Longline logsheet reporting data for Australian flagged vessels showing the number of sharks reported by species and species group.

WCPFC reported longline shark catch - BZ

Figure AI - 3: Longline logsheet reporting data for Belize flagged vessels showing the number of sharks reported by species and species group.

WCPFC reported longline shark catch - CK

Figure AI - 4: Longline logsheet reporting data for the Cook Islands flagged vessels showing the number of sharks reported by species and species group.

WCPFC reported longline shark catch - CN

Figure AI - 5: Longline logsheet reporting data for Chinese flagged vessels showing the number of sharks reported by species and species group.

WCPFC reported longline shark catch - ES

Figure AI - 6: Longline logsheet reporting data for EC - Spanish flagged vessels showing the number of sharks reported by species and species group.

WCPFC reported longline shark catch - FJ

Figure AI - 7: Longline logsheet reporting data for Fijian flagged vessels showing the number of sharks reported by species and species group.

WCPFC reported longline shark catch - FM

Figure AI - 8: Longline logsheet reporting data for the Federated States of Micronesian flagged vessels showing the number of sharks reported by species and species group.

WCPFC reported longline shark catch - ID

Figure AI - 9: Longline logsheet reporting data for Indonesian flagged vessels showing the number of sharks reported by species and species group.

WCPFC reported longline shark catch - JP

Figure AI - 10: Longline logsheet reporting data for Japanese flagged vessels showing the number of sharks reported by species and species group.

WCPFC reported longline shark catch - KI

Figure AI - 11: Longline logsheet reporting data for Kiribati flagged vessels showing the number of sharks reported by species and species group.

WCPFC reported longline shark catch - KR

Figure AI - 12: Longline logsheet reporting data for the Republic of Korean flagged vessels showing the number of sharks reported by species and species group.

WCPFC reported longline shark catch - MH

Figure AI - 13: Longline logsheet reporting data for the Republic of the Marshall Islands flagged vessels showing the number of sharks reported by species and species group.

WCPFC reported longline shark catch - NC

Figure AI - 14: Longline logsheet reporting data for New Caledonian flagged vessels showing the number of sharks reported by species and species group.

WCPFC reported longline shark catch - NU

Figure AI - 15: Longline logsheet reporting data for Niue flagged vessels showing the number of sharks reported by species and species group.

WCPFC reported longline shark catch - NZ

Figure AI - 16: Longline logsheet reporting data for New Zealand flagged vessels showing the number of sharks reported by species and species group.

WCPFC reported longline shark catch - PF

Figure AI - 17: Longline logsheet reporting data for French Polynesian flagged vessels showing the number of sharks reported by species and species group.

WCPFC reported longline shark catch - PG

Figure AI - 18: Longline logsheet reporting data for Papua New Guinea flagged vessels showing the number of sharks reported by species and species group.

WCPFC reported longline shark catch - PH

Figure AI - 19: Longline logsheet reporting data for Philippine flagged vessels showing the number of sharks reported by species and species group.

WCPFC reported longline shark catch - PW

Figure AI - 20: Longline logsheet reporting data for Palau flagged vessels showing the number of sharks reported by species and species group.

WCPFC reported longline shark catch - SB

Figure AI - 21: Longline logsheet reporting data for the Solomon Islands flagged vessels showing the number of sharks reported by species and species group.

WCPFC reported longline shark catch - TO

Figure AI - 22: Longline logsheet reporting data for Tongan flagged vessels showing the number of sharks reported by species and species group.

WCPFC reported longline shark catch - TV

Figure AI - 23: Longline logsheet reporting data for Tuvalu flagged vessels showing the number of sharks reported by species and species group.

WCPFC reported longline shark catch - TW

Figure AI - 24: Longline logsheet reporting data for Chinese Taipei flagged vessels showing the number of sharks reported by species and species group.

WCPFC reported longline shark catch - US

Figure AI - 25: Longline logsheet reporting data for the United States of America flagged vessels showing the number of sharks reported by species and species group.

WCPFC reported longline shark catch - VU

Figure AI - 26: Longline logsheet reporting data for Vanautu flagged vessels showing the number of sharks reported by species and species group.

WCPFC reported longline shark catch - WS

Figure AI - 27: Longline logsheet reporting data for Samoan flagged vessels showing the number of sharks reported by species and species group.

Figure AI - 28: Purse seine logsheet reporting data for Australian flagged vessels showing the number of sets (top) and the number of sets reporting shark catch (Bottom).

Figure AI - 29: Purse seine logsheet reporting data for the Cook Islands flagged vessels showing the number of sets (top) and the number of sets reporting shark catch (Bottom).

Figure AI - 30: Purse seine logsheet reporting data for Chinese flagged vessels showing the number of sets (top) and the number of sets reporting shark catch (Bottom).

Figure AI - 31: Purse seine logsheet reporting data for Ecuador flagged vessels showing the number of sets (top) and the number of sets reporting shark catch (Bottom).

Figure AI - 32: Purse seine logsheet reporting data for EC - Spanish flagged vessels showing the number of sets (top) and the number of sets reporting shark catch (Bottom).

Figure AI - 33: Purse seine logsheet reporting data for the Federated States of Micronesia flagged vessels showing the number of sets (top) and the number of sets reporting shark catch (Bottom).

Figure AI - 34: Purse seine logsheet reporting data for Indonesian flagged vessels showing the number of sets (top) and the number of sets reporting shark catch (Bottom).

Figure AI - 35: Purse seine logsheet reporting data for Japanese flagged vessels showing the number of sets (top) and the number of sets reporting shark catch (Bottom).

Figure AI - 36: Purse seine logsheet reporting data for Kiribati flagged vessels showing the number of sets (top) and the number of sets reporting shark catch (Bottom).

Figure AI - 37: Purse seine logsheet reporting data for the Republic of Korea flagged vessels showing the number of sets (top) and the number of sets reporting shark catch (Bottom).

Figure AI - 38: Purse seine logsheet reporting data for the Marshall Islands flagged vessels showing the number of sets (top) and the number of sets reporting shark catch (Bottom).

Figure AI - 39: Purse seine logsheet reporting data for Nauru flagged vessels showing the number of sets (top) and the number of sets reporting shark catch (Bottom).

Figure AI - 40: Purse seine logsheet reporting data for New Zealand flagged vessels showing the number of sets (top) and the number of sets reporting shark catch (Bottom).

Figure AI - 41: Purse seine logsheet reporting data for Papua New Guinea flagged vessels showing the number of sets (top) and the number of sets reporting shark catch (Bottom).

Figure AI - 42: Purse seine logsheet reporting data for Philippine flagged vessels showing the number of sets (top) and the number of sets reporting shark catch (Bottom).

Figure AI - 43: Purse seine logsheet reporting data for the Solomon Islands flagged vessels showing the number of sets (top) and the number of sets reporting shark catch (Bottom).

Figure AI - 44: Purse seine logsheet reporting data for El Salvador flagged vessels showing the number of sets (top) and the number of sets reporting shark catch (Bottom).

Figure AI - 45: Purse seine logsheet reporting data for Tuvalu flagged vessels showing the number of sets (top) and the number of sets reporting shark catch (Bottom).

Figure AI - 46: Purse seine logsheet reporting data for Chinese Taipei flagged vessels showing the number of sets (top) and the number of sets reporting shark catch (Bottom).

Figure AI - 47: Purse seine logsheet reporting data for the United States of America flagged vessels showing the number of sets (top) and the number of sets reporting shark catch (Bottom).

Purse seine VN reported sharks per set

Figure AI - 48: Purse seine logsheet reporting data for Vietnamese flagged vessels showing the number of sets (top) and the number of sets reporting shark catch (Bottom).

Figure AI - 49: Purse seine logsheet reporting data for Vanuatu flagged vessels showing the number of sets (top) and the number of sets reporting shark catch (Bottom).

Longline ALV per 1000 hooks

Figure AI - 50: Longline logsheet reported catch (numbers) of common thresher sharks between 2015 and 2019.

Figure AI - 51: Longline logsheet reported catch (numbers) of blue sharks between 2015 and 2019.

Longline BTH per 1000 hooks

Figure AI - 52: Longline logsheet reported catch (numbers) of bigeye thresher sharks between 2015 and 2019.

Figure AI - 53: Longline logsheet reported catch (numbers) of silky sharks between 2015 and 2019.

Longline LMA per 1000 hooks

Figure AI - 54: Longline logsheet reported catch (numbers) of longfin make sharks between 2015 and 2019.

Figure AI - 55: Longline logsheet reported catch (numbers) of common oceanic whitetip sharks between 2015 and 2019.

Figure AI - 56: Longline logsheet reported catch (numbers) of porbeagle sharks between 2015 and 2019.

Longline PTH per 1000 hooks

Figure AI - 57: Longline logsheet reported catch (numbers) of pelagic thresher sharks between 2015 and 2019.

Figure AI - 58: Longline logsheet reported catch (numbers) of shortfin make sharks between 2015 and 2019.

Appendix II - Review of the 2016-2020 SRP