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Note: At the time of paper submission, the computationally intensive calculations for the likelihood

profile and Hessian had not completed for the diagnostic case model. Section 11.2 will be updated

as a revision to the paper [REV1].

[REV1] Results from the likelihood profile (Section 11.2) and the Hessian diagnostic (Section 11.5)

are included in the Appendix. Figures 25 and 28 have been updated to include the asymptotic

95% confidence interval as calculated using the delta-method. The first paragraph of Appendix

Section 11.8 was also revised to more clearly state the assumptions made in the simplified model

that was investigated. A subsequent revision to the paper will include the projection analysis

[REV2].

[REV2] Results from the stochastic projections are included in Section 11.6.

[REV3] Figure 52 (c) has been revised to not show the last two years of total recruitment as these

are fixed at the mean level and are thus misleading when attempting to discern retrospective bias.
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1 Executive Summary

This paper describes the 2020 stock assessment of bigeye tuna (Thunnus obesus) in the western

and central Pacific Ocean. A further three years of data were available since the last full stock

assessment conducted in 2017 (that in 2018 being an update assessment), and the model extends

through to the end of 2018. New developments to the stock assessment include:

• Addressing recommendations of the 2017 stock assessment report (McKechnie et al., 2017a),

enhanced growth information through the addition of age-at-length information from smaller

fish using daily ageing, and the integration of growth information from tag recaptures, as well

as the implementation of the Richards growth model.

• Updates to the definition of reproductive potential

• Implementation of a composite “index” longline fishery for each model region which received

that region’s standardized CPUE index, and concurrently a “pseudo catch conditioned” ap-

proach was taken for the assessment

Based upon recommendations of SPC’s 2020 pre-assessment workshop, only the 10◦ N spatial

structure was considered within this assessment.

The assessment is supported by the analysis of longline catch-per-unit-of-effort (CPUE) data

(Ducharme-Barth and Vincent, 2020), background analyses of biological parameters, compilation

of the tagging data and definition of the fisheries structures (Vincent and Ducharme-Barth, 2020),

tagging data treatment (Peatman, 2020; Scutt Phillips et al., 2020), preparation of the length and

weight composition data (Peatman et al., 2020), new otolith ageing and growth work (Farley et al.,

2020) and estimation of growth using a tag-integrated model (Eveson et al., 2020). Key changes

made in the progression from the 2017 to 2020 diagnostic case models include:

• Updating all data up to the end of 2018.

• Implementation of updated models for tag data (tagger effects, tag reporting rates, sliding

window for tag mixing period, tag reporting rate priors), purse seine catch estimates and size

composition data.

• Implementation of the “index fishery” approach and utilization of spatiotemporal model stan-

dardized CPUE indices.

• Utilizing updated biological parameters for the length-weight relationship and reproductive

potential.

• Implementation of growth as defined by the tag-integrated Richards model.

In addition to the diagnostic case model, we report the results of one-off sensitivity models to

explore the relative impacts of key data and model assumptions for the diagnostic case model on

the stock assessment results and conclusions. We also undertook a structural uncertainty analysis
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(model grid) for consideration in developing management advice where all possible combinations

of those areas of uncertainty from the key one-off models were included.

As per recent Scientific Committee practice, it is recommended that management advice is formu-

lated from the results of the structural uncertainty grid. Broadly speaking, the results from the

current assessment are consistent with those from the previous stock assessment (McKechnie et al.,

2017a; Vincent et al., 2018) following the adoption of the Updated New growth and the 10◦ N re-

gional structure. The most important factor contributing to the uncertainty around the estimated

stock status is the level of data-weighting given to the size-frequency data in the model. Greater

weight placed on the size-frequency data resulted in more optimistic assessment outcomes, while

increased down-weighting produced more pessimistic estimates and stock trajectories. Within lev-

els of the different size-frequency weightings, different assumptions on the average level of natural

mortality and the assumed steepness had a lesser but predictable effect. Higher assumed average

natural mortality and/or steepness resulted in a stock that was estimated to be more productive

and less depleted relative to the other levels of natural mortality and steepness.

The main conclusions of the current assessment are summarized as follows:

• All models in the structural uncertainty grid show WCPO bigeye tuna to be above 20%SBF=0.

• However, there is evidence to suggest that the overall stock status estimated by the model is

being “buffered” by the temperate regions. The most pessimistic predictions of overall stock

status correspond to models where depletion in these temperate regions is predicted to be

high.

• The equatorial regions appear to show consistent levels of regional depletion that approach

estimates of 20%SBF=0 across models.

• A substantial decline in bigeye abundance was estimated by all models in the assessment.

With respect to the difference in recent levels of depletion and those from the beginning of

the model period, the impacts of fishing pressure appear to be persistent and meaningful, at

least on a multi-year scale.

• The effects of the relatively large recruitments seen at the end of the previous stock assessment

do not appear to have continued in recent years. Most models across the grid show a downturn

in stock status in recent years, which appears to match the pattern seen in the standardized

CPUE.
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2 Introduction

This paper presents the 2020 stock assessment of bigeye tuna (Thunnus obesus; BET) in the western

and central Pacific Ocean (WCPO; west of 150◦ W). Assessment of WCPO bigeye tuna has been

conducted regularly since the late 1990s (Langley et al., 2008; Harley et al., 2009, 2010; Davies et al.,

2011; Harley et al., 2014; McKechnie et al., 2017a; Vincent et al., 2018). As in previous assessments,

the objectives of the 2020 bigeye tuna assessment are to estimate population level parameters which

indicate the stock status and impacts of fishing, such as time series of recruitment, biomass, biomass

depletion and fishing mortality. We summarize the stock status in terms of reference points adopted

by the Western and Central Pacific Fisheries Commission (WCPFC). The methodology used for the

assessment is based on the general approach of integrated modeling (Fournier and Archibald, 1982),

which is carried out using the stock assessment framework MULTIFAN-CL2 (MFCL; Fournier et al.,

1998; Hampton and Fournier, 2001; Kleiber et al., 2019). MFCL implements a size-based, age- and

spatially-structured population model. Model parameters are estimated by maximizing an objective

function, consisting of both likelihood (data) and “prior”3 information components (penalties).

Each new assessment of a WCPO tuna stock involves updates to fishery input and tag-recapture

data, implementation of new features in the MFCL modeling software, and often the consideration

of new information on biology, population structure and other population parameters. These

regular changes are an important part of efforts to improve the modeling procedures and more

accurately estimate fishing impacts, biological and population processes. Advice from the Scientific

Committee (SC) on previous assessments, and the annual pre-assessment workshops (PAW) (Hamer

and Pilling, 2020) guides this ongoing process. Changes to aspects of an assessment can manifest

in changes to the estimated status of the stock and fishing impacts and it is important to recognize

that each new assessment represents a new estimation of the historical population dynamics and

recent stock status.

A feature of the tuna stock assessments in the WCPO is the use of an “uncertainty grid”. The

uncertainty grid is a group of models that are run to explore the interactions among selected “axes”

of uncertainty that relate to biological assumptions, data inputs and data treatment. The axes are

generally selected from one-off sensitivity runs of a diagnostic (or base case) model to indicate

uncertainties that have notable effects on the estimates of key model parameters and management

quantities. The uncertainty grid approach may involve many models depending on the number of

axes and the number of alternative assumptions for each axis, as models are run for all combinations

of the axes and alternative assumptions within each axis. Importantly, the uncertainty grid captures

variability in model estimates due to assumptions in model structure that are not accounted for by

statistical uncertainty estimated in a single model run, or a set of one-off sensitivities. Management

2http://www.multifan-cl.org
3Note that any mention of a “prior” in this report does not refer to a prior in the Bayesian sense, though the

effect on the parameter estimate is similar, but rather a penalty placed on the likelihood such that the estimated
parameter does not deviate too much from the specified “prior” value. The magnitude of the deviation from the
“prior” is dependent on the information content of the data and the strength of the likelihood penalty applied.
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advice should typically be based on consideration of the range of model estimates produced by all

models in the uncertainty grid and the relative plausibility of each model scenario.

The most recent assessment was conducted in 2017 (McKechnie et al., 2017a). The 2017 assessment

utilized a new growth data set from otolith ageing and considered alternative spatial structures.

These changes, in particular the new growth data, had an important influence on the outcome of

the assessment, which suggested that the stock was less depleted and fishing pressure was not as

high as indicated by the previous assessment. A range of alternative models were presented to cover

what were considered the key areas of uncertainty. Overall, the previous assessment indicated that

depletion and exploitation status of bigeye in the WCPO were somewhat uncertain, but that the

majority of models indicated that the stock was not overfished or undergoing overfishing according

to WCPFC reference points. This assessment was revisited in 2018 with a re-evaluation of the

2017 assessment to further explore the alternative growth and regional structures (Vincent et al.,

2018), with SC14 electing to make management recommendations based on the “new” growth from

otolith ageing (WCPFC, 2018).

The 2020 assessment includes further development of growth information by enhancing the pre-

vious otolith ageing with smaller fish using daily ageing (Farley et al., 2020), and the integration

of growth information from tag-recaptures (Eveson et al., 2020). Preparatory work on data for

each assessment is an extensive and time-consuming part of the stock assessment process. The

preparatory work is covered in limited detail in this paper and this assessment report should be

read in conjunction with several supporting papers:

• the analyses of longline catch-per-unit-of-effort (CPUE) data (Ducharme-Barth and Vincent,

2020)

• background analyses of biological parameters, compilation of the tagging data and definition

of the fisheries structures (Vincent and Ducharme-Barth, 2020)

• tagging data treatment (Peatman, 2020; Scutt Phillips et al., 2020)

• preparation of the length and weight composition data (Peatman et al., 2020)

• new otolith ageing and growth work (Farley et al., 2020)

• estimation of growth using a tag-integrated model (Eveson et al., 2020)

3 Background

3.1 Stock structure and movement

Bigeye are distributed throughout the tropical and sub-tropical waters of the Pacific, Indian and

Atlantic Oceans. Genetic studies indicate that Atlantic bigeye have minimal mixing with bigeye in

the Indo-Pacific regions (Alvarado Bremer et al., 1998; Chow et al., 2000; Gonzalez et al., 2008).

However, there is currently no clear evidence for genetic population structure in the Pacific Ocean
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(Grewe and Hampton, 1998; Moore et al., 2020). While genetic studies are largely uninformative on

the rates of mixing of bigeye tuna throughout the Pacific, they are broadly consistent with the results

of tagging experiments conducted by SPC and the Inter-American Tropical Tuna Commission

(IATTC) (Schaefer et al., 2015; Moore et al., 2020). These studies show that while the majority

of tagged bigeye have been recaptured in the general regions of their release (i.e. within 1,500

nautical miles) some tagged bigeye move large distances across the Pacific Ocean (i.e. >4,000

nautical miles), but while longitudinal movements are common, latitudinal movements are thought

to be less extensive (Moore et al., 2020). These occasional large-scale movements and the continuous

distribution of bigeye tuna across the Pacific would explain the lack of broad-scale genetic structure.

This does not necessarily preclude regional structure in population processes that are important

in stock assessment (i.e. growth, mortality, recruitment). For example, growth rates have been

shown to differ between bigeye tuna in the WCPO and EPO, with smaller lengths-at-age observed

for bigeye in the WCPO (McKechnie et al., 2015a; Aires-da Silva et al., 2015; Farley et al., 2017).

Further, there is some evidence from otolith chemistry studies for structuring of recruitment sources.

For example, Rooker et al. (2016) indicated that 1–2 year old fish sampled from the Marshall Islands

were derived from local sources, whereas fish caught off Hawaii were suggested to have originated

more broadly from the central equatorial region. Despite uncertainties in population connectivity

within the Pacific, stock assessment outcomes for bigeye tuna in the WCPO have been shown to

be relatively insensitive to inclusion of data from the eastern Pacific Ocean (EPO) (McKechnie

et al., 2015a), supporting the continued approach of separate assessments for the WCPO and EPO

regions. Improving understanding of spatial population processes for bigeye in the WCPO, and

more broadly in the Pacific, remains an important area for research.

The cumulative information on movement from conventional and electronic tag-recapture data,

particularly efforts focused in the equatorial central Pacific, have indicated more extensive longi-

tudinal, particularly west to east displacements with few movements between tropical tag release

sites and temperate zones (Schaefer et al., 2015). For the current bigeye tuna assessment, the stock

within the domain of the model area (essentially the WCPO, west of 150◦ W) is considered to be

a discrete stock unit as in previous assessments (Langley et al., 2008; Harley et al., 2009, 2010;

Davies et al., 2011; Harley et al., 2014; McKechnie et al., 2017a; Vincent et al., 2018). A sensitivity

analysis by McKechnie et al. in 2015 showed that despite extensive longitudinal movements in the

equatorial Pacific, the discrete stock assumption was capable of accurately capturing the dynamics

and stock status indicators for WCPO bigeye tuna.

Within the WCPO, the spatial complexity of the modeling of bigeye tuna has increased. In the 2011

assessment the model domain was divided into 6 regions. After a review of the bigeye assessment

in 2012 (Ianelli et al., 2012), a 9 region structure was implemented in 2014 for both yellowfin

and bigeye (McKechnie et al., 2014; Davies et al., 2014; Harley et al., 2014), with the northern

boundary of regions 3 and 4 set at 20◦ N latitude. In the 2017 bigeye tuna stock assessment

(McKechnie et al., 2017a) an additional option was included that involved moving the northern
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boundary of regions 3 and 4 to 10◦ N latitude to better reflect the spatial structure of the purse seine

fisheries (which are largely restricted to the zone between 10◦S and 10◦N) and the assumption of

low movement rates between the equatorial and sub-tropical northern regions. The implications of

these alternative regional structures were previously investigated in the 2017 assessment and 2018

update assessment (McKechnie et al., 2017a; Vincent et al., 2018). Based on these analyses, the

2020 PAW (Hamer and Pilling, 2020) made the recommendation to only consider the 10◦ N option

in the 2020 assessment of bigeye tuna. This 9 region spatial structure (Figure 1) is a compromise

between the limited knowledge of sub-regional population structure, fishery spatial structures and

the locations of major tag release events (i.e. region 8 and 9).

3.2 Biological characteristics

Bigeye tuna are relatively fast growing, and have a maximum fork length (FL) of about 200 cm

(Aires-da Silva et al., 2015; Farley et al., 2017), with an estimated average maximum length of 157

cm in the WCPO (Eveson et al., 2020; Farley et al., 2020). The growth parameters for bigeye tuna

are influential biological inputs to the stock assessment (McKechnie et al., 2017a; Vincent et al.,

2018). Based on the recommendations of SC14 (WCPFC, 2018), recent work has been conducted

to improve the knowledge and confidence of bigeye tuna growth parameters in the WCPO region.

This involved analyses of over 1200 otoliths, including small fish from assessment region 7 (Farley

et al., 2020). Additionally, growth increment data from over 2,500 tag-recaptures was combined

with the otolith data set in an integrated analysis of bigeye tuna growth in the WCPO (Eveson

et al., 2020). The results of these analyses show that while lengths at age are estimated to be

similar from the otolith only and tag-integrated based growth data-sets, there are slight differences

in the estimated growth parameters between the two growth models.

Available data indicate that bigeye tuna in the WCPO become reproductively active from about

80 cm FL, and nearly all individuals >120 cm FL are reproductively mature (Farley et al., 2017).

There is some evidence for regional variation in maturity-at-length in the WCPO (Nicol et al.,

2011; Farley et al., 2017), and bigeye tuna appear to be reaching maturity at larger sizes, but

at similar ages, in the EPO (Schaefer et al., 2005). As with other tunas, the sex ratio of bigeye

tuna changes at around the age/size of reproductive maturity to favor males at larger size (see

Figure 8 in McKechnie et al., 2017b). This information is used to define spawning potential (rather

than spawning biomass) as a product of maturity status, female sex-ratio in the population, and

fecundity.

The natural mortality (M) rate of bigeye tuna is likely to vary with size, with rates of < 0.5 yr−1

for bigeye >40 cm FL and >2 years age and higher rates for the youngest age-classes (<2 years)

(Hampton, 2000; Bousquet et al., 2012). Tag recapture and otolith data indicate that significant

numbers of bigeye reach at least eight years of age (Hampton and Williams, 2005; Farley et al., 2020).

The longest period at liberty for a recaptured bigeye tuna tagged in the WCPO is approximately

14 years, for a fish 1-2 years old at release (SPC unpublished data) and the oldest fish aged from
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otoliths in the WCPO is approximately 15 years (Farley et al., 2020).

Given the recently completed studies on bigeye tuna age and growth (Eveson et al., 2020; Farley

et al., 2020), a meta-analysis using different life-history based M estimators was conducted to

provide a range of plausible natural mortality values for the assessment (Piner and Lee, 2011).

Additionally, natural mortality of female bigeye tuna is thought to increase at around the age of

reproductive maturity, due to the physiological stresses of spawning, which, as noted above, is

hypothesized to drive the occurrence of a male-biased sex ratio at larger sizes. As in previous

assessments, this feature of the population dynamics has also been incorporated into the natural-

mortality-at-age schedules used in the current assessment.

3.3 Fisheries

Bigeye tuna are an important component of tuna fisheries throughout the Pacific Ocean and are

taken by both surface gears, mostly as juveniles, and longline gear, as more valuable adult fish.

They are a principal target species in tropical waters of both the large, distant-water longline fleets

of Japan, Korea, China and Chinese Taipei and the smaller, fresh sashimi longline fleets based in

several Pacific Island countries and Hawaii (Allain et al., 2016). In recent years the prices paid for

both frozen and fresh product on the Japanese sashimi market are the highest of all the tropical

tunas. The bigeye tuna longline catch in the WCPFC area had a “delivered” value in 2018 of

approximately US $660 million (Williams and FFA, 2019).

Bigeye caught by purse seine vessels are taken almost exclusively from sets on natural and artificial

floating objects (FADs). Estimation of the bigeye (and to a lesser extent yellowfin) tuna catch from

associated sets has been the focus of considerable research over several years (Peatman et al., 2019).

The purse seine fishery mostly targets skipjack, and to a lesser extent yellowfin, though significant

incidental catches of small bigeye occur. This fishery expanded rapidly from the early 1980’s and

the estimated annual bigeye catch for this gear has recently been in the vicinity of 40,000-70,000 mt.

The highest estimated bigeye tuna total catch from the WCPO was approximately 192,000 metric

tonnes in 2004, but in recent years has been around 140,000-150,000 metric tonnes (Williams et al.,

2020). Over the recent period (2015-2019), approximately 50% of the catch by weight, but 10% by

numbers was taken by longline, reflecting the selection of longline gear for larger fish. In contrast,

50% of the catch by numbers, but only 35% by weight was taken by purse seine sets associated

with FADs, due to this fishing method selecting for smaller fish. A small purse seine fishery also

operates in the coastal waters off Japan with an annual bigeye catch of less than 500 mt in recent

years. A slightly higher level of bigeye catch is taken by the coastal Japanese pole-and-line fishery

relative to the coastal Japanese purse seine.

In recent years, collaborative work between SPC, WCPFC, CSIRO (primarily in Indonesia), and

fisheries agencies in Indonesia, Philippines, and Vietnam has resulted in improved catch statistics

for their fleets. In some instances data are available at the individual fisheries level (e.g., longline or

large-fish handline), but often statistics are aggregated across a variety of gears that typically catch
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small bigeye tuna, e.g., ring-net, handline, and troll. Data for these fisheries have been included in

the assessment, as described below.

4 Data compilation

4.1 General notes

Data used in the bigeye tuna stock assessment using MFCL consist of catch, effort, length &

weight-frequency data for the fisheries defined in the analysis, and tag-recapture data. Conditional

age-at-length data may also be used directly as data in the assessment model. Several companion

papers detail the work on input data to support this assessment. Readers should refer to these

papers highlighted at the end of Section 2 for detailed descriptions of how the data and biological

inputs were formulated, as only brief descriptions will be provided in this report.

4.2 Spatial stratification

The broad geographic area considered in the 2020 assessment covers the Pacific Ocean to the west

of 150◦ W, and between 50◦ N and 40◦ S. The eastern boundary of the assessment excludes the

WCPFC Convention area component that overlaps with the IATTC area. The region extends

to 140◦ E off south-east Australia, 110◦ E in south-east Asia and 120◦ E in the north western

Pacific (Figure 1). Within this area there are 9 spatial assessment regions identified based on

consideration of fishery characteristics and movement information from tagging studies (Harley

et al., 2014). Consistent with the 2017 assessment, the current configuration has the northern

boundaries of regions 3 and 4 being set at 10◦ N. The rationale for this is described more fully in

McKechnie et al. (2017b). Some small regions are included, i.e. region 8 designed to approximate

the archipelagic waters of PNG and Solomon Islands, where considerable tagging effort has occurred

and the analyses show more persistent residence compared to the wider western equatorial region,

and region 9 that was established in 2014 to better model the tagging data from the Coral Sea

(Harley et al., 2014).

4.3 Temporal stratification

The time period covered by the assessment is 1952–2018 which includes all significant post-war

tuna fishing in the WCPO. Within this period, data were compiled into quarters (1; Jan–Mar,

2; Apr–Jun, 3; Jul–Sep, 4; Oct–Dec). As agreed at SC12, the assessment does not include data

from the most recent calendar year as this is considered incomplete at the time of formulating

the assessment inputs. Recent year data are also often subject to significant revision post-SC, in

particular the longline data on which this assessment greatly depends.

14



4.4 Definition of fisheries

MFCL requires “fisheries” to be defined that consist of relatively homogeneous fishing units. Ideally,

the defined fisheries will have selectivity and catchability characteristics that do not vary greatly

over time and space. For most pelagic fisheries assessments, fisheries are defined according to gear

type, fishing method and region, and also by vessel flag or fleet. There are 41 fisheries defined for

this assessment (Table 1 & Table 2) consisting of index, longline, purse seine, pole and line and

various miscellaneous small-fish fisheries in Indonesia and the Philippines. The fisheries definitions

for the 2020 assessment are consistent with those used in the 2017 assessment, except for the

addition of index fisheries for each region. A graphical summary of the availability of data for each

fishery used in the diagnostic case model is provided in Figure 2.

Equatorial purse seine fishing activity was aggregated over all nationalities, but stratified by region

and set type, in order to sufficiently capture the variability in fishing operations. Set types were

grouped into associated (i.e. log, FAD, whale, dolphin, and unknown set types) and unassociated

(free-school) sets. Further fisheries were defined for pole-and-line fisheries and miscellaneous fish-

eries (gillnets, ringnets, hook-and-line, handlines etc.) in the western equatorial area. At least

one longline fishery was defined in each region, although in regions 3 and 7 longline fishing was

separated into distant water and offshore components to account for the apparent differences in

fishing practices (including captured fish sizes) for these fleets in these regions.

4.4.1 Index fisheries

In previous WCPO bigeye assessments, a longline fishery in each region received standardized effort

from an external CPUE analysis. These fisheries were assumed to have a fixed catchability across

regions and years. As such, their CPUEs served to index abundance across space and time. In

this assessment, we used an “index” fisheries approach, first applied in the 2018 assessment of

South Pacific albacore (Tremblay-Boyer et al., 2018). Briefly, an index fishery is defined for each

of the 9 model regions as a composite fishery composed of all longline fisheries operating in the

assessment area. The full longline operational data-set (described in McKechnie et al., 2015b) was

used as the basis for the index fisheries. A trivial amount of catch (1 fish per quarter) was assigned

so that index fisheries are in effect non-extractive fisheries. Effort for each time step is adjusted,

as with the longline fisheries receiving standardized effort in previous assessments, such that the

original standardized CPUE derived using a spatiotemporal delta-Generalized Linear Mixed Model

or “geostatistical” CPUE standardization model is preserved (see Ducharme-Barth and Vincent,

2020 and Section 4.5.3). The standardized indices for each region are scaled by the regional scaling

factors derived from the geostatistical CPUE standardization model. Catchability for the index

fisheries is then assumed to be constant over time and shared across the 9 assessment regions in

order to scale the population. The regular capture (or extractive) longline fisheries are based on

the same data set, but are disaggregated into the longline fisheries defined in Table 1. The size

composition data (length & weight-frequency) for the extraction fisheries is assumed to represent
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the actual composition of the removed fish for any space-time strata, and in the data preparation

process are weighted by the catch in order to represent the fisheries at the spatial (region) and

temporal (quarter) resolution of the model (McKechnie, 2014; Peatman et al., 2020). However, for

the index fisheries, while the same aggregation process is conducted, the size data is weighted by

CPUE (rather than by catch) so that the size data is more representative of the abundance of the

underlying population in each region and time period. Further, because the size data for the index

and extraction fisheries are effectively being used twice (but weighted differently), the likelihood

weighting is adjusted such that the original intended weight (effective sample size) in the likelihood

is preserved.

Overall, the index fisheries approach to generating abundance indices for model fitting is considered

an improvement over the previous approach because it:

• provides the best possible spatial and temporal coverage for the indices of relative abundance

in the assessment,

• allows the size data to be weighted by CPUE for the index fisheries, thus better representing

the composition of the population, while maintaining a catch-based weighting for the capture

fisheries.

4.5 Catch and effort data

4.5.1 General characteristics

Catch and effort data were compiled according to the fisheries defined in Table 1 & Table 2.

Catches by the longline fisheries were expressed in numbers of fish, and catches for all other fisheries

expressed in weight (mt). This is consistent with the form in which the catch data are recorded for

these fisheries.

It is also worth noting that this assessment is implemented using a “pseudo” catch-conditioned

approach (see Section 5.3.2). To accommodate this, effort was removed for all fisheries except for

the index fisheries. This also eliminated the need to account for fisheries effort creep through the

estimation of time-varying changes in catchability. A nominal effort of one was included for the

final year of the model to allow the estimation of a catchability coefficient to assist with projection

analyses.

Total annual catches by major gear categories for the WCPO are shown in Figure 3 and a regional

breakdown is provided in Figure 4. The spatial distribution of catches over the past ten years

is provided in Figure 5. Discarded catches are estimated to be minor and were not included in

the analysis. Catches in the northern region are highly seasonal and the annual catch has been

relatively stable over much of the assessment period. Most of the catch occurs in the tropical

regions (3, 4, 7, and 8).

A number of noticeable trends in the fisheries have occurred over the model period, specifically:
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• Bigeye catch by longline vessels steadily increased through the mid-2000s in the equatorial

and southern regions. However, these catches have since shown a decline.

• The relatively stable catches of bigeye in the northern temperate region by longline vessels,

and to a lesser degree, Japanese pole and line and purse seine vessels in region 1.

• The development of the equatorial purse-seine fisheries from the mid-1970s and the widespread

use of FADs since the mid-1990s, allowing an expansion of the purse-seine fishery, and corre-

sponding increases in catch of bigeye, particularly in equatorial regions 3, 4 and 8.

• Large changes in the purse seine fleet composition and increasing size and efficiency of the

fleet.

• The steady increase in catch for the domestic fisheries of Indonesia and the Philippines since

1970.

• The apparent stabilisation of catches of bigeye for most gears after the mid 2000’s.

4.5.2 Purse seine

In the previous assessment, purse seine catches by species were estimated using the procedure

documented in Hampton and Williams (2017) as Method 3. SC15 agreed to a number of changes

to the methodology (WCPFC, 2019), including the approach used to account for grab sample bias,

based on recommendations arising from WCPFC Project 60. The revised estimation approach is

documented in Peatman et al. (2019).

4.5.3 Longline fisheries

The longline CPUE indices are one of the most important inputs to the assessment as they provide

indices of abundance over time for each region, and help scale abundance across the regions. These

indices are implemented using the “index” fishery approach described in Section 4.4.1 and inform

the model of trends and variation in the components of the stock vulnerable to fishing.

The index-fishery CPUE time series for the 2020 assessment were derived from the operational

longline dataset for the WCPO region. This dataset is an amalgamation of operational level data

from the distant-water fishing nations (DWFN) and Pacific-Island countries and territories (PICTs)

longline fleets operating in the Pacific basin. It represents the most complete spatiotemporal record

of longline fishing activity in the Pacific, spanning from 1952 through to the present and is the result

of collaborative ongoing data-sharing efforts from many countries. This data-set was first created

in 2015 in support of the Pacific-wide bigeye tuna stock assessment (McKechnie et al., 2015b), and

was subsequently analyzed to generate indices of relative abundance for the 2017 WCPFC bigeye

tuna stock assessment (McKechnie et al., 2017a; Vincent et al., 2018). In 2017, the first application

of spatiotemporal modeling approaches was used for a WCPFC stock assessment (Tremblay-Boyer

et al., 2017). For this assessment we built on these previous efforts including also the spatiotemporal
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modeling done in support of the 2019 WCPFC skipjack tuna stock assessment (Ducharme-Barth

et al., 2019; Kinoshita et al., 2019).

Two sets of indices were used in the stepwise model development of the 2020 bigeye tuna diagnostic

case. The first index replicated the approach taken in the previous assessment (McKechnie et al.,

2017a,b) and utilized a delta-GLM fit to independent partitions of data from the operational longline

data-set within each assessment region. This model structure was not altered as this index was only

used in the initial phases of model development in order to maintain continuity in the stepwise model

progression from the 2017 diagnostic case to the 2020 diagnostic case. The primary index used in

the 2020 stock assessment (Figure 6) was estimated using the VAST spatiotemporal modeling

framework (Thorson, 2019).

A detailed description of the process and workflow for generating the spatiotemporal index is

provided in Ducharme-Barth and Vincent (2020). Briefly, after the data-set was cleaned, the

VAST approach was used to generate the relative abundance indices. In the VAST framework,

the relative abundance index is the spatial average of predicted abundance once catchability effects

have been “standardized” out. The model implemented by the VAST package is a spatiotemporal

delta generalized linear mixed model (GLMM), an extension of the delta-GLM (Thorson et al.,

2015). The final model applied to generate the CPUE indices included catchability covariates of a

vessel nationality grouping variable and hooks-between-floats (HBF), which is a proxy for fishing

depth and species targeting.

Previously, the coefficients of variation (CVs) for region-specific standardized effort were rescaled

to an average level of 0.2 over a reference period of 1980-1990. Since a single spatiotemporal model

was used to generate the standardized CPUE, the CVs for the standardized effort assigned to the

index fishery were rescaled to an average level of 0.2 across all regions and time periods. This was

done in order to more appropriately capture the relative differences in uncertainty, due in part to

varying levels of sampling intensity, across spatial and temporal strata. In this way, MFCL is able

to account for the time-varying nature of the CVs such that the fit to the CPUE data is given

greater influence in the likelihood in time-steps with more precise estimates of abundance.

4.5.4 Other fisheries

There has been continual improvement in the catch estimates from Indonesia and the Philippines

through the GEF-WPEA project and since the 2014 assessment catch data from fisheries in Vietnam

have also been included. These improved catch estimates have been incorporated into the current

assessment.

4.6 Size data

Available length-frequency data for each of the fisheries were compiled into 95 2cm size classes (10–

12 cm to 198–200 cm). Weight data were compiled into 200 1kg size classes (0–1 kg to 199–200 kg).
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Most weight data were recorded as processed weights (usually recorded to the nearest kilogram).

Processing methods varied between fleets requiring the application of fishery-specific conversion

factors to convert the available weight data to whole fish equivalents. Details of the conversion

to whole weight are described in Langley et al. (2006). Data were either collected onboard by

fishers, through observer programs, or through port sampling. Each size-frequency record in the

model consisted of the actual number of bigeye tuna measured and Figure 2 provides details of the

temporal availability of length and weight-frequency data. Note that a maximum effective sample

size of 1,000 is implemented in MFCL when using the robust normal likelihood for size composition

data. In practice, this effective sample size was further down-weighted, with the sensitivity to the

magnitude of the down-weighting investigated in the sensitivity and structural uncertainty analyses.

4.6.1 Purse seine

Only length-frequency samples are used in the bigeye assessment for purse seine fisheries. Prior to

2014, assessments used only observer samples which had been corrected for grab-sample bias. As

observer coverage had been very low and unrepresentative in early years, there were many gaps

and the time series of size data did not show evidence of modal progression. Two major changes

were implemented for the 2014 assessment and are described in detail in Abascal et al. (2014): first

the long time series of port sampling data from Pago Pago was included, and second all samples

were weighted by the catch - both at the set and strata level, with thresholds applied to ensure

that small samples from important catch strata did not get too much weight (consistent with the

approach taken for the longline fishery). The pre-processing of the purse seine length composition

data for the current assessment based on the Abascal et al. (2014) approach is described in further

detail in Peatman et al. (2020).

Length-frequency data were unavailable for the “all flags” associated purse seine fishery in region

7 (Fishery 30). In the model, it was assumed to share a selectivity with the “all flags” associated

purse seine fishery in the adjacent region 3 (Fishery 13).

4.6.2 Longline

A detailed review of all available longline length and weight-frequency data for bigeye has previously

been undertaken by McKechnie (2014). That paper, along with Peatman et al. (2020), provides

details for the analytical approach used to construct the data inputs for the current assessment. The

key principle used in constructing the data inputs was not to use weight and length data at the same

time, even if it was available, as it would either introduce conflict (if data were in disagreement) or

over-weight the model fit (if they were in agreement). The general approach used by McKechnie

(2014) and Peatman et al. (2020) for the “extraction” fisheries was that weight-frequency samples

should be weighted with respect to the spatial distribution of flag-specific catch within each region.

This is done so that catch is extracted from the population at the appropriate size. Weight-frequency

data were used based on the spatiotemporal coverage and number of samples. In the previous stock
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assessment Japanese weight data were not available for regions 4, 5, and 6 towards the end of the

model period and were supplemented by “all flags” length data. Additional Japanese weight-

frequency data has since been made available and is used in the current assessment. However,

the number of available weight-frequency samples declines in recent years. Switching to length-

frequency data for the longline fisheries in regions 4, 5, and 6 beginning in the mid-2000’s is

investigated as a model sensitivity.

Size composition data were prepared similarly for the index fisheries (Peatman et al., 2020). As

mentioned in Section 4.4.1, the approach differed from the one briefly described for the extraction

fisheries in that the size-frequency samples were reweighted with respect to the spatial distribution

of abundance as predicted by the spatiotemporal CPUE standardization model (Ducharme-Barth

and Vincent, 2020). This is to allow size compositions to inform temporal variation in population

abundance and size. To generate the size composition data for the index fisheries, data were first

subset to match the nationalities of the “all flags” longline fisheries in each region. This was done to

prevent shifts in size composition as a result of a change in sampling between fisheries. Sensitivity

to this assumption was tested by including weight-frequency data from the US longline fleet and

the Australian longline fleet in the index fishery composition data for regions 2 and 5, respectively.

Additionally, sensitivity to the declining availability of weight composition data in regions 4, 5, and

6 was tested by switching to length-frequency data.

Given that the same data were used for both the extraction and index fisheries, the observed number

of size-frequency samples input into the assessment was divided by 2 for both the extraction and

index fisheries. The maximum effective sample size in the stock assessment model was also divided

by two for these fisheries (i.e. 500 as opposed to the default value of 1,000 assumed for the other

fisheries).

4.6.3 Other fisheries

Size composition data for the Philippines domestic fisheries, both small-fish fisheries (Fishery 17)

and large-fish handline fisheries (Fishery 18), were derived from a number of sampling programs

conducted in the Philippines since the 1980s. In more recent years, size-sampling data have been

substantially augmented by the work of the GEF-WPEA project. Additionally, recent data col-

lection efforts in both Indonesia and Vietnam have made available new length-frequency data for

inclusion in the assessment for both the domestic Indonesia small-scale fishery (Fishery 23) and the

domestic Vietnam small-scale fishery in region 7 (Fishery 32).

Size data were missing for the Indonesian-Philippines ex-EEZ purse seine fishery in region 7 (Fishery

24). Based on an investigation of the length frequency data of the other tropical tunas (skipjack

tuna and yellowfin tuna) available for this fishery, selectivity was assumed to be shared with the

Philippines small-fish fishery in region 7 (Fishery 17) as this fishery had the most similar size

composition for the other tropical tuna species.
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As in the previous assessments the length frequency samples from the Philippines domestic small

fish miscellaneous fishery (Fishery 17) were adjusted to exclude all reported fish lengths greater

than 90 cm from the current assessment. These large fish were also excluded from the new length-

frequency data for both the domestic Indonesia small-scale fishery in region 7 (Fishery 23) and the

domestic Vietnam small-scale fishery in region 7 (Fishery 32). This was done on the basis that it

is suspected that the presence of these large fish may be due to mis-reporting of the fishing gear in

some of the regional sampling programs.

The Indonesia–Philippines domestic handline fishery in region 7 (Fishery 18) consistently catches

the largest individuals in the WCPO. Handline fishing often takes place on mixed–gear trips with

other gears such as hook-and-line targeting smaller fish. To avoid “contaminating” the length-

frequency data for this fishery with fish that were mis-reported as being caught using a handline,

fish smaller than 70 cm were excluded.

Length data from the Japanese coastal purse-seine and pole-and-line fleets were provided by the

National Research Institute of Far Seas Fisheries (NRIFSF). For the equatorial pole-and-line fishery,

length data were available from the Japanese distant-water fleet (sourced from NRIFSF) and from

the domestic fleets (Solomon Islands and PNG). Since the late 1990s, most of the length data were

collected by observers covering the Solomon Islands pole-and-line fleet.

4.7 Tagging data

Of the three main tropical tuna species, bigeye tuna has the least amount of tagging data avail-

able. A summary of its characteristics and the process of constructing the MFCL tagging file are

presented in detail by Vincent and Ducharme-Barth (2020) and in Table 3. Data were available

from the Regional Tuna Tagging Project (RTTP) during 1989–92 (including affiliated in-country

projects in the Solomon Islands, Kiribati, Fiji and the Philippines), more recent (1995, 1999-2001)

data from the Coral Sea Tagging Programme (CSTP) by CSIRO (Evans et al., 2008), and the Pa-

cific Tuna Tagging Programme (PTTP) carried out during the period 2006 until the end of 2017.

Additional data have been incorporated since the 2017 assessment for the Japanese Tagging Pro-

gramme (JPTP), conducted by NRIFSF and the Ajinomoto Co. Inc, over the period 2000–2020.

The tagging data from the JPTP provide information about the fishing mortality and movement

rates in region 1 for these assessments. Additional tagging on a longline vessel near Tonga (SM

cruise) that took place in the fourth quarter of 2000 was included because it had information from

bigeye larger than 100 cm. There were 95 tags released with 4 usable recoveries. Though the

previous assessment (McKechnie et al., 2017a) restricted the inclusion of the JPTP to a sensitivity

analysis due to the slower model run times (MFCL has to track an extra “population” of individ-

uals for each release event), these data were included in the 2020 diagnostic case as they provided

tag/recapture information outside of the main equatorial regions. Sensitivity to the inclusion of

these data is shown in the stepwise model progression to the diagnostic case.

Tags were released using standard tuna tagging equipment and techniques by trained scientists and
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technicians. Tags have been returned from a range of fisheries, having been recovered onboard or

via processing and unloading facilities throughout the Asia-Pacific region.

In this assessment, the numbers of tag releases input to the assessment model were adjusted for a

number of sources of tag loss, unusable recaptures due to lack of adequately resolved recapture data,

estimates of tag loss (shedding and initial mortality) due to variable skill of taggers, and estimates

of base levels of tag shedding/tag mortality. An additional problem for the bigeye assessment is

that there are a considerable number of tag returns that were released within the WCPO but

recaptured to the east, outside the assessment region. This adjustment or rescaling preserves the

recovery rates of tags from individual tag groups that would otherwise be biased low given that

a large proportion of recaptures cannot be attributed to a recapture category in the assessment.

These procedures were first described in Berger et al. (2014) and McKechnie et al. (2016). For the

current assessment, Vincent and Ducharme-Barth (2020) describes the analyses taken to prepare

the tagging data. Additionally, the model used to adjust tags due to variability in tagger ability

or “tagger effect” has been substantially changed to more appropriately account for covariates

influencing bigeye tuna tag recapture rates. The report from Scutt Phillips et al. (2020) describes

the changes to the “tagger effects” model in greater detail.

After tagged fish are recaptured, there is often a delay before the tag is reported and the data are

entered into the tagging databases. If this delay is significant then reported recapture rates for

very recent release events will be biased low and will impact estimates of fishing mortality in the

terminal time periods of the assessment. For this reason, any release events occurring after the end

of 2017 were excluded from the assessment.

For incorporation into the assessment, tag releases were stratified by release region, time period of

release (quarter) and the same size classes used to stratify the length-frequency data. A total of

36,847 effective releases were classified into 112 tag release groups (Vincent and Ducharme-Barth,

2020). The returns from each size-class of each tag release group (9,256 effective, usable tag returns

in total) were then classified by recapture fishery and recapture time period (quarter). Because

tag returns by purse seiners were often not accompanied by information concerning the set type,

tag return data were aggregated across set types for the purse seine fisheries in each region. The

population dynamics model was in turn configured to predict equivalent estimated tag recaptures

by these grouped fisheries.

The likelihood penalties or “priors” used for the reporting rates of the grouped tag return fisheries

has been updated relative to those used in the previous assessment based on the analysis of tag

seeding experiments (Peatman, 2020). Tag reporting was assumed to be similar between the RTTP

and CSTP so reporting rates estimates were shared across these two programs to reduce model

dimensionality.
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5 Model description

5.1 General characteristics

The model can be considered to consist of several components, (i) the dynamics of the fish popula-

tion; (ii) the fishery dynamics; (iii) the dynamics of tagged fish; (iv) the observation models for the

data; (v) the parameter estimation procedure; and (vi) stock assessment interpretations. Detailed

technical descriptions of components (i)–(iv) are given in Hampton and Fournier (2001) and Kleiber

et al. (2019). In addition, we describe the procedures followed for estimating the parameters of

the model and the way in which stock assessment conclusions are drawn using a series of reference

points.

5.2 Population dynamics

The model partitions the population into nine spatial regions and 40 quarterly age-classes. The

last age-class comprises a “plus group” in which mortality and other characteristics are assumed

to be constant. The population is “monitored” in the model at quarterly time steps, extending

through a time window of 1952–2018. The main population dynamics processes are as follows.

5.2.1 Recruitment

Recruitment is defined as the appearance of age-class 1 quarter fish (i.e. fish averaging ∼ 20–

30 cm given current growth curves) in the population. Tropical tuna spawning does not always

follow a clear seasonal pattern but is thought to occur sporadically when food supplies are plentiful

(Itano, 2000). In the assessment model, it was assumed that recruitment occurs instantaneously

at the beginning of each quarter. This is a discrete approximation to continuous recruitment, but

provides sufficient flexibility to allow a range of variability to be incorporated into the estimates as

appropriate.

Spatially-aggregated (over all model regions) recruitment was assumed to have a weak relation-

ship with annual mean spawning potential via a Beverton and Holt stock-recruitment relationship

(SRR) with a fixed value of steepness (h). Steepness is defined as the ratio of the equilibrium

recruitment produced by 20% of the equilibrium unexploited spawning potential to that produced

by the equilibrium unexploited spawning potential (Francis, 1992; Harley, 2011). Typically, fish-

eries data are not very informative about the steepness parameter of the SRR parameters (ISSF,

2011); hence, the steepness parameter was fixed at a moderate value (0.80) and the sensitivity of

the model results to the value of steepness was explored by setting it to lower (0.65) and higher

(0.95) values.

The SRR was incorporated mainly so that yield analysis and population projections could be under-

taken for stock assessment purposes, particularly the determination of equilibrium- and depletion-

based reference points. We therefore applied a weak penalty (equivalent to a CV of 2.2) for devia-

tion from the SRR so that it would have negligible effect on recruitment and other model estimates
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(Hampton and Fournier, 2001), but still allow the estimation of asymptotic recruitment. This

approach was recommended (recommendation 20) by the 2011 bigeye assessment review (Ianelli

et al., 2012). The SRR was calculated over the period from 1962–mid-2017 to prevent the early

recruitments (which appear to be part of a different “regime” to subsequent estimates and may

not be well estimated in any case), and the terminal recruitments (which are not freely estimated),

from influencing the relationship, which is consistent with the approach of the 2017 assessment.

In recent assessments of tuna in the WCPO the terminal recruitments have often been fixed at

the mean recruitment of the rest of the model period. This acknowledges that these estimates are

poorly supported by data and if unconstrained can vary widely, with potentially large consequences

for stock projections. This approach has been continued here by fixing the six terminal recruitments

at the mean of the recruitments over the rest of the assessment period.

The distribution of recruitment among the model regions was estimated within the model and

allowed to vary over time in a relatively unconstrained fashion.

5.2.2 Initial population

The population age structure in the initial time period in each region was assumed to be in equilib-

rium and determined as a function of the average total mortality during the first 20 quarters. This

assumption avoids having to treat the initial age structure, which is generally poorly determined,

as independent parameters in the model.

As noted above, the population is partitioned into quarterly age-classes with an aggregate class for

the maximum age (plus-group). The aggregate age class makes possible the accumulation of old

and large fish, which is likely in the early years of the fishery when exploitation rates were very

low.

5.2.3 Growth

The standard assumptions for WCPO assessments fitted in MFCL were made concerning age and

growth: i) the lengths-at-age are normally distributed for each age-class; ii) the standard devia-

tions of length for each age-class are a log-linear function of the mean lengths-at-age; and 3) the

probability distributions of weights-at-age are a deterministic function of the lengths-at-age and a

specified weight-length relationship4. These processes are assumed to be regionally and temporally

invariant. The growth curves were defined using L1 (length at first age-class) and L2 (length at

terminal age-class) calculated from the midpoint of each age bin (i.e. length at age 0.5 quarters

for L1 and length at 39.5 quarters for L2) in order to more appropriately model the variability in

growth for each age class.

Given the mandate for further investigation and research on growth by SC14, two new data-sets

4The length-weight relationship which has been updated for the current assessment based on an analysis of current
and historical port sampling data (Vincent and Ducharme-Barth, 2020)
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were prepared for the current bigeye tuna assessment: i) an improved otolith ageing data-set (Farley

et al., 2020), and ii) an integrated otolith and tag-recapture data-set (Eveson et al., 2020). New for

this assessment is the assumption of the more flexible Richards growth (Richards, 1959) as both the

otolith only (oto-only) and the tag-integrated (tag-int) models showed a better fit to the data than

for the traditional von Bertalanffy (VB) growth curve (Eveson et al., 2020; Farley et al., 2020).

Three alternative approaches to modeling growth were investigated in the current assessment. All

assumed the Richards growth function, and all met recommendations made by SC14 and the 2020

pre-assessment workshop:

• Oto-Only: This growth curve is a fixed Richards growth curve based on high-readability

otoliths (Farley et al., 2020). This curve is derived from an expanded version of the combined

daily and annual aged otolith data-set described in Farley et al. (2017) to define the “new

growth” used in the previous stock assessment (McKechnie et al., 2017a; Vincent et al.,

2018) and used to inform management (WCPFC, 2018). Changes from the previous analysis

include an improved method for estimating decimal age using otolith size and the inclusion

of very small bigeye that were captured by the Philippines domestic fisheries in region 7.

The two length-at-age standard deviation (SD) parameters, the “generic” SD and the “age-

dependent” SD (Kleiber et al., 2019) were freely estimated in the assessment model. Variation

in asymptotic length for the otolith dataset is likely to be underestimated. The estimated

age-dependent SD allows the model to fit the size data adequately, especially for large fish

caught in the longline and handline fisheries.

• Tag-Int: This growth curve is a fixed Richards growth curve based on the same high-

readability otolith data-set as the oto-only growth in addition to bigeye tuna tag-recapture

data (Eveson et al., 2020). Additionally, the two length-at-age SD parameters were freely

estimated to account for the large fish caught by the longline and handline fisheries.

• Est-Richards: A conditional age-length data-set was constructed from the combined daily

and annual otolith dataset (Farley et al., 2020) and was input to MFCL. This allowed for

modal progressions, apparent in the temperate region size composition data, in addition to

the otoliths to inform the estimation of all growth parameters (L1, L2, K, two SD parameters,

and the Richards parameter). This conditional age-length data-set makes use of the improved

method for estimating decimal age as it allows for fish to be assigned to quarterly age classes

without making a birth-date assumption. Additionally, though the small fish from region 7

were not collected until the first quarter of 2020, including these small fish is important for

the estimation of the L1 parameter. As a result these fish were included in the assessment

model as being caught in the first quarter 2018. The implicit assumption being made is that

had the Philippines fishery been sampled for otoliths in 2018, these fish would have been

present in the population and sampled at that time.
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5.2.4 Movement

Movement was assumed to occur instantaneously at the beginning of each quarter via movement

coefficients that connect regions sharing a common boundary. Note that fish can move between

non-contiguous regions in a single time step due to the “implicit transition” computational algo-

rithm employed (see Hampton and Fournier, 2001 and Kleiber et al., 2019 for details). Movement is

parameterized by a pair of bi-directional coefficients at each region boundary. Movement is possible

in both directions across each each regional boundary in each of the four quarters. Each of these co-

efficients is estimated independently resulting in 104 estimated movement parameters (2×no.region

boundaries (13)×4 quarters). There are limited data from which to estimate long-term, annual

variation in movement or age-specific movement rates. As such, the estimated seasonal pattern is

assumed to be fixed across years and the movement coefficients are invariant with respect to age.

A “prior” of 0 is assumed for all movement coefficients, and a low penalty is applied to deviations

from the “prior”.

5.2.5 Natural mortality

In MFCL, natural mortality (M) can either be held fixed at pre-determined, age-specific values or

estimated as age-specific parameters. As in previous assessments, M -at-age was calculated using an

approach applied to other tunas in the WCPO and EPO (Harley and Maunder, 2003; Hoyle, 2008;

Hoyle and Nicol, 2008). The externally-estimated M -at-age function was input to MFCL as fixed

values and is shown in Figure 7 for the diagnostic case model. The generally increasing proportion

of males observed in the catch with increasing size is assumed to be due to an increase in the

natural mortality of females, associated with sexual maturity and the onset of reproduction. Since

fixed values of M -at-age are initially calculated at-length and then back transformed to age using

a growth curve, it is important to calculate a specific M -at-age for each growth curve used in the

modeling. This process is described in McKechnie et al. (2017b) and is repeated for the alternate

growth curves considered in this assessment. For this assessment we use a specific M -at-age for

each of the fixed growth curve used. When growth was estimated internally to MFCL using the

conditional age-length data-set, the natural mortality was assumed to follow that of the growth

curve corresponding to the parameter starting values, either Tag-Int or Oto-Only.

Given the updates in bigeye tuna growth over the past several years (Eveson et al., 2020; Farley

et al., 2017, 2020), the existing assumption around the mean level of M was revisited. A meta-

analytic framework, based on life-history theory and empirical estimates, was used to generate an

updated estimate for M (Vincent and Ducharme-Barth, 2020). This analysis yielded an estimated

quarterly M of 0.1275 (0.1090 – 0.1459; 95% confidence interval) which is consistent with the

assumed mean level of quarterly M used in the diagnostic case, 0.1124. Sensitivity analyses were

conducted to explore how model estimated management quantities changed when the age-specific

deviates from the diagnostic case were applied to the new estimates of average quarterly M.
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5.2.6 Reproductive potential

The reproductive potential ogive is an important component of the assessment structure as it trans-

lates model estimates of total population biomass to the relevant management quantity, spawning

potential biomass (SB). Subsequent to the 2017 stock assessment, a new feature in MFCL was

developed allowing the reproductive potential ogive to be defined and input into the assessment as a

function of length. This length-based ogive is then converted internally to a reproductive potential-

at-age using a smooth-spline approximation (Davies et al., 2019). This allows for a more natu-

ral definition of reproductive potential as the product of three length-based processes: proportion

females-at-length5 (sex-ratio), proportion of females mature-at-length6, and the fecundity-at-length

of mature females7 (Figure 8). Another added benefit is that this reproductive potential ogive is

growth invariant. The previous stock assessments had to redefine the reproductive potential-at-age

ogive for each different growth curve included in the assessment.

In addition to the structural change in how reproductive potential is input and modeled, there

are two updates to how the reproductive potential ogive was defined relative to the previous as-

sessments. As mentioned in the previous paragraph, female sex-ratio at length is one of the three

components that make up the reproductive potential ogive. In the past this was estimated from

sex-at-length data collected by fisheries observers, and then converted to proportion female-at-age

for input into MFCL. This length-to-age conversion resulted in a much greater decline in the propor-

tion female-at-age than was indicated by the observer data. This exaggerated decline in proportion

female-at-age used in the previous stock assessments resulted in a dome-shaped reproductive po-

tential ogive (see Figure 11; McKechnie et al., 2017a) and implied that 5–7 year old individuals

made the largest contribution to spawning potential. Using the more appropriate length-based

input of female sex-ratio-at-length, the reproductive potential ogive is shifted to older individuals

(Figure 9).

The second update to the reproductive potential ogive is the removal of spawning fraction. Previous

assessments included spawning fraction at age from EPO yellowfin tuna (Schaefer, 1998) based on

the sensitivity analysis of Hoyle and Nicol (2008). Given the differences between species and

regional differences in the Pacific-basin between the WCPO and EPO, we felt it more appropriate

to remove this component from the definition of the reproductive potential ogive. Although Farley

et al. (2017) collected some information on WCPO bigeye tuna spawning fraction, we did not feel

that sample sizes were sufficiently large (n = 168) to estimate spawning fraction across all length

bins of spawning capable individuals. Model sensitivity to the removal of spawning fraction from

the reproductive potential ogive is assessed in the stepwise model development.

5For the current assessment, female sex-ratio-at-length was calculated from Regional Observer Program data in
SPC’s holdings through 2018.

6Taken from Farley et al. (2017) as in the previous assessment.
7Taken from Sun et al. (2006) and standardized per kg of body weight at length as in the previous assessment.
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5.3 Fishery dynamics

The interaction of the fisheries with the population occurs through fishing mortality. Fishing mor-

tality is assumed to be a composite of several separable processes - selectivity, which describes the

age-specific pattern of fishing mortality; catchability, which scales fishing effort to fishing mortality;

and effort deviations, which are a random effect in the fishing effort - fishing mortality relationship.

5.3.1 Selectivity

Selectivity was modeled using a cubic spline (Harley et al., 2014; McKechnie et al., 2017a). This

allows for greater flexibility than assuming a functional relationship with age (e.g. logistic curve to

model monotonically increasing selectivity or double-normal to model fisheries that select neither

the youngest nor oldest fish), and requires fewer estimated parameters than modeling selectivity

with separate age-specific coefficients. This is a form of smoothing, but the number of parameters

for each fishery is the number of cubic spline “nodes” that are deemed sufficient to characterize

selectivity over the age range. We use five nodes, which appears sufficient to allow for reason-

ably complex selectivity patterns. Model sensitivity to increasing the number of nodes to 10 was

investigated but not pursued further as it did not result in perceptible change to the estimated

management quantities. Additionally, for the fisheries showing strong domed shaped selectivity

patterns (purse seine, pole-and-line, and miscellaneous fisheries), selectivity was assumed to be

fixed at zero beyond the length of the last observation in order to prevent spurious selectivity

estimation by the cubic spline beyond the range of the observations.

In all cases, selectivity is assumed to be fishery-specific and time-invariant. However, where size

composition data were insufficient to inform the proper shape of the selectivity curve, some fisheries

were grouped with another fishery that exhibited similar operational characteristics or operated in

a similar area (Table 1). This was the case for the longline fisheries (Fishery 27 Australian longline

and Fishery 29 longline all) in region 9 which were each grouped with the respective longline

fisheries in region 5 (Fishery 10 Australian longline and Fishery 11 longline all). Additionally, the

unassociated purse seine in region 7 (Fishery 30) was grouped with the unassociated purse seine

in region 3 (Fishery 13) and as mentioned previously, the Indonesia-Philippines domestic purse

seine fishery in region 7 (Fishery 24) was grouped with the Philippines small-fish fishery in region

7 (Fishery 17).

While full length-based selectivity is not currently permitted in MFCL, the age-based selectivity

functions are penalized such that selectivity of age-classes that are similar in size will have similar

selectivities for a given fishery or group of fisheries. Additionally, the assumption was made that

at least one fishery within each of the 9 spatial regions (excluding the index fisheries) would have

selectivity that was penalized to be increasing as a function of length in order to prevent the

accumulation of an invulnerable, cryptic biomass within the model. This was typically one of the

longline fisheries, though in region 7 it was assumed to be the Indonesia-Philippines handline fishery

(Fishery 18) as it caught the largest fish in the region (Table 1).
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Lastly, selectivity for the index fisheries was assumed to be shared across regions and penalized to

be increasing as a function of length.

5.3.2 Catchability

Constant (time-invariant) catchability was assumed for the index fisheries that received standard-

ized indices of relative abundance. This assumption is similar to assuming that the CPUE for these

fisheries indexes the exploitable abundance over time. These index fisheries were grouped for the

purpose of initial catchability, and to maintain the relativity of catch rates among regions. This

provides the model with information on the relative population sizes among regions, which previous

experience suggests is difficult to estimate without this assumption.

Previous assessments assumed a very high penalty on the fit to the catch (SD of residuals on

the log scale of 0.002) which is essentially equivalent to treating the catch as “error-free” as done

in “catch-conditioned” modeling approaches. As a result, there was no need to estimate both

effort and catchability deviates for the extraction fisheries. Pending the completed development

of the fully catch-conditioned option in MFCL (Davies et al., 2020), a pseudo-catch conditioned

approach was taken in this assessment for all non-index fisheries. All effort was removed (except

for the nominal effort needed in the final 4 quarters to serve as a basis for projections), and partial

fishing mortalities were estimated consistent with the observed catches by the function minimizer.

Therefore, catchability deviations are not estimated for these fisheries. Only a single catchability

value was estimated for each fishery to scale the nominal effort in the final year.

5.3.3 Effort deviations

Effort deviations were used to model the random variation in the effort - fishing mortality rela-

tionship, and are constrained by pre-specified “prior” distributions (on the log-scale). The region-

specific CPUE indices implemented through the index fisheries represent the principal indices of

stock abundance, and the extent to which the model can deviate from the indices is moderated by

the penalty weights assigned to the standardized effort series. For these fisheries the “prior” was

set to have a mean of zero and the CV was allowed to be time-variant and based on the variance

estimates (using the canonical variance method of Francis, 1999) from the spatiotemporal standard-

ization model (Ducharme-Barth and Vincent, 2020). As explained in Section 4.5.3, the regional

differences in the estimated CVs from the spatiotemporal standardization model were preserved

since they were generated from a unified analysis across regions. The CV across all index fisheries

and time periods was rescaled to a value of 0.2. The resulting scaled CVs were transformed to

an effort deviate penalty for each CPUE observation in MFCL. Penalties are inversely related to

variance, such that lower effort penalties are associated with indices having high variance, conse-

quently these indices are less influential in fitting the model. As seen in Figure 10 more influence

is given to the CPUE from regions well sampled by the collective longline fisheries (regions 1 – 6

particularly later in the time series), and comparatively little weight is given to regions less well
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sampled by longlines (regions 7 & 8). Region 9 is quite small and sporadically sampled, resulting

in the lowest relative penalty weight to the fit to the CV.

Finally, for all the extraction fisheries (Table 1) with nominal effort in the final year, the effort

deviates were given penalties equivalent to a CV of approximately 0.7 to prevent the CPUE of

these fisheries from influencing population dynamics in the final year.

5.4 Dynamics of tagged fish

5.4.1 Tag reporting

In principle, tag-reporting rates can be estimated internally within the model. In practice, experi-

ence has shown that independent information on tag-reporting rates for at least some fisheries tends

to be required for reasonable model behavior to be obtained. In addition to varying by fishery, we

allowed reporting rates to also vary among tagging “programs” implemented at different times in

the history of the fishery, or conducted by different agencies. We provided reporting rate “priors”

for all fishery/tagging program groups that reflect independent estimates of the reporting rates and

their variances. These were derived from analyses of tag seeding experiments (Peatman, 2020).

For the RTTP and PTTP, relatively informative “priors” were formulated for the equatorial purse

seine fisheries given that tag seeding experiments were focused on purse seiners. All reporting rates

were assumed to be time-invariant, and have an upper bound of 0.9. Tag recapture and reporting

rate groupings are provided in Table 1 & Table 2.

5.4.2 Tag mixing

The population dynamics of the fully recruited tagged and untagged populations are governed by

the same model structures and parameters. The populations differ in respect of the recruitment

process, which for the tagged population is the release of tagged fish, i.e. an individual tag and

release event is the “recruitment” for that tagged population. Implicitly, we assume that the

probability of recapturing a given tagged fish is the same as the probability of catching any given

untagged fish in the same region and time period. For this assumption to be valid either the

distribution of fishing effort must be random with respect to tagged and untagged fish and/or the

tagged fish must be randomly mixed with the untagged fish. The former condition is unlikely to

be met because fishing effort is almost never randomly distributed in space. The second condition

is also unlikely to be met soon after release because of insufficient time for mixing to take place.

Depending on the distribution of fishing effort in relation to tag release sites, the probability of

capture of tagged fish soon after release may be different to that for the untagged fish in that model

region. It is therefore desirable to designate one or more time periods (quarters) after release as

“pre-mixed” and compute fishing mortality for the tagged fish based on the actual recaptures,

corrected for tag reporting, rather than use fishing mortalities based on the general population

parameters. This in effect desensitizes the likelihood function to tag recaptures in the pre-mixed

30



periods while correctly removing fish from the tagged population for the recaptures that occurred.

We assume that tagged bigeye gradually mix with the untagged population at the region-level and

that this mixing process is complete by the end of the second quarter after release. We investigate

the robustness to this assumption in sensitivity analyses.

The tag return files were created using a sliding window to calculate the mixing period for each

release group per the recommendation of the 2020 ePAW (Hamer and Pilling, 2020). This was

done to ensure that tags had a time at liberty of at least 182 days for a mixing period of 2 quarters

as is assumed in the diagnostic case, or 91 days for a mixing period of 1 quarter. Tags that were

recaptured within these time frames were assigned to the quarter of release if recaptured prior to

91 days at liberty and to the quarter after release for time at liberty between 92 and 182 days. This

is an added step taken to ensure that tags that had not fully mixed with the entire population did

not influence the estimation of fishing mortality.

Tagged fish are modeled as discrete cohorts based on the region, year, quarter and age at release for

the first 30 quarters after release. Subsequently, the tagged fish are pooled into a common group.

This is to limit memory and computational requirements.

5.5 Likelihood components

There are four data components that contribute to the log-likelihood function for this assessment

- the total catch data, the length-frequency data, the weight-frequency data and the tagging data.

For the model in which the conditional age-at-length data were included, this constituted a fifth

data component to the log-likelihood. Fit to the CPUE data does not influence the fit as an explicit

likelihood component but rather as a penalty on the effort deviates.

As mentioned previously, the observed total catch data are assumed to be unbiased and relatively

precise, with the SD of residuals on the log scale being 0.002.

The probability distributions for the length- and weight-frequency proportions are assumed to be

approximated by robust normal distributions, with the variance determined by the effective sample

size (ESS) and the observed length-frequency proportion. Size frequency samples are assigned ESS

lower than the number of fish measured. Lower ESS recognize that (i) length- and weight-frequency

samples are not truly random (because of non-independence in the population with respect to size)

and would have higher variance as a result; and (ii) the model does not include all possible process

error, resulting in further under-estimation of variances. The observed sample sizes are capped at

1,000 internal to MFCL, and these were further divided by 20, resulting in a maximum ESS of

50 for each length and weight sample for a fishery. Alternative divisors for specifying ESS were

explored in sensitivity analyses.

We also examined in a sensitivity analysis the application of a new size-likelihood based on the

Self-scaling Multinomial plus Random Effects (SSMULT-RE) This method improves upon the

traditional Multinomial likelihood because it i) does not assume that the variance is proportional
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to the sample size ii) accounts for the positive correlation in residuals through using auto-correlated

random effects (Davies et al., 2019), and iii) is self-scaling. This allows for the estimation of ESS

from the data, and removes the need for arbitrary assumptions about ESS. As this is a new feature

of MFCL (Davies et al., 2020), it was not used as the baseline likelihood structure in the diagnostic

case or structural uncertainty grid. Rather, it was investigated as one-sensitivity to the diagnostics.

Further investigation into this promising new method should be conducted.

A log-likelihood component for the tag data was computed using a negative binomial distribution.

The negative binomial is preferred over the more commonly used Poisson distribution because

tagging data often exhibit more variability than can be attributed by the Poisson. We employed

a parameterization of the overdispersion parameter (τ) such that as it approaches 1, the negative

binomial approaches the Poisson. In the current assessment we assume τ = 2, which is a variance

twice that of the Poisson. Therefore, if the tag return data show high variability (for example, due

to contagion or non-independence of tags), then the negative binomial is able to recognize this. This

should then provide a more realistic weighting of the tag return data in the overall log-likelihood

and allow the variability to impact the confidence intervals of estimated parameters. A complete

derivation and description of the negative binomial likelihood function for tagging data is provided

in Kleiber et al. (2019).

A further log-likelihood component is introduced for models that include the conditional age-at-

length data-set (Vincent and Ducharme-Barth, 2020). These data can be included in the assessment

to assist in estimating growth parameters because they provide direct observations of the distribu-

tion of fish ages within length classes. Each otolith sample was assigned to a corresponding length

and age class in addition to a fishing incident based on the collection date of the sample and the

gear by which it was captured. The model fits the observed age-at-length data along with infor-

mation from size mode progression to influence the estimation of the growth curve. The observed

age composition within each length interval is assumed to be multinomially distributed, and this

forms the basis of the likelihood component for this data source.

5.6 Parameter estimation and uncertainty

The parameters of the model were estimated by maximizing the log-likelihood of all data compo-

nents plus the log of the probability density functions of the “priors” and penalties specified in the

model. The maximization to a point of model convergence was performed by an efficient optimiza-

tion using exact derivatives with respect to the model parameters (auto-differentiation, Fournier

et al., 2012). Estimation was conducted in a series of phases, the first of which used relatively ar-

bitrary starting values for most parameters. A bash shell script, “doitall”, implements the phased

procedure for fitting the model. Some parameters were assigned specified starting values consistent

with available biological information.

In this assessment two approaches were used to describe the uncertainty in key model outputs.

The first estimates the statistical uncertainty within a given assessment model, while the second
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focuses on the structural uncertainty in the assessment by considering the variation among a suite

of models.

For the first approach, the Hessian was calculated for the diagnostic case model run to obtain

estimates of the covariance matrix, which is used in combination with the delta method to com-

pute approximate confidence intervals for parameters of interest (for example, the biomass and

recruitment trajectories). For the second approach, a factorial grid of model runs was undertaken

which incorporated many of the options of uncertainty explored in one-off sensitivity analyses.

This procedure attempts to describe the main sources of structural and data uncertainty in the

assessment.

For highly complex population models fitted to large amounts of often conflicting data, it is common

for there to be difficulties in estimating absolute abundance. As in the previous assessment, a

likelihood profile analysis was conducted for the marginal posterior likelihood in respect of the

total average population biomass as a measure of population scaling ((Lee et al., 2014), with the

definition of this parameter detailed in (Kleiber et al., 2019)). Rationale for profiling the likelihood

with respect to total average population biomass instead of the total population scaling parameter,

along with a description of how this profile is generated can be found in Section 5.6 of the previous

assessment report (McKechnie et al., 2017a). Reasonable contrast in the profile obtained using

this method is taken to indicate that sufficient information existed in the data for estimating

absolute abundance, and also offered confirmation that the maximum likelihood estimate obtained

represented a global solution, at least with respect to total population scaling. This procedure is

presented in the Appendix (Section 11.2), including examination of the profiles for the individual

data components.

Retrospective analyses are also undertaken as a general test of the stability of the model, as a robust

model should produce similar output when rerun with data for the terminal year/s sequentially

excluded (Cadigan and Farrell, 2005). The retrospective analyses for the 2020 diagnostic case model

are presented in the Appendix (Section 11.3).

Jitter analyses were performed on the diagnostic model as a check for model stability and to

ensure convergence to a global solution (Cass-Calay et al., 2014). Jitter analysis entails randomly

perturbing parameter estimated from the diagnostic model and refitting the model to the data.

This “jittering” can be conducted multiple times with differing levels of perturbations to determine

how well behaved the model is. This is the first time these analyses have been conducted on

MULTIFAN-CL models and requires further development and investigation. The results of the

jitter analyses are presented in the Appendix (Section 11.4).

5.7 Stock assessment interpretation methods

Several ancillary analyses using the fitted model/suite of models were conducted in order to interpret

the results for stock assessment purposes. The methods involved are summarized below and further
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details can be found in Kleiber et al. (2019).

5.7.1 Yield analysis

The yield analysis consists of computing equilibrium catch (or yield) and biomass, conditional on

a specified basal level of age-specific fishing mortality (Fa) for the entire model domain, a series

of fishing mortality multipliers (fmult), the natural mortality-at-age (Ma), the mean weight-at-age

(wa) and the SRR parameters. All of these parameters, apart from fmult, which is arbitrarily

specified over a range of 0–50 (in increments of 0.1), are available from the parameter estimates of

the model. The maximum yield with respect to fmult can easily be determined using the formulae

given in Kleiber et al. (2019), and is equivalent to the MSY. Similarly the spawning potential

at MSY (SBMSY) can also be determined. The ratios of the current (or recent average) levels of

fishing mortality and biomass to their respective levels at MSY are determined for all models of

interest, including those in the structural uncertainty grid, and so alternative values of steepness

were assumed for the SRR in many of them.

Fishing mortality-at-age (Fa) for the yield analysis was determined as the mean over a recent period

of time (2013–2017). We do not include 2018 in the average as fishing mortality tends to have high

uncertainty for the terminal data year of the analysis and the terminal recruitments in this year are

constrained to be the average over the full time-series, which affects F for the youngest age-classes.

MSY was also computed using the average annual Fa from each year included in the model (1952–

2018). This enabled temporal trends in MSY to be assessed and a consideration of the differences

in MSY levels under historical patterns of age-specific exploitation. More details of this approach

are provided in Section 5.7.4.

5.7.2 Depletion and fishery impact

Many assessments estimate the ratio of recent to initial biomass (usually spawning biomass) as

an index of fishery depletion. The problem with this approach is that recruitment may vary

considerably over the time series, and if either the initial or recent biomass estimates (or both)

are “non-representative” because of recruitment variability or uncertainty, then the ratio may not

measure fishery depletion, but simply reflect recruitment variability.

We approach this problem by computing the spawning potential time series (at the region level)

using the estimated model parameters, but assuming that fishing mortality was zero. Because

both the estimated spawning potential SBt (with fishing), and the unexploited spawning potential

SBF=0[t], incorporate recruitment variability, their ratio at each quarterly time step (t) of the

analysis, SBt/SBF=0[t], can be interpreted as an index of fishery depletion. The computation

of unexploited biomass includes an adjustment in recruitment to acknowledge the possibility of

reduction of recruitment in exploited populations through stock-recruitment effects. To achieve

this the estimated recruitment deviations are multiplied by a scalar based on the difference in the
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SRR between the estimated fished and unfished spawning potential estimates.

A similar approach can be used to estimate depletion associated with specific fisheries or groups

of fisheries. Here, fishery groups of interest - longline, purse seine associated sets, purse seine

unassociated sets, pole and line and “other” fisheries, are removed in-turn in separate simulations.

The changes in depletion observed in these runs are then indicative of the depletion caused by the

removed fisheries.

5.7.3 Reference points

The unfished spawning potential (SBF=0) in each time period was calculated given the estimated

recruitments and the Beverton-Holt SRR as outlined in Section 5.7.2. This offers a basis for

comparing the exploited population relative to the population subject to natural mortality only.

The WCPFC adopted 20%SBF=0 as a limit reference point (LRP) for the bigeye stock, where

SBF=0 is calculated as the average over the period 2008–2017. Stock status was referenced against

these points by calculating SBrecent/SBF=0 and SB latest/SBF=0, where SB latest and SBrecent are

the estimated spawning potential in 2018, and the mean over 2015–2018, respectively (Table 4).

The other key reference point, Frecent/FMSY (Table 4), is the estimated average fishing mortality over

the full assessment area over a recent period of time (Frecent; 2014–2017 for this stock assessment)

divided by the fishing mortality producing MSY which is produced by the yield analysis and has

been detailed in Section 5.7.1.

5.7.4 Majuro and Kobe plots

For the standard yield analysis (Section 5.7.1), the fishing mortality-at-age, Fa, is determined as

the average over some recent period of time (2014–2017 herein). In addition to this approach the

MSY-based reference points (Ft/FMSY, and SBt/SBMSY) and the depletion-based reference point

(SBt/SBF=0[t]) were also computed using the average annual Fa from each year included in the

model (1952–2017, with no value calculated for the terminal year) by repeating the yield analysis

for each year in turn. This enabled temporal trends in the reference point variables to be estimated

taking account of the differences in MSY levels under varying historical patterns of age-specific

exploitation. This analysis is presented in the form of dynamic Kobe plots and “Majuro plots”,

which have been presented for all WCPO stock assessments in recent years.

6 Model runs

6.1 Developments from the last assessment

Model development from the 2017 diagnostic case to the 2020 diagnostic case occurred incrementally

via successive changes. These stepwise changes were done in order to identify the impact of each

modification to the assessment outcomes. Changes made to the previous assessment model include:
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additional input data for the years 2016-2018, use of a spatiotemporal standardization model to

prepare the CPUE data (Ducharme-Barth and Vincent, 2020), modified methods in producing

the input files (Peatman, 2020; Peatman et al., 2020; Scutt Phillips et al., 2020; Vincent and

Ducharme-Barth, 2020), updated biological information (Eveson et al., 2020; Farley et al., 2020;

Vincent and Ducharme-Barth, 2020), and incorporation of new features to MFCL developed since

the last assessment (Davies et al., 2020). These changes occurred in the following sequence of steps:

1. The 2017 diagnostic case model [Diag17 ]

2. The 2017 diagnostic case model run with the updated MFCL executable, v2.0.7.0 [Diag17:

New MFCL]

3. A complete update of the 2017 diagnostic case model - all inputs extended from 2015 to 2018

using identical methodology for CPUE, tagging, size frequencies etc, and the same MFCL

model settings [Diag17: Data Update].

4. The previous model with the tagging data adjusted using the new tagger effects model de-

scribed in Scutt Phillips et al. (2020) [New tagger effects].

5. The previous model with the purse seine catch estimates based on the methodology docu-

mented in Peatman et al. (2019) [Peatman catch].

6. The previous model with the CPUE coming from the spatiotemporal model described in

Ducharme-Barth and Vincent (2020) [Geostats CPUE ].

7. The previous model with the size composition data prepared according to Peatman et al.

(2020) [Peatman comp].

8. The previous model with the switch to the index fisheries approach. This also included

removing the effort for the extraction fisheries [Index fisheries].

9. The previous model with the tag reporting rate priors updated following the analysis of

Peatman (2020) [New RR].

10. The previous model with the mixing period defined using a sliding window for each release

group based on the recommendations of the 2020 ePAW [Force Mix ].

11. The previous model but including tags captured within the mixing period but were not

included previously due to incomplete recapture location. Including these tags does not

directly impact the estimation of fishing mortality since they were captured within the mixing

period, however they maximize the information provided by the tagging data by reducing the

tag usability correction factor and providing additional information for estimating the tag

reporting rates [Mix2 ].

12. The previous model with the inclusion of tags released as a part of the Japanese Tagging

Program, and a small number of large bigeye tuna released as a part of the central Pacific

36



SM longline tagging cruise [JPTPSM ].

13. The previous model with and updated length-weight relationship estimated from port sam-

pling data [New L-W ].

14. The previous model with the reproductive potential ogive defined as a function of length

[Repro@Length].

15. The previous model with the spawning fraction removed from the reproductive potential at

length ogive [Remove SF ].

16. The previous model with the growth defined according to the Tag-Int model described in

(Eveson et al., 2020) [Tag-Int ].

17. The previous model with the selectivity groupings defined in Table 1 and the assumption of

increasing selectivity as a function of age applied to one fishery in each region [Diagnostic].

6.2 Sensitivity analyses

During the course of model development for the 2020 bigeye tuna stock assessment, several hun-

dred models were run to explore the effects of changing the assumptions governing the population

dynamics, fisheries dynamics, parameter estimation and weighting of data components in the like-

lihood. The presentation of the results focuses on the subset of analyses that were most influential

to the stock assessment outcomes and/or those that were identified as questions of interest either

in the previous assessment or the 2020 ePAW (Hamer and Pilling, 2020). From this subset and

based on the findings of previous WCPO stock assessments, models were selected for inclusion in

the structural uncertainty analyses. This process entailed running a full-factorial set of models

where all combinations of key structural assumptions are explored (Section 6.3).

One-off sensitivities were conducted as single stepwise changes from the 2020 diagnostic case. The

purpose of these sensitivity runs was not to provide absolute estimates of management quantities

but to assess the relative change that resulted from the various assumptions, and for that reason

the reference points are presented in the Appendix (Section 11.7).

6.2.1 Relative weighting of length and weight frequency data [Size10, Size60, Size200,

Size500]

The difficulties in assigning weighting to the size-frequency data were discussed in Section 5.5.

To assess the sensitivity of model results to the weighting of these data, four alternative models

were considered; a model where frequency data were up-weighted (corresponding to a maximum

effective sample size of 100 fish) relative to the diagnostic case model (Size10); and several where

the size-frequency data were increasingly down-weighted to maximum effective sample sizes of 16.5

(Size60), 5 (Size200), and 2 (Size500). Note that in each case these maximum effective sample sizes

are further reduced by a factor of two for the longline all, and index fisheries.
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6.2.2 Self-scaling Multinomial plus Random Effects likelihood for the size-frequency

data [SSMULT-RE]

The Self-scaling Multinomial plus Random Effects (SSMULT-RE) likelihood is a new development

in MFCL (Davies et al., 2020), and offers the potential to estimate the effective sample size of

frequency samples used in the model, thus obviating the need for largely arbitrary assumptions

that determine the overall weighting of the size data in the model likelihood. We have applied the

SSMULT-RE in a sensitivity analysis in this assessment.

6.2.3 Alternative growth functions [EstRichardsT, EstRichardsO, Oto-Only]

Two methods additional to the diagnostic case being implemented as sensitivity models. The first

set of sensitivities estimated growth by including the conditional age-length data, constructed from

daily and annual otolith readings, within the model-fitting procedure of MFCL. This data set

therefore contributes a likelihood component to the model. The previous bigeye tuna assessment

(Vincent et al., 2018) noted starting point dependency issues with the estimation of growth param-

eters. To account for this, two models were run, with growth parameters starting equal to those

from the Tag-Integrated (EstRichardsT ) or Oto-Only (EstRichardsO) Richards growth curves. The

second sensitivity considered the Oto-Only growth model described by (Farley et al., 2020). This

growth curve is similar to the one assumed in the diagnostic case as they are estimated from the

same set of otolith data.

6.2.4 Steepness [h0.65, h0.95]

Steepness is a particularly difficult parameter to estimate in stock assessment models, but if it is

fixed in the model, the choice of value may have significant influence on most reference points used

in management. As was the case in other tropical tuna and albacore tuna assessments, we assumed

a value of 0.8 for the diagnostic case, but examined values of 0.65 (h0.65) and 0.95 (h0.95) in

sensitivity runs. This choice of values is consistent with the results of the meta-analysis conducted

on tuna stock-recruitment data and has been well established in previous Scientific Committees.

6.2.5 Tag data [Mix1, TagFree]

The tag mixing period is imposed to allow tagged fish to distribute themselves throughout the

region of tagging, although it is somewhat difficult to ascertain how long this period should be.

In the diagnostic case model the mixing period was set at two quarters and an alternative model

was run assuming a mixing period of one quarter (Mix1). Additionally, in the stepwise model

development it was noted that the model was sensitive to the assumptions made in preparing the

tagging data. An alternative model (TagFree) was developed to test the effect of removing all

tagging data from the model.
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6.2.6 Natural mortality [M-low, M-mid, M-hi]

The new growth information provided an opportunity to revisit the assumption made on the mean

level of M using a meta-analytic approach. Model sensitivity to changing the assumed mean

level of M was explored by applying the age-specific deviates of to the mean level of M from the

meta-analysis (M-mid), and the levels corresponding to the lower (M-low) and upper (M-hi) 95%

confidence intervals.

6.2.7 Selectivity groupings and structure [Alt, FreeSel]

There are a number of different assumptions that can be made when defining the fisheries selectivity

curves. We investigated the robustness of the model to different fisheries groupings (Alt), and

removing the assumption of having a selectivity be non-decreasing as a function of age for at least

one extraction fishery in each region (FreeSel).

6.2.8 Model start year [Model1962, CPUE1962]

One of the features of the model seen in the previous assessment was a high spike in recruitment

paired with a rapid decline in biomass within the first 10 years of the model despite relatively low

levels of catch. This indicates that, at least in the early years, the CPUE may be hyper-depleted

given the level of catch that was removed from the system. Two alternative models were investigated

to test the robustness of the model to including this early period of CPUE: beginning the model

in 1962 (Model1962 ) or removing the first 10 years of CPUE data from the model (CPUE1962 ).

6.2.9 Size-frequency data [idxAU-US, len456]

The composition data for the index fisheries was restricted to weight-frequency data coming from

fishing nations defined for the longline ALL fisheries. This assumption ignores the large amount

of additional weight-frequency data available for the region 2 index fishery and the region 5 index

fishery available from the US and Australian longlines. Model sensitivity to this assumption was

explored in an additional model (idxAU-US ) which included the US longline weight-frequency data

for the region 2 index fishery and the Australian weight-frequency data for the region 5 index

fishery. The weight frequency data from these two fisheries (Fishery 3 & 10) was correspondingly

down-weighted to account for its inclusion as a part of the index fisheries weight-frequency data.

Additionally, it was also noted in Section 4.6.2 that the availability of weight-frequency data avail-

able for the longline ALL and index fisheries in regions 4–6 declined beginning in the mid-2000s.

An additional one-off sensitivity (len456 ) was conducted to investigate the effects of switching to

length-frequency data for these fisheries in the mid-2000s.

6.3 Structural uncertainty

The structural uncertainty grid for the 2020 assessment was constructed from 3 axes – steepness

(3 levels), natural mortality M (2), and size data weighting (4), with the settings used directly
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comparable to those presented in Section 6.2 through identical notation. The final grid consisted

of 24 models (Table 5). The rationale for the selection of these axes and levels is discussed in the

following Sections 7.6 & 8.3.

7 Results

7.1 Consequences of key model developments

The progression of model development from the 2017 diagnostic case model to the 2020 diagnostic

case model is outlined in Section 6.1 and results are displayed in Figure 11 with respect to both

the change in spawning potential (SB) and the level of depletion of spawning potential relative to

the unfished condition (SBF=0). A summary of the consequences of this progression through the

models is as follows:

1. Diag17: New MFCL (Step 2; Figure 11) – Running the 2017 diagnostic case with the new

MFCL executable produced virtually identical results in terminal estimates of spawning po-

tential and depletion.

2. Diag17: Data Update (Step 3; Figure 11) – The model with fully updated datasets (catch,

effort, size frequencies, tagging) increased initial estimates of spawning potential, although

temporal changes and terminal estimates of both model outputs spawning potential and

depletion remained similar to the previous model.

3. New tagger effects (Step 4; Figure 11) – Updating the tagger effects model resulted in a

large upwards shift in spawning potential, resulting in a more optimistic level of depletion.

The new tagger effects model described in Scutt Phillips et al. (2020) increased the number

of effective releases relative to the previous model. Given that the number of recaptures was

unchanged, this resulted in the model estimating a lower fishing mortality and higher level of

biomass.

4. Peatman catch (Step 5; Figure 11) – Updating the purse seine catch estimates according

to the method described in Peatman et al. (2019) resulted in minimal changes to estimated

quantities relative to the previous step.

5. Geostats CPUE (Step 6; Figure 11) – Updating the CPUE using the spatiotemporal or

“geostats” model described in Ducharme-Barth and Vincent (2020) resulted in an increase

in the initial estimate of spawning potential relative to the previous model. However, the

overall temporal trend of spawning potential and estimates of depletion up to the final two

years were similar. Switching to the spatiotemporal CPUE resulted in a marginally more

pessimistic depletion in the terminal years of the model.

6. Peatman comp (Step 7; Figure 11) – Moving to size composition data prepared according to

Peatman et al. (2020) resulted in progressively lower estimates of spawning potential relative
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to the previous model beginning in 1960. This translated to more pessimistic estimates of

depletion.

7. Index fisheries (Step 8; Figure 11) – Making the switch to the index fisheries structure

resulted in both spawning potential and depletion estimates that reverted back to similar

levels as those estimated in the Geostats CPUE step of model development.

8. New RR (Step 9; Figure 11) – Updating the reporting rates from Peatman (2020) resulted in

a marginally lower but more informative “priors” for the purse seine fisheries. This step also

assigned uninformative priors to the domestic fisheries in region 7. These changes resulted in

fewer reporting rates being estimated at the upper bound of 90%, which has been a persistent

problem in past bigeye tuna stock assessments. When reporting rates are lower and not on

the upper bound, the same number of recaptures translates to a higher estimate of fishing

mortality resulting in lower spawning potential and more pessimistic depletion estimates.

This is seen to occur as the estimated quantities return to the level seen in the Peatman comp

step.

9. Force Mix (Step 10; Figure 11) – Changing the mixing period definition to a sliding window

for each tag release group resulted in marginally higher estimates of spawning potential and

a marginally less depleted stock status relative to the previous step.

10. Mix2 (Step 11; Figure 11) – Increasing the number of tags included in the model had

the ultimate effect of reducing the usability correction factor, and thus increased the effective

number of releases. As seen in the New tagger effects step, this results in an upwards rescaling

of the biomass and more optimistic stock status given that the level of removals is unchanged

relative to the previous step.

11. JPTPSM (Step 12; Figure 11) – Including tags from the Japanese Tagging Program and the

SM central Pacific cruise resulted in slightly lower levels of spawning potential, and slightly

more pessimistic depletion relative to the previous step.

12. New L-W (Step 13; Figure 11) – Updating the length-weight relationship from the parame-

ters used in the previous assessment (originally from Morita, 1973), did not change estimates

of depletion though it served to slightly scale down the estimate of spawning potential relative

to the previous step.

13. Repro@Length (Step 14; Figure 11) – Switching to a length based parameterization of the

reproductive potential ogive, with a greater contribution from larger, older fish, expectedly

resulted in a lower estimate of spawning potential and more pessimistic estimate of depletion

relative to the previous step.

14. Remove SF (Step 15; Figure 11) – Removing spawning fraction from the definition of the

reproductive potential ogive had a negligible effect on both estimates of spawning potential

and depletion.
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15. Tag-Int (Step 16; Figure 11) – Updating the growth to the fixed tag-integrated curve de-

scribed in Eveson et al. (2020) resulted in a substantial downwards shift in spawning potential

and a much more pessimistic estimate of depletion. Relative to the previous growth curve,

length-at-age is higher at all age-classes (for the youngest ages ∼9 cm and ∼3 cm for the old-

est). Given the higher L∞ it is expected that outcomes are more pessimistic (Vincent et al.,

2018). However, there are two additional factors that contribute to this change. With the

larger size at age from the new growth, younger ages are estimated to be more vulnerable to

the different longline and index fisheries. In the case of the extraction fisheries this translates

to a higher fishing mortality experienced by younger age-classes. For the index fisheries, the

decline in CPUE is attributed to a broader range of age-classes rather than just the very

oldest individuals.

16. Diagnostic (Step 17; Figure 11) – In the process of updating the growth curve in the previous

step, it was observed that all of the longline extraction fisheries (except for Fishery 6 which

the previous assessment penalized to be non-decreasing) were estimated to have a descending

right-hand limb in their selectivity curve. The flexibility of the cubic spline explains the

lack of observations of the largest individuals as a function of them transitioning into a less

vulnerable state which is unexpected given our understanding of longline selectivity patterns.

Though it could be possible that there is a behavioral component affecting selectivity at

age (i.e. largest fish showing a preference for deeper depths where they are less vulnerable

to longline gears), McKechnie et al. (2017a) noted that this was unlikely to be the case

across all longline fisheries, especially those operating in regions where the thermocline is

relatively shallow. To account for this, the assumption was made that the longline extraction

fishery catching the largest individuals in each region would have a non-decreasing selectivity

penalty applied to it. When this assumption is made, it expectedly results in lower estimates

of spawning potential and a more depleted stock status relative to the previous step.

Relative to the diagnostic case of the previous assessment in 2017, the diagnostic case for the current

assessment estimates the WCPO bigeye tuna stock to have a lower level of spawning potential and

a slightly more pessimistic stock status relative to depletion from the unfished condition.

7.2 Model fit for the diagnostic case model

This section discusses the diagnostics for the diagnostic case model, defined by the final step in the

stepwise model development (model Diagnostic; Figure 11), the final step described in Section 7.1.

7.2.1 Catch data

High penalties were applied to the catch data for all fisheries and so the catch is fit very closely,

with a SD of residuals on the log scale of 0.002 (Figure 12).
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7.2.2 Standardized CPUE

There was substantial temporal variability in the standardized CPUE indices used in the assessment,

but despite this, the model-predicted CPUE fitted the indices very well (Figure 13). In general, the

model captures most of the seasonal variation in the more temperate regions and the more stable

dynamics in the equatorial regions. The pulse of high CPUE that appeared in the final quarters

of the previous assessment has since moved through the data. The model is able to capture this

slight downturn in CPUE since 2015 in most of the spatial regions.

There are some minor lack of fit issues in several of the spatial regions, however this can be

attributed either to low penalty (high CV; Figure 10) being applied to the fit to these data and/or

extreme variability in the standardized index due to limited spatial sampling. In the case of regions

2 & 9, it is a combination of the two effects. The central tendency of the trend in region 9 appears

to be captured through to the late-1990s, though the seasonal variability and a portion of the

early-2000s is not fit well. This is not unexpected given the very low weight placed on these data.

However, given the small amount of biomass estimated in this spatial region relative to the others,

this is not believed to strongly influence the model outcomes. Similarly, the model captures the

central tendency of the CPUE in region 2 throughout the time series but fails to capture the

high seasonality seen prior to 1980. Though region 2 has a moderately high penalty weight, the

period prior to 1980 had a comparatively lower penalty weight which allowed the model to deviate

from these observations. Additionally, despite the higher penalty weights placed on the CPUE in

region 4, the model is unable to account for the pulse in CPUE just prior to the year 2000. Since

this coincides with an instance of relatively lower penalty weights, the model is able to “smooth”-

through this more uncertain data. Lastly, there appears to be a persistent overestimation of the

CPUE in region 7 beginning in the 1990s. This pattern is most apparent in the time series of

effort deviates (Figure 14) which are consistently estimated to be negative for this region and this

instance, and reflects the comparatively more uncertain estimates coming from this region due to

limited spatial sampling. However, this could also be an indication of model mis-specification as

the lower observed CPUE are being fit by lower catchability through the effort deviates rather than

by estimating a lower level of biomass.

7.2.3 Size frequency data

There was a reasonable fit to the length frequency data for fisheries with adequate sample sizes

(Figure 15), particularly the important PS fisheries and the domestic fisheries for the Philippines

and Vietnam in region 7 (Dom.PH.7 & Dom.VN.7 in Figure 15). The exception to this is the

unassociated purse seine fishery in region 4 (SU-ALL-4) which shows a lack of fit relative to the

other purse seines and the previous assessment, despite being estimated independently. This is

unlikely to be strongly influential due to the small amount of catch by this fishery. There is also

some modality in the observed frequencies for some of these fisheries which could not be completely

fit by the model and presumably relates to the diverse sources of some of these data. Several fisheries
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display some lack of fit but in most cases this reflects a lack of data over most of the time-series

(e.g. PL ALL 8). These are also often low volume fisheries and not likely to be influential on the

assessment outcomes. Additionally, it is important to note that with a length at first quarter (L1)

of 31 cm assumed by the current growth curve and structural limitations on the length-dependent

component of variability around the growth curve, the model is unable to fit the smallest individuals

captured in the domestic Philippines fishery in region 7.

The weight frequency data for the longline fisheries were generally well fitted by the model (Figure

16), although there is a slight overestimation of large fish in some fisheries (e.g. the LL fisheries

in regions 1 and 8). As was the case in the previous assessments, not all modality in the observed

data was predicted by the model (e.g. L.ALL.1) and this may be due to the difficulty of attributing

size data to different fishing operations (distant water vs offshore).

These patterns were largely reflected in the comparison of temporal variation in observed and

model-predicted median fish lengths (Figure 17) and weights (Figure 18). For fisheries with a

high sample size, and good temporal coverage the model is able to track the patterns seen in

the observed median weight. In general the model appears to show better temporal fit than the

previous assessment, and the temporal variation in the weight frequencies was again better fitted

than the lengths. However, some temporal lack of fit can be seen in several fisheries, particularly

for the Indonesia-Philippines handline fishery in region 7 (Fishery 18), where there is apparent

conflict between the lengths and weights during the middle of the past decade. The weights appear

consistent with the lengths collected for the rest of the time series, so it would appear that the

lower median lengths observed arise due to mis-identification of the capture gear since this is part

of a mixed-gear fishery. Continued improvement in identifying the data sources in these mixed gear

fisheries would be beneficial for the assessment.

7.2.4 Tagging data

In the aggregate sense the model appears to fit the tagging data fairly well (Figure 19), though

there is an indication that at longer times at liberty the model is under-estimating these “rarer”

recovery events (Figure 19; c). Recent developments in MFCL to develop a censored-gamma

tagging likelihood function could aid in the fitting to these observations (Davies et al., 2020).

Breaking down model fit by both tag program and release region (Figure 20) we see that the

overall model performance is buoyed by the reasonable fits to the regions (1, 3, 4, 7, & 8) and

programs (particularly the PTTP) with higher numbers of tag returns. Consistent with previous

assessments, the model appears to struggle with the high temporal variability in region 9 tag returns

in the Coral Sea. However, model sensitivities in the previous assessment (McKechnie et al., 2017a)

indicated that this is unlikely to have an impact on model outputs.
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7.3 Model parameter estimates (diagnostic case)

7.3.1 Selectivity

A very diverse set of fisheries are included in the assessment model and this is reflected in the form

of the estimated selectivity functions (Figure 21). Most longline fisheries had a non-decreasing

penalty applied (Fisheries 1, 3, 5, 6, 8, 9, 10, 12, 27, and 33 – 41) and were estimated to have

selectivity curves that were close to asymptotic. However, even those without the penalty also

estimated selectivities where the oldest fish were fully selected. The exception was the longline

ALL fishery in region 3 (Fishery 4) which caught smaller fish than the offshore longline in that

region (Fishery 6), and estimated a descending-limb to accommodate this difference. The large fish

handline fishery in region 7 also showed longline-like selectivity with very few fish younger than

about 15 quarters of age being estimated to be caught by this fishery.

The purse seine, pole-and-line and miscellaneous small fish fisheries in region 7 displayed a variety of

relatively complex selectivity functions (Figure 21), although in general these fisheries tend to catch

very few fish over about 20 quarters of age, and some (particularly the Philippines and Indonesia

miscellaneous fisheries) mainly catch fish of the youngest few age classes.

7.3.2 Movement

Figure 22 portrays the origin (which region the fish were originally recruited into) of the equilibrium

bigeye tuna biomass in each region. From this figure it is evident that the model estimates significant

movements of fish between the majority of regions. In general, there is a tendency for the temperate

regions (1, 2, 5, & 6) to receive most of their fish as local recruits, however in the tropical regions (3,

4, 7, & 8) a significant proportion of fish ending up in a region were actually derived from recruitment

to nearby tropical regions first (4 or 7) and then moved to their final region via immigration. Due

to the flexibility of MFCL with regards to assigning recruits to regions and then moving them to

other regions to fit data components such as size frequencies and CPUE indices, some caution must

be exercised when interpreting the movement rates.

7.3.3 Tag Reporting Rates

The estimated tag reporting rates by fishery recapture groups (see groupings in Table 1) are dis-

played in Figure 23. As expected, the reporting rate estimates differed among fisheries groups

and across tagging programs. In most cases, the reporting rate estimates for those groupings that

received higher penalties were relatively close to the prior mean. Additionally, there were a number

of fisheries with no recaptures which, had reporting rates fixed to 0.

Reporting rates hitting the upper bound are potentially symptoms of a model that is underesti-

mating the fishing mortality and overestimating biomass relative to what the tagging data might

indicate. Compared to the previous bigeye tuna assessments which had several reporting rates on

the upper bound, the current diagnostic case represents an improvement from the previous mod-

45



els with only the reporting rates for the RTTP/PTTP program tags recovered by the Australian

longline in region 5, and the JPTP program tags recovered by the Japanese pole-and-line fishery

in region 1. High estimated reporting rates are consistent with our understanding of the level of

tag-reporting within these fisheries, given their proximity to and awareness of tag releases (CSTP

and JPTP) conducted in their operating area.

7.3.4 Growth

The Richards growth function of the diagnostic case model specifies most rapid growth for the

youngest age-classes, starting from a mean length of about 30 cm for the youngest age-class, before

slowing down over older ages with a mean length of 153 cm for the oldest fish in the model

(age-class 40). The estimated standard deviation of length-at-age increases significantly with age

and estimates substantial variation in length-at-age (Figure 24). This is necessary to fit the size

frequency data observed for the longline fisheries and is supported by the high apparent variation

in growth observed in the otolith dataset investigated external to MFCL.

7.4 Stock assessment results

7.4.1 Recruitment

The estimated distribution of recruitment across regions must be interpreted with some caution, as

MFCL has a high degree of flexibility to use a combination of movement and regional recruitment

to distribute the population in a way that maximizes the total objective function. The diagnostic

case model recruitment estimates for each region and the entire assessment domain are shown in

Figures 25 and 26. The overall pattern of recruitments is similar to previous assessments: high

recruitments in the first few years of the assessment period, particularly in the northern regions.

Recruitment is largely constant around a level of 50 million recruits beginning in 1960 (Figure 26).

The increase in recruitments over the assessment period that has been a feature of the bigeye

assessment for a number of years is substantially reduced in this assessment.

The estimate of the stock-recruit relationship (SRR) is presented in Figure 27. This relationship is

defined over the period 1962–mid-2017, and excludes the influence of the high initial recruitments

as these are often poorly estimated. The SRR indicates that recruitments have been maintained

around average levels, even as stock size has declined.

It is important to note that, although aggregate levels of recruitment have remained relatively

constant throughout the assessment period this is not the case regionally. The regional dynamics

can have an influence on the overall model outcomes. In this case, the overall decline in biomass

appears to be driven by a decline in recruitment in region 2. This indicates a potential mis-

match between the level of removals relative to the estimated biomass and the decline seen in the

CPUE since the model is relying on a recruitment trend to force the biomass to match the CPUE.

Furthermore, while recruitment has declined considerably in region 2 and to a lesser extent region
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5, this has been offset by increases in recruitment in the equatorial regions 3, 4, 7 & 8. Given the

flexibility that MFCL has with the regional recruitments and seasonal movement, it is possible that

increases in fishing mortality are being “buffered” by influxes of biomass from other regions.

7.4.2 Biomass

The relative pattern in spawning potential at the regional scale is consistent with the results pre-

sented in the previous stock assessments (Figure 26 and 28), and with the abundance distribution

predicted from the spatiotemporal CPUE standardization model (Figure 29). There was a period

of high abundance in the first decade of the assessment period before a period of sustained decline

over most of the remaining time-series. As mentioned in Section 7.4.1, this appears to be in-part

driven by the persistent decline in recruitment in region 2. Within the decline, there were several

short term increases in abundance throughout the assessment period but these were never sustained

for more than a few years. The decline was estimated to occur in all model regions (Figure 28).

Similar to previous assessments, the regional distribution of individuals is concentrated in regions

2 & 4, though the proportion of biomass concentrated in region 2 has increased somewhat relative

to previous assessments.

7.4.3 Fishing mortality

A steady increase in fishing mortality of adult age-classes is estimated to have occurred over most

of the assessment period (Figure 30). Juvenile fishing mortality was initially low, before increasing

after 1970 with the expansion of the pole-and-line fisheries. This increase in juvenile fishing mor-

tality becomes particularly rapid after the expansion of purse seine fishing in the 1980’s. In recent

years, the juvenile fishing mortality has been high, but also variable. There appears to be some

stabilization in the fishing mortality rates for both juvenile and adults over the last decade.

The fishing mortality-at-age estimates, by region (Figure 31), display intuitive results: the tem-

perate regions where longline fishing dominates show highest fishing mortality for the vulnerable

older age classes while in the equatorial regions where the purse seine and miscellaneous small fish

fisheries occur show a high mortality for the youngest age-classes. The trends in fishing mortality-

at-age by decade are presented in Figure 32 and show the general increase in fishing mortality of all

age-classes over the assessment period, although the increase for the youngest age-classes is more

pronounced and leads to an almost bimodal distribution with age-classes around 10 quarters having

the lowest fishing mortality. The ages younger than this are most vulnerable to purse seine and

miscellaneous fishing and the ages older are more vulnerable to longline fishing. Over time there

has been a shift in the age distribution of the stock towards younger age-classes as the stock has

been fished down (Figure 32).
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7.5 Multimodel inference: One-off sensitivities

Comparisons of the spawning potential, and depletion trajectories for the diagnostic case and one-

off sensitivity runs from the structural uncertainty analysis are provided in Figures 33–34. The key

reference points for the one-off sensitivity models are compared in Appendix Tables 9–11 and the

likelihood components are provided in Appendix Tables 12–14.

7.5.1 Relative weighting of length and weight frequency data [Size10, Size60, Size200,

Size500]

Four alternative models were considered, one that up-weighted the size frequency data (Size10 ) and

three that increasingly down-weighted the size frequency data (Size60, Size200, Size500). Model

estimates for the Size10 and Size60 models did not show meaningful change from the diagnostic

case for either spawning potential or depletion (Figures 33 & 34), however the more extreme down-

weightings showed progressively lower estimates of spawning potential and more pessimistic levels

of depletion. As the influence of the size-frequency data to the likelihood is reduced, it allows

the model to fit the other components of the model better, namely CPUE. This indicates a likely

conflict in the signals in these two data sources, with the abundance trend from the CPUE likely

indicating a more pessimistic outcome.

7.5.2 Self-scaling Multinomial plus Random Effects likelihood for the size-frequency

data [SSMULT-RE]

Similarly to the previous set of sensitivities which deal with the likelihood contribution of the size-

frequency data, the SSMULT-RE also adjusts the influence of the size frequency data. However,

unlike the previous approach, the SSMULT-RE is able to adjust the weighting in a much more

fine-scaled manner by up-weighting & down-weighting the size-frequency (through the estimation

of ESS) for each pre-specified group of fisheries. There are a number of ways to group fisheries

(similarity of gear fished, comparable size compositions, or fisheries where the data sampling pro-

gram is similar), sensitivity to this grouping assumption is an area of further investigation. In

general the model appears to up-weight weight frequency data from the longlines in regions 5, 6,

& 8 and down-weighting the other fisheries, especially the region 7 Philippines and Indonesia han-

dline (Fishery 18). In terms of length-composition, the model on average appears to down-weight

the length observations from the purse seine (more so for the associated than the unassociated

fisheries), severely down-weight the observations from region 7 fisheries, and increasing the weight

of the pole-and-line fisheries observations.

This more tailored re-weighting of the size-frequency data which takes into account the initial sample

size and auto-correlation of the samples results in a different estimate of stock status (Figures 33

& 34). Spawning potential is estimated to be scaled down to ∼75% of that estimated in the

diagnostic case, resulting in overall depletion estimates approaching 30% and depletion estimates

for the equatorial regions (3, 4, 7, & 8) approaching 20%SBF=0.
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Though additional evaluation needs to be completed on the set-up and configuration of this ap-

proach as mentioned above, this result gives an idea of what stock status is estimated to be under

a more statistically appropriate weighting of the size composition data. This result is also only

relative to the diagnostic case model; interactive effects with other sources of uncertainty such as

growth and steepness in a structural uncertainty grid could result in a more optimistic or pessimistic

estimate of stock status.

7.5.3 Alternative growth functions [EstRichardsT, EstRichardsO, Oto-Only]

On first impression it was not expected that the growth axis would have much influence as the 4

growth curves considered, appear similar in terms of the L2 parameter and show minor differences

in the L1 and growth-rate (Figure 35). This is not unexpected as they are all informed, in part, by

a common set of otolith data. However, information from both the tagging and length composition

data appear to suggest a higher L1 parameter than the otolith data alone. Additionally, though

estimated from the same data the two growth curves estimated using the conditional age-at-length

data did not converge to the same estimate. This indicates that these curves are not well estimated

internal to MFCL and the starting point dependency issues identified in Vincent et al. (2018)

remain. Though Richards type growth curves were estimated using the conditional age-at-length

data for comparison with the fixed curves, future assessments should test if using the simpler, von

Bertalanffy growth curve can improve the robustness of the estimation given the starting point

sensitivity.

In terms of model estimated quantities, the Oto-only model estimated much higher levels of biomass

which corresponds to a more optimistic estimate of depletion given the same level of removals.

Despite slight differences in the estimated curves the two conditional age-at-length models do not

appear to converge to similar estimates of biomass or depletion. The EstRichardsO model estimates

higher levels relative to the diagnostic case and the model EstRichardsT estimates levels to be

intermediate to the previous model and the diagnostic case (Figures 33 & 34). Each conditional

age-at-length curve produces estimates that appear to retain the influence of the initial growth

parameters.

The reasons leading to the notably different estimate of biomass for the Oto-Only model are not yet

fully understood, despite considerable efforts to identify the mechanism. Regardless of the reason,

this alternate state of bigeye tuna estimated by the Oto-Only model shows a considerably worse

fit to the size composition data overall, despite an improved fit for the smallest individuals caught

in region 7. This degraded fit, in part, appears to manifest itself through selectivities that are

shifted to larger, older individuals (most dramatically for the longlines). Given that for this model

young fish are estimated to being largely invulnerable, the model has no option but to estimate

higher levels of biomass in order to generate the appropriate numbers of removals from those

selectivity patterns. A number of investigative models were run using the Oto-only growth with

different assumptions of selectivity (10 nodes defining the cubic spline, both with and without the

49



non-decreasing assumption, and running the Oto-Only growth model with selectivity parameters

fixed at the values estimated in the diagnostic case), however all yielded solutions similar, or more

anomalous, than the original Oto-Only fit. Lastly, to test if model estimation was being trapped in

a local minima, the Oto-only growth curve was inserted into the solution from the diagnostic case.

Again, this hybrid model returned to a solution set similar to the original Oto-only.

Regardless of the mechanism for the divergent estimates, the high biomass estimates associated

with the Oto-Only growth model may not be plausible when taken in the context of other WCPO

tuna stocks. Over the last decade, the ratio of bigeye tuna to skipjack tuna catch in the western

equatorial associated purse seine (Fishery 13 for bigeye tuna; Fishery 25 Vincent et al., 2019)

appears to be 0.09. Assuming that catchability should be similar for bigeye tuna and skipjack tuna

caught in the associated purse seines the model predicted vulnerable biomass for these fisheries

should also preserve a similar ratio since they operate in a similar region with a similar selectivity

shape. The assumption of equivalent catchability appears reasonable since they form mixed-schools

of like-sized individuals and there is currently no contra-indication of behavioral differences at these

sizes that would lead to differential catchabilities (Scutt Phillips et al., 2019). Comparing the model

predicted ratios of vulnerable biomass of bigeye to skipjack for these fisheries from models assuming

either one of the two fixed growth curves, the ratio from the Tag-Int model (0.06) appears to be more

aligned with what is seen in the catch than the one from the Oto-Only model (0.43). Though this

is an informal comparison, it does indicate that unless bigeye tuna have an associated purse seine

catchability 5 times higher than equivalent sized skipjack the Oto-Only model biomass estimates

are not biologically reasonable. Future research into the mixed-fisheries assessment approach is

needed to more formally define how information on population scale can be shared between the

tropical tunas.

7.5.4 Steepness [h0.65, h0.95]

The low penalties on the SRR relationship resulted in the assumed value of steepness having a

negligible effect on model fit and time-series estimates of spawning potential (Figure 33). However,

slightly different estimates of fisheries depletion were estimated, with the low (h0.65) and high

(h0.95) steepness models suggesting a stock that is more and less depleted, respectively (Figure

34). This is consistent with previous assessments of tuna in the WCPO - namely that low and high

steepness values lead to more pessimistic and optimistic estimates of stock status, respectively.

This is particularly the case for MSY and MSY-based reference points (The Frecent/FMSY values

for the diagnostic case level of 0.8, h0.65 and h0.95 are 0.63, 0.71 and 0.58, respectively) while the

depletion-based reference points tend to be less sensitive to assumed steepness.

7.5.5 Tag data [Mix1, TagFree]

The model with the mixing period reduced to one quarter (Mix1) estimated negligible differences

in spawning potential, and depletion (Figures 33 & 34). This indicates that the model is robust to
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this change, relative to the configuration assumed for the diagnostic case.

Given the large shifts in biomass scale seen during model development due to changes in tag file

preparation, a sensitivity was run without the tagging data included in the model (TagFree) to test

for this potential source of uncertainty. Model estimates of spawning potential and depletion were

surprisingly consistent albeit slightly higher than when the tagging data was included (Figures 33

& 34). This indicates that the dynamics governing movement and recruitment are being strongly

influenced by another source of data (most likely the size-frequency). Additionally, although the

tagging data do not appear to be very influential on the spatiotemporal dynamics of the model,

they can influence the estimation of population scale particularly if interaction with the other data

components results in the reporting rates being stuck on the upper bound limiting the appropriate

estimation of fishing mortality and biomass.

7.5.6 Natural mortality [M-low, M-mid, M-hi]

From the new growth curves, a life history based meta-analysis yielded an envelope of potential

average quarterly M rates: lower 95% confidence interval (0.109; M-low), mean (0.127; M-mid)

and upper 95% confidence interval (0.146; M-hi). These values were applied to the age-specific

deviates used in the diagnostic case to generate the three runs shown in Figures 33 & 34.

As expected for the M-hi scenario, increasing the assumed level of natural mortality reduced the

level of estimated spawning potential since the higher rate prevented the accumulation of as many

older individuals in the population. Even though the M-hi model predicted lower spawning poten-

tial, it produced a more optimistic level of stock status because these individuals were predicted

to be removed from the population due to the higher level of natural mortality and not fishing

mortality. Neither the M-mid or the M-low scenarios of spawning potential were very different

from the estimate in the diagnostic case though this is not unexpected since M assumed in the

diagnostic case (0.112) is fairly close to both. In terms of depletion the M-low model predicted

the most pessimistic status, at just under the level seen in the diagnostic case, while the M-mid

scenario produced estimates that were bounded by the other two models.

7.5.7 Selectivity groupings and structure [Alt, FreeSel]

As seen in the stepwise model development (Section 7.1), the assumptions made with regards to

selectivity shape (non-decreasing for select longline fisheries; FreeSel) can have an effect on the

estimated quantities. Here we also consider the effect of changing the way fisheries are grouped

together (Alt). The diagnostic case selectivity groupings allowed all fisheries to be estimated in-

dependently (see Table 1; A few exceptions were made for certain fisheries which lacked sufficient

samples of size data, the longline fisheries in region 9 and the purse seine fisheries in region 7).

If sufficient size frequency data are available to support such independent estimation, this is a

preferable approach for fisheries in which catchability is also estimated independently. In the Alt

model, selectivities were shared between fisheries that operated similarly and/or caught like sized
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individuals (e.g. all associated purse seine fisheries grouped together).

Compared to the other factors explored, assumptions on the grouping, and shape of the selectivity

curve had a relatively low impact on the stock assessment outcomes (Figures 33 & 34). The

Alt model estimated spawning potential to be scaled higher and with virtually identical levels of

depletion as the diagnostic case. Removing the constraint on non-decreasing selectivity placed

on some of the extraction longline fisheries (FreeSel) estimated a spawning potential, and a more

optimistic level of depletion.

The fit to the weight composition data between the diagnostic case and the FreeSel model appeared

relatively unchanged for most of the longline fisheries that had the non-decreasing penalty applied to

them in the diagnostic case. The exceptions were the offshore longline fishery in region 3 (Fishery 5)

and the longline ALL fishery in region 8 which indicated comparatively worse fits. In the future, an

alternative selectivity structure relaxing the non-decreasing assumption for some of these longline

fisheries could be explored. The statistical criteria for selecting an appropriate scheme will need to

be explored, acknowledging that there are known issues related to model selection with complex

likelihoods.

In addition to the results from the Alt selectivity grouping, a number of other selectivity groupings

were considered spanning the spectrum between increased grouping and the independent by fishery

approach of the diagnostic case. All groupings examined converged to a similar solution set.

7.5.8 Model start year [Model1962, CPUE1962]

Two sensitivities were run in order to investigate the impact and try to identify the source of the two

high recruitment events in region 2 within the first 2 years of the assessment period. One-hypothesis

was that if the standardized CPUE was mis-specified and hyper-depleted (declining at a faster rate

than abundance) for this region early in the model period, then the model could compensate by

using recruitment deviates to match the declining biomass trend from the CPUE. Removing the

first 10 years of CPUE data and starting in 1962 (CPUE1962 ) after the largest declines in the index

did not remove the estimation of these two large recruitment events indicating that the CPUE index

is not responsible and that there must be information in the weight-frequency and catch data to

inform these large recruitment events. Beginning in 1958 there is a 5 year period of high observed

catches in this fishery and the weight-frequency from 1959 shows an increased proportion 65+

kg individuals. According to the assumed growth curve and length-weight relationship, recruits

entering the model 6-7 years prior would be at the appropriate size to account for the high number

of removals at these larger sizes around 1959. Starting the model in 1962 (Model1962 ) did not

show similar high estimates of recruitment at the start of this new model period indicating that

the high recruitments seen in the diagnostic case are likely informed by the pattern in catch and

weight-frequency data. Regardless, these recruitments do not seem to be impacting the terminal

estimates of spawning potential and depletion (Figures 33 & 34) likely as a result of the stock-recruit

relationship being defined from 1962–mid-2017.
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7.5.9 Size-frequency data [idxAU-US, len456]

In the preparation of the size-frequency data two sets of assumptions were made: the weight-

frequency data for the index fisheries would come from flags belonging to the longline ALL fisheries,

and that weight-frequency data would be used exclusively for the longlines rather than switching

to length-frequency samples for regions 4, 5, & 6 post-2000 when that form of sampling became

more prevalent. Sensitivity of model outputs to both of these assumptions are discussed here.

Making the decision to include the additional weight-frequency data from the Australian and US

longlines (idxAU-US ), in regions 5 and 2 respectively did not measurably impact the estimates

of either spawning potential or depletion (Figures 33 & 34). Switching from weight-frequency to

length frequency for the longline fisheries in region 4, 5, & 6 post-2000 (len456 ) had a small impact,

with spawning potential scaled up and depletion slightly more optimistic. Investigation of the size-

frequency data showed that this change appears to be driven by a reduction in the median weight

for these fisheries that is not matched in the length-frequency data.

7.6 Multimodel inference: structural uncertainty analysis

Axes for the structural uncertainty grid were selected after considering the results from the one-

off sensitivities, previous bigeye tuna stock assessments (McKechnie et al., 2017a; Vincent et al.,

2018), and feedback from the PAW (Hamer and Pilling, 2020). On this basis, axes for composition

data-weighting, natural mortality, and steepness were selected as these encompassed the greatest

sources of plausible variability. Growth was intended as an axis of uncertainty, however this was

discarded, for the reasons mentioned in Section 7.5.3, due to a lack of sensible alternatives to the

Tag-Int model.

The results of the structural uncertainty analysis are summarized in several forms – time-series

plots of fisheries depletion for all models in the grid (Overall Figure 36; by region Figure 37–

Figure 39), time dynamic percentiles of depletion (Overall Figure 40; by region Figure 41), box-

plots of Frecent/FMSY and SB latest/SBF=0 for the different levels of each of the 3 axes of uncer-

tainty (Figure 42), Majuro plots showing the estimates of Frecent/FMSY and SB latest/SBF=0 (and

SBrecent/SBF=0 for comparison) across all models in the grid (Figure 43), and averages and per-

centiles across the full grid of 24 models for all the reference points and other quantities of interest

(Table 6) that have also been presented for the diagnostic case model and one-off sensitivity models.

Many of the results of the structural uncertainty analysis are consistent with the results of previous

assessments of tuna stocks in the WCPO that used the same uncertainty axes. However, additional

axes have been included in the 2020 assessment and these have consequences for summarizing stock

status and deriving management recommendations.

The general features of the structural uncertainty analysis are as follows:

• Uncertainty in the grid remains comparable to the previous stock assessments for bigeye tuna

showing a ∼30 point spread in the estimates of SB latest/SBF=0, and median values appear
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similar, though slightly more optimistic than those estimated in the previous assessment

(McKechnie et al., 2017a; Vincent et al., 2018).

• All models predict bigeye tuna to be above 20%SBF=0, with individual model runs estimating

depletion at the end of the assessment period being between about 0.30 and 0.47 in terms of

SB latest/SBF=0, with a slightly wider range for SBrecent/SBF=0 (0.27–0.52;Table 6).

• However, there is evidence to suggest that the overall stock status is being “buffered” by the

temperate regions (1, 2, 5, & 6). The most pessimistic predictions of overall stock status

correspond to models where depletion in these temperate regions is predicted to be high and

in some cases approach regional 20%SBF=0.

• The equatorial regions (3, 4, 7, & 8) appear to show consistent levels of regional depletion

approaching 20%SBF=0 across models.

• Patterns in regional depletion are driven by the increased down-weighting of the size-frequency

data-weighting axis (Figure 37). This could be due to a reduction in conflict between the

regional trends indicated by the CPUE versus the size-frequency data or through a change

in the estimated movement dynamics given the importance of the size-frequency data to the

estimation of these parameters (Section 7.5.5) as the size-frequency data becomes increasingly

down-weighted. Indeed, models with a down-weighting of 500 show a different pattern of

movement to that of the diagnostic case, with more biomass flowing from the temperate

regions to equatorial regions (particularly from region 1).

• The most influential grid axis is the size-frequency data-weighting axis, with decreased weights

leading to more pessimistic outcomes of depletion (as shown for the regional depletion esti-

mates). Within this axis, two of the levels show strong overlap, and relatively optimistic

outcomes (20 & 60; Figure 42). The level of 200 shows some overlap with the lower range of

the two preceding levels, and the extreme down-weighting of the size composition, 500, shows

the greatest separation from the other axis levels.

• The next most influential axis was the natural mortality axis. This axis effectively splits

each data-weighting level in two, with the high natural mortality scenarios sitting on top of

the mean natural mortality level that was assumed in the diagnostic case, and showing more

optimistic outcomes.

• The steepness axis displayed largely predictable results, with steepness of 0.65 and 0.95 pro-

ducing more pessimistic and optimistic estimates, respectively, than the 0.8 assumed in the

diagnostic case model. The lower the steepness the more depleted the stock, and the higher

the fishing mortality with respect to fishing mortality at MSY.

• Across all axis levels, only the extreme size data down-weighting axis predicts fishing mortality

in the recent period to exceed the fishing mortality that produces MSY (Frecent/FMSY).

• Most models across the grid show more pessimistic stock status in recent years, which appears
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to match the pattern seen in the standardized CPUE. The grid runs corresponding to the

extreme data down-weighting show the opposite pattern, possibly as a result of the different

movement dynamic observed for these models.

7.7 Further analyses of stock status

There are several ancillary analyses related to stock status that are typically undertaken on the

diagnostic case model (dynamic Majuro analyses, yield analyses, etc.). The use of multi-model

inference, defining management reference points based on the ensemble of grid runs, complicates

the presentation of these results for each individual model. These analyses are presented with

respect to the diagnostic case.

7.7.1 Fishery impacts

Fishery impact is measured at each time step as the ratio of the estimated spawning potential

relative to the spawning potential that is estimated to have occurred in the historical absence of

fishing. This is a useful quantity to monitor, as it can be computed both at the region level,

and for the WCPO as a whole. This information is plotted in two ways, firstly as the fished and

unfished spawning potential trajectories (Figure 44), and secondly as the depletion ratios themselves

(Figure 45). The latter is relevant for the agreed reference points and example plots of these values

are displayed for the diagnostic case model.

The diagnostic case model estimated that steady declines in spawning potential have occurred in all

regions (Figure 44), although the rate and extent of decline differs among regions. The equatorial

regions (3, 4, 7, and 8) show a rapid, increased rate of decline beginning in the 1970s, with most

decline attributed to fishing impacts. In the more temperate regions by contrast, most of the

declines in spawning potential are estimated to have occurred due to declining recruitment, rather

than the impacts of fishing in these regions. With respect to overall depletion, the temperate

regions appear to be “buffering” the effects of fishing pressure within the tropics. These patterns

are reflected in the regional depletion plots (Figure 45), with similar sustained declines in all regions

for both models, except for region 9 which shows more volatility, likely due to its small size.

It is also possible to attribute the fishery impact with respect to depletion levels to specific fish-

ery components (grouped by gear-type), in order to estimate which types of fishing activity have

the most impact on spawning potential (Figure 46). The early impacts on the population were

primarily driven by longline fishing, but as the purse seine fishery expanded from the 1980’s the

impact of associated purse seine fishing has rapidly increased. Within the equatorial regions it is

the dominant driver of fishery impacts, eclipsing the impacts of the longline fisheries which have

continued to gradually increase over time. The substantial increase in fishing effort by miscella-

neous gears in region 7 has also had a significant impact on spawning potential in that region,

and also in neighboring regions that are linked by movement. Unassociated purse seine fishing has

comparatively little impact due to far fewer bigeye being caught in these sets.
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While the overall depletion levels of the 2020 diagnostic case model are similar to the 2017 diag-

nostic case model, there are some differences in the regional contributions to depletion by fishing

gear (Figure 46). In the current assessment, the northern temperate regions are predicted to be

less depleted than in the 2017 assessment, while the southern temperate regions show greater levels

of depletion relative to the previous assessment. This is likely due to a differences in the estimated

movement dynamics. Additionally, despite not having purse seines operating in any of the temper-

ate regions, they are increasingly impacted by the associated purse seines. This could be a product

of reduced immigration as recruits from the equatorial regions that would be expected to immigrate

to the temperate regions in the absence of fishing are being caught by the associated purse seine

fisheries.

7.7.2 Yield analysis

The yield analyses conducted in this assessment incorporate the stock recruitment relationship

(Figure 27) into the equilibrium biomass and yield computations. Importantly, in the diagnostic

case model, the steepness of the SRR was fixed at 0.8 so only the scaling parameter was estimated.

Other models in the one-off sensitivity analyses and structural uncertainty analyses assumed steep-

ness values of 0.65 and 0.95.

Across the structural uncertainty grid the equilibrium virgin spawning potential in the absence of

fishing (SBF=0) was estimated to be between 903,708 and 1,908,636 mt (Table 6), and the spawning

potential that would support the MSY (SBMSY) was estimated to be between 192,500 and 482,700

mt. Relative to the previous stock assessment, the current analysis predicts a marginally less

productive stock. The ratio of SBMSY to SBF=0 was estimated to be between 0.19 and 0.26 (mean

= 0.23).

A plot of the yield distribution under different values of fishing effort relative to the current effort

are shown in Figure 47, for models in the structural uncertainty grid. Across most grid axis–

level combinations, the yield analysis indicates that current fishing pressure is close to producing

MSY. More productive combinations, higher natural mortality and/or higher steepness, expectedly

predict the highest potential yields, and that these would be achieved under higher fishing pressure.

The yield analysis also enables an assessment of the MSY level that would be theoretically achievable

under the different patterns of age-specific fishing mortality observed through the history of the

fishery (Figure 48). Prior to 1970, the WCPO bigeye fishery was almost exclusively conducted

using longline gear, with a low exploitation of small bigeye. The associated age-specific selectivity

pattern resulted in a much higher MSY in the early period compared to the recent estimates. This

pronounced decline occurred after the expansion of the small-fish fisheries in region 7 and, soon

after, the rapid expansion of the purse seine fishery which shifted the age composition of the catch

towards much younger fish. This lower MSY is due to a combination of fish being removed from

the system at smaller sizes and also before they have the chance to reproduce.
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7.7.3 Dynamic Majuro plots and comparisons with Limit Reference Points

The section summarizing the structural uncertainty grid (Section 7.6) presents terminal estimates

of stock status in the form of Majuro plots. Further analyses can estimate the time-series of stock

status in the form of dynamic Majuro plots, the methods of which are presented in Section 5.7.4.

An example for the diagnostic case is presented in Figure 49. These examples produce intuitive

results with respect to the terminal results already presented in Section 7.6. At the start of the

assessment period, the WCPO bigeye tuna stock was predicted to be close to an SB/SBF=0 of one

or virgin unfished condition. The F/Fmsy was estimated to be nearly zero indicating that initial

fishing pressure at the start of the model period was negligible. Each of these reference points

progressively shifted towards the overfishing and overfished definitions over the remaining period.

The diagnostic case model shown never reaches 20%SBF=0 or an F/Fmsy of one. The equivalent

dynamic Kobe plots are displayed in Figure 50.

8 Discussion and conclusions

8.1 General remarks

The 2020 WCPO bigeye tuna stock assessment estimates the median stock status to be comparable

to the 10 ◦ N–Updated New growth model from the 2018 reanalysis (Vincent et al., 2018) used to

provide management advice for the stock. Taking a historical perspective of the trajectory of the

stock, depletion appears to have been relatively low through the first 20 years of the model period.

The apparent declines in biomass during this period appear to be due to several large cohorts from

high recruitment events in the early 1950’s, moving through and out of the population. The level of

fisheries depletion increases in the 1970’s as fishing mortality on juveniles slowly begins to increase.

This coincides with the expansion of DWFN & PICT pole-and-line fisheries targeting skipjack tuna,

of which juvenile bigeye are a bycatch species. In the 1980’s, coinciding with the development of

industrial purse-seining, an increase in juvenile fishing mortality results in an increasing trajectory

of depletion. Erosion of the stock structure begins to manifest itself in the 1990’s, and is likely

a result of the increased fishing pressure on juvenile bigeye tuna. Additionally, it is important to

note that throughout this time of increased fishing mortality on the juveniles, fishing mortality on

adults captured via the longline fisheries has also been estimated to increase though at a less rapid

rate. The stock was estimated to decline further through the turn of the century before stabilizing

at the beginning of the current decade. However, the “bump” in biomass seen in 2014–2015 due

to the predicted high recruitment at the beginning of the decade appears to have passed through

the population, with the stock showing slight decline since the last assessment. Fishing mortality

appears to have stabilized over the last decade for both the adult and juvenile age classes, though

inter-annual variation is high, particularly for the juveniles. Throughout this period, outside of the

two large early recruitment events, annual recruitment appears to have been fairly stable (∼ 50

million individuals per year) across a wide range of population sizes.
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8.2 Improvements to the assessment

The process of conducting a stock assessment is one of iterative and continued improvement, picking

up the development where the previous assessment left off and incorporating new model features,

updated data, and an improved understanding of biological processes. The 2020 bigeye tuna stock

assessment is no exception. Building off the previous WCPO tuna assessments, the current assess-

ment made several notable improvements: (i) spatiotemporal CPUE (Ducharme-Barth and Vincent,

2020); (ii) length-based reproductive potential ogive (Davies et al., 2018); and (iii) updated growth

information from otolith and tag-recapture data-sets (Eveson et al., 2020; Farley et al., 2020). The

use of a spatiotemporal CPUE model allowed for a “gap-free” standardized index to be available in

all regions and all time-steps for the first time. Additionally, modeling the operational longline data

across the Pacific-basin allowed for the relative uncertainty between regional indices to be captured

in the assessment. Using a length-based reproductive potential ogive provided an improved defi-

nition for a key biological process, and since growth was estimated internally in a subset of runs,

allowed for the correctly specified reproductive potential-at-age ogive to be used. The new growth

curves for the assessment are the latest steps in a process initiated in 2017 (Farley et al., 2017;

McKechnie et al., 2017a), and incorporates improvements to: the ageing methodology; calculation

of decimal age for the conditional age-at-length without making a common birth date assumption;

inclusion of otoliths from small 15–20 cm bigeye tuna; and makes use of information contained in

the tagging data to define growth.

Additionally, a number of other small improvements were made to the model including updating

the processing models for the tagging and composition data inputs, and refreshing the assumed

length-weight relationship. Also of note for this assessment, is that in the aggregate, the net effect

of the changes made in the assessment resulted in a much improved state with respect to tag

reporting rate estimation. Only two groups were estimated to be impacted by the upper bound

of the bounded parameter space, and these belonged to fisheries where the tag reporting rate is

presumed to be high.

8.3 Uncertainty

The range of uncertainty presented in the structural uncertainty grid is comparable to that pre-

sented in the previous stock assessment (McKechnie et al., 2017a; Vincent et al., 2018), although

perhaps broader than the final subset of models used as the basis for management advice. The key

driver with regards to uncertainty in the current assessment is the size-frequency data-weighting

axis which used a larger range of down-weighting than previous assessments. Although it is gen-

erally thought that the size-composition has too large of an influence on the likelihood (for the

reasons mentioned in Section 5.5), it is challenging to objectively determine what the appropri-

ate weighting should be. Development of the SSMULT-RE likelihood for size-frequency data can

hopefully overcome this deficiency, however further investigation is needed before this feature is

ready for use as the baseline likelihood structure. In the meantime, the range of values selected
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for the data-weighting axis cover the range of outcomes between the data-weighting that has tradi-

tionally been assumed for bigeye tuna and the results shown from the one-off sensitivity using the

SSMULT-RE. Though this range of down-weighting is more extreme than has been considered in

the past, the SC will need to consider the trade-off between reducing the fit to the size composition

data and the impact on model dynamics from the resulting improvement in the fit to the other

main components of the likelihood: CPUE (via the effort deviates on the index fishery) and the

tagging data.

The absence of growth as an axis in the structural uncertainty grid is conspicuous given the influence

it was shown to have in previous assessments and in some of the one-off sensitivities for the current

assessment. The Oto-Only growth model predicted very high levels of biomass and corresponding

low level of depletion despite visually showing similar patterns in growth to the Tag-Int model.

These results appear implausible given the poor fit to the other data components (Section 7.5.3) and

when comparing the scale of estimated biomass to those from other tropical tunas (Section 8.4.1).

Considerable effort was devoted to uncovering the mechanism for this dramatically different solution

set, but as yet we do not have a resolution. Fitting to the conditional age-at-length data showed

estimates of biomass and depletion that appeared more reasonable. However, given the lack of

agreement in the estimated growth curves and the disparity between model outcomes driven solely

by the parameter starting conditions, these models were determined to be poorly estimated and

thus less reliable. For these reasons, both the Oto-only and conditional age-at-length estimation

models were excluded from the grid. This potentially results in an under-representation of the total

structural uncertainty. However given the generally more optimistic nature of these models, based

on the results from the one-off sensitivities, ignoring this potential added source of uncertainty is

not likely to contribute to an underestimate of the risk of breaching 20%SBF=0.

8.4 MFCL and other modeling considerations

Model development of the 2020 stock assessment was not without its challenges. These were

identified at various stages of the development process and broadly fall into two categories: those

related to the biological assumptions and data-inputs; and those that relate to model complexity.

8.4.1 Biological assumptions and data-inputs

Bigeye growth again proved to be problematic and challenging, though in a way that was different

from the previous assessments. Previous issues related to growth evolved from different ageing

methods being applied to produce growth curves that visually appeared to be very different from

one another. The peculiarity of this particular case is that the same set-of otoliths, all aged the

same way, were utilized in the construction of the different growth options. These growth options

look very similar, and indeed all estimate L2 parameters within ∼1–2 cm. The differences lie

more at smaller sizes/lower ages, with some models predicting an L1 of ∼20 cm and fitting the

newly collected small-fish otoliths quite well. The models including other sources of data, either
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tag-increment data or modal progression information from the size composition, tend to estimate

higher L1 parameters indicating some conflict between the different data sources. These subtle

differences in the L1 parameters and the rapid initial growth that is able to be achieved using the

Richards growth curve appear to be pushing model estimates in diverging directions, the exact

mechanism for which requires further exploration. It is possible that in attempting to fit the size-

frequency data, the quarterly age increments are too far apart to properly capture the variability in

sizes given the rapid growth achieved by younger individuals in a short amount of time. Rather than

increase the resolution of the age classes, the relationship governing variability around the growth

curve could be relaxed to accommodate the fit to these young, small fish. Additionally, a proper

length-based selectivity function could aid in capturing these modes that lie between age-classes.

A number of critical biological assumptions that under-pin the bigeye tuna stock assessment are

informed by studies with fairly small sample sizes. The fecundity-at-length relationship used in the

reproductive potential ogive is based on a sample of 129 individuals collected from a geographically

small region around the Philippines and Chinese Taipei (Sun et al., 2006). The maturity-at-length

relationship is based on samples covering a broader spatial area but is still based on relatively few

individuals (n = 343; Farley et al., 2017). Perhaps most critically, the conversion factor used to

convert longline caught individuals (“gilled-and-gutted” weight to whole weight) from the fresh fish

fleets of many of the PICTs is based on 79 samples from longline vessels operating in the Solomon

Islands and the Federated States of Micronesia (Langley et al., 2006). Since this conversion factor

is applied to all longline caught fish not processed using the Japanese style of gilling (and removing

the operculum), gutting, and tailing the fish, small changes to this conversion factor could resonate

within the model. This deficiency has previously been identified through Project 90 (SPC-OFP,

2019), however emphasize the importance of allocating resources to collect additional samples across

a number of fleets to improve this conversion. Additionally, we recommend collection of additional

reproductive samples across the extent of the WCPO and processing of existing samples within the

SPC tissue bank in order to improve confidence in key biological assumptions around reproduction

and sex ratio with length.

A number of research recommendations to improve the standardized CPUE were outlined in

Ducharme-Barth and Vincent (2020). These are repeated here as the standardized CPUE in-

dex from the longline fisheries is a critical input to the assessment, and improvements to that index

would benefit the assessment.

• Data reconstruction to improve the number of covariates available across fleets for the duration

of the model period.

• Interviews and surveys with vessel operators and captains to identify species specific targeting

practices and relevant covariates to standardize on.

• Create a recent period index to take advantage of improved covariate coverage using either the

observer data or a combination of observer and operational data with an expanded covariate
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set.

• Revisit previous analyses of catch-per-effective-effort which account for the vertical distribu-

tion of tropical tuna biomass and longline hooks in the water column.

• Allocate funding to produce a spatiotemporal sub-surface oceanographic product which in-

cludes dissolved oxygen for the Pacific Ocean for the entire assessment period.

• The analysis of archival tagged, longline-vulnerable bigeye and yellowfin tuna needs to be

continued and supplemented by additional releases in multiple locations across the WCPO

in order to complete our understanding of how vertical position in the water column is a

function of fish length, time of day, and oceanographic conditions.

• Basic research on the depth distribution of longline hooks across vessels from DWFNs and

PICTs.

If we could choose a sampling program for the bigeye tuna stock in the WCPO it would be a

spatiotemporally stratified fisheries independent sampling program where the same stations are

assessed inter- and intra-annually. Given the massive scale of the WCPO, such a program is just

not tractable without collaborating with the industry. The feasibility of implementing a quasi-

fisheries-independent sampling program should be assessed. A brief proposal for such a program is

described in the Appendix (Section 11.1).

8.4.2 Model complexity

Despite the large amounts of data available for this assessment, there is some evidence to sug-

gest that the current structure of the bigeye tuna stock assessment is overly-complex and over-

parameterized. Run times are long and the model is slow to converge. Though inconvenient from

a development and diagnostic stand-point this in and of itself is not a major concern, and there are

several aspects of MFCL in active or recent development that can help address the complexity prob-

lem by drastically reducing the number of estimated parameters: i.e. the orthogonal polynomial

parameterization for recruitment and catch-conditioning of the assessment model. More concerning

is the model’s flexibility to shift biomass across the 9 regions using a combination of movement

coefficients and recruitment parameters; and the potential for confounding between these two sets

of parameters. As an example, in the course of development, a model was run which turned off the

2,403 regional recruitment deviates (n regions ×t− 1 quarterly time-steps in the model). This sim-

plified model was able to produce spawning potential and depletion time series that closely matched

the diagnostic case by manipulating the estimated proportion of recruitment in each region and the

quarterly movement rates. Granted, the ensuing distribution of recruitments did not match our

current understanding of bigeye tuna spatial recruitment patterns, the model was flexible enough

to arrive at a similar solution through a different set of parameters.

Model complexity and spatial structure are inextricably linked, with the movement dynamics play-
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ing an important role in how the model fit to the data is achieved. Explicit definitions of spatial

structure in an assessment can provide for a more realistic representation of complex dynamics.

Explicit spatial structure is useful because the selectivity function can be separated into spatial

availability driven by regional movement, and vulnerability to the gear as a function of size or age.

It also allows for the compartmentalization of the population into quasi-distinct components of

variable size, subject to different levels of fishing mortality between regions. However, the differ-

ence between the aforementioned benefits and improper interpretation of the selectivity function or

spatial regions inappropriately “buffering” the effects of more depleted regions hinge, in part, on the

ability to get the movement dynamics correct. The information from tagging data should be an in-

formative component to the estimation of the movement dynamics as it is the only data source that

explicitly informs movement between regions, all other data sources (such as size-frequency data)

only infer it. At least for the current bigeye tuna assessment, this does not appear to be the case.

Removal of the tagging data did not appear to greatly change the estimated biomass and depletion

trajectories or the movement dynamics. This is potentially problematic on two fronts: (i) if the

estimation of movement is driven by regional differences in size-frequency it could contaminate the

estimated movement rates if there is spatial variability in growth; and/or (ii) that given the current

spatial footprint of the tagging programs and recapture locations, there is not enough information

content in the data to properly estimate the 104 diffusion coefficients required for the 9 region

model. Fortunately, moving forward, there are ways to correct for either of these issues. A model

explicitly accounting for spatial heterogeneity in growth (though this raises additional challenges

with regards to implementation and model complexity) or down-weighting of the size-frequency

data (via the sample size or choice of likelihood) can reduce the influence of the size-frequency data

on the movement rates. With regards to the tagging data, if the existing spatial structure is main-

tained, the spatial sampling design of the tagging program could be redesigned to provide better

estimates of movement across regional boundaries. Alternatively, the spatial structure could be

reconfigured to maximize the existing information content of the tagging data. Another possibility

is for the tagging data to be used in an integrated ecosystem model such as SEAPODYM (Senina

et al., 2020) to estimate region-specific movements, and input these external movement estimates

into MFCL as informative “priors”.

Given the probable over-complexity of the current model structure (e.g. quarterly recruitment

dynamics and movement across 9 spatial regions), the next bigeye tuna stock assessment should

take steps to reduce model complexity. This should begin with investigating and making full use

of the orthogonal polygon recruitment parameterization, and should also completely remove the

effort deviates from the model (8,438 in the current diagnostic case) through the catch-conditioned

parameterization. In order to remove the effort deviates associated with the index fishery, the index

fisheries should be removed and a proper likelihood for CPUE should be implemented in MFCL. One

of the challenges associated with pruning an integrated assessment model is how to make decisions

as to which components are appropriately complex and those that should be simplified so as not to
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sacrifice too much biological realism on the “altar of parsimony8”. Data information theory (AIC or

BIC) and likelihood ratio-tests can be used in this process so long as the data/likelihood structure

is unchanged and that the models are nested in the case of likelihood ratio-tests. Objective decision

making is more challenging when considering between alternatives with incomparable likelihoods.

An external peer-review and/or WCPFC stock assessment modeling workshop should be conducted

prior to the next WCPO bigeye tuna stock assessment to provide feedback on the development of

an appropriate model structure. To this effect, and to address some of the issues identified as

related to the tagging, movement, and regional parameter estimation; a simplified, single region

assessment model was developed in tandem with the spatially structured diagnostic case model.

This model is presented briefly in the Appendix (Section 11.8) and can serve as a starting point

for discussions on model complexity.

8.5 Main assessment conclusions

The main conclusions of this assessment are summarized as follows:

• All models in the structural uncertainty grid show WCPO bigeye tuna to be above 20%SBF=0,

which is consistent with the previous assessments following the adoption of the Updated New

growth and the 10◦ N regional structure.

• However, there is evidence to suggest that the overall stock status is being “buffered” by the

temperate regions (1, 2, 5, & 6). The most pessimistic predictions of overall stock status

correspond to models where depletion in these temperate regions is predicted to be high and

in some cases approach regional 20%SBF=0.

• The equatorial regions (3, 4, 7, & 8) appear to show consistent levels of regional depletion

approaching 20%SBF=0 across models.

• A substantial decline in bigeye abundance was estimated by all models in the assessment.

With respect to the difference in recent levels of depletion and those from the beginning of

the model period, the impacts of fishing pressure appear to be persistent and meaningful, at

least on a multi-year scale.

• The effects of the large recruitments seen at the end of the previous stock assessment do not

appear to have continued in recent years. Most models across the grid show a downturn in

stock status in recent years, which appears to match the pattern seen in the standardized

CPUE.

8.6 Summary of research recommendations

A brief summary of the research and modeling recommendations made elsewhere in this report:

8The “altar of parsimony” is not to be confused with that of speed, though a more parsimonious model is likely
to also be a faster model.

63



• Continued research on the implementation of new features to MFCL such as the: censored-

gamma tag likelihood (Section 7.2.4), Self-Scaling Multinomial with Random Effects likeli-

hood for size-frequency data (Section 5.5).

• Model structure (complexity) should be critically evaluated via an external peer-review or

WCPFC modeling workshop, and the model structure should be revised accordingly (Sec-

tion 8.4.2). Further, reductions in model complexity should be investigated via the re-

parameterization of recruitment using orthogonal polynomials and conditioning the assess-

ment model on the catch.

• The spatial sampling design for the tagging programs needs to be revisited to ensure that

releases are made in areas that will assist in the estimation of regional movement coefficients

(Section 8.4.2). Additionally, efforts should be made to quantify the movements of older,

longline vulnerable bigeye tuna through electronic tagging as the majority of the movement

information from the tagging data comes from conventional tags placed on juvenile bigeye

tuna.

• Investigate the feasibility of constructing and incorporating informative movement priors

using an external integrated ecosystem model such as SEAPODYM.

• Development of a formal likelihood component for the fit to the CPUE to further reduce the

number of parameters estimated when implementing the “index” fisheries (Section 8.4.2).

• Continue work on Project 90 in order to base conversion factors on a larger number of samples

(Section 8.4.1). If possible, sampling should be stratified by fishery so fleet specific conversion

factors can be developed.

• Continue research on important biological processes such as growth and maturity (Sec-

tion 8.4.1). Further otoliths should be collected in a spatially stratified manner to help

identify regional differences in growth. Additional biological samples should also be col-

lected in a spatially stratified manner to capture possible variations in maturity-at-length

and fecundity-at-length across the WCPO, and develop more representative inputs for the

stock assessment. Existing biological samples stored in the SPC Tissue Bank should be

processed to further supplement the additional sampling.

• The variability around the growth curve in MFCL should be restructured to allow for increased

variability around the growth curve for the youngest ages to account for the rapid growth at

these ages (Section 8.4.1).

• Development of a truly length-based selectivity function within MFCL could improve the fit

to the data of these younger smaller individuals (Section 8.4.1).

• Data reconstruction to improve the number of covariates available for CPUE standardization

across fleets for the duration of the model period (Ducharme-Barth and Vincent, 2020).
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• Interviews and surveys with vessel operators and captains to identify species specific targeting

practices and relevant covariates to use for CPUE standardization (Ducharme-Barth and

Vincent, 2020).

• Creation of a recent period CPUE index to take advantage of improved covariate coverage

using either the observer data or a combination of observer and operational data with an

expanded covariate set (Ducharme-Barth and Vincent, 2020).

• Revisit previous analyses of CPUE which account for the vertical distribution of tropical tuna

biomass and longline hooks in the water column (Bigelow et al., 2002; Ducharme-Barth and

Vincent, 2020).

• Allocate funding to produce a spatiotemporal sub-surface oceanographic product which in-

cludes dissolved oxygen for the Pacific Ocean for the entire assessment period to account for

important oceanographic effects in the spatiotemporal CPUE standardization (Ducharme-

Barth and Vincent, 2020).

• The analysis of archival tagged, longline-vulnerable bigeye and yellowfin tuna needs to be

continued and supplemented by additional releases in multiple locations across the WCPO

in order to complete our understanding of how vertical position in the water column is a

function of fish length, time of day, and oceanographic conditions (Ducharme-Barth and

Vincent, 2020).

• Basic research on the depth distribution of longline hooks across vessels from DWFNs and

PICTs (Ducharme-Barth and Vincent, 2020).

• Assess the feasibility of funding a quasi-fisheries-independent sampling program to improve

collection of important biological samples, serve as a platform for conducting experiments to

explore the selectivities and catchabilities of the gear, and generate a fisheries-independent

index of CPUE (Section 8.4.1).
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9 Tables

Table 1: Fishery definitions and groupings for extraction fisheries used in the 2020 bigeye tuna
stock assessment. The tag reporting rate groups for the Regional Tuna Tagging Program (RTTP),
Pacific Tuna Tagging Program (PTTP), and the Japanese Tagging Program (JPTP) are also shown.
Gears: DOM = artisanal gear types used in domestic fisheries; LL = longline; PL = pole and line;
PS = purse seine unspecified; PS-ASS = associated purse seine; PS-UNA = unassociated purse
seine. Flag/fleets: ALL = all nationalities; AU = Australia; ID = Indonesia; JP = Japan; OS =
Offshore; PH = Philippines; US = United States; VN = Vietnam.

Fishery Nationality Gear Region Selectivity Increasing Recaptures RTTP PTTP JPTP
F1 L-ALL-1 ALL LL 1 1 Y 1 1 1 27
F2 L-ALL-2 ALL LL 2 2 N 2 1 1 27
F3 L-US-2 US LL 2 3 Y 3 2 2 28
F4 L-ALL-3 ALL LL 3 4 N 4 1 1 27
F5 L-OS-3 OS LL 3 8 Y 5 1 1 27
F6 L-OS-7 OS LL 7 9 Y 6 1 1 27
F7 L-ALL-7 ALL LL 7 10 N 7 1 1 27
F8 L-ALL-8 ALL LL 8 11 Y 8 1 1 27
F9 L-ALL-4 ALL LL 4 5 Y 9 1 1 27
F10 L-AU-5 AU LL 5 12 Y 10 3 3 29
F11 L-ALL-5 ALL LL 5 7 N 11 1 1 27
F12 L-ALL-6 ALL LL 6 6 Y 12 1 1 27
F13 SA-ALL-3 ALL PS-ASS 3 13 N 13 4 16 30
F14 SU-ALL-3 ALL PS-UNA 3 16 N 13 4 16 30
F15 SA-ALL-4 ALL PS-ASS 4 14 N 14 5 17 31
F16 SU-ALL-4 ALL PS-UNA 4 17 N 14 5 17 31
F17 Z-PH-7 PH Dom 7 19 N 15 6 18 32
F18 Z-ID.PH-7 ID.PH Dom 7 20 N 15 6 18 32
F19 S-JP-1 JP PS 1 21 N 16 7 19 33
F20 P-JP-1 JP PL 1 22 N 17 8 20 34
F21 P-ALL-3 ALL PL 3 23 N 18 9 21 35
F22 P-ALL-8 ALL PL 8 24 N 19 10 22 36
F23 Z-ID-7 ID Dom 7 25 N 15 6 18 32
F24 S-ID.PH-7 ID.PH PS 7 19 N 15 6 18 32
F25 SA-ALL-8 ALL PS-ASS 8 15 N 20 11 23 37
F26 SU-ALL-8 ALL PS-UNA 8 18 N 20 11 23 37
F27 L-AU-9 AU LL 9 12 Y 21 3 3 29
F28 P-ALL-7 ALL PL 7 26 N 22 12 24 38
F29 L-ALL-9 ALL LL 9 7 N 23 1 1 27
F30 SA-ALL-7 ALL PS-ASS 7 13 N 24 13 25 39
F31 SU-ALL-7 ALL PS-UNA 7 16 N 24 13 25 39
F32 Z-VN-7 VN Dom 7 27 N 25 14 26 40
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Table 2: Fishery definitions and groupings for the index fisheries used in the 2020 bigeye tuna
stock assessment. The tag reporting rate groups for the Regional Tuna Tagging Program (RTTP),
Pacific Tuna Tagging Program (PTTP), and the Japanese Tagging Program (JPTP) are also shown.
Gears: I = index fishery. Flag/fleets: ALL = all nationalities.

Fishery Nationality Gear Region Selectivity Increasing Recaptures RTTP PTTP JPTP

F33 I-I-1 ALL I 1 28 Y 26 15 15 15
F34 I-I-2 ALL I 2 28 Y 26 15 15 15
F35 I-I-3 ALL I 3 28 Y 26 15 15 15
F36 I-I-4 ALL I 4 28 Y 26 15 15 15
F37 I-I-5 ALL I 5 28 Y 26 15 15 15
F38 I-I-6 ALL I 6 28 Y 26 15 15 15
F39 I-I-7 ALL I 7 28 Y 26 15 15 15
F40 I-I-8 ALL I 8 28 Y 26 15 15 15
F41 I-I-9 ALL I 9 28 Y 26 15 15 15

Table 3: Summary of the number of release events, tag releases and recoveries by region and
program. Note that for the purposes of tag reporting rates, the CSTP and RTTP were considered
to be the same program and are thus shown combined in this table.

Prog JPTP PTTP RTTP
Years 2000–2017 2006–2017 1989–2001

Category Grps Rel Rec Grps Rel Rec Grps Rel Rec

1 36 3699 426 0 0 0 0 0 0
2 3 50 1 0 0 0 0 0 0
3 0 0 0 13 2180 491 5 231 27
4 3 189 18 14 20344 6240 3 628 94
5 0 0 0 1 33 7 1 124 32
6 0 0 0 0 0 0 1 69 4
7 0 0 0 3 500 126 5 1207 375
8 0 0 0 14 2784 912 5 472 60
9 0 0 0 0 0 0 5 3976 443

Total 42 3938 445 45 25841 7776 25 6708 1035
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Table 4: Description of symbols used in the yield and stock status analyses. For the purpose of this
assessment, “recent” is the average over the period 2014–2017 for F related metrics and 2015–2018
for metrics related to SB while “latest” is 2018.

Symbol Description
C latest Catch in the last year of the assessment (2018)
Frecent Average fishing mortality-at-age for a recent period (2014–2017)

Y Frecent Equilibrium yield at average fishing mortality for a recent period (2014–2017)
fmult Fishing mortality multiplier at maximum sustainable yield (MSY)
FMSY Fishing mortality-at-age producing the maximum sustainable yield (MSY)
MSY Equilibrium yield at FMSY

Frecent/FMSY Average fishing mortality-at-age for a recent period (2014–2017) relative to FMSY

SB0 Equilibrium unexploited spawning potential
SB latest Spawning potential in the latest time period (2018)
SBrecent Spawning potential for a recent period (2015–2018)

SBF=0 Average spawning potential predicted in the absence of fishing for the period 2008–2017
SBMSY Spawning potential that will produce the maximum sustainable yield (MSY)

SB latest/SBF=0 Spawning potential in the latest time period (2018) relative to the average spawning potential
predicted to occur in the absence of fishing for the period 2008–2017

SB latest/SBMSY Spawning potential in the latest time period (2018) relative to that which will produce
the maximum sustainable yield (MSY)

SBrecent/SBF=0 Spawning potential for a recent period (2015–2018) relative to the average spawning
potential predicted to occur in the absence of fishing for the period 2008–2017

20%SBF=0 WCPFC adopted limit reference point – 20% of spawning potential in the
absence of fishing averaged over years t− 10 to t− 1 (2008–2017)

Table 5: Description of the structural sensitivity grid used to characterize uncertainty in the as-
sessment. Levels used under the diagnostic case are starred.

Axis Levels Option

Steepness 3 0.65, 0.8* or 0.95
Natural mortality 2 Diagnostic* or M-hi
Size frequency weighting 4 sample sizes divided by 20*, 60, 200 or 500

Table 6: Summary of reference points over the 24 models in the structural uncertainty grid.

Mean Median Min 10 90 Max

C latest 159,738 159,288 157,297 157,722 162,033 162,271
Y Frecent 136,568 134,940 117,800 124,668 149,424 161,520
fmult 1.45 1.38 0.83 0.98 2.03 2.33
FMSY 0.05 0.05 0.04 0.04 0.07 0.07
MSY 146,715 140,720 117,920 125,628 179,164 187,520
Frecent/FMSY 0.74 0.72 0.43 0.49 1.02 1.21
SBF=0 1,395,173 1,353,367 903,708 982,103 1,780,138 1,908,636
SBMSY 320,162 321,550 192,500 219,810 443,730 482,700
SBMSY /SBF=0 0.23 0.23 0.19 0.2 0.26 0.26
SB latest/SBF=0 0.38 0.38 0.23 0.3 0.47 0.51
SB latest/SBMSY 1.7 1.67 0.95 1.23 2.15 2.6
SBrecent/SBF=0 0.4 0.41 0.21 0.27 0.52 0.55
SBrecent/SBMSY 1.78 1.83 0.87 1.18 2.32 2.84
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10 Figures

Figure 1: Spatial structure for the 2020 bigeye tuna stock assessment.
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Figure 2: Presence of catch, standardised CPUE, length frequency and weight frequency data by
year and fishery for the diagnostic case model. The different colors denote gear-type of the fishery:
longline (green); pole-and-line (red); purse seine (blue); miscellaneous (yellow); and index (gray).
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Figure 3: Time series of total annual catch (1000’s mt) by fishing gear for the diagnostic case
model over the full assessment period. The different colours refer to longline (green), pole-and-line
(red), purse seine (blue), purse seine associated (dark blue), purse seine unassociated (light blue),
miscellaneous (yellow), and index (gray). Note that the catch by longline gear has been converted
into catch-in-weight from catch-in-numbers and so may differ from the annual catch estimates
presented in (Williams et al., 2020), however these catches enter the model as catch-in-numbers.
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Figure 4: Time series of total annual catch (1000’s mt) by fishing gear and assessment region for the
diagnostic case model over the full assessment period. The different colours refer to longline (green),
pole-and-line (red), purse seine (blue), purse seine associated (dark blue), purse seine unassociated
(light blue), miscellaneous (yellow), and index (gray).
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Figure 5: Distribution and magnitude of bigeye tuna catches for the most recent decade of the
stock assessment (2009-2018) by 5◦ square and fishing gear: longline (green), pole-and-line (red),
purse seine (blue) and miscellaneous (yellow), for the WCPO and part of the EPO. Overlayed are
the regional boundaries for the stock assessment.
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Figure 6: Standardized catch-per-unit-effort (CPUE) indices for the index fisheries in regions 1–9
used in the diagnostic case model (red) relative to the nominal CPUE (blue). See Ducharme-
Barth and Vincent (2020) for further details of the estimation of these CPUE indices. The shaded
polygon represents the 95% confidence intervals derived from the effort deviation penalties used in
the diagnostic case model. Note that these indices have been rescaled to a mean of 1 within region
and do not show the associated regional scaling.
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Figure 7: Quarterly natural mortality-at-age as used the diagnostic case model (Tag-Int ; black
line) and the sensitivity model Oto-only (red line).
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Figure 8: Individual components of reproductive potential-at-length (relative fecundity–blue;female
maturity–purple; and female sex-ratio–red) and the resulting reproductive potential-at-length ogive
(black).
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Figure 9: Reproductive potential-at-age converted from reproductive potential-at-length (Figure 8)
within the diagnostic case.
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Figure 10: Plot of the effort deviation penalties applied to each fishery, by region, with the colors
of the lines representing the gear of the fishery. Only penalties for the index fisheries are shown
since effort was removed from all other fisheries. A higher penalty gives more weight to the CPUE
of that fishery. Note that the y-axis scales are different between panels.
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(a) Progression from 2017 to 2020 diagnostic model - spawning potential

(b) Progression from 2017 to 2020 diagnostic model - depletion

Figure 11: Stepwise changes in spawning potential (a), and fishing depletion (b) from the 2017
reference case model through to the 2020 diagnostic case model.
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Figure 12: Observed (black points) and model-predicted (blue lines) catch for the 41 fisheries in
the diagnostic case model. The y-axis is in catch-in-numbers for the longline fisheries and catch-
in-weight for the other fisheries, both divided by 1,000.
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Figure 13: Observed (blue points and red lines) and model-predicted (black points and lines) CPUE
for the nine index fisheries which received the standardized CPUE.
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Figure 14: Effort deviations by time period for each of the fisheries receiving standardised CPUE
indices in the diagnostic case model. The dark line represents a lowess smoothed fit to the effort
deviations.
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Figure 15: Composite (all time periods combined) observed (histograms) and predicted (lines)
catch-at-length for all fisheries with samples for the diagnostic case model.
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Figure 16: Composite (all time periods combined) observed (histograms) and predicted (lines)
catch-at-weight for all fisheries with samples for the diagnostic case model.
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Figure 17: A comparison of the observed (red points) and predicted (grey line) median fish length
(FL, cm) for all fisheries with samples for the diagnostic case model. The uncertainty intervals
(grey shading) represent the values encompassed by the 25% and 75% quantiles. Sampling data
are aggregated by year and only length samples with a minimum of 30 fish per year are plotted.
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Figure 18: A comparison of the observed (red points) and predicted (grey line) median fish weight
(WW, kg) for all fisheries with samples for the diagnostic case model. The uncertainty intervals
(grey shading) represent the values encompassed by the 25% and 75% quantiles. Sampling data
are aggregated by year and only weight samples with a minimum of 30 fish per year are plotted.
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(a) Observed and model-predicted tag attrition
across release events.

(b) Scaled residuals.

(c) Observed and model-predicted tag attrition across release events. (log-scale)

Figure 19: Observed and model-predicted (a) tag attrition, (b) scaled residuals, and (c) log-scale
across all tag release events for the diagnostic case model.
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(a) Observed and model-predicted tag attrition
across release events by program.

(b) Scaled residuals by program.

(c) Observed and model-predicted tag attrition
across release events by region.

(d) Scaled residuals by region.

Figure 20: Observed and model-predicted tag attrition by (a) program, (b) program scaled residu-
als, (c) by region and (d) region residuals across all tag release events for the diagnostic case model.
Note the differences in y-axis scale by panel.
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(a) Selectivity-at-age.

(b) Selectivity-at-length.

Figure 21: Estimated (a) age-specific and (b) length-specific selectivity curves by fishery for the
diagnostic case model.
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Figure 22: Proportional distribution of total biomass (by weight) in each region apportioned by
the source region of the fish, for the diagnostic case model. The color of the source region is
presented next to the figure. The biomass distributions are calculated based on the long-term
average distribution of recruitment between regions, estimated movement parameters, and natural
mortality.

98



Figure 23: Estimated reporting rates (blue) for the diagnostic case model. The “prior” is shown
with the gray bar, and the upper bound by the red line.
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Figure 24: The two fixed growth curves and estimated variability considered in the one-off sen-
sitivities. The uncertainty shown as 2 standard deviations away from the mean is shown by the
corresponding shaded region.
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Figure 25: Estimated annual, temporal recruitment by model region for the diagnostic case model.
The asymptotic 95% confidence interval as calculated using the delta-method is shown for the
“Overall” region. Note that the scale of the y-axis is not constant across regions, and that the y-
axis for the “Overall” region has been truncated in order to show the overall trend in recruitment.
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(a) Regional recruitment

(b) Spawning potential

(c) Total biomass

Figure 26: Estimated (a) annual average recruitment, (b) spawning potential and (c) total biomass
by model region for the diagnostic case model, showing the relative sizes among regions.
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Figure 27: Estimated relationship between recruitment and spawning potential based on annual
values for the diagnostic case model. The color of the circles change from dark blue to yellow
through time. Note that though the recruitments prior to 1962 are not used to define the stock
recruit relationship, they are shown in this figure.
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Figure 28: Estimated seasonal, temporal spawning potential by model region for the diagnostic
case model. The asymptotic 95% confidence interval as calculated using the delta-method is shown
for the “Overall” region. Note that the scale of the y-axis is not constant across regions.
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Figure 29: Estimated abundance distribution by region and decade from the spatiotemporal CPUE
standardization model and the diagnostic case.
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Figure 30: Estimated annual average juvenile and adult fishing mortality for the diagnostic case
model.
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Figure 31: Estimated age-specific fishing mortality for the diagnostic case model, by region and
overall.
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Figure 32: Estimated proportion of the population-at-age (quarters; left panels) and fishing
mortality-at-age (right panels), at decadal intervals, for the diagnostic case model.
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(a) First set of sensitivities

(b) Second set of sensitivities

(c) Third set of sensitivities

Figure 33: Estimated spawning potential for each of the one-off sensitivity models investigated in
the assessment. The models are shown in three groups for ease of interpretation.
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(a) First set of sensitivities

(b) Second set of sensitivities

(c) Third set of sensitivities

Figure 34: Estimated depletion for each of the one-off sensitivity models investigated in the assess-
ment. The models are shown in three groups for ease of interpretation.
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Figure 35: Growth curves considered in the one-off sensitivities: two fixed at external values
Diagnostic: Tag-Int (black) and Oto-Only (red) and two estimated internally to MFCL using the
conditional age-at-length data from the starting values of the fixed curves EstRichardsT (blue) and
EstRichardsO (green). The otoliths comprising the conditional age-at-length data input into the
assessment are shown in gray.
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(a) Data-weighting axis

(b) Natural mortality axis

(c) Steepness axis

Figure 36: Estimated depletion (SB t/SB t,F=0) for each of the axes in the structural uncertainty
grid: (a) data-weighting, (b) natural mortality, and (c) steepness. The median SB latest/SBF=0 and
80th percentile for each axis level are shown on the right.
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Figure 37: Estimated region specific depletion (SB t/SB t,F=0) for the data-weighting axis.
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Figure 38: Estimated region specific depletion (SB t/SB t,F=0) for the natural mortality axis.
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Figure 39: Estimated region specific depletion (SB t/SB t,F=0) for the steepness axis.
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Figure 40: Time-dynamic percentiles of depletion (SB t/SB t,F=0) and median (dark line) across
all 24 models in the structural uncertainty grid. The lighter band shows the 80th percentile
around the median, and the dark band shows the 50th percentile around the median. The me-
dian SBrecent/SBF=0 and 90th percentile is shown on the right by the dot and line.
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Figure 41: Time-dynamic percentiles of depletion (SB t/SB t,F=0) and median (dark line) by region
across all 24 models in the structural uncertainty grid. The lighter band shows the 80th percentile
around the median, and the dark band shows the 50th percentile around the median. The median
SBrecent/SBF=0 and 90th percentile is shown on the right by the dot and line.
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(a) Data-weighting SB latest/SBF=0 (b) Data-weighting Frecent/FMSY

(c) Natural mortality SB latest/SBF=0 (d) Natural mortality Frecent/FMSY

(e) Steepness SB latest/SBF=0 (f) Steepness Frecent/FMSY

Figure 42: Estimated SB latest/SBF=0 and Frecent/FMSY for each of the axes in the structural
uncertainty grid: (a–b) data-weighting, (c–d) natural mortality, and (e–f) steepness.
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(a) Data-weighting SB latest/SBF=0 (b) Data-weighting SBrecent/SBF=0

(c) Natural mortality SB latest/SBF=0 (d) Natural mortality SBrecent/SBF=0

(e) Steepness SB latest/SBF=0 (f) Steepness SBrecent/SBF=0

Figure 43: Majuro plots summarizing the results for each of the models in the structural uncertainty
grid (left SB latest/SBF=0; right SBrecent/SBF=0). The plots represent estimates of stock status
in terms of spawning potential depletion and fishing mortality. The red zone represents spawning
potential levels lower than the agreed limit reference point 20%SBF=0. The orange region is for
fishing mortality greater than FMSY.The points represent each model in the grid, and the blue
diamond represents the median estimate. 119



Figure 44: Comparison of the estimated annual spawning potential trajectories (lower solid black
lines) with those trajectories that would have occurred in the absence of fishing (upper dashed red
lines) for each region, and overall, for the diagnostic case model.
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Figure 45: Ratio of exploited to unexploited spawning potential, SB t/SB t,F=0, for each region for
the diagnostic case model.
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Figure 46: Estimates of reduction in spawning potential due to fishing (fishery impact =
SB t/SB t,F=0 × 100% ) by region, and over all regions (lower right panel), attributed to various
fishery groups for the diagnostic case model.
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Figure 47: Estimated yield as a function of fishing mortality multiplier across the grid. The red
line represents current fishing mortality, and can be used as a reference to determine the current
yield relative to the maximum of the yield curve.
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Figure 48: History of the annual estimates of MSY (red line) for the diagnostic model compared
with annual catch by the main gear types. Note that this is a “dynamic” MSY which is explained
further in Section 5.7.1.
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Figure 49: Estimated time-series (or “dynamic”) Majuro plot for the diagnostic case. This plot is
interpreted in the same manner as the description in Figure 43 except that it shows the temporal
change in stock status with respect to the reference points Frecent/FMSY and SB latest/SBF=0, rather
than the terminal estimates presented in previous figures. The shading of the points goes from dark
(model start) to white (model end) with the initial and terminal conditions for 1952 and 2018 shown
in green and blue, respectively. Note that the process of estimating a “dynamic” Majuro plot is
explained further inSection 5.7.4.
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Figure 50: Estimated time-series (or “dynamic”) Kobe plot for the diagnostic case. This plot shows
the temporal change in stock status with respect to Frecent/FMSY and SB latest/SBMSY, rather than
terminal estimates. The shading of the points goes from dark (model start) to white (model end)
with the initial and terminal conditions for 1952 and 2018 shown in green and blue, respectively.
Note that the process of estimating a “dynamic” Kobe plot is explained further inSection 5.7.4.
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11 Appendix

11.1 Proposal for quasi-fisheries-independent sampling program

A quasi-fisheries-independent sampling program can be used to address many of the aforementioned

issues related to the input data: improve collection of important biological samples (otoliths, genet-

ics, reproduction, etc.), serve as a platform for conducting experiments to explore the selectivities

and catchabilities of the fishing gear, and generate a fisheries-independent index of CPUE. A pro-

posed implementation for an annual (or quarterly) survey would be to charter commercial longline

vessels operating out of DWFN and PICT ports across the WCPO. In order to simultaneously

capture the dynamics across the WCPO, vessels would each be assigned sampling stations within

reasonable proximity to their home port and requested to fish within the same temporal window.

Each of these vessels would be accompanied by an observer (or multiple observers to assist in

the biological sampling), and would be instructed to fish according to a pre-determined protocol

that would attempt to standardize vessel specific differences in targeting as much as possible. To

minimize the cost of such a chartering arrangement, vessels participating in the program would be

allowed to keep the revenues from selling any commercially valuable species caught during sam-

pling. If this is not enough to offset the operating costs of the sampling trip, these costs would be

covered through the chartering agreement.

11.2 Likelihood profile

Calculation of the likelihood profile (Figure 51) for the diagnostic case indicated conflict between

the different data components, with the overall fit resulting from a compromise between the different

data sets. The standardized CPUE indicated a preference for the lowest estimated total biomass

(∼ 1.3 million mt) while the length composition data and tagging components indicating higher

estimates of average total biomass (∼ 2.6 and 3.1 million, respectively). The weight composition

indicates an estimate of average total biomass, in between the other components, of just under 2

million mt.

Conflict between the different data components is indicative of potential model or data mis-

specification. Disagreement between the two types of size-frequency data could be an indicator

that there is an issue with the conversion factors used to prepare the length frequency data. It is

also possible that this disagreement is a product of the length and weight frequency data coming

from distinct groups of fisheries targeting different segments of the population (weight frequency

data comes from longline fisheries targeting older, larger individuals while length frequency data

typically comes from purse seine fisheries targeting younger, smaller individuals). Additionally, the

high estimate of average total biomass indicated by the tagging data could be linked to the two tag

reporting groups with reporting rates still estimated to be on the upper bound. The effect of re-

cruitment variability around the estimated stock-recruitment relationship has a negligible influence

on estimated stock status.
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The asymmetric nature of the total likelihood profile indicates that the model is more certain about

the lower bound on the estimate of average total biomass, and less certain on the higher end given

the structural assumptions made in the diagnostic case.

Figure 51: Likelihood profile with respect to average total biomass for the diagnostic case. The
total likelihood (black) is shown along with the influence of each likelihood componenent: weight
frequency (purple), tagging data (red), length frequency (blue), CPUE/effort deviates (green), and
the recruitment variability (light blue).
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11.3 Retrospective analyses

An additional diagnostic, the retrospective analysis, was used to assess the overall stability of

the 2020 diagnostic case model and to identify any persistent biases in estimated quantities as

a result of possible model mis-specification. A series of 9 additional models were fitted starting

with the removing one year of data from the model (through 2017), followed by models with that

sequentially “peeled” away all input data for the years 2018-2009. The models are named below by

the final year of data included (e.g. 2009-2018). A comparison of the spawning biomass, depletion,

and recruitment trajectories are shown in Figure 52. Additionally, Mohn’s ρ was calculated to

ascertain the degree of retrospective bias (Hurtado-Ferro et al., 2015). All values of ρ (SB =

-0.161;SB latest/SBF=0 = -0.12; recruitment = -0.02) were less than ±0.2 so there is not strong

indication of retrospective bias. Note, that since recruitments in the final 6 quarters were fixed at

the mean level Mohn’s ρ was calculated based off of the year of last estimated recruitment, and as

such the two most recent years for each model are not shown in Figure 52.
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(a) Spawning potential retrospective

(b) Depletion retrospective

(c) Recruitment retrospective

Figure 52: Estimated (a) spawning biomass, (b) fishery depletion (SB latest/SBF=0), and (c) re-
cruitment for each of the retrospective models.
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11.4 Jitter

Using the final parameter estimates from the diagnostic case model as a starting point, 20 additional

runs were launched. For each of these runs, a zero-centered random deviate was added to the

original parameter (or a one-centered random deviate was multiplied against the original parameter

depending on the link function used) to perturb the model from its initial solution. All major

estimated parameter groups (movement, selectivity, recruitment, effort deviates, tag reporting rates,

etc) were perturbed. The results of this analysis are shown in Figure 53. All models converged

to approximately the same estimate of total depletion. However some models found a marginally

better fit to the data relative to the diagnostic case in the process (and one a substantially worse

fit), indicating some room for improvement with additional model iterations. When the diagnostic

case was run for an additional 5,000 function evaluations of the minimizer, a marginally superior

likelihood was achieved (exceeding all those of the jittered runs) but stock assessment outcomes

and model estimated quantities were virtually unchanged. This provides some confidence that the

model has converged to a stable solution.
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Figure 53: Results from the jittering analysis. Points above the horizontal line indicate better
relative likelihood values. The vertical line indicates the estimate of SB latest/SBF=0 from the
diagnostic plot. A rug plot is included in the margins to show the positions of points that are
plotted on top of one-another.
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11.5 Hessian diagnostic

The Hessian matrix for the diagnostic case model was not found to be positive definite. The

Choleski decomposition of the Hessian matrix indicated 3 out of 11,421 eigenvalues were negative

(-6.0072e-08, -4.9418e-08, -2.1068e-09). A non-positive definite Hessian is an indication that the

model is likely over-parameterized and some parameters of the model poorly estimated, further

supporting the model complexity issues raised in Section 8.4.2. To this end, investigation of the

associated eigenvectors for these negative eigenvalues indicated that 4 regional recruitment deviates

(Region 5 1958 Q1 and 1975 Q2; Region 6 1993 Q1; and Region 7 1997 Q3) were influential to

the 3 negative eigenvalues indicating that these parameters were poorly estimated. As mentioned

in Section 8.4.2, implementation of the orthogonal-polynomial parameterization feature in MFCL

could help to resolve this issue.

11.6 Stochastic projections

The potential stock consequences of fishing at “status quo” conditions (i.e. at recent average fishing

levels) were evaluated through stochastic projections, using the uncertainty framework approach

previously endorsed by SC:

• Stochastic 30 year projections were conducted from each assessment model within the uncer-

tainty grid developed for the 2020 bigeye assessment.

• For each model, 40 stochastic projections were conducted, with future recruitments randomly

sampled from historical deviates, resulting in 960 projections across the model grid.

• Two scenarios were considered for future recruitment in the projection period: long-term,

based upon the period 1962 to 2017, and short-term, based upon the period 2008 to 2017.

• Purse seine fisheries were projected forwards assuming 2018 effort levels. All other fisheries

were projected on catch, using the recent average value (2016 to 2018).

• The outputs of the projections (median SB2048/SBF=0 and Frecent/FMSY , and risk SB2045/SBF=0

< LRP) were calculated across the 24 model grid.

• Catchability (which can have a trend in the historical component of the model) was assumed

to remain constant in the projection period at the level estimated in the terminal year of the

assessment model.

Results of the projections are summarized in Tables 7 & 8 and Figures 54 & 55.
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Table 7: Summary of bigeye tuna stock outcomes under 2016–2018 average fishing and short-term
recruitment scenario.

SB2025/SBF=0 SB2035/SBF=0 SB2048/SBF=0 Risk SB2048/SBF=0 < LRP Frecent/FMSY

0.468 0.487 0.493 0% 0.619

Table 8: Summary of bigeye tuna stock outcomes under 2016–2018 average fishing and long-term
recruitment scenario.

SB2025/SBF=0 SB2035/SBF=0 SB2048/SBF=0 Risk SB2048/SBF=0 < LRP Frecent/FMSY

0.415 0.435 0.445 5% 0.806

Figure 54: Time series of bigeye tuna spawning potential SBt/SBF=0, where SBF=0 is the average
SB from t-10 to t-1, from the uncertainty grid of assessment models for the period 2000 to 2018, and
stochastic projection results for the period 2019 to 2048 assuming 2016–2018 average/2018 fishing
levels continue. Vertical gray line at 2018 represents the last year of the assessment. During the
projection period (2019-2048) levels of recruitment variability are assumed to match those over the
short-term period (2008-2017). The red horizontal dashed line represents the agreed limit reference
point.
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Figure 55: Time series of bigeye tuna spawning potential SBt/SBF=0, where SBF=0 is the average
SB from t-10 to t-1, from the uncertainty grid of assessment models for the period 2000 to 2018, and
stochastic projection results for the period 2019 to 2048 assuming 2016–2018 average/2018 fishing
levels continue. Vertical gray line at 2018 represents the last year of the assessment. During the
projection period (2019-2048) levels of recruitment variability are assumed to match those over the
long-term period (1962-2017). The red horizontal dashed line represents the agreed limit reference
point.
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11.7 Sensitivity analyses reference points and likelihood values

In the current assessment, inferences about stock status and recommendations for management

advice are based on the structural uncertainty grid, rather than the diagnostic case model and the

one-off sensitivity model runs. The estimates of reference points for the one-off sensitivity model

runs are presented here in the appendix for relative comparisons against the diagnostic case model

and among these models, rather than focusing on the absolute estimates that they provide. Care

should be taken when comparing the likelihoods as in many cases, either the input data or likelihood

structure has changed making valid comparisons impossible. The set of focal reference points for

these models are presented below in three sets, along with those of the diagnostic case model:
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Table 9: Reference points for the diagnostic case model and the one-off sensitivity models.

Diagnostic EstRichardsO EstRichardsT Oto-Only Size10 Size60 Size200 Size500 SSMULT

C latest 159,248 159,624 160,372 160,553 159,000 159,158 161,449 162,060 158,309
Y Frecent 133,160 213,680 169,920 314,120 133,720 134,280 124,320 125,480 128,760
fmult 1.44 2.65 1.84 4.62 1.37 1.5 1.15 0.89 1.18
FMSY 0.05 0.05 0.05 0.07 0.05 0.05 0.04 0.05 0.05
MSY 140,480 297,120 196,120 624,800 139,360 143,360 125,400 126,160 130,280
Frecent/FMSY 0.7 0.38 0.54 0.22 0.73 0.67 0.87 1.12 0.85
SBF=0 1,754,439 3,056,435 2,447,121 4,431,303 1,777,641 1,731,563 1,609,983 1,498,470 1,641,889
SBMSY 394,100 751,400 597,400 978,900 393,600 397,700 371,400 340,600 331,400
SBMSY /SBF=0 0.22 0.25 0.24 0.22 0.22 0.23 0.23 0.23 0.2
SB latest/SBF=0 0.41 0.57 0.49 0.7 0.39 0.41 0.34 0.27 0.3
SB latest/SBMSY 1.81 2.31 2 3.16 1.74 1.8 1.48 1.17 1.48
SBrecent/SBF=0 0.42 0.61 0.52 0.73 0.4 0.43 0.37 0.24 0.3
SBrecent/SBMSY 1.88 2.46 2.14 3.29 1.82 1.88 1.61 1.06 1.5
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Table 10: Reference points for the diagnostic case model and the one-off sensitivity models.

Diagnostic h0.65 h0.95 M-low M-mid M-hi Mix1 TagFree

C latest 159,248 159,252 159,236 159,430 158,346 163,550 158,454 160,658
Y Frecent 133,160 143,160 127,280 130,360 143,040 150,800 134,720 145,400
fmult 1.44 1.29 1.58 1.36 1.76 2.08 1.5 1.58
FMSY 0.05 0.04 0.05 0.04 0.05 0.06 0.05 0.05
MSY 140,480 147,680 137,000 135,560 161,400 182,360 143,720 157,920
Frecent/FMSY 0.7 0.77 0.63 0.73 0.57 0.48 0.67 0.63
SBF=0 1,754,439 1,908,636 1,662,166 1,807,438 1,513,517 1,257,092 1,708,763 1,954,192
SBMSY 394,100 480,100 334,600 402,800 344,400 284,000 389,200 439,700
SBMSY /SBF=0 0.22 0.25 0.2 0.22 0.23 0.23 0.23 0.23
SB latest/SBF=0 0.41 0.37 0.43 0.39 0.46 0.49 0.42 0.44
SB latest/SBMSY 1.81 1.48 2.12 1.75 2 2.16 1.82 1.95
SBrecent/SBF=0 0.42 0.39 0.44 0.4 0.48 0.53 0.42 0.47
SBrecent/SBMSY 1.88 1.54 2.21 1.81 2.13 2.36 1.84 2.11

Table 11: Reference points for the diagnostic case model and the one-off sensitivity models.

Diagnostic len456 idxAU-US CPUE1962 Model1962 Alt FreeSel

C latest 159,248 160,211 159,843 159,406 159,253 159,246 158,737
Y Frecent 133,160 138,760 133,800 133,760 131,600 137,080 139,240
fmult 1.44 1.62 1.45 1.45 1.39 1.5 1.61
FMSY 0.05 0.05 0.05 0.05 0.05 0.05 0.05
MSY 140,480 152,000 141,600 141,560 137,680 146,320 152,440
Frecent/FMSY 0.7 0.62 0.69 0.69 0.72 0.67 0.62
SBF=0 1,754,439 1,862,959 1,761,436 1,770,778 1,733,509 1,807,864 1,877,848
SBMSY 394,100 432,200 397,100 399,000 386,800 406,900 431,700
SBMSY /SBF=0 0.22 0.23 0.23 0.23 0.22 0.23 0.23
SB latest/SBF=0 0.41 0.44 0.41 0.41 0.4 0.42 0.45
SB latest/SBMSY 1.81 1.89 1.81 1.83 1.78 1.85 1.94
SBrecent/SBF=0 0.42 0.46 0.43 0.43 0.41 0.43 0.47
SBrecent/SBMSY 1.88 1.99 1.89 1.9 1.86 1.92 2.03
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Table 12: Likelihood components for the diagnostic case model and the one-off sensitivity models.

Diagnostic EstRichardsO EstRichardsT Oto-Only Size10 Size60 Size200 Size500 SSMULT

BH Steepness 0.53 0.39 0.46 0.61 0.51 0.64 1.18 2.71 0.67
Effort devs 2,309 2,529 2,387 2,684 2,664 1,957 1,558 1,694 2,676
Length composition -193,515 -194,259 -193,998 -194,429 -218,432 -150,001 -99,593 -60,570 0
Weight composition -1,946,245 -1,945,716 -1,946,012 -1,944,560 -2,175,256 -1,575,297 -1,164,290 -850,432 0
Tag data 6,053 5,862 5,904 6,351 6,374 5,763 5,569 5,551 6,051
Total 2,131,398 2,131,583 2,131,718 2,129,953 2,384,650 1,717,577 1,256,754 903,755 8,728

Table 13: Likelihood components for the diagnostic case model and the one-off sensitivity models.

Diagnostic h0.65 h0.95 M-low M-mid M-hi Mix1 TagFree

BH Steepness 0.53 0.57 0.52 0.55 0.5 0.5 0.53 0.54
Effort devs 2,309 2,309 2,309 2,399 2,321 2,281 2,349 2,163
Length composition -193,515 -193,515 -193,515 -193,549 -193,517 -193,518 -193,440 -193,800
Weight composition -1,946,245 -1,946,245 -1,946,246 -1,946,225 -1,946,281 -1,946,285 -1,946,234 -1,946,438
Tag data 6,053 6,053 6,049 6,055 6,042 6,045 6,427 0
Total 2,131,398 2,131,399 2,131,402 2,131,320 2,131,434 2,131,476 2,130,898 2,138,075

Table 14: Likelihood components for the diagnostic case model and the one-off sensitivity models.

Diagnostic len456 idxAU-US CPUE1962 Model1962 Alt FreeSel

BH Steepness 0.53 0.54 0.55 0.52 0.52 0.52 0.52
Effort devs 2,309 2,490 2,292 2,127 2,125 2,306 2,317
Length composition -193,515 -291,200 -193,547 -193,572 -193,535 -193,432 -193,513
Weight composition -1,946,245 -1,783,560 -1,915,312 -1,908,096 -1,871,101 -1,946,253 -1,946,359
Tag data 6,053 6,085 6,045 6,045 6,053 6,241 6,064
Total 2,131,398 2,066,184 2,100,521 2,093,495 2,056,457 2,131,138 2,131,490
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11.8 Simplified assessment structure

A single region model was developed in parallel to the 2020 bigeye tuna stock assessment given

the aforementioned issues with model complexity (Section 8.4.2), and also as a response to model

sensitivity to the treatment of the tagging data that was observed in the stepwise model development

(Section 7.1). As mentioned in the discussion (Section 8.4.2), there are number of reasons where

it is desirable to have a spatial structure in a stock assessment model one of which is to allow for

components of the stock to be partitioned in terms of fishing pressure and relative abundance. Under

the current assessment structure, MFCL has considerable flexibility to fit the data by manipulating

regional biomass through the interaction of seasonal movement and quarterly recruitment deviates.

If these are poorly estimated or mis-specified it could result in spatial regions inappropriately

“buffering” the effects of more depleted regions. The results presented in this section show the

outcomes from a model that makes a drastically different set of assumptions on the population

dynamics of WCPO bigeye tuna, specifically that the stock is well-mixed, and there is no capacity

for spatial buffering and/or spatial partitioning of abundance and fishing mortality. This simplifying

assumption could introduce a pessimistic bias to model estimates of stock status.

The simplified single-region structure for bigeye tuna took the 2020 diagnostic case model and

turned it into a simplified fleets-as-areas approach. The 41 fisheries were combined into 15 for the

single region model: northern longline (Fisheries 1 & 2), US longline (Fishery 3), offshore longline

(Fisheries 5 & 6), equatorial longlines (Fisheries 4, 8 & 9), western longline (Fishery 7), southern

longline (Fisheries 11, 12 & 29), Australian longline (Fisheries 10 & 27), associated purse seines

(Fisheries 13, 15, 25, 30, & 24), unassociated purse seines (14, 16, 26, & 31), domestic miscellaneous

fisheries (Fisheries 17, 23, & 22), domestic handline (Fishery 18), northern Japanese purse-seine

(Fishery 19), northern Japanese pole-and-line (Fishery 20), equatorial pole-and-line (Fisheries 21,

22, & 28), and the index fishery (Fisheries 33 - 41). For each of the 15 new fisheries, catch and

size frequency data were aggregated together from the appropriate fisheries. The standardized

CPUE for the index fishery was calculated over the entire WCPO assessment region using the same

model as described in Ducharme-Barth and Vincent (2020). To account for the new interpretation

of selectivities, all non-decreasing penalties were removed from the longlines except for the index

fishery. It was assumed that since the index fishery covered the entire WCPO it would “sample”

the largest fish if they were in the system. The domestic handline fishery was assumed to have

non-decreasing selectivity as well since this fishery was unchanged from the 2020 diagnostic case

and regularly caught the largest fish in that model. To aide in the estimation of some of the longline

fishery selectivities, the selectivity of the first 3 quarterly ages (prior to interaction with the gear)

were fixed to zero. The estimated selectivities for these 15 fisheries in the simplified single region

model are shown in Figure 56. In the 2020 diagnostic case the seasonal dynamics were driven

using the quarterly movements. To compensate for the lack of movement, a seasonal catchability

component was estimated for the index fishery.
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Predictably, a more parsimonious model was able to more efficiently achieve better convergence9

through a reduction in the complexity. Additionally, though simplifications were made, the model

was able to achieve a reasonable fit to the CPUE index (Figure 57) and the size composition

data (Figures 58 & 59). It was also able to estimate similar trends in spawning potential and

depletion. However, due to the lower estimated scale of the population the depletion estimates

were considerably more pessimistic than the 2020 diagnostic case. Results from the single region

model structure are shown for some of the same key one-off sensitivities tested in the 2020 bigeye

tuna stock assessment in terms of spawning potential (Figure 60) and depletion (Figure 61).

9Choleski decomposition of the Hessian matrix for the simplified assessment structure showed that the Hessian
was positive definite.
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Figure 56: Selectivity at age for estimated for the 15 fisheries in simplified single region model.
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Figure 57: Fit to the standardized CPUE from the simplified single region model. Observed CPUE
in the blue dots, and the model prediction in the black line.
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Figure 58: Fit to the length composition for the simplified single region model.
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Figure 59: Fit to the weight composition for the simplified single region model.
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Figure 60: Estimated spawning potential for the simplified single region model and associated
one-off sensitivities from that model. The 2020 diagnostic case is shown in black for reference.
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Figure 61: Estimated depletion (SB latest/SBF=0) for the simplified single region model and associ-
ated one-off sensitivities from that model. The 2020 diagnostic case is shown in black for reference.

147


	Executive Summary
	Introduction
	Background
	Stock structure and movement
	Biological characteristics
	Fisheries

	Data compilation
	General notes
	Spatial stratification
	Temporal stratification
	Definition of fisheries
	Index fisheries

	Catch and effort data
	General characteristics
	Purse seine
	Longline fisheries
	Other fisheries

	Size data
	Purse seine
	Longline
	Other fisheries

	Tagging data

	Model description
	General characteristics
	Population dynamics
	Recruitment
	Initial population
	Growth
	Movement
	Natural mortality
	Reproductive potential

	Fishery dynamics
	Selectivity
	Catchability
	Effort deviations

	Dynamics of tagged fish
	Tag reporting
	Tag mixing

	Likelihood components
	Parameter estimation and uncertainty
	Stock assessment interpretation methods
	Yield analysis
	Depletion and fishery impact
	Reference points
	Majuro and Kobe plots


	Model runs
	Developments from the last assessment
	Sensitivity analyses
	Relative weighting of length and weight frequency data [Size10, Size60, Size200, Size500]
	Self-scaling Multinomial plus Random Effects likelihood for the size-frequency data [SSMULT-RE]
	Alternative growth functions [EstRichardsT, EstRichardsO, Oto-Only]
	Steepness [h0.65, h0.95]
	Tag data [Mix1, TagFree]
	Natural mortality [M-low, M-mid, M-hi]
	Selectivity groupings and structure [Alt, FreeSel]
	Model start year [Model1962, CPUE1962]
	Size-frequency data [idxAU-US, len456]

	Structural uncertainty

	Results
	Consequences of key model developments
	Model fit for the diagnostic case model
	Catch data
	Standardized CPUE
	Size frequency data
	Tagging data

	Model parameter estimates (diagnostic case)
	Selectivity
	Movement
	Tag Reporting Rates
	Growth

	Stock assessment results
	Recruitment
	Biomass
	Fishing mortality

	Multimodel inference: One-off sensitivities
	Relative weighting of length and weight frequency data [Size10, Size60, Size200, Size500]
	Self-scaling Multinomial plus Random Effects likelihood for the size-frequency data [SSMULT-RE]
	Alternative growth functions [EstRichardsT, EstRichardsO, Oto-Only]
	Steepness [h0.65, h0.95]
	Tag data [Mix1, TagFree]
	Natural mortality [M-low, M-mid, M-hi]
	Selectivity groupings and structure [Alt, FreeSel]
	Model start year [Model1962, CPUE1962]
	Size-frequency data [idxAU-US, len456]

	Multimodel inference: structural uncertainty analysis
	Further analyses of stock status
	Fishery impacts
	Yield analysis
	Dynamic Majuro plots and comparisons with Limit Reference Points


	Discussion and conclusions
	General remarks
	Improvements to the assessment
	Uncertainty
	MFCL and other modeling considerations
	Biological assumptions and data-inputs
	Model complexity

	Main assessment conclusions
	Summary of research recommendations

	Tables
	Figures
	Appendix
	Proposal for quasi-fisheries-independent sampling program
	Likelihood profile
	Retrospective analyses
	Jitter
	Hessian diagnostic
	Stochastic projections
	Sensitivity analyses reference points and likelihood values
	Simplified assessment structure


