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1 Executive summary

This paper summarizes the characteristics of the operational longline data-set and describes the data
preparation, analysis, and spatiotemporal modeling required to create indices of relative abundance
for the 2020 assessments of bigeye tuna and yellowfin tuna. A VAST delta-gamma mixed-effects
spatiotemporal modeling approach with two catchability covariates FLAG and hooks-between-floats
(HBF) was used. A random forest (RF) machine learning approach was used to predict HBF for
records where it was not available. The resulting indices for both bigeye tuna and yellowfin tuna
showed declines in many of the key stock assessment regions and were consistent with the trends
seen in both the previous 2017 analysis and the nominal catch-per-unit-of-effort (CPUE).

A number of recommendations are made for future research to improve the quality of these indices:

• Data reconstruction to improve the number of covariates available across fleets for the duration
of the model period.

• Interviews and surveys with vessel operators and captains to identify species specific targeting
practices and relevant covariates to standardize on. This will guide model development and
can direct changes to the observer program where needed to collect data on relevant covariates.

• Create a recent period index to take advantage of improved covariate coverage using either the
observer data or a combination of observer and operational data with an expanded covariate
set.

• Simulation study to determine the benefits and limitations associated with splitting the index
into an early period and recent period, both in the ability to capture the underlying abundance
trend and for assessing the implications of using a split index in a stock assessment.

• Revisit previous analyses of catch-per-effective-effort which account for the vertical distribu-
tion of tropical tuna biomass and longline hooks in the water column.

• Allocate funding to produce a spatiotemporal sub-surface oceanographic product which in-
cludes dissolved oxygen for the Pacific Ocean for the entire assessment period.

• The analysis of archival tagged, longline-vulnerable bigeye and yellowfin tuna needs to be
continued and supplemented by additional releases in multiple locations across the WCPO
in order to complete our understanding of how vertical position in the water column is a
function of fish length, time of day, and oceanographic conditions.

• Basic research on the depth distribution of longline hooks across vessels from different distant
water fishing nations (DWFNs) and Pacific Island Countries and Territories (PICTs).

2 Background information

This paper describes the processes and analyses used to generate indices of relative abundance
from fisheries-dependent longline operational (set-level) catch and effort data. These indices are
used as inputs in the 2020 Western and Central Pacific Fisheries Commission (WCPFC) bigeye
tuna and yellowfin tuna stock assessments (Figure 1). Given the spatial and temporal scale of the
different longline fleets operating in the region, the resultant indices of abundance represent an
important input to the stock assessments of both bigeye tuna and yellowfin tuna. The operational
longline data-set is an amalgamation of operational level data from the distant-water fishing nations
(DWFNs) and Pacific-Island countries and territories (PICTs) longline fleets operating in the Pacific
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basin. This data-set is the most complete spatiotemporal record of longline fishing activity in the
Pacific, spanning from 1952 to the present and is the result of a tremendous collaborative, data-
sharing effort from the countries involved.

This data-set was first created in 2015 in support of the Pacific-wide bigeye tuna stock assessment
(McKechnie et al., 2015a,b), and was subsequently analyzed to generate indices of relative abun-
dance (McKechnie et al., 2017b; Tremblay-Boyer et al., 2017a; Tremblay-Boyer and Pilling, 2017)
for the 2017 WCPFC bigeye tuna and yellowfin tuna stock assessments (McKechnie et al., 2017a;
Tremblay-Boyer et al., 2017b). The 2015 analysis describes in detail the process used to identify
species targeting via catch composition clustering, analyses on the inclusion of gear and vessel
covariates that are unavailable for the full time period of interest, and choice of model error struc-
ture (McKechnie et al., 2015b). In 2017, work was done to identify methods for generating vessel
identifier “proxies” for those records where vessel identifier was unavailable (Tremblay-Boyer and
Pilling, 2017). Additionally, 2017 saw the first application of spatiotemporal modeling approaches
(previously referred to as “geostats”) in support of WCPFC stock assessments (Tremblay-Boyer
et al., 2017a). The current work builds off of these previous efforts and analyses of the operational
longline data, as well as the spatiotemporal modeling done in support of the 2019 WCPFC skip-
jack tuna stock assessment (Ducharme-Barth et al., 2019; Kinoshita et al., 2019). For additional
background and description of both the operational longline data-set and previous analyses please
consult these earlier reports.

3 Data preparation

3.1 Data cleaning

The operational data-set consists of 10,897,686 longline set-level records from the commercial long-
line logbooks of 27 different fishing nations from a period of 1952 through the present day (Figure 2
- 3). In the consolidated data-set, each record contains the vessel’s flag, vessel’s fleet, date, location
(to the nearest 1◦ × 1◦ spatial cell), effort (number of hooks fished), and species catch (albacore
tuna, bigeye tuna, striped marlin2, swordfish, and yellowfin tuna) (Figure 4). Nominal catch-per-
unit-of-effort (CPUE defined as catch per 100 hooks fished) indicate declines in catch rate over
the model period in key regions for each species (Figure 5 - 6). Hooks-between-floats (HBF) and
unique vessel ID are also available though coverage is incomplete, particularly in the early years.
Prior to analysis, the data were screened similarly to the method first described in McKechnie et al.
(2015b). This data cleaning process occurred in the following steps:

1. Removed records with missing year: -2 records (negligible %)

2. Removed records from 2019 or 2020: -98,064 records (-0.90 %)

3. Removed records from outside of the Pacific basin: -19,376 records (-0.18 %)

4. Removed records with more than 50 HBF outliers: -26,736 records (-0.25 %)

5. Removed records with number of hooks fished, per set, greater than 5,000 or less than 150:
-7,499 records (-0.07 %)

6. Removed records with more fish caught than number of hooks fished: -18 records (negligible
%)

2Striped marlin catch was unavailable for Japanese records prior to 1967
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7. Removed records with vessels that did not fish at least 10 quarters3or made less than 30 sets:
-704,247 records (-6.46 %)

8. Removed records flagged under Belize (BZ), Panama (PA), or Spain (ES): -21,192 records
(-0.19 %)

9. Removed Japanese records that could not be attributed to the offshore (OS) or distant-water
(DW) components of their fishery: -39 records (negligible %)

10. Remaining records: 10,020,513 records (91.95 %)

Those familiar with the data cleaning process used by McKechnie et al. (2015b) will note that
unlike previous analyses, this analysis retained records without any catch of the five reported
species. In a spatiotemporal modeling framework, presence of zero catches can be informative
of the species distributional limits assuming that there are no major changes to either species
targeting or reporting. An examination of the location of these sets showed that close to half
of them occurred south of 40◦ S latitude and beyond the distributional limit of bigeye tuna and
yellowfin tuna. Though these sets are indicative of longline fishing effort directed towards southern
bluefin tuna they can help provide information on the southern extent of the range of these species.

Records that were missing HBF were not excluded in order to explore the effects of filling in
missing HBF. Records missing vessel ID were retained since vessel ID proxies were not considered
for standardization.

3.2 Data rescue

Given the limited number of covariates that were available across fleets for the totality of the assess-
ment period, it was necessary to “fill-in” missing covariates particularly if they were systematically
missing from segments of the fishery. Otherwise, including these covariates using a “dummy” level
for the records where the covariate was missing risked introducing temporal discontinuities in the
standardized index.

These data rescue operations were conducted to salvage missing observations of HBF (predomi-
nantly from Japanese records prior to 1967, but also records from a variety of flags in assessment
region 6; Figure 7), and also missing fleet identifiers, OS or DW, for Japanese records prior to 1957.
In both cases a formulation of the Random Forests (RF) machine learning approach (Breiman,
2001), Ensemble Random Forests or ERF (Siders et al., 2020), was applied to predict the missing
observations. RF is a computationally efficient machine learning algorithm capable of handling
large quantities of “training” data, non-linear interactions between covariates, and can produce
predictions either via regression or multiple-category classification.

3.2.1 HBF

From records where HBF was recorded we noticed patterns in the distribution of HBF (Figure 8).
We developed flag-specific ERF models which predicted the HBF bin (bins of 5 HBF ) using fleet id,
year, month, longitude, latitude, number of hooks fished, total catch in numbers, and proportion
of species catch for albacore tuna, bigeye tuna, striped marlin, swordfish, and yellowfin tuna.
Predictions were made at the 5 hook bin level, rather than the individual HBF level, in order to
improve the classification accuracy of the algorithm. Bins of 5 were selected for analysis based on the
recommendation of the 2020 Pre-Assessment Workshop (PAW) as a compromise between capturing

3Vessels that entered the fishery within the last 10 quarters of the model period were not subject to this exclusion.
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fine-scale changes in CPUE as a result of different HBF fished and not overly degrading classification
accuracy by presenting the model with too many potential categories. A brief description of the
methodology and data processing for developing the flag-specific predictions of HBF follows.

1. Subset total dataset to data from a single flag.

2. Randomly partition the data where HBF was recorded into two segments: 90% for training
the RF classification model and 10% for validating the RF classification.

3. For the training subset, select 100 random subsets of the data to be passed to each RF in the
ensemble.

4. Fit a RF model with 500 trees to each of the 100 random partitions of data.

5. These 100 RF models (50,000 trees) are aggregated into a single, ensemble model.

6. The ensemble model is then used to predict on the data held aside for validation. Classification
accuracy is assessed using the accuracy as measured by the True Positive classification rate
and Cohen’s κ.

7. The ensemble model is applied to the data where HBF was missing to generate predictions
of HBF fished at 5 hook intervals.

8. This process is repeated for all flags. The flag-specific predictions of HBF for the records
where HBF had been missing (n = 2,342,441) are then combined with the observed HBF
that had been rounded up to the nearest value of 5 to generate a complete record of HBF at
5 hook intervals.

One of the challenges faced with predicting missing HBF bins is that for each flag, observations of
HBF are not distributed evenly across the 10 bins (0-5, 6-10,..., 46-50). For example, records from
New Caledonian flagged vessels rarely showed observations outside of the 26-30 HBF bin. A model
trained on this data would be dominated by these 26-30 HBF observations and absent sufficient
contrast in the data may perform poorly on predicting the rarer observations. To compensate for
this, the data can be re-balanced or “over-sampled” (resampling minority classes with replacement)
so that the model is trained on data where each class is represented equally. This alternate, over-
sampling approach was considered in addition to the default approach where the models were
trained on data that maintained the ratio of classes in the original data-set (ratio-maintained
approach).

Performance of the classification algorithm was satisfactory. Given the validation datasets, the
median classification accuracy across flags was 84% for the ratio-maintained approach, and 77%
for the over-sampling approach. Cohen’s κ indicated moderate performance (McHugh, 2012), the
median Cohen’s κ across flags was 70% for the ratio-maintained approach, and 62% for the over-
sampling approach. Not all flags had the same number of observations or the same number of
missing observations. Accounting for these differences did result in lower accuracy (78% ratio-
maintained ; 70% over-sampling) and Cohen’s κ (68% ratio-maintained ; 60% over-sampling). This
indicates that the fishing signature of flags with fewer observations may have been easier to isolate,
possibly as a result of reduced variability in fishing location and/or target species.

3.2.2 JP fleet

Japanese records with fleet (OS or DW) missing (n = 250 147) were predicted with the same
classification approach described for the multi-class HBF problem with the exception that only
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the ratio-maintained approach was considered. Data were processed according to the steps above
though the classification model differed slightly. Missing fleet prior to 1957 was predicted as a func-
tion of month, longitude, latitude, number of hooks fished, total catch in numbers, and proportion
of species catch for albacore tuna, bigeye tuna, swordfish, and yellowfin tuna. The training dataset
were the Japanese records with fleet recorded from 1958-1967.

Performance of the classification algorithm was satisfactory. Given the validation dataset, the clas-
sification accuracy was 91% and Cohen’s κ of 81% indicated almost perfect performance (McHugh,
2012).

3.3 Data summaries

Spatiotemporal summaries of the data along with the response of CPUE (catch in numbers of
individuals per 100 hooks fished) to different gear/vessel characteristics is shown in the following
figures. The spatial distribution of nominal CPUE for bigeye tuna (Figure 5) and yellowfin tuna
(Figure 6) both appear to indicate declines in the intensity of hot-spots of nominal CPUE. For
bigeye tuna, these hot-spots are located along the equatorial counter-currents (particularly in the
eastern Pacific Ocean), and around the Hawaiian islands. Yellowfin tuna shows a hot-spot in the
equatorial western and central Pacific Ocean. The response of nominal CPUE (by species) to
HBF (Figure 9) and vessel ID (Figure 10), when these covariates were recorded, show non-linear
relationships for the different flag groups. The response of catch by species to hooks fished per set
(Figure 11) appears to be positive, increasing, and more consistent across DWFN fleets.

3.4 Species clustering

Previous CPUE analyses of the operational longline data-set clustered records according to species
catch composition by “trip”. Clustering was done at the “trip”-level rather than the set-level as
random variation between sets targeting the same species could result in very different species com-
position. Clustering at the “trip”-level was thought to better capture the overall targeting patterns
while removing some of the set-level random variation. In the 2015 analyses, the CPUE data were
modeled independently within each assessment region and this species clustering variable was used
to subset data to records that were likely targeting bigeye tuna or yellowfin tuna (McKechnie et al.,
2015b). The clustering was done independently within each assessment region. Clustering was also
done by decade to determine whether clusters had remained static over time. In 2017, the species
cluster was included in the CPUE standardization model as a catchability covariate. It was thought
that the difference in species landed within a “trip” was indicative of subtle changes to the gear
configuration that enhanced the catchability for the target (or most frequently caught) species.

Species clustering of bigeye tuna, yellowfin tuna, albacore tuna, and swordfish catch at the “trip”-
level was identified using k-means clustering similar to what was done for the previous analyses
(see McKechnie et al. 2015). Since the designation of a unique trip was unavailable, when vessel
ID was available, “trips” were defined as all records from the same vessel within the same month.
In the absence of vessel ID, the previous analyses defined trips as all records from the same flag,
month, and 1◦ × 1◦ spatial cell. For the current analysis, the spatial cell definition was relaxed
to 5◦ × 5◦ since this more accurately reflects the spatial footprint of a longline vessel’s operations
within a one month period.

Alternative clustering approaches to the k-means clustering algorithms could yield different results.
However, given the magnitude of the number of observations and the computational demands of
the other approaches, k-means was felt to be the best alternative at this stage. K-means clustering

7



requires an a priori assumption on the number of groups to cluster records into, and clustering
with 2 - 7 groups were tried. Each algorithm, was “jittered” 30 times to find a globally optimal,
stable clustering solution.

3.5 Clustering results

Given the potential number of groups attempted (2 - 7), the optimal number of clusters was
determined to be 4 following a visual inspection of the within cluster sum-of-squares (Figure 12).
These four clusters can be broadly categorized as bigeye tuna, “other” (mainly swordfish), yellowfin
tuna, and albacore tuna clusters and are largely stable across time and stock assessment region
(Figure 13). There are two notable exceptions to this: 1) the bigeye tuna and yellowfin tuna
clusters in assessment regions 5 & 6 contain a large proportion of albacore tuna catch and 2) there
is an increasing trend in swordfish catch across time which coincides with a decrease in catch of
striped marlin for the “other” cluster. Looking at the spatial distribution of cluster by decade
(Figure 14), the distributional patterns of cluster grouping are largely consistent and appear to
correlate strongly with perceived abundance patterns of the 3 major tuna species: albacore tuna,
bigeye tuna, and yellowfin tuna.

3.6 Oceanography

Oceanography was first incorporated in CPUE analysis for WCPFC assessments by Tremblay-Boyer
et al. (2017a). One of the benefits of using spatiotemporal models under the VAST framework
(Thorson et al., 2015; Thorson, 2019) is that oceanographic covariates can either be included as
an effect on abundance or as an effect on catchability that is then “standardized” out of the
abundance predictions. The previous analysis utilized subsurface temperature profiles from the
ECMWF ocean reanalysis system ORAS4 (Balmaseda et al., 2013) to calculate two intermediate
variables: depth of the 15◦ C isotherm and the depth difference (in meters) between the 12◦ C
and 18◦ C isotherms (∆ depth (12◦ − 18◦C)). Both variables were included in the analysis as
catchability covariates implemented as splines in the standardization model. The depth of the 15◦

C isotherm was selected as it related to both bigeye tuna and yellowfin tuna abundance, and ∆
depth (12◦ − 18◦C) characterizes the vertical compression of the subsurface environment and is
potentially indicative of availability to the gear.

Unfortunately, the current analysis was not able to replicate the previous oceanographic analysis
as the ECMWF oceanographic product used is unavailable beyond 2015. The current analysis
made use of a similar product which spans the entire model period: the monthly 1◦ × 1◦ EN4
quality controlled subsurface ocean temperature and salinity objective analysis (Good et al., 2013;
Gouretski and Reseghetti, 2010). In addition to the two variables previously calculated, the follow-
ing variables were also derived: salinity (5 m), the difference in salinity from the surface to 200m
(∆ salinity (5 - 200m)), salinity variability in the upper 200m (σ salinity (<200m)), temperature
variability in the upper 200m (σ temperature (<200m)), and temperature (5 m).

Salinity itself has not been shown in previous studies to be an important factor in the vertical
distributions of either bigeye tuna or yellowfin tuna (Arrizabalaga et al., 2015; Song et al., 2008,
2009). However a derived variable based on salinity, such as variability of salinity in the upper 200m
of the water column, could be indicative of mesoscale oceanographic features that affect abundance
or catchability.

Lastly, subsurface dissolved oxygen is likely to be a very important oceanographic covariate in its
ability to explain vertical compression of available habitat in the water column and thus availability
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to the gear. Unfortunately, a suitable oceanographic product that has the appropriate spatial and
temporal resolution for the entire model region and time period was unavailable. This represents
a critical gap in any modeling that attempts to account for oceanographic variability.

4 Modeling approach

4.1 Computational challenges

As described in previous works (McKechnie et al., 2015b; Tremblay-Boyer et al., 2017a), the vol-
ume of records in the operational longline data-set poses some unique computational challenges.
Furthermore, modeling the data in a spatiotemporal framework using the VAST package is slower
than when compared to a traditional delta-lognormal generalized linear model (GLM) without in-
teractions between the spatial and temporal terms. The run time for a VAST model is determined,
in part, by three “axes”: 1) the number of spatial effects or “knots” in the model, 2) the number of
time steps estimated, and 3) the amount of data that the model is being fit to. Given the temporal
span (1952-2018) and the quarterly time-step of the dynamics in the assessment model, there is no
flexibility on the 268 time steps so computational gains have to come from the other two “axes”.

4.1.1 Spatial knots

Ideally, there would be a spatial effect estimated at least for each 5◦ × 5◦ spatial cell in the model
region. However, at the scale of the Pacific-basin, this results in ∼ 600 spatial effects which quickly
balloons to 321 600 spatiotemporal random effects (knots× time steps×2 components in the delta-
model). While there may be data available to estimate this many spatiotemporal effects, such a
model is not feasible with current computational resources. In order to balance computational
feasibility with an appropriate spatial resolution, a model with 150 spatial knots was selected. This
estimates a spatial effect for approximately each 10◦×10◦ spatial cell, and ∼ 90 000 spatiotemporal
random effects. Sensitivity analyses showed that the estimated indices were robust to models with
100, 150, & 175 knots except for some slight variability in the smallest region, region 9. Based
on the recommendations from the 2020 PAW, 4 additional knots were added around regions 8 &
9 in order to increase the spatial resolution of the model and produce more robust indices for the
smallest assessment regions (Figure 15).

Recent developments to the VAST package have added the capability for bi-linear interpolation
of abundance between spatial knots. Though this produces “prettier” (i.e. smoother) abundance
distributions, applying this capability does not meaningfully change the estimated index given the
spatial scale of the assessment regions though it does increase the computation time. Based on
this, the feature was not used in the current analysis

4.1.2 Sub-sampling

Another approach to managing the computational challenge presented by this data-set is to ran-
domly sub-sample the number of records to reduce the computational overhead of the model. This
is the approach that was applied in McKechnie et al. (2017b); Tremblay-Boyer et al. (2017a);
Tremblay-Boyer and Pilling (2017). In the current analysis, we randomly sub-sampled 5 observa-
tions within predefined strata of time step × spatial cell/knot × Flag-group. This post hoc stratifi-
cation resulted in a more tractable, and more spatio-temporally balanced final dataset of 572,395
records (5.71% of total records). Even with the resampling, the dataset is still more heavily weighted
towards the tropical regions due to some knots having a higher number of Flag-groups operating
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within their boundary (Figure 16; Shown for yellowfin tuna. The same data-set was used for bigeye
tuna.).

Sensitivity analyses showed that indices were robust across a range of samples per strata (3, 5, and
6), and across random sub-samples of data with the same number of samples per strata.

4.2 Vessel covariates

4.2.1 Vessel ID

Vessel ID represents an important variable that could explain changes in catchability over time as
seen in the 2019 CPUE analysis of Japanese pole-and-line skipjack tuna (Kinoshita et al., 2019).
Similar to HBF, vessel ID is missing for a large proportion of the observations, particularly early
in the model period. Previous work (Tremblay-Boyer and Pilling, 2017), explored the use of vessel
ID proxies in the CPUE standardization model. These proxies were constructed by clustering
observations according to the date of the record, location, hooks fished, HBF, and species catch
composition. Feedback from members of the 2020 PAW placed this as a lower priority item and it
was not given further consideration. It remains an area of future research.

4.3 Species clustering

Though species clustering could contain information about gear configuration related to increased
catchability of target species, the spatial patterns in species cluster are highly correlated with pat-
terns in species abundance. Given that the proposed spatiotemporal modeling approach explicitly
accounts for the spatial structure of the data, and that all assessment regions were modeled in a
single unified analysis; we did not feel like it would be appropriate to include the species clustering
variable given the potential for spatial confounding with abundance.

4.4 Oceanographic covariates

As mentioned before, one of the advantages to the VAST modeling framework is the inclusion of
oceanographic covariates either as abundance or catchability covariates. Analyses on the inclusion of
oceanographic covariates were limited to 3 variables that showed the least correlation: temperature
(5 m), depth of the 15◦ C isotherm , and salinity variability (<200m). Absent specific feedback
from the 2020 PAW, oceanographic covariates were assumed to impact abundance in model runs.
Oceanographic covariates were included as a polynomial spline with 3 degrees of freedom using the
B-spline basis in the splines package (R Core Team, 2019).

Sensitivity analyses to the inclusion of abundance covariates using the bigeye tuna model showed
that they had no impact on the trend of the estimated indices. However, the estimated regional
weights (driven by the magnitude of the biomass estimates in each region) showed some variability
to the inclusion of oceanographic covariates and their assumed functional forms. Given this un-
certainty, and the fact that the perceived most influential covariate, sub-surface dissolved oxygen,
was unavailable; oceanographic covariates were not included in the standardization model. Further
research is recommended to ensure that the relationship between oceanographic covariates, bigeye
tuna & yellowfin tuna abundance and longline CPUE is modeled appropriately, and to see how
differing estimates of regional weights influence the assessment outcomes.
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4.5 Flag-group

The Flag groupings used in the standardization models are defined in Table 1. The distant water
fishing nations records for Japan, Chinese Taipei, and the United States were split by fleet group
based on differences in the area of operation and/or gear configuration. The Fiji charter vessels
were also split apart from the domestic Fiji records. Records from PICTs and Indonesia were
grouped into 3 categories, broadly corresponding to pelagic eco-regions in the WCPO (Longhurst,
1999) and patterns in species catch composition: countries with exclusive economic zones (EEZ)
overlapping with the northern extent of the western Pacific warm pool (NP), countries with EEZs
mainly within the equatorial waters of 10◦N and 10◦S latitude (EQ), and countries with EEZs
primarily south of 10◦S latitude (SP).

4.5.1 HBF

Longline fishers are able to manipulate the characteristics of their gear in order to target depths
associated with particular species, often on a set-by-set basis. This is done through a combination
of adjustments to the line setting speed, float line length, branch line length and HBF. Even
still, variability in current, surface winds, and water density can result in longlines with the same
“configuration” fishing at effectively different depths. Additionally, the material of the mainline will
also affect the position of hooks in the water column though this is unlikely to change from set-to-
set. This is information commonly recorded by onboard observers, however it is largely unavailable
(except for HBF ) in the operational longline data-set consolidated across all flags. As a result,
HBF is the only available covariate which could be used to model the effects of gear configuration
on bigeye tuna and yellowfin tuna catch rates.

Based on the recommendation of the 2020 PAW, HBF “bins” were modeled using a polynomial
spline with 3 degrees of freedom using the B-spline basis in the splines package (R Core Team,
2019). This enforced a correlation structure on the data such that adjacent HBF “bins” were
estimated to have a similar effect.

Though the relationship between HBF and species CPUE appeared to vary between the different
flag-groups (Figure 9), a sensitivity analysis did not show a meaningful difference between indices
estimated from models where the effects of HBF and Flag-group were additive or interactive.
Additionally, due to some Flag-groups having too few observed HBF bins, some of the Flag-group
× HBF effects were poorly resolved which resulted in the interactive model failing to produce
standard errors. As a result, the more parsimonious, additive model was used.

4.6 Error structure

Typically, continuous error structures (Lognormal or Gamma) have been used to model the positive
component of the delta CPUE standardization model since the response variable is usually defined
as

Catch numbers

Hooks fished
(1)

However, a more appropriate representation may be to use a discrete error structure (Poisson or
Negative Binomial) with hooks fished used as an offset since this will more faithfully replicate the
data generation process. Sensitivity analyses showed that the the Negative Binomial model was not
computationally feasible and that the Poisson model failed to appropriately capture the dispersion
in the data. These were not considered for further analysis.
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There was also very little difference between estimated indices which modeled CPUE using either
of the trialed continuous error distributions. The gamma distribution was selected for the spa-
tiotemporal delta-GLMM “geostats” model based on an examination of the residual diagnostics.

4.7 Model structure

4.7.1 delta-GLM

The previous WCPFC stock assessments for bigeye tuna and yellowfin tuna (McKechnie et al.,
2017a,b; Tremblay-Boyer et al., 2017b) utilized a standardized CPUE index calculated from a GLM
fit to independent partitions of data from the operational longline data within each assessment
region. This model structure was not altered as these indices are used in initial phases of the stock
assessment in order to maintain continuity with the stepwise model progression from the 2017
diagnostic cases to the proposed 2020 diagnostic cases. Delta models consist of two sub-models: a
logistic model (binomial component) predicting the probability of a positive catch occurring and a
second model (positive component) predicting the magnitude of the positive catch rate (Lo et al.,
1992; Stefansson, 1996). The two models are defined as follows:

Binomial component
yi ∼ Bernoulli(pi) (2)

log
pi

1 − pi
= β0 + YrQtri + 5◦ Celli + SpeciesClusteri + β1(HooksFished)i (3)

Note that the linear effect of HooksFishedi is defined in terms of 100s of hooks fished per set.

Positive component
log ci ∼ Normal(log µi, σ

2) (4)

log µi = β0 + YrQtri + 5◦ Celli + SpeciesClusteri (5)

where log ci is the log CPUE of either bigeye tuna or yellowfin tuna defined as numbers caught per
100 hooks fished per set.

4.7.2 Spatiotemporal delta-GLMM

Spatiotemporal models have been shown to be more accurate and less biased than equivalently
structured delta-GLMs when fit to fisheries dependent data (Grüss et al., 2019; Zhou et al., 2019).
Additionally, explicitly modeling the spatiotemporal structure of the data allows these models to
cope with non-stationary effort distributions like the ones exhibited in the operational longline data-
set (Ducharme-Barth et al. 2019). The VAST spatiotemporal modeling approach (Thorson et al.,
2015; Thorson, 2019) was used to generate relative abundance indices from the operational longline
catch and effort data for the 2020 stock assessments of bigeye tuna and yellowfin tuna. In the VAST
spatiotemporal modeling approach, the relative abundance index is the spatial average of predicted
abundance once catchability effects have been “standardized” out. These indices are assigned to
“index fisheries” in the stock assessments similar to what was done for the 2018 south Pacific
albacore tuna stock assessment (Tremblay-Boyer et al., 2018). Additionally, the spatial abundance
distributions predicted from the VAST model are used to calculate the regional weighting factors
for the assessment regions.

The model implemented by the VAST package (version 3.3.0), a spatiotemporal delta generalized
linear mixed model (GLMM), is an extension of the delta-GLM described in the previous section,
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the key difference being how space is modeled. An interactive relationship between space and time,
as opposed to an additive one, is specified using Gaussian random fields to define the spatial and
spatiotemporal components of the model (Thorson et al., 2015). These Gaussian random fields are
defined with a Matern covariance function. Using the estimated correlation structure of the data,
spatiotemporal delta-GLMMs can simultaneously interpolate abundance of unobserved strata. The
delta-GLMM structure implemented in R using the VAST package (Thorson et al., 2015; Thorson,
2019) is defined below:

Binomial component4

yi ∼ Bernoulli(pi) (6)

log
pi

1 − pi
= YrQtri + ω1(si) + φ1(si, ti) + s(HBFi) + Flagi + ε1 (7)

Positive component
ci ∼ Gamma(log µi, σ

−2, λσ2) (8)

log µi = YrQtri + ω2(si) + φ2(si, ti) + s(HBFi) + Flagi + ε2 (9)

where ω is the spatial random effect, φ is the spatiotemporal random effect, s(HBF) is the spline
on HBF and Flag is the additive effect of Flag-group.

5 Results

5.1 Indices

Nominal CPUE of bigeye tuna and yellowfin tuna showed similar levels of decline across the as-
sessment regions (Figure 17 & Figure 18). The exception being the non-equatorial regions for
yellowfin tuna. The northern regions (1 & 2) showed moderately flat trends while the southern
regions (5 & 6) both showed a precipitous decline in the early years of the model period. Trends in
nominal CPUE was largely consistent between the full data set (10 020 513 observations) and the
sub-sampled data set used for the spatiotemporal model (572 395 observations).

The standardized indices, both those estimated using the delta-GLM model described in Sec-
tion 4.7.1 and the spatiotemporal model are consistent with both the nominal CPUE and the
indices used in the diagnostic cases of the 2017 WCPFC stock assessments for bigeye tuna and
yellowfin tuna. For bigeye tuna, the spatiotemporal approach estimates slightly higher relative
abundance than the delta-GLM in the early period (pre-1960) for both of the northern regions (1
& 2), and slightly lower abundance in the early period of region 6. The spatiotemporal indices for
yellowfin tuna also estimate slightly higher relative abundance than the delta-GLM in the initial
years for regions 1, 2, & 4. The delta-GLM indices for yellowfin tuna estimate slightly higher initial
abundance than the spatiotemporal indices. Both the spatiotemporal indices and the delta-GLM
indices smooth out what appears to be an anomalous spike in nominal CPUE in region 1 during
the late 1970s, and also the rapid initial decline in CPUE in regions 5 & 6. For both species
the spatiotemporal model is able to interpolate the abundance trend for region 9, even when it
was sparsely sampled, by taking advantage of the estimated correlation structure of the data and
borrowing information heavily from the adjacent regions.

4The version of VAST used in this analysis (3.3.0) does not allow for covariates to be defined separately for
each component of the delta model. Given that a continuous error distribution is used for the positive component
and HooksFished is already included in the response variable, we were unable to use it as an offset in the binomial
component of the model.
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5.2 Catchability covariates

Inclusion of catchability covariates resulted in minor changes to the estimated index for bigeye tuna
(Figure 19). Including in Flag-group resulted in a slight downwards revision of the standardized
index relative to the nominal in the early years, and a slight upwards revision relative to the nominal
in the later years. This is likely due to the change over time in fleet composition (Figure 20) from
predominantly Japanese vessels, which were estimated to have the highest encounter probabilities,
to vessels with lower encounter probabilities (Figure 21). Adding in the spline on HBF resulted in
the opposite effect with the index being revised upwards in the early years, most notably in regions
1 & 2. This is because the predominant method of fishing in the early years used low numbers of
HBF. These were estimated to have a low encounter probability and catch rate (Figure 21). This
is an expected result given our understanding of HBF as a proxy for depth fished and the deeper
swimming depth of bigeye tuna. However, as gear configurations changed over time to fishing with
a greater number of HBF (Figure 22), which more efficiently caught bigeye tuna, the influence of
this covariate also increased (Figure 23). When HBF is included in the standardization model,
the removal of its effect results in an increase in the standardized abundance index relative to the
nominal CPUE early in the model period.

The estimated index for yellowfin tuna did not meaningfully change with the inclusion of the
catchability covariate for Flag-group and spline on HBF (Figure 24) despite the model showing
trends in the influence of both covariates (Figure 25). The model predicted high probabilities of
encounter for vessels from Australia, Japan, and Korea, and from sets with 20 - 30 HBF (Figure 26).
Vessels from countries that operate predominantly in cooler waters such as New Zealand, or sets
made with either very low HBF or very high HBF were predicted to have low encounter probability
for yellowfin tuna. That being said, when vessels from New Zealand did encounter yellowfin tuna
they tended to have the highest catch rate along with Australian vessels and those participating in
the US Hawaiian shallow-set fishery. Catch-rates also tend to be highest for sets made with 25-30
HBF.

5.3 Estimated spatial patterns

Encounter rate patterns for bigeye tuna were stationary across time, though the intensity did di-
minish throughout the model period (Figure 27). Bigeye tuna were predicted to be most frequently
encountered in a band just north of the equator extending northeast around the Hawaiian islands
and eastwards into the eastern Pacific Ocean (EPO). Model predicted outputs for positive catch-
rate were highest in the equatorial EPO early in the model period (Figure 28). In the WCPO, the
area around Hawaii in assessment region 2 was predicted to have the highest positive catch rate.

Yellowfin tuna were predicted to have the highest encounter rate in the equatorial western Pacific,
and in a broad, tapering band towards the EPO (Figure 29). Encounter rate diminished outside
of the tropics and towards the poles, though perhaps not as rapidly as initially expected. These
encounter rates were predicted to be highest at the beginning of the model period. Once encoun-
tered, yellowfin tuna were predicted to have the highest catch-rates in the equatorial western Pacific
(Figure 30). These also were predicted to decline from the start of the model period.

The estimated regional weights (given as percentages) and defined as the average predicted abun-
dance in each of the 9 assessment regions are listed as follows for bigeye tuna and yellowfin tuna:

• Bigeye tuna: 10.18, 31.13, 9.38, 23.67, 3.06, 8.05, 12.79, 1.58, 0.15

• Yellowfin tuna: 8.22, 5.38, 15.43, 19.72, 12.34, 10.99, 19.37, 7.55, 1.00
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The spatiotemporal standardization models predicts a higher concentration of abundance in the
eastern WCPO (model regions 2 and 4) for bigeye tuna and the equatorial WCPO (model regions 3,
4, and 7) for yellowfin tuna relative to the null hypothesis that regional abundance is proportional
to area size (Figure 31).

5.4 Diagnostics

Based on feedback received from the 2020 PAW, DHARMa-style residuals were used to assess model
fit to the data (Hartig, 2020). The VAST modeling framework is built upon TMB (Kristensen et al.,
2016) which has the capability to simulate samples of the observations given the assumed model
structure and the estimated fixed and random effects. DHARMa-stlye residuals take advantage
of this approach by defining the residuals based on where the observations fall in the distribution
of simulated samples (Dunn and Smyth, 1996). In addition to accounting for the random effects,
another advantage of this approach is that it allows the entire model structure, both components of
the delta model, to be evaluated using a quantile-quantile (QQ) plot of the uniformly distributed
model residuals. Previously, QQ plots were generated separately for each model component.

For the bigeye tuna model, the model appears to fit the data well in the aggregate sense (Figure 32)
without indication of non-uniformity. Visualizing the residuals spatially and temporally by model
component, we see some evidence for model mis-specification. Though there do not appear to be
persistent spatiotemporal patterns in the residuals for encounter rate (Figure 33), there do appear
to be patterns in the residuals for positive catch-rate (Figure 34). Within the assessment region,
the model appears to be underestimating catch rates in the north Pacific through the 1950s. This
pattern persists in the EPO through the 1960s.

Similar to bigeye tuna, yellowfin tuna showed a good fit to the data in the aggregate sense (Fig-
ure 35). Examining the spatiotemporal distribution of model component residuals, the model
persistently overestimated the encounter rate in assessment region 7 during recent years, as well as
in assessment region 2 early in the model period (Figure 36). The model also appeared to under-
estimate the positive catch-rate in the equatorial western pacific and EPO through the early 1960s
(Figure 37).

For both species, residual patterns were largely absent as the model approached the present day,
indicating a better fit to the data in recent years. This lack of fit earlier in the model period is
captured in the estimated model uncertainty which is highest when the model begins, and gradually
diminishes over time (Figure 17 & Figure 18).

6 Discussion

The approach taken for the 2020 stock assessments predicts relative abundance indices for bigeye
tuna and yellowfin tuna that show consistent trends with those from previous analyses, and also
similar trends to the nominal CPUE. Given that average fishing efficiency is believed to increase
between 2-4% per year (Palomares and Pauly, 2019), a greater difference between the nominal and
standardized indices would be expected over the 67 year model period. This likely indicates that
the standardization model is missing a key element. This analysis highlights a number of areas
where improvements can be made.

Longline fishing in the Pacific has changed dramatically from its pre-World War II industrial begin-
nings. Vessels have grown larger and more powerful, with onboard electronic systems for measur-
ing sea surface temperature, current speed, and thermocline depth. Targeting practices have also
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changed from a focus on albacore for cannery-processing to targeting the tropical tunas, bigeye tuna
and yellowfin tuna for fresh or flash frozen sashimi. Perhaps most important are the gear changes
such as the switch from rope to monofilament mainlines. One of the challenges with attempting
to model CPUE across such a long period of time, and using a data set from 27 different fishing
nations is that it greatly reduces the minimum set of covariates usable for standardization. The
residual patterns, particularly those early in the model period, indicate that the model is too simple
and is unable to account for changes in catch rate. Furthermore, the utility of the HBF covariate
as a proxy for fishing depth is reduced without having information on the other characteristics of
the longline set such as mainline material, branch line construction, or line setting speed as all
effect the depth of the fished hooks. If there is a continued desire for a unified analysis of the
operational longline dataset for the entire model time period, it is recommended that further data
rescue exercises be undertaken to augment the number of usable catchability covariates.

Given the described covariate deficiencies in the operational longline data-set, another option would
be to estimate an index from data collected as a part of the Regional Observer Program. This would
allow additional covariates shown to influence catch rates such as time of day, bait type, light stick
use, hook type, and hook spacing to be included in the standardization model (Campbell, 2018;
Monnahan and Stewart, 2018). It is recommended that interviews and surveys with boat captains
and vessel operators be conducted to identify species-specific targeting practices and an appropriate
covariate set to capture these targeting behaviors. Using the observer data presents a trade-off
between reduced spatial, temporal coverage and a potential increase in explanatory power as more
covariates can be included. A compromise could be reached by splitting the index into an early
period fit to the operational data, and overlapped with a second index fit to recent period observer
data or a combination of observer and operational data with an expanded covariate set. If a split
analysis is to be considered this must be done carefully to ensure a proper transition between the
two indices. Any hard temporal discontinuities in the indices can cause problems for the assessment
model. It is recommended that future simulation work be undertaken to determine the benefits
and limitations associated with splitting the index, both in the ability to capture the underlying
abundance trend and for assessing the implications of using split indices in the stock assessment
model.

Though the VAST framework presents a unique modeling approach to the inclusion of spatiotempo-
rally varying environmental covariates, it is limited in its ability to account for variability in catch
rates due to the vertical distribution of tuna within the water column. Particularly for bigeye tuna,
diving behavior as it relates to environmental preferences is believed to have a major impact on
availability to longline gear. Early work by Bigelow et al. (2002) accounting for the vertical distri-
bution of both tuna and fishing effort (hooks) to estimate catch-per-unit-of-effective-effort (CPEE),
where effective effort is the numbers of longline hooks fished at different depth bins weighted by the
perceived vertical distribution of tuna showed larger deviations from the nominal index than those
seen in the current analysis. It is recommended that this approach be revisited. However, in order
to improve on this existing work, 3 data gaps must be addressed: 1) funding is needed to produce a
spatiotemporal sub-surface dissolved oxygen oceanographic product for the Pacific Ocean spanning
the assessment model period; 2) the analysis of archival tagged, longline-vulnerable bigeye and
yellowfin tuna needs to be continued and supplemented by additional releases in multiple locations
across the WCPO. Existing studies point to the potential for daytime and night-time vertical distri-
butions that vary by size and potentially regional differences in oceanography or even FAD-density
within the WCPO (Scutt Phillips et al., 2017; Abascal et al., 2018; Scutt Phillips et al., 2019);
3) basic research on the fishing depth of longline hooks such as that described in Boggs (1992) or
Bigelow et al. (2006) needs to be conducted across vessels from different DWFNs and PICTs in
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order to understand spatial patterns in the depth distribution of hooks fished.

Finally, persistent temporal patterns exist for both the Flag-group and HBF covariates so it is
possible that the estimated categorical effects and covariate influence are confounded with the
trend in abundance despite the moderate level of overlap between categories. For both bigeye tuna
and yellowfin tuna there is a matching decline in the influence of the Flag-group covariate on the
index over time. This matches with a transition of records coming predominantly from Japanese
vessels, which are estimated to have higher catch rates, to Korean, US, and PICT vessels. This has
the effect of standardizing the index “down” in the early period and standardizing the abundance
index “up” in later years as shown for bigeye tuna. Japanese vessels, however, may be estimated to
have a higher effect given that the majority of their records come the earlier periods when the stock
was less depleted. Future research is needed to understand the modeling limitations when both the
underlying abundance and characteristics of the fishery show persistent temporal patterns.
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8 Tables

Table 1: Representation of flag-groups in the final data-set used for the CPUE standardization
model.

Flag.group5 Flag.fleet N Percent

JP.DW JP.DW 215,150 37.59
JP.OS JP.OS 94,845 16.57
KR KR 71,651 12.52
TW.DW TW.DW 54,475 9.52
PICT.SP CK, FJ.FJ, NC, NU, PF.PF, TO, TV, US.AS, VU, WS 43,524 7.60
TW.OS TW.OS 21,084 3.68
CN CN, CN.CN, CN.DW 20,581 3.60
US.HW.D US.HW (Hawaii deep set, >15 HBF) 12,342 2.16
PICT.EQ ID, KI, PG, PG.DW, SB, SB.DW 8,783 1.53
US.HW.S US.HW (Hawaii shallow set, <15 HBF) 7,368 1.29
AU AU.AU, AU.CV 7,172 1.25
PICT.NP FM, GU, MH, PW 5,786 1.01
FJ.charter FJ.AU, FJ.CK, FJ.CN, FJ.KR, FJ.NZ, FJ.TW, FJ.US 5,756 1.01
NZ NZ.JP, NZ.NZ 3,878 0.68

5ISO 3166 alpha-2 country codes are used to refer to the flags of individual nations.



9 Figures

Figure 1: Spatial structure for the bigeye tuna and yellowfin tuna stock assessments.
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Figure 2: The number of operational longline records within each assessment region over time.
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Figure 3: The decadal distribution of longline fishing effort (defined as hooks fished) across all
fishing fleets in the operational longline data set.

Figure 4: The decadal distribution of proportion of species caught across all fishing fleets by 15◦×15◦

spatial cell in the operational longline data set.
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Figure 5: The decadal distribution of bigeye tuna nominal CPUE (numbers per 100 hooks fished)
across all fishing fleets in the operational longline data set.

Figure 6: The decadal distribution of yellowfin tuna nominal CPUE (numbers per 100 hooks fished)
across all fishing fleets in the operational longline data set.
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Figure 7: The number of records with and without HBF by assessment region. The color of the
bar indicates the “bin” of HBF that each record was assigned to.
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Figure 8: The decadal (columns) distribution of HBF by major DWFN fishing fleet (rows). The
color of the bar indicates the median value “bin” of HBF
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Figure 9: The response of nominal CPUE (numbers per 100 hooks fished) by species to hooks-
between-floats (HBF) by flag group. The red line is a generalized additive model (GAM; Wood
2006) smooth fit through the data.
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Figure 10: The average nominal CPUE (numbers per 100 hooks fished) by vessel ID for each species
by flag group. The horizontal lines indicate the duration of activity for each individual vessel. The
red line is a generalized additive model (GAM; Wood 2006) smooth fit through the data.
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Figure 11: The response of catch (numbers) by species to 100 hooks fished per set by flag group.
The red line is a generalized additive model (GAM; Wood 2006) smooth fit through the data.
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Figure 12: “Elbow”-plot from k-means clustering of “trips” based on the proportion of each species
caught.
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Figure 13: The average species composition by cluster and assessment region over time from the
k-means clustering analysis.

Figure 14: The decadal distribution of proportion of sets belonging to each species cluster across
all fishing fleets by 15◦ × 15◦ spatial cell in the operational longline data set.
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Figure 15: The distribution of spatial knots used to define the mesh for the spatiotemporal standard-
ization model. Extrapolation grid cells are color coded to show the knot that they are associated
with.
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Figure 16: The temporal distribution of observations by spatial knot from the final sub-sampled
data set used to estimate the indices.
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Figure 17: Nominal and standardized indices for bigeye tuna. The nominal index corresponding to
the subset of data that the standardization model was fit to is shown in light gray (nominal.sub).
The nominal index from the full data set is shown in dark gray (nominal.full). The delta-GLM
index used in the 2017 stock assessment is shown in light red (dglm.2017 ). The delta-GLM index
used in the data update step of the 2020 stock assessment is shown in red (dglm.2020 ). The VAST
spatiotemporal index used in the diagnostic case of the 2020 stock assessment is shown in blue.
(vast.2020 ). The asymptotic 95% confidence intervals are shown via the corresponding shaded
polygon.
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Figure 18: Nominal and standardized indices for yellowfin tuna. The nominal index corresponding
to the subset of data that the standardization model was fit to is shown in light gray (nominal.sub).
The nominal index from the full data set is shown in dark gray (nominal.full). The delta-GLM
index used in the 2017 stock assessment is shown in light red (dglm.2017 ). The delta-GLM index
used in the data update step of the 2020 stock assessment is shown in red (dglm.2020 ). The VAST
spatiotemporal index used in the diagnostic case of the 2020 stock assessment is shown in blue.
(vast.2020 ). The asymptotic 95% confidence intervals are shown via the corresponding shaded
polygon.
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Figure 19: Stepwise plot showing the effect of including each additional covariate on the estimated
index for bigeye tuna. The nominal index corresponding to the subset of data that the standard-
ization model was fit to is shown in light gray (nominal.sub). The vast index with only spatial
and spatiotemporal random effects is shown in light blue (vast). The vast index with inclusion of
a fixed effect for Flag-group is shown in blue (vast.FLAG). The final vast index with inclusion of a
fixed effect polynomial spline for HBF is shown in dark blue (vast.FLAG sHBF ). The asymptotic
95% confidence intervals are shown via the corresponding shaded polygon.
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Figure 20: The number of records over time by Flag-group per model region.
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Figure 21: Though interactions were not explictly modelled, the estimated inferred interactive
effects of Flag-group and HBF for the two components of the delta model (encounter probability
and positive catch) are shown for bigeye tuna. The color denotes the flag group.
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Figure 22: The number of records over time by 5-hook HBF bin per model region.

40



Figure 23: Influence plot (bigeye tuna) for each covariate and each model component, showing the
effective correction in the index as a result of a change over time of the associated factor.
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Figure 24: Stepwise plot showing the effect of including each additional covariate on the estimated
index for yellowfin tuna. The nominal index corresponding to the subset of data that the stan-
dardization model was fit to is shown in light gray (nominal.sub). The vast index with only spatial
and spatiotemporal random effects is shown in light blue (vast). The vast index with inclusion of
a fixed effect for Flag-group is shown in blue (vast.FLAG). The final vast index with inclusion of a
fixed effect polynomial spline for HBF is shown in dark blue (vast.FLAG sHBF ). The asymptotic
95% confidence intervals are shown via the corresponding shaded polygon.
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Figure 25: Influence plot (yellowfin tuna) for each covariate and each model component, showing
the effective correction in the index as a result of a change over time of the associated factor.
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Figure 26: Though interactions were not explictly modelled, the estimated inferred interactive
effects of Flag-group and HBF for the two components of the delta model (encounter probability
and positive catch) are shown for yellowfin tuna. The color denotes the flag group.
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Figure 27: Model predicted estimates of spatiotemporal encounter rate for bigeye tuna
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Figure 28: Model predicted estimates of spatiotemporal relative positive catch-rate for bigeye tuna
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Figure 29: Model predicted estimates of spatiotemporal encounter rate for yellowfin tuna
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Figure 30: Model predicted estimates of spatiotemporal relative positive catch-rate for yellowfin
tuna
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Figure 31: Expected distribution of regional abundance assuming abundance is proportional to the
size of the spatial region (Area) versus the estimates from the spatiotemporal CPUE standardization
model (Model).
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Figure 32: Uniform Quantile-Quantile (QQ) plot of the DHARMa calculated residuals for bigeye
tuna.
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Figure 33: Model residuals of spatiotemporal encounter probability for bigeye tuna
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Figure 34: Model residuals of spatiotemporal positive catch-rate for bigeye tuna
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Figure 35: Uniform Quantile-Quantile (QQ) plot of the DHARMa calculated residuals for yellowfin
tuna.
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Figure 36: Model residuals of spatiotemporal encounter probability for yellowfin tuna
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Figure 37: Model residuals of spatiotemporal positive catch-rate for yellowfin tuna
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