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Catch per unit effort of oceanic whitetip sharks in the Western and Central Pacific Ocean
Summary

This paper follows from the indicator based analysis presented to the Western and Central Pacific
Fisheries Commission (WCPFC) Scientific Committee (SC7, Clarke et al. 2011). Following a brief
summary of exploratory data analysis, this report presents a Catch Per Unit Effort (CPUE)
standardization for oceanic whitetip shark (Carcharhinus longimanus) taken in longline and purse
seine fisheries based on observer data held by the Secretariat of the Pacific - Oceanic Fisheries
Program (SPC-OFP).

The objectives were to produce multiple time series of standardized CPUE to be used as indices of
abundance for use in the stock assessment. The sections of this report include a) a summary of the
exploratory data analysis of oceanic whitetip shark (OCS) CPUE in the WCPO, b) presentation of the
final standardized CPUE trends for oceanic whitetip sharks, c) model diagnostics, and d) a discussion
of the quality of the available data and the relative strengths and weaknesses of the standardization
procedures. This paper is prepared as an information paper to support the stock assessment
presented to the scientific committee (Rice and Harley 2012) along with a study on alternate catch
estimates (Rice 2012).

1 Introduction

This paper follows from the indicator based analysis presented to the Western and Central Pacific
Fisheries Commission (WCPFC) Scientific Committee (SC7, Clarke et al. 2011). The developments
presented here include additional analyses of the SPC data holdings for oceanic whitetip caught in
longline and purse seine fisheries in the Western and Central Pacific Ocean (WCPO).

The framework for the analysis is to construct inputs for stock assessment based on an estimated
catch and an index of abundance based on standardized catch per unit of effort (CPUE). The SPC
longline observer database contains records from 1985 to recent years; however, oceanic whitetip
sharks were not identified to species until 1995, hence the dataset used in this analysis spans the
years 1995-2009%. Recent work by Clarke et al. (2011) noted gaps in observer data in terms time,
space, reporting rate and identification with respect to sharks. Oceanic whitetip sharks are observed
mainly in the equatorial waters in the purse seine fishery (Figure 1), and from about -25°S to 25°N in
the longline fishery (Figure 2).

CPUE data for species such as sharks often have a large proportion of observations (or sets) with no
catch, and also includes observations with large catches when areas of higher densities are
encountered; this is typical of bycatch species (Ward and Myers, 2005). The signals from the nominal
(observed catch/observed effort) CPUE data can be heavily influenced by factors other than
abundance and therefore a procedure to standardize CPUE data is usually recommended to remove
the influence of factors (other than change in abundance) that may cause variation or trends in the
CPUE. Nominal CPUE data can be more variable than expected (i.e., over-dispersed), with many
outlying data points from uncommonly high catch rates. These outlying data points can sometimes
be a function of shark targeting.

2 At the time of this analysis, there was insufficient 2010 longline observer records.



2 Methods

This analysis follows the work of Clarke et al. (2011, 2011b) and Walsh and Clarke (2011), but the
regions for this study differ slightly. Because oceanic whitetip sharks are tropical species this led to
the analysis being considered for one region, from 25°S to 25°N and bordered on the east and west
by the WCPFC Statistical Area. A comprehensive overview of the observer logsheet data and a
characterization of the fisheries in which oceanic whitetip sharks are caught is presented in Clarke et
al. (2011). What follows is a summary of the methods used in this analysis.

2.1 Longline data preparation

The data were validated and trimmed (records with missing values for key explanatory variables
removed) to include only relevant data from the species ‘core’ habitat. This was done to reduce the
already excessive number of zeros in the data, i.e. zero catch where you would not reasonably
expect to catch oceanic whitetip sharks. Environmental data about temperature, salinity, moon
phase, and depth of the 27°C isotherm downloaded from the GODAS database (GODAS 2011) were
matched to the set by set observer data.

Because oceanic whitetip sharks are an epi-pelagic tropical species, all sets that occurred in water
colder than 25°C were discarded. This left 90% of the sets with a non-zero catch (Figure 2). The
effect of the number of hooks between floats (a proxy for depth) was investigated independently
and sets with greater than 30 hooks between floats were discarded, leaving 80% of the sets with
non-zero catch (Figure 3). National affiliation of the fishing vessel was included in the data set, and
only those nations that had greater than 100 sets since 1995 were used. The last variable that
resulted in a culling of the data set was based on the non-zero CPUE for unidentified sets (sets where
the target is marked as unidentified) as a function of national affiliation. Flagged vessels that had an
average positive CPUE 3 times larger than the mean CPUE for all other nations combined were
removed from the bycatch longline data under the premise that these vessels were targeting sharks.

Latitude and longitude were truncated to the nearest 1°; this location information was used to
calculate the association with a 5°square (referred to hereinafter as cell). Date of set was used to
calculate the year, month, quarter and trimester of the set. Set time was used to calculate the time
category of the day in sixths starting at midnight. A non-target data set was created as a result of
filtering data according to the above rules. A targeted data set was created in a similar manner. This
was done under the premise that the factors leading to non-zero catch rates when targeting sharks
would be different than factors that lead to non-zero catch rates when not targeting sharks.

Although a much smaller proportion of the overall dataset (6.5% of the sets), the targeting sets
represent significant oceanic whitetip shark catch (47%). Therefore, the dataset was examined with
respect to variables relating to whether sharks were the intentional target of the set. Oceanic
whitetip shark CPUE was plotted as a function of variables relating to the use of shark lines, the use
of shark bait, and shark targeting against the date of set (Figure 3). Inspection of these covariates led
to the separation of shark-targeting sets and non-targeting (bycatch) sets. Shark targeting sets were
deemed to be sets where the observer had marked that the set was intentionally targeting sharks of
any species (i.e., whether shark bait or shark lines were used).

The results of these filtering rules are in Table 2.



2.2 Purse seine data preparation

The only restriction placed on the purse seine observer data was that the set occurred within the
rectangle defined by 7°N and -12°S Latitude and 139°W to 192°E. The purse seine data was
separated into two fisheries, one based on associated sets and one based on unassociated sets.

2.3 CPUE methodology

CPUE is commonly used as an index of abundance for marine species. However, it is important that
raw nominal catch rates be standardized to remove the effects of factors other than abundance.
Catch data for non-target species (sharks in particular) often contain a large number of sets with
zero catch as well as sets with substantial catch. These phenomenon need to be explicitly modelled
(Bigelow et al. 2002, Campbell 2004, Ward and Myers 2005, Minami et al. 2007).

Standardized CPUE series for all fisheries (bycatch and target longline; associate and unassociated
purse seine fisheries) were developed using generalized linear models. For longline analyses, effort
was defined as the number of hooks fished in a set. For purse seine analyses, effort was defined as a
single set. It is notoriously difficult to come up with accurate estimates of the true effort that relates
to a purse seine set (Punsly, 1987).

2.4 Overview of GLM Analyses

The filtered datasets were standardized using generalized linear models (McCullagh and Nelder
1989) using the software package R (www.r-project.org). Multiple error structures were tested
including:

e The delta lognormal approach (DLN) (Lo et al. 1992, Dick 2006, Stefansson 1996, Hoyle and
Maunder 2006): this approach is a special case of the more general delta method
(Pennington, 1996, Ortiz and Arocha 2004), and uses a binomial distribution for the
probability w of catch being zero and a probability distribution f(y), where y was
log(catch/hooks set) for non-zero catches. An index was estimated for each year, which was
the product of the year effects for the two model components, (1 —w) * E(y|y # 0).

w, y =0,

PriY =)= {(1—w) f(y) otherwise

e The negative binomial (Lawless 1987): typically more robust to issues of overdispersion
(overdispersion can arise due to excess zeros, clustering of observations, or from
correlations between observations) was also used. This model has been advocated as a
model that is more robust to overdispersion than the Poisson distribution (McCullagh and
Nelder 1991), and is appropriate for count data (Ward and Myers 2005), but does not
expressly relate covariates to the occurrence of excess zeros (Minami et al. 2007).

e The quasi-Poisson: in which a dispersion parameter ¢ is estimated and corrected for to
account for overdispersion was also used though this tends to produced larger standard
errors and model misspecification when ¢ is large because the standard errors of the

covariates are multiplied by \/E .

e  Mixture models such as the zero inflated Poisson (ZIP) and zero inflated negative binomial
(ZINB) (Zuur et al. 2009, Cunningham and Lindenmayer 2005, Welsh et al. 2000): these



models are useful for modelling counts of rare species when the number of zero
observations is larger than expected. Zero inflated models are a process similar to the delta
approach in which the presence or absence of the catch is modelled orthogonally to the size
of the catch (Welsh et al. 2000), however unlike the delta approach the count data can
include zeros. Zero counts can result from predator satiation, competition for hooks, or
disinterest (called true zeros) as opposed to design errors, sampling errors, observer errors
or zeros resulting from sampling outside the habitat range (called false zeros). The total
probability of a zero count is then,

Pr(Y; = 0) = Pr(False Zeros) + (1 — Pr(False Zeros)) * Pr(True Zeros)
Therefore, the probability distribution for the zero inflated Poisson is equal to:

Pr(yi=0) = m+ (1A —m)*e ™M

Yixe Hi
Priyilys > 0) = (1—m) 55—

i

Where y; is the size of the catch of the ith set, and distributed y; ~ Poisson(u;) (u; is the mean
of the Poisson distribution), and m; is the probability of a false zero. The probability
definition for the zero inflated negative binomial is similar,

k

,Ui+k)

Pr(y; =0) = 7Ti+(1_7Ti)*(

. TR kN (1 = k)
Pr(y;ly; >0) = (1 nl)*r(k)*r(yi+1)*(ui+k) *(1 ui+k)

Where y; is the size of the catch of the i set, and distributed y; ~ Negative Binomial (u; k),
and m; is the probability of a false zero. Under this parameterization the mean of the
negative binomial is u and the variance is y + u? /k. The main advantage of the zero inflated
approach is that these techniques can model the overdispersion in both the zeros and the
counts as opposed to just the counts (negative binomial), and they deal with over-dispersion
better than other models (quasi Poisson) (Zuur et al. 2009).

Each model was fit to the data set independently and all variables used in the models were included
as categorical factors except the response variables for catch and CPUE (owt and OWTCPUE
variables, respectively) and the effort offset variable (hook_est). These variables were included in
the model as continuous variables (Table 1). Model selection began with regression trees and
piecewise ANOVA models for each model (De'ath and Fabricius, 2000; Zuur et al. 2009). The Akaike
information criterion (AIC) was used as a metric to score the results and determine the final models
for each data set, because criteria and model diagnostics resulted in different variables and
different models were often selected for the different data sets.

2.5 2.5 Indices of abundance and Confidence Intervals

Multiple methods of calculating the indices of abundance and confidence intervals exist depending
on the model type(Shono H. 2008, Maunder and Punt 2004). In this study estimates were calculated
by predicting results based on the fitted model and a training data set that included each year effect
and the mean effect for each covariate (Zuur et al. 2009). Confidence intervals were calculated as
+1.96* SE, where SE is the standard error associated with the predicted year effect term.



3 Results

For brevity we only describe the model results for the final model chosen for each data set. A
comparison of the proportion of zeros, mean non-zero catch and the standardized CPUE for oceanic
white tips in the longline and purse seine fleets is presented in Table 3.

3.1 Longline bycatch data series

The Zero Inflated Negative Binomial model was the selected model-type for the non-target longline
dataset. The resulting standardized CPUE trend (Figure 4) contains the combined effects from two
models, one that calculates the probability of a zero observation and one that estimates the count
per year. The result from the model is the combined predicted level of the response variable,
oceanic whitetip catch. The resulting standardized CPUE trend was plotted against the mean
nominal trend (both relative to their maximum values). The standardized CPUE trend is similar to the
mean nominal trend (Figure 4), with both trends declining since the late 1990s. The 95% confidence
interval is widest in the late 1990’s and smallest throughout the 2000’s, reflecting the overall quality
and quantity of the data through the time period.

The diagnostic results from the ZINB model (Figure 5), do not show any significant trends in the plots
of the residuals against the model covariates (the left hand panel). The right hand panel shows the
standard diagnostics of residuals vs. fitted, Pearson residuals vs. fitted, QQ plot and a histogram of
the residuals. These model diagnostics plots show the expected departure from normality arising
from a mixture model. The partial dependence plots (Figure 6) show the influence of the number of
hooks between floats (hk_bt_flt) being constant across the range of data and the influence of the
time of day increasing through the middle of the day (TIMECAT categories 3-6). A deviance table
showing the contribution of the model components is presented in Table 4.

3.2 Target longline data series

The longline target data set was best fit using the delta lognormal approach. Initial attempts to
model the target longline data with ZINB, ZIP or other models that attempt to explain the over-
dispersion (i.e., excess zeros) resulted in a severe lack of fit. Both the nominal CPUE and the
standardized CPUE that was based on the DLN model show a declining trend in oceanic whitetip
shark CPUE during the 2000’s (Figure 7) . Prior to the 2000’s, both the nominal and standardized
CPUE trends were characterized by large fluctuations in the values, which may be due to lack of
sufficient data, or poor quality data. This is reflected in the larger confidence intervals prior to 2003.

The standard diagnostics of residuals vs. fitted, QQ plot, scale location plot, and the residuals vs. the
leverage are shown in Figure 8. There were data points identified as having high leverage in the
count data set (positive catches). However, it was deemed appropriate to include these data
because large catches of oceanic whitetip sharks are not uncommon and was a filtering criteria for
characterizing the target longline CPUE series as opposed to the bycatch longline CPUE series.

Partial dependence plots for the binomial and lognormal components of the target longline DLN
model (Figures 9 and 10) show a different trend in the covariate describing the use of shark lines
only. While inclusion of the ‘sharkline’ covariate increases the probability of capturing at least one
oceanic whitetip shark (i.e., the ‘sharkline’ main effect had a positive impact on the catch rate in the



binomial model), inclusion of ‘sharkline’ in the lognormal model (the count model) reduces the total
number of expected oceanic whitetip caught, given that at least one was caught. This is most likely
due to the mixed-shark /multi-species (shark and tuna) nature of many sets — when shark lines are
employed sharks are often one of multiple targets. A deviance table showing the contribution of the
model components is presented in Table 5.

3.3 Purse seine associated set data series

The observer data from the purse seine fleet is inherently difficult to standardize because there is no
standard metric for effort. Further, oceanic whitetip sharks were only commonly identified to
species since the early 2000’s, therefore interpretation of the any standardized time series must be
undertaken cautiously. A DLN standardized CPUE time series was quite similar to the mean nominal
CPUE time series (Figure 11). Although the standard errors and confidence intervals on the
standardized CPUE are quite large, the trends in the CPUE (standardized and nominal) are similar to
each other and to the target and bycatch CPUE from the longline fleet (i.e., all show a trend with the
highest values pre-2000 and subsequent declines in CPUE thereafter).

Despite the large confidence intervals, model behavior showed little departure from the standard
assumptions for the binomial model (left hand side panel Figure 12), and a reasonable distribution of
residuals for the lognormal model (right hand side panel Figure 12). Figure 13 shows the partial
dependence plots for oceanic whitetip sharks caught in associated sets. The top panel is for the
single covariate (apart from year) in the binomial model, and the bottom four panels are from the
lognormal model. . A deviance table showing the contribution of the model components is
presented in Table 6.

3.4 Purse seine unassociated set data series

A DLN standardized CPUE based on unassociated purse seine sets was similar to that for associated
sets across the time series (highest prior to 2000 and then declining thereafter, Figure 14). The
standardized CPUE was quite similar to the mean nominal CPUE; however, there were differences in
the first two years of the time series. Despite the large confidence intervals, model behavior showed
little departure from the standard assumptions for the binomial model (left hand side panel Figure
15), and a reasonable distribution of residuals for the lognormal model (right hand side panel Figure
15). The large confidence intervals are partly due to the deficient nature of the unassociated dataset
(only approximately 250 records of oceanic whitetip catch in the unassociated data set). Figure 16
shows the partial dependence plots for oceanic whitetip sharks caught in unassociated sets. The
four panels are from the lognormal model (only the index variable, the year effect, was included in
the binomial model and so is not shown)..

4 Discussion

This paper has presented the standardized CPUE series for oceanic whitetip sharks in the western
central Pacific Ocean based on observer data collected in the region over the years 1995- 2009. In
late 2011 when the analysis was undertaken, there was insufficient longline observer data for 2010.
These data are critical for both CPUE and catch inputs to the stock assessment therefore our analysis
only goes through 2009. In the analyses described here, data was separated into two longline series



(bycatch and target) and two purse seine series (unassociated and associated sets) from which a
standardized CPUE series was generated for each.

All four standardized CPUE trends share the same general trend with the highest values prior to
2000 and a steep decline thereafter. Each standardized CPUE trend was also similar to the nominal
data. Figure 1 showed that the data is coming from the same area in the ocean throughout the time
series, except for some missing longline data from the Hawaiian Islands in 2005-2009. This suggests
that the decline in standardized (and nominal) CPUE is not likely to be a factor of the lack of
observations in the Hawaiian islands region but rather a result of an overall decline in oceanic
whitetip CPUE. Including observer data from Hawaii would nonetheless improve the predictive
power of these models. It would most likely not change the estimated trends as a separate analysis
of Hawaiian data reveals similar trends (Walsh and Clarke 2011).

In addition to standardizing the CPUE trends from the longline and purse seine fishery, this analysis
had the additional objective of assessing the strengths and weaknesses of the available data and to
identify the main effects that are important to CPUE standardization for shark bycatch. The most
important covariate in the longline CPUE standardization was vessel (“vesselname”) for both target
and bycatch data sets (Tables 4-5). Introduction of the vessel effect greatly increase the explanatory
power of the models for the longline CPUE, although it did not greatly alter the standardized CPUE
trend from the nominal trend. Vessel effects reflect multiple factors that are intrinsic to a fishing
boat, including the intention and ability to effectively target a species. The standardization models
considered in this study only account for the relative catchability among vessels and make no
account for any change in the absolute fishing power over time. Potential changes in vessel
characteristics, equipment, crew or captain may alter the vessel effect through time. Further
research on better ways to model vessel catchability through time is recommended (e.g., see
Wilberg et al. 2010).

Research into vessel catchability and effort in the purse seine fishery is also recommended. Attempts
at including vessel effects in the purse seine CPUE standardization resulted in models that did not
converge. The inclusion of a proxy for effort, such as the tonnage of skipjack caught, should also be
investigated.

In the early time period, sharks were not commonly identified to species but rather as one ‘shark’
category. A back extrapolation of the undocumented shark community composition could be
undertaken, although it would be inherently uncertain. There are many problems that would have to
be overcome to do this including (but not limited to) changes in vessel catchability, targeting,
changes in fishing behavior and natural fluctuations in the relative abundance and availability of the
individual shark species with respect to each other and to their key prey.
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5 Figures

Oceanic Whitetip Shark Catch and Effort
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Figure 1. Oceanic whitetip shark catch and effort in the longline (left) and purse seine (right) fisheries by 5 year
increments.
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Figure 2. Longline CPUE for oceanic whitetip sharks as a function of time (x-axis) and degrees centigrade (top) and hooks
between floats (bottom). Colored circles are scaled proportional to the maximum observed CPUE value. Grey
circles are scaled proportional to the maximum number of hooks observed.
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Figure 3. Longline CPUE for oceanic whitetip sharks as a function of time (x-axis) and whether: a shark line was used (top
panel), shark bait was used (middle panel); or the set was intentionally targeting sharks (bottom panel). Grey
circles are scaled proportional to the maximum number of hooks deployed.
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Figure 4. Nominal CPUE and standardized CPUE based on the ZINB model for oceanic whitetip sharks caught in the
longline bycatch fishery.
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Figure 5. Diagnostic results from the ZINB model for oceanic whitetip sharks caught in the longline bycatch fishery. The
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Figure 7. Nominal CPUE and standardized CPUE based on the DLN model for oceanic whitetip sharks caught in the
longline target fishery.
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Figure 8. Diagnostic results from the DLN model for oceanic whitetip sharks caught in the longline target fishery. The left
hand panel shows the diagnostics from the binomial component of the model; the right hand panel shows
the diagnostics from the lognormal component of the model. Standard diagnostics of residuals vs. fitted,
deviance residuals vs. fitted, QQ plot and a histogram of the residuals are shown for both components. See
table 1 for variable descriptions.
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See table 1 for variable descriptions.
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Figure 13. Partial dependence plots for oceanic whitetip sharks caught in purse seine associated sets; the top panel is for
the single covariate (apart from year) in the binomial model, and the bottom four panels are from the
lognormal model. See table 1 for variable descriptions.
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Figure 14. Nominal CPUE and standardized CPUE based on the DLN model for oceanic whitetip sharks caught in
unassociated sets from the purse seine fishery. Note that he upper level of the confidence interval is off the
scale of the plot.
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Figure 16. Partial dependence plots for oceanic whitetip sharks caught in purse seine unassociated; the four panels are
from the lognormal model (the binomial model only had year effects). See table 1 for variable descriptions.
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7 Tables

Table 1. Variables used in the CPUE standardization process

Predictor Abbreviation Type Description
Number of oceanic whitetip sharks
caught owt Continuous Number of oceanic whitetip sharks caught per set
Set specific catch rate in oceanic whitetip sharks/1000 hooks (Longline
Oceanic whitetip shark CPUE OWTCPUE Continuous Only)
Year vy Categorical 1995-2010
Month mm Categorical Month of the year (January- December)
Time category timecat Categorical The sixth of the day that the set happened in, beginning at midnight.
Vessel Name vesselname Categorical The name of the fishing vessel
Trip identification number trip ID Categorical The unique trip identification number
Hooks between floats hk_bt_flt Categorical The number of hooks between floats on the longline ((Longline Only)
Estimated Hooks hook est Continuous The total number of estimated hooks fished (Longline Only)
Shark line shkline Categorical (Yes/No) Were shark lines used (Y/N) (Longline Only)
Shark Bait Sharkbait Categorical (Yes/No) Was shark bait used (Y/N) (Longline Only)
Exclusive Economic Zone ez_id Categorical Which nations EEZ did the set take place
Vessel Flag flag_id Categorical Which nation is the vessel flagged to
Sea Surface temperature SST Categorical Degrees centigrade
5°x5° cell cell Categorical 5° Latitude by 5° Longitude cell.
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Table 2. Filtering Rules for the longline dataset

Filtering rules for the Bycatch

data sets.
Number
of Number  Filtering Number of Oceanic
Records removed Rule Whitetip Sharks
35307 2467 remove sets marked as targeted sets 8337
34995 312 remove data from Flags w/ less than 100 sets 8201
19093 15902 remove sets with associated temperatures < 25 degrees 6671
13274 5819 remove sets with >30 hooks between floats 4957
12567 707 remove sets with high CPUE where target is 'unidentified' 4841
remove sets in
12542 25 2010 4840
Filtering rules for the Target data sets.
Number
of Number  Filtering Number of Oceanic
Records removed Rule Whitetip Sharks
3775 33999 Keep Shark Bait, shark line or shark target 6407

of
which

2467 Marked Target
1935 Marked Sharkline
1987 Marked Sharkbait
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Table 3.

Comparison of the proportion of zeros, mean non-zero catch and the standardized CPUE for oceanic white tips in the longline and purse seine fleets.

Data Source

Bycatch Longline

Target Longline

Associated Purse Seine

Un-Associated Purse Seine

%

%

%

%

Positive ~ Mean Std. Std. Positive ~ Mean Std. Std. Positive ~ Mean Std. Std. Positive ~ Mean Std. Std.

Catch Annual  Annual Error Catch Annual Annual Error Catch Annual Annual Error Catch Annual Annual Error
1995 38.60 0.64 3.76 0.00 63.16 1.71 0.72 3E+05 1.53 0.02 0.05 2.18 0.61 0.01 4E-08 2E-04
1996 36.63 0.58 3.27 0.74 16.67 0.12 6.59 6E+19 2.30 0.11 0.03 0.30 1.45 0.04 5E-08 2E-04
1997 30.33 0.44 4.70 1.08 51.72 1.58 27.28 4E+20 3.98 0.30 0.15 1.13 1.54 0.22 5E-08 2E-04
1998 37.77 0.46 3.90 0.87 64.50 4.27 0.43 2E+05 10.87 1.02 1.02 6.21 3.62 0.07 3E-08 1E-04
1999 36.20 0.46 4.40 1.15 91.91 10.99 6.72 13.24 19.32 0.88 0.83 4.48 0.58 0.05 1E-08 6E-05
2000 33.09 0.44 2.49 0.54 14.06 0.26 0.19 22.63 17.21 0.35 0.32 1.86 0.97 0.04 6E-09 3E-05
2001 28.14 0.26 1.82 0.44 48.09 3.50 1.41 2.84 12.04 0.38 0.28 1.81 0.50 0.01 2E-09 1E-05
2002 18.63 0.14 1.32 0.27 36.66 1.33 1.22 2.48 4.45 0.32 0.30 2.06 1.06 0.03 8E-10 6E-06
2003 15.53 0.11 0.92 0.20 6.41 0.09 0.34 1E+08 4.26 0.22 0.25 1.74 0.39 0.01 3E-10 3E-06
2004 21.03 0.21 1.03 0.22 46.50 1.14 0.46 0.93 3.03 0.08 0.15 1.06 0.31 0.02 2E-10 2E-06
2005 17.80 0.16 0.36 0.14 52.63 1.07 0.34 0.65 1.81 0.06 0.04 0.37 0.63 0.02 8E-11 1E-06
2006 19.94 0.17 0.19 0.08 46.06 0.68 0.39 0.77 0.72 0.01 0.02 0.20 0.25 0.01 4E-11 6E-07
2007 16.48 0.15 0.49 0.20 52.94 0.75 0.26 0.53 1.48 0.03 0.04 0.40 0.56 0.01 1E-11 3E-07
2008 15.48 0.13 0.29 0.17 46.06 1.03 0.18 0.44 2.09 0.04 0.06 0.55 0.45 0.01 6E-12 1E-07
2009 12.02 0.09 0.44 0.60 42.86 0.28 0.15 0.96 0.39 0.01 0.01 0.21 0.30 0.01 2E-12 6E-08
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Table 4. Model comparison for CPUE standardization using the zero inflated negative binomial model on oceanic whitetip shark bycatch in the longline fleet. Due to the mixture model the
intercept only model is taken as the null model.

Deviance

Predictor Offset Df  Explained Resid. DF  Resid. Dev P(>|Chil)
intercept only log(Hook_Est) 3 12539 20446.6

~yy log(Hook_Est) 31 952 12511 19494.6 <2.20E-16
~yy+TIMECAT log(Hook_Est) 41 -74.6 12511 19569.2 5.45E-12
~yy+TIMECAT|YY log(Hook_Est) 36 -23.4 12501 19592.6 3.09E-04
~yy+TIMECAT+ vesselname | yy log(Hook_Est) 426 2035.2 12506 17557.4 <2.20E-16
~yy + TIMECAT + vesselname | yy + hk_bt_flt log(Hook_Est) 452 124.8 12116 17432.6 7.23E-15
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Table 5. Model comparison for CPUE standardization using the binomial model on oceanic whitetip shark target CPUE in the longline fleet.

Binomial moddel

Deviance

Predictor Df Explained Resid. DF  Resid. Dev P(>|Chi])
NULL 3640 5420.6

+yy 15 594.57 3625 4826.1 <2.2e-16
+TIMECAT 5 168.44 3620 4657.6 <2.2e-16
+SHKLINE 1 86.02 3619 4571.6 <2.2e-16
Lognormal

Deviance

Predictor Df Explained Resid. DF Resid. Dev P(>|Chil)
NULL 1567 55610

+yy 15 14939 1552 40671 <2.2e-16
+ hk_bt_flt 35 7278 1517 33393 0.09576
+ vesselnames 146 12496 1371 20898 <2.2e-16
+TIMECAT 5 715 1366 20183 5.475e-09
+SHKLINE 1 40.4 1365 20142 0.098
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Table 6. Model comparison for CPUE standardization using the DLN model on oceanic whitetip shark target CPUE in the associated

purse seine fleet.

Binomial Model

Deviance

Df Explained Resid. DF  Resid. Dev P(>| Chi])
Intercept only 28055 9262.658
+yy 10 1217.09 28045.1401 8045.568 <2.20E-16
+flag_id 22 383.273 28033 7662.295 <2.20E-16
Lognormal Model

Deviance

Df Explained Resid. DF Resid. Dev P(>| Chi])
Intercept only 1096 6133
+yy 10 189.0 1086 5944 <2.02E-16
+cell 54 57.8 1042 5886 0.08142
+ez_id 67 27.0 1029 5859 0.01189
+flag_id 80 108.8 1016 5750 <2.02E-16
+mm 91 88.4 1005 5662 3.41E-14
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Table 7. Model comparison for CPUE standardization using the DLN model on oceanic whitetip shark target CPUE in the unassociated
purse seine fleet.

Binomial Model

Deviance
Df Explained Resid. DF Resid. Dev P(>|Chi])
Intercept only 16407 2368.6
+yy 6 134.4 16401 2234.2 <2.20E-16
Lognormal Model
Deviance
Df Explained Resid. DF Resid. Dev P(>| Chi])
Intercept only 223 1093.8
+yy 3 1.78 220 1092.02 0.1836
+cell 43 81.02 180 1011 0.0001333
+ez_id 54 44.98 169 966.02 4.88E-06
+flag_id 61 10.54 162 955.48 0.1603
+mm 68 65.88 155 889.6 1.00E-11
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9 Appendix 1 Summaries of the individual models.

Some estimates, e.g. vesselname, and area have been excluded due to either confidentially or space
reasons.

Summary of the LL ZINB

Call:
zeroinfl(formula = owt ~ yy + TIMECAT + vesselname | yy + hk_bt_flt, data = DataFile, offset = log(hook_est), dist = "negbin")

Pearson residuals:
Min 1Q Median 3Q Max
-1.0192076 -0.4245529 -0.3430724 -0.0001116 12.5448738

Count model coefficients (negbin with log link):
Estimate Std. Error z value Pr(>|z]|)

(Intercept) -5.709e+00 3.172e-01 -18.000 < 2e-16 ***
yy1996 4.029e-01 1.880e-01 2.143 0.032120 *
yy1997 3.108e-01 1.891e-01 1.644 0.100209
yy1998 3.917e-01 1.858e-01 2.108 0.035055 *
yy1999 3.928e-01 2.117e-01 1.856 0.063492 .
yy2000 -5.507e-02 1.813e-01 -0.304 0.761330
yy2001 -3.086e-01 1.973e-01 -1.564 0.117818
yy2002 -3.299e-01 1.730e-01 -1.907 0.056462 .
yy2003 -6.312e-01 1.841e-01 -3.429 0.000606 ***
yy2004 -8.126e-01 1.785e-01 -4.553 5.28e-06 ***
yy2005 -1.887e+00 2.931e-01 -6.439 1.20e-10 ***
yy2006 -2.433e+00 3.056e-01 -7.961 1.70e-15 ***
yy2007 -1.676e+00 2.959e-01 -5.665 1.47e-08 ***
yy2008 -2.087e+00 3.794e-01 -5.500 3.79e-08 ***
yy2009 -3.661e-01 6.624e-01 -0.553 0.580474
TIMECAT2 -5.569e-01 8.806e-02 -6.324 2.55e-10 ***
TIMECAT3 -5.607e-01 9.822e-02 -5.709 1.14e-08 ***
TIMECAT4 -3.682e-01 1.862e-01 -1.978 0.047943 *
TIMECATS -3.969e-01 1.379e-01 -2.879 0.003984 **
TIMECAT6 -2.024e-01 1.510e-01 -1.340 0.180332

Log(theta) 5.607e-01 1.102e-01 5.088 3.62e-07 ***

Zero-inflation model coefficients (binomial with logit link):
Estimate Std. Error z value Pr(>|z|)
(Intercept) -6.418e+00 2.469e+04 0.000 0.9998
yy1996 5.736e-015.099e-01 1.125 0.2607
yy1997 -1.473e+01 9.919e+02 -0.015 0.9881
yy1998 -3.311e-02 5.452e-01-0.061 0.9516
yy1999 -1.085e+00 1.052e+00-1.031 0.3025
yy2000 5.571e-035.139e-01 0.011 0.9914
yy2001 1.189e-015.441e-01 0.219 0.8270
yy2002 1.058e+00 4.487e-01 2.359 0.0183 *
yy2003 1.133e+00 4.688e-01 2.418 0.0156 *
yy2004 4.627e-014.766e-01 0.971 0.3317
yy2005 -6.028e-01 8.472e-01-0.711 0.4768
yy2006 -3.168e-01 7.784e-01-0.407 0.6840
yy2007 -1.696e+00 2.071e+00-0.819 0.4128
yy2008 -1.508e+01 1.425e+03 -0.011 0.9916
yy2009 1.243e+00 6.702e-01 1.855 0.0637.
hk_bt_flt4 -9.520e+00 2.471e+04 0.000 0.9997
hk_bt_flt5 -1.405e+01 2.491e+04 -0.001 0.9996
hk_bt_flt6 6.275e+00 2.469e+04 0.000 0.9998
hk_bt_flt7 -1.355e+01 2.532e+04 -0.001 0.9996
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hk_bt_flt8 5.020e+00 2.469e+04 0.000 0.9998

hk_bt_flt9 -1.005e+01 2.472

e+04 0.000 0.9997

hk_bt_flt10 5.905e+00 2.469e+04 0.000 0.9998

hk_bt_flt11 -1.615e+01 3.24

2e+04 0.000 0.9996

hk_bt_flt12 6.425e+00 2.469e+04 0.000 0.9998
hk_bt_flt13 7.731e+00 2.469e+04 0.000 0.9998

hk_bt_flt14 -1.431e+01 2.53

5e+04 -0.001 0.9995

hk_bt_flt15 4.032e+00 2.469e+04 0.000 0.9999
hk_bt_flt16 3.673e+00 2.469e+04 0.000 0.9999
hk_bt_flt17 5.333e+00 2.469e+04 0.000 0.9998
hk_bt_flt18 4.693e+00 2.469e+04 0.000 0.9998
hk_bt_flt19 5.518e+00 2.469e+04 0.000 0.9998
hk_bt_flt20 5.334e+00 2.469e+04 0.000 0.9998
hk_bt_flt21 5.278e+00 2.469e+04 0.000 0.9998
hk_bt_flt22 4.867e+00 2.469e+04 0.000 0.9998
hk_bt_flt23 5.309e+00 2.469e+04 0.000 0.9998
hk_bt_flt24 5.325e+00 2.469e+04 0.000 0.9998
hk_bt_flt25 5.386e+00 2.469e+04 0.000 0.9998
hk_bt_flt26 5.296e+00 2.469e+04 0.000 0.9998
hk_bt_flt27 5.650e+00 2.469e+04 0.000 0.9998
hk_bt_flt28 5.647e+00 2.469e+04 0.000 0.9998
hk_bt_flt29 6.282e+00 2.469e+04 0.000 0.9998

Theta =1.7518

Signif. codes: 0 "***' 0.001 **'0.01'*'0.05".'0.1"'"1

Number of iterations in BFGS optimization: 150

Log-likelihood: -8716 on 452
>

SUMMARY OF THE DLN LL TARGET CPUE STNADAEDIZATION

summary(BinMod)

Call:

glm(formula = presabs ~ as.factor(yy) + as.factor(TIMECAT) +
as.factor(SHKLINE), family = binomial, data = DataFile, offset = log(hook_est))

Deviance Residuals:
Min 1Q Median 3Q Max

Df

-2.527-1.036 -0.528 1.183 2.568

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept)
as.factor(yy)1996 -1.70612
as.factor(yy)1997 -0.25952

-7.41350 0.51355 -14.436 < 2e-16 ***

0.70051 -2.436 0.014870 *
0.60979 -0.426 0.670404

as.factor(yy)1998 0.32892 0.51705 0.636 0.524677
as.factor(yy)1999 1.94599 0.58077 3.351 0.000806 ***

(
(
(
as.factor(yy)2000 -2.15296
as.factor(yy)2001 -0.86860
as.factor(yy)2002 -0.89171
as.factor(yy)2003 -3.37206
as.factor(yy)2004 -0.74251
as.factor(yy)2005 -0.90557
as.factor(yy)2006 -1.33656
as.factor(yy)2007 -1.07452
as.factor(yy)2008 -2.06686
as.factor(yy)2009 -2.08998
as.factor(yy)2010 -3.27108

0.60399 -3.565 0.000364 ***
0.50540-1.719 0.085676 .
0.49890-1.787 0.073881 .
0.67222 -5.016 5.27e-07 ***
0.49745 -1.493 0.135538
0.49731-1.821 0.068613 .
0.49994 -2.673 0.007508 **
0.50275-2.137 0.032573 *
0.50704 -4.076 4.58e-05 ***
0.51657 -4.046 5.21e-05 ***
0.68678 -4.763 1.91e-06 ***
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as.factor(TIMECAT)2 -0.30501 0.16707 -1.826 0.067909 .
as.factor(TIMECAT)3 0.06872 0.19218 0.358 0.720649
as.factor(TIMECAT)4 1.30628 0.18214 7.172 7.39e-13 ***
as.factor(TIMECAT)5 1.12684 0.19284 5.843 5.12e-09 ***
as.factor(TIMECAT)6 0.87238 0.26901 3.243 0.001183 **
as.factor(SHKLINE)1 1.05577 0.11758 8.979 < 2e-16 ***

Signif. codes: 0 “***’ 0.001 ‘**’ 0.01 ‘*' 0.05 ‘" 0.1’ 1
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 5420.6 on 3640 degrees of freedom
Residual deviance: 4571.6 on 3619 degrees of freedom
AIC: 4615.6

Number of Fisher Scoring iterations: 5
> summary(PosMod)

Call:

glm(formula = OWTCPUE ~ as.factor(yy) + as.factor(hk_bt_flt) +
as.factor(vesselname) + as.factor(TIMECAT) + as.factor(SHKLINE),
family = gaussian(link = "log"), data = PosDat)

Deviance Residuals:
Min 1Q Median 3Q Max
-25.736 -0.718 -0.070 0.413 32.695

Coefficients: (6 not defined because of singularities)
Estimate Std. Error t value Pr(>|t])

(Intercept) -1.926833 21.279894 -0.091 0.927866
as.factor(yy)1996 2.965346 21.501264 0.138 0.890328
as.factor(yy)1997 3.708936 21.928841 0.169 0.865715
as.factor(yy)1998 -0.586321 0.793797 -0.739 0.460260
as.factor(yy)1999 2.000755 7.596187 0.263 0.792290
as.factor(yy)2000 -0.298614 7.097902 -0.042 0.966448
as.factor(yy)2001 0.971004 7.604112 0.128 0.898410
as.factor(yy)2002 0.831436 7.606264 0.109 0.912973
as.factor(yy)2003 1.330473 13.548978 0.098 0.921790
as.factor(yy)2004 -0.194411 7.606024 -0.026 0.979612
as.factor(yy)2005 -0.447568 7.604119 -0.059 0.953073
as.factor(yy)2006 -0.082648 7.603161 -0.011 0.991329
as.factor(yy)2007 -0.626321 7.602386 -0.082 0.934353
as.factor(yy)2008 -0.406316 7.606454 -0.053 0.957407
as.factor(yy)2009 -0.570278 7.666859 -0.074 0.940717
as.factor(yy)2010 -0.664274 11.099929 -0.060 0.952288
as.factor(hk_bt_flt)5 4230144 21.276091 0.199 0.842432
as.factor(hk_bt_flt)6 0.407576 5.297786 0.077 0.938688
as.factor(hk_bt_flt)7 0.294786 22.284572 0.013 0.989448
as.factor(hk_bt_flt)9 0.990241 22.651225 0.044 0.965136
as.factor(hk_bt_flt)10 1.503327 21.362710 0.070 0.943908
as.factor(hk_bt_flt)12 2.687200 22.655499 0.119 0.905601
as.factor(hk_bt_flt)16 1.925540 21.167994 0.091 0.927534
as.factor(hk_bt_flt)17 1.520796 21.348565 0.071 0.943220
as.factor(hk_bt_flt)18 2.481328 22.027212 0.113 0.910326
as.factor(hk_bt_flt)19 1.662830 21.370712 0.078 0.937992
as.factor(hk_bt_flt)20 0.980023 21.069542 0.047 0.962908
as.factor(hk_bt_flt)21 1.992182 21.240333 0.094 0.925288
as.factor(hk_bt_flt)22 1.169974 20.961042 0.056 0.955496
as.factor(hk_bt_flt)23 1.141863 20.981585 0.054 0.956607
as.factor(hk_bt_flt)24 0.735770 20.971260 0.035 0.972017
as.factor(hk_bt_flt)25 0.511126 20.970973 0.024 0.980559
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as.factor(hk_bt_flt)26 0.127071 20.997823 0.006 0.995172
as.factor(hk_bt_flt)27 0.156340 20.876516 0.007 0.994026
as.factor(hk_bt_flt)28 0.913883 20.983710 0.044 0.965268
as.factor(hk_bt_flt)29 1.968703 21.074408 0.093 0.925586
as.factor(hk_bt_flt)30 1.383963 20.439128 0.068 0.946025
as.factor(hk_bt_flt)31 0.022076 21.067456 0.001 0.999164
as.factor(hk_bt_flt)32 0.212897 20.928357 0.010 0.991885
as.factor(hk_bt_flt)33 0.479589 20.870120 0.023 0.981670
as.factor(hk_bt_flt)34 0.521519 21.060595 0.025 0.980248
as.factor(hk_bt_flt)35 -0.363533 21.109758 -0.017 0.986263
as.factor(hk_bt_fIt)36 0.598737 20.342956 0.029 0.976524
as.factor(hk_bt_flt)37 -0.352140 21.613028 -0.016 0.987003
as.factor(hk_bt_flt)38 -0.309560 14.207224 -0.022 0.982620
as.factor(hk_bt_flt)39 1.416553 22.875312 0.062 0.950632
as.factor(hk_bt_flt)40 0.037187 0.146798 0.253 0.800060
as.factor(hk_bt_flt)41 -0.946236 0.281049 -3.367 0.000782 ***
as.factor(hk_bt_flt)44 -1.642029 1.391269-1.1800.238111
as.factor(hk_bt_flt)45 2.609403 24.208147 0.108 0.914178
as.factor(hk_bt_flt)50 2.504042 24.567414 0.102 0.918831
as.factor(TIMECAT)2 -0.923223 0.156984 -5.881 5.12e-09 ***
as.factor(TIMECAT)3 -0.815370 0.148293 -5.498 4.57e-08 ***
as.factor(TIMECAT)4 -0.737861 0.142433 -5.180 2.55e-07 ***
as.factor(TIMECAT)5 -0.814360 0.142909 -5.698 1.48e-08 ***
as.factor(TIMECAT)6 -1.273627 0.243163 -5.238 1.88e-07 ***
as.factor(SHKLINE)1 0.529298 0.307006 1.724 0.084923 .

Signif. codes: 0 “*** 0.001 “**' 0.01 “** 0.05 ‘0.1 ‘" 1
(Dispersion parameter for gaussian family taken to be 14.75657)

Null deviance: 55610 on 1567 degrees of freedom
Residual deviance: 20142 on 1365 degrees of freedom
AlIC: 8860.9

Number of Fisher Scoring iterations: 14

PURSE SEINE ASSOCIATED CPUE STANDARDIZATION

Binomial Model
Family: binomial
Link function: logit

Formula:
pos ~ s(yy) + as.factor(flag_id)

Parametric coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.9860 0.2787 -7.125 1.04e-12 ***
as.factor(flag_id)ES -1.7950 1.0535 -1.704 0.088393 .
as.factor(flag_id)FM -2.3748 0.3856 -6.158 7.37e-10 ***
as.factor(flag_id)JP -1.5174 0.3409 -4.451 8.56e-06 ***
as.factor(flag_id)KI -2.2492 0.6525 -3.447 0.000566 ***
as.factor(flag_id)KR -1.3183 0.3196 -4.125 3.70e-05 ***
as.factor(flag_id)MH -1.6015 0.3227 -4.963 6.94e-07 ***
as.factor(flag_id)NZ -1.4589 1.0558 -1.382 0.167035
as.factor(flag_id)PG -2.6076 0.2950 -8.838 < 2e-16 ***
as.factor(flag_id)PH -2.0843 0.3046 -6.843 7.78e-12 ***
as.factor(flag_id)SB -1.9056 0.3285 -5.800 6.62e-09 ***
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as.factor(flag_id)TW -2.2439 0.3170 -7.079 1.45e-12 ***
as.factor(flag_id)US -0.9018 0.2892 -3.118 0.001820 **
as.factor(flag_id)VU -1.1753 0.3607 -3.259 0.001119 **

Signif. codes: 0 “***' 0.001 “** 0.01 *’ 0.05 ‘" 0.1°" 1

Approximate significance of smooth terms:
edf Ref.df Chi.sq p-value
s(yy) 8.842 8.992 543.9 <2e-16 ***

Signif. codes: 0 “***” 0.001 “**' 0.01 “*/ 0.05“"0.1°" 1

R-sq.(adj) = 0.0839 Deviance explained = 17.3%
UBRE score = -0.72526 Scale est. =1 n =28056

Lognormal Model
Formula:

owt ~ s(yy) + as.factor(cell) + as.factor(ez_id) + as.factor(flag_id) +

as.factor(mm)

Parametric coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 0.77288 2.18520 0.354 0.723632
as.factor(ez_id)FM 1.56753 2.12431 0.738 0.460714
as.factor(ez_id)GL 0.71260 2.09896 0.340 0.734290
as.factor(ez_id)HB 0.16409 2.13588 0.077 0.938775
as.factor(ez_id)IW 1.26567 2.09702 0.604 0.546247
as.factor(ez_id)KI 0.65470 2.12240 0.308 0.757774
as.factor(ez_id)MH 0.10944 3.93426 0.028 0.977812
as.factor(ez_id)NR 1.55340 2.15549 0.721 0.471246
as.factor(ez_id)PG 1.92616 2.12564 0.906 0.365027
as.factor(ez_id)PX 0.86694 2.09836 0.413 0.679567
as.factor(ez_id)SB 1.46663 2.12001 0.692 0.489188
as.factor(ez_id)TK 0.44850 2.18140 0.206 0.837134
as.factor(ez_id)TV 0.87107 2.09177 0.416 0.677167
as.factor(ez_id)WF 0.81210 5.83299 0.139 0.889294
as.factor(flag_id)ES -1.72714 5.27088 -0.328 0.743212
as.factor(flag_id)FM -2.17013 0.92356 -2.350 0.018941 *
as.factor(flag_id)JP -1.45605 0.59538 -2.446 0.014598 *
as.factor(flag_id)KI -0.34996 0.55428 -0.631 0.527911
as.factor(flag_id)KR -2.29438 0.52452 -4.374 1.32e-05 ***
as.factor(flag_id)MH -1.08113 0.79712 -1.356 0.175247
as.factor(flag_id)NZ -1.18497 3.84529 -0.308 0.758010
as.factor(flag_id)PG -1.58544 0.41940 -3.780 0.000164 ***
as.factor(flag_id)PH -1.33894 0.42964 -3.116 0.001872 **
as.factor(flag_id)SB -0.32627 0.50068 -0.652 0.514748
as.factor(flag_id)TW -1.28915 0.41472 -3.108 0.001923 **
as.factor(flag_id)US -0.62715 0.40836 -1.536 0.124843
as.factor(flag_id)VU -1.41461 0.62418 -2.266 0.023598 *
as.factor(mm)2 -0.12173 0.23626 -0.515 0.606462
as.factor(mm)3 -0.47795 0.23453 -2.038 0.041773 *
as.factor(mm)4 -0.37962 0.22565 -1.682 0.092753 .
as.factor(mm)5 -0.20647 0.22215 -0.929 0.352858
as.factor(mm)6  0.13333 0.23801 0.560 0.575461
as.factor(mm)7 -0.90471 0.27057 -3.344 0.000851 ***
as.factor(mm)8 -0.61001 0.24441-2.496 0.012694 *
as.factor(mm)9 -0.12216 0.22249 -0.549 0.583065
as.factor(mm)10 0.18879 0.21687 0.871 0.384186
as.factor(mm)11 0.11060 0.21378 0.517 0.605014
as.factor(mm)12 -0.26792 0.23375-1.146 0.251926

Signif. codes: 0 “*** 0.001 “** 0.01 “*’ 0.05°/0.1°" 1
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Approximate significance of smooth terms:
edf Ref.df F p-value
s(yy) 7.176 8.161 12.3 <2e-16 ***

Signif. codes: 0 “***' 0.001 “** 0.01 */ 0.05 " 0.1°" 1

R-sg.(adj) = 0.21 Deviance explained = 26.1%
GCV score = 29.344 Scale est. =27.382 n =1349

Purse Seine -Unassociated Sets
Binomial model

Family: binomial
Link function: logit

Formula:
pos ~ s(yy)

Parametric coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -4.55935 0.08679 -52.54 <2e-16 ***

Signif. codes: 0 “*** 0.001 “** 0.01 " 0.05 /0.1 1

Approximate significance of smooth terms:
edf Ref.df Chi.sq p-value
s(yy) 5.555 6.71 120.2 <2e-16 ***

Signif. codes: 0 “*** 0.001 “**/ 0.01 " 0.05 /0.1 1

R-sqg.(adj) = 0.00964 Deviance explained = 5.67%
UBRE score =-0.86303 Scale est. =1 n=16408

LOGNORMAL MODEL

Family: gaussian
Link function: log

Formula:
owt ~ s(yy) + as.factor(cell) + as.factor(ez_id) + as.factor(flag_id) +
as.factor(mm)

Parametric coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept)  6.61589 3.91305 1.691 0.092874 .
as.factor(ez_id)GL -4.77409 1.91905 -2.488 0.013901 *
as.factor(ez_id)HB -4.37541 2.05274 -2.131 0.034605 *
as.factor(ez_id)IW -4.83008 1.54195 -3.132 0.002068 **
as.factor(ez_id)KI -15.00331 3.49380 -4.294 3.06e-05 ***
as.factor(ez_id)MH -9.97387 4.93191 -2.022 0.044842 *
as.factor(ez_id)NR -4.62502 2.57962 -1.793 0.074913 .
as.factor(ez_id)PG -3.22703 1.18842 -2.715 0.007361 **
as.factor(ez_id)PX 4.35204 1.65901 2.623 0.009568 **
as.factor(ez_id)SB -5.27656 3.16004 -1.670 0.096956 .
as.factor(ez_id)TK 13.84874 3.47612 3.984 0.000103 ***
as.factor(ez_id)TV -3.09580 1.82532-1.696 0.091862 .
as.factor(flag_id)FM -10.86906 3.39607 -3.200 0.001661 **
as.factor(flag_id)JP -4.95874 2.80444 -1.768 0.078975 .
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as.factor(flag_id)KI -2.41721 2.86911 -0.842 0.400791
as.factor(flag_id)KR -8.24255 3.02478 -2.725 0.007160 **
as.factor(flag_id)MH 4.10168 2.21327 1.853 0.065727 .
as.factor(flag_id)NZ 4.73762 3.72517 1.272 0.205330
as.factor(flag_id)PG -4.70791 2.22869 -2.112 0.036233 *
as.factor(flag_id)PH -9.62881 3.31329 -2.906 0.004189 **
as.factor(flag_id)TW -3.96529 2.31694 -1.711 0.088975 .
as.factor(flag_id)US -7.03858 2.79677 -2.517 0.012850 *
as.factor(flag_id)VU -5.78771 2.57685 -2.246 0.026097 *
as.factor(mm)2  -2.89378 2.68359 -1.078 0.282543
as.factor(mm)3  -3.85500 2.69409 -1.431 0.154443
as.factor(mm)4  0.80661 2.45636 0.328 0.743066
as.factor(mm)5 0.97166 2.42869 0.400 0.689645
as.factor(mm)6 -2.11289 2.51831-0.839 0.402737
as.factor(mm)7 -7.77752 3.20375-2.428 0.016329 *
as.factor(mm)8 -1.70619 2.71826 -0.628 0.531126
as.factor(mm)9  4.91973 2.35060 2.093 0.037960 *
as.factor(mm)10 -5.03720 2.92104 -1.724 0.086593 .
as.factor(mm)11 -3.59322 2.74059 -1.311 0.191734
as.factor(mm)12 -4.06617 3.05259 -1.332 0.184779

Signif. codes: 0 “*** 0.001 “**/ 0.01 “*’0.05°/0.1°" 1

Approximate significance of smooth terms:
edf Ref.df F p-value
s(yy) 1 120.46 1.19e-05 ***

Signif. codes: 0 “***' 0.001 “**’ 0.01 “*/ 0.05 ‘" 0.1“" 1

R-sqg.(adj) = 0.504 Deviance explained = 59.8%
GCV score = 6.324 Scale est. = 4.4325 n =224



