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Executive Summary

The assessment of yellowfin tuna Thunnus albacares from the western and central Pacific Ocean
(WCPO) relies heavily on fishery-dependent data to inform the assessment model on trends in
biomass. The longline fishery, which primarily targets adult yellowfin provides key inputs to the
assessment; however these data may be unreliable when it comes to monitoring trends in the
juvenile component of the population. Estimation of recruitment to the fishery (approximately
age-1 yellowfin) represents an important uncertainty in the assessment of yellowfin because
recruitment deviations may confound the biomass scaling parameter. The assessment model is
configured in a way that enables recruitment estimates to be adjusted to explain changes in the
catch that may not be accounted for by the trend in a CPUE index. As a result, there may be
limited biological inference to be made from these trends, and the resulting estimates may be
influenced by other data inputs, potentially unrelated to trends in recruitment. To more explicitly
inform the 2020 stock assessment model on trends in yellowfin recruitment dynamics, we have
explored the use of operational catch and effort data from purse seine sets made on drifting fish
aggregating devices (dFADs) to develop relative recruitment indices. This paper summarizes the
characteristics of the dFAD fishery, data preparation, and modeling approach to develop a
recruitment index from purse seine fishery catch and effort data.

Using operational (set-level) purse seine catch and effort data reported by the Pacific Islands
Regional Fisheries Observer Program from 2010-2018, we employed a suite of spatiotemporal
delta-Gamma models to implicitly account for variability in space and time and to explicitly
control for variables predicted to influence catchability of yellowfin tuna. There was little
variability among the models with respect to the resulting regional abundance indices. The
preferred model structure included vessel length, species composition cluster variable, and set
time (modeled as hours before sunrise) as catchability covariates, and a spatially-varying effect of
the El Niño Southern Oscillation index as a habitat covariate expected to influence local density.
The abundance indices were relatively stable over the time period evaluated, with a notable
disconnect between the recruitment indices estimated from the most recent (2017) yellowfin stock
assessment.

It should be noted that we have conducted this analysis to address an important data gap
associated with yellowfin recruitment dynamics by using drifting FAD sets only as they are
primarily associated with juvenile yellowfin harvest. However, adult fish were not excluded from
the analysis, and therefore, we would not expect a direct link between the assessment estimates
and the CPUE indices presented here. The abundance indices generated through this analysis
would inform the assessment model, but would be evaluated with additional information on size
composition and drifting FAD purse seine fishery selectivity. Together, with the additional
assessment data inputs, the assessment model may be better able to estimate reliable abundance
trends in the juvenile component of the yellowfin stock.

Given the prominence of the purse seine fleet in tuna removals throughout the WCPO, using
catch and effort data from the fishery to inform the stock assessment, is a priority. There are
however, important considerations associated with effort creep and associated time series
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hyperstability that need additional attention. These concerns should not necessarily preclude
these data, as valuable information may be gleaned from them; however, continued research into
effort creep, fisher decision-making, changes in fishing strategies over time, and the development
of a ‘dashboard’ of ancillary information from which to more reliably infer trends in tuna
abundance is warranted.

We invite WCPFC-SC16 to note the results of this analysis and recommendations for
future research:

Results

• Note the progress being made to standardize purse seine CPUE to better inform the stock
assessment models on yellowfin recruitment trends.

• Note that over the shorter-term (2010-2018) yellowfin tuna abundance trends from drifting
FAD sets appear to be relatively stable; however, when compared to longer-term logbook
indices, the model suggests that abundance has declined over the past two decades.

Recommendations

• Recognize the importance of continued research to better understand the role of effort
creep, including FAD-related technologies, on purse seine catch rates, and to support
directed research to better understand technological creep and changes in fishing strategies
through time, which may influence our understanding of effective effort through time.

• Conduct interviews with the purse seine industry, specifically with skippers and fishing
masters, to better understand technological and strategic changes over time and inform
analyses related to effort creep.

• Support additional biological data collection and analyses to improve our understanding of
changes in age, growth, and recruitment dynamics in yellowfin, over time.

• Explore the potential for developing recruitment proxies from the extensive diet data
available from the WCPO, through previous work done by the Pacific Community and
research partners.

• Incorporate multiple data sources to further validate the signals detected from the CPUE
analysis. For example, matching cohorts from longline and purse seine catches (using length
frequency data) and further exploring correlation between the two as well as their
relationships with CPUE and variability in the environment.
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1 Background information

Yellowfin tuna Thunnus albacares is an important component of global fishery removals, and
comprises approximately 25% of the tuna harvest from the western and central Pacific Ocean
(WCPO) (Williams and Reid, 2019). Although the current status of the WCPO yellowfin stock
suggests that it is not overfished, and that overfishing is not taking place, the overall biomass has
declined through time, trending towards the overfished and overfishing reference points
(Tremblay-Boyer et al., 2017). Relative abundance trends derived from longline catch and effort
data serve as an important input to the yellowfin stock assessment models; however, the longline
fishery primarily targets adult yellowfin, and as a result the index of relative abundance from this
fishery may not provide an accurate representation of dynamics in the juvenile component of the
population. Developing a recruitment index from juvenile catch rates may help to address
uncertainty in recruitment strength, improve model fit, and reduce bias. In 2017, the assessment
results suggested that recruitment had generally declined through time (since the 1950s); however,
in recent years (2011-2015), there was a slight increase in recruitment strength. Due to a paucity
of information, recruitment represented an important source of uncertainty in the assessment
model (Tremblay-Boyer et al., 2017) because the model can use recruitment to compensate for
changes in catch that cannot be accounted for by the trend in a CPUE index.

To address this uncertainty, we are exploring the potential for catch and effort information from
purse seine sets made on drifting fish aggregating devices (dFADs) to be used to inform the
assessment model regarding recent trends in recruitment. Here, recruitment is defined as
recruitment of juveniles to the fishery (i.e. approximately age-1 yellowfin).

The purse seine fishery accounts for approximately 56% of the yellowfin removals from the
Western and Central Pacific Convention Area (WCP-CA) (Williams and Reid, 2019), and is largely
harvested using two main fishing strategies: setting on FADs (i.e. associated sets) or setting on
free schooling tunas, unassociated with floating objects (i.e. unassociated sets). It has been shown
that free-school sets are typically composed of adult yellowfin and larger skipjack, whereas FAD
sets are more apt to catch smaller skipjack along with juvenile yellowfin and bigeye (Williams and
Reid, 2019). We have attempted to leverage information collected by fisheries observers on the
catch rates from dFAD sets to shed light on recruitment dynamics of yellowfin tuna.

2 Methods

The development of a recruitment index, in this context, is analogous to a traditional
standardization of fishery-dependent CPUE for use as an abundance index. Nominal CPUE is
standardized, to remove the effect of factors that influence catch rates, other than changes in
abundance over time. Such factors are typically related to catchability, and can reflect differential
efficiency or skill measures (e.g. vessel size, skipper experience), and require ‘standardization’ to
reveal the underlying trend in population dynamics. In this analysis, we are standardizing CPUE
from dFAD sets only, because yellowfin harvested from these sets are predominantly associated
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with juvenile size classes. The standardized index, estimated from the model, represents an
area-weighted abundance; however, such indices are most informative with respect to relative
trends, as the catch data will inform the overall biomass scaling. Therefore, to be able to compare
relative trends among models to the nominal CPUE, we standardize the indices to the mean,
therefore, all indices have a mean of one and can be compared directly. It should be noted, that
although larger, adult yellowfin are also harvested in dFAD sets, the recruitment (juvenile) index
developed here will be assessed, within the stock assessment model, in conjunction with
size-composition data and gear-specific selectivities, thereby disentangling of the juvenile signal.

2.1 Data description and preparation

The yellowfin stock assessment spatial domain, extends roughly from 50◦N to 40◦S and from
110◦E to 170◦W; however, the purse seine sector of the yellowfin fishery primarily operates within
the 2017 stock assessment regions 3, 4, and 8 (Tremblay-Boyer et al., 2017; Figure 1), and therefore,
we narrowed the focus of this analysis to those regions only. Operational (set-level) purse seine
CPUE (mt/set) data were obtained from the Pacific Islands Regional Fisheries Observer Program
data for the tuna purse seine fleets operating within the western and central Pacific Ocean
(WCPO). As of 2010, 100% of tuna purse seine trips in the region were required to carry a fisheries
observer; therefore, to take advantage of the additional confidence in data quality observer
coverage provides, we used a time series which extended from 2010 through 2018 for this analysis.

Figure 1: Regional structure used in the 2017 stock assessment. The dominant regions of purse
seine activity and the focus for this paper, are shaded in blue.

The focus of this analysis is juvenile yellowfin (i.e. approximately age 1); these are primarily
harvested from purse seine sets made around dFADs, whereas unassociated sets tend to harvest
larger, adult yellowfin (Figure 2). Given our focus on producing an index of recruitment, we
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analyzed data from dFAD sets only. The full data set (n= 79,384) was filtered to only include
vessels between 50 and 80 m in length that were active in the fishery for approximately 20% of the
time series of interest, excluding the quarters associated with the FAD closure periods (i.e.
observed fishing activity in at least 5 quarters between 2010 and 2018). In addition, any vessel that
entered the fishery in 2017 or later, was retained for the analysis. The vessel size criterion was
imposed due to the implementation of the Vessel Day Scheme (VDS) in 2008. The VDS is an
effort-based management framework, which applied a fishing day differential based on vessel
length (Dunn et al., 2006; Parties to the Nauru Agreement, 2016). Vessels within the 50-80 m range
are charged one vessel day for one fishing day, while larger vessels are charged 1.5 vessel days per
calendar day of fishing, and smaller vessels 0.5 days. Over the past decade, many of the largest
vessels have left the fishery, leaving a fleet that is dominated by the 50-80 m size class (Figure 5);
thus, focusing on this vessel size class will help ensure the indicator is robust to future changes in
industry structure.

Figure 2: Distribution of yellowfin length frequencies (fork length), collected by observers, for
drifting FAD (dFAD) and free school (UNA) purse seine sets from 2010-2018.

In the interest of analyzing catch and effort that is representative of the fishery, we omitted sets
with less then one metric tonne (mt) of total tuna catch, as these were assumed to be failed sets. A
failed set is different from a skunk set, in that a purse seiner is unlikely to set on a very small
school (typically < 10 mt, but rarely on a school <3-5 mt). Therefore, a catch of <1 mt was
assumed to represent a failure in the fishing operation which led to an unusually small catch.
Extreme outlier catch values (> 99th quantile of catches), sets made within the three-month FAD
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closure period, and observations with missing data, were removed from the data prior to analysis.
Lastly, sets made outside a five hour window around sunrise were excluded, as the validity of the
set times were questionable. This potentially excludes sets made later in the day; however, we felt
this was a conservative approach to focus the analysis on the main efforts of the fishery. The
filtered data set consisted of 38,740 observations (Table 1).

Filtering criteria Removal % Removal #
Vessel participation (>20% of time series; ∼5 quarters) 12% 9,320
Vessels between 50 and 80 m 16% 13,033
Removal of failed sets (total tuna catch) < 1 mt 1% 853
Extreme catch outliers (>99th quantile) 1% 562
Retained sets within 5 hours of sunrise 1% 774
Removed observations from the FAD closure period 3% 2,280
Remove records with missing data 17% 13,822

Table 1: Summary of data filtering criteria employed. Note that some observations would have
been excluded based onmultiple selection criteria; the numbers removed are based on sequential
filtering, and therefore may be an underestimate of observations relating to each criteria.

2.1.1 Covariates

Standardization of CPUE is aimed at removing the effect of variables that influence catchability
while simultaneously accounting for factors which may influence local density. Traditional
approaches to CPUE standardization, e.g. generalized linear modeling frameworks, treat all
covariates as affecting catchability; whereas in the geostatistical modeling framework we have
used for this analysis, a distinction is made between covariates that influence density and those
that influence catchability (Thorson et al., 2015a; Thorson, 2019b). The model controls for the
effects of the catchability covariates on the index by filtering them out, whereas the estimates are
conditioned upon the density covariates (Thorson, 2019b). However, the distinction between
which variables influence density and which influence catchability is not always straightforward.

We developed a suite of potential covariates predicted to influence yellowfin tuna catchability, for
evaluation within the modeling framework. These factors were selected to capture vessel, gear,
and fishing strategy characteristics (Table 2) as well as variability in the environment which may
influence catch rates. Vessel and gear-based characteristics such as vessel length, net size, skiff
horsepower, and well capacity, have generally increased through time (Vidal et al., 2020b) and
were predicted to increase fishing efficiency over time. In addition, we included a species
composition variable, based on a k-means clustering algorithm on proportion of the three main
tuna species (yellowfin, skipjack Katsuwonus pelamis, and bigeye Thunnus obesus) in the catch. We
used two clusters, largely to distinguish between sets dominated by skipjack and those dominated
by yellowfin, as the school composition was predicted to be important in explaining variation in
catch rates. Set time was considered a potentially important predictor variable because tuna tend
to aggregate near the surface during the night and into the early morning hours before descending
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to deeper waters to feed during the day. Typically, FAD sets are made prior to dawn (Harley et al.,
2009), but in recent years purse seine vessels have occasionally been observed making multiple
FAD sets in a single day; however, the practice remains rare. Following on previous work, we used
hours before sunrise to represent set time, and modeled it as a catchability covariate. Time of
sunrise (converted to UTC) was obtained using the suncalc R package (Agafonkin and Thieurmel,
2017), and was subtracted from the set time (reported in UTC). Positive values therefore, indicate a
set was made after sunrise. Observations with set times extending beyond +/- 5 hours from
sunrise were excluded from the analysis, due to concerns about misreported set times.

Variable Description

Catchability covariates
Year-quarter Categorical: temporal variable related to inter-annual changes in

abundance
Vessel length (m) Continuous: overall vessel length (m)
Species composition cluster Categorical: Indicates whether the catch is dominated by skipjack

or yellowfin
Set time Continuous: set time relative to sunrise (negative values are pre-

dawn, positive, post-dawn)
Lunar phase Categorical: new moon, first quarter, full, last quarter
Thermocline depth (m) Continuous: estimated depth of the thermocline from the Global

Ocean Data Assimilation System
Density covariates
El Niño Southern Oscillation Continuous: ENSO anomaly from Niño Region 4 (5N-5S, 160E-

150W)
Sea surface temperature (C) Continuous: predicted sea surface temperature from NOAA Opti-

mal Interpolation, using high resolution data

Table 2: Description of catchability and density covariates evaluated in the model selection pro-
cess.

The importance of oceanographic variables on catch rates of pelagic fishes has been well
documented (e.g. Howell and Kobayashi, 2006; Bigelow and Maunder, 2007; Langley et al., 2009;
Young et al., 2011). Within in this modeling framework, we have the flexibility to include habitat
covariates predicted to influence yellowfin density and also catchability covariates predicted to
influence capture vulnerability; variables that are controlled for when predicting density. Tuna
habitat preference may be influenced by temperature, oxygen levels, and salinity (Arrizabalaga
et al., 2015), as well as the density and distribution of prey fields; and therefore, capturing this
variability in the environment may be informative for the models. Sea surface height has also
been identified as a potentially important predictor of tuna density (Royer et al., 2004). Sea surface
height anomalies can be altered by convergent and divergent areas (e.g. gyres), resulting in frontal
zones which may attract aggregations of tunas due to enhanced prey availability (Lumban-Gaol
et al., 2015). The El Niño Southern Oscillation (ENSO) was predicted to capture broader
oceanographic features and variability in catch rates associated with the convergence zone in the
western Pacific where the westward advection of cold, saline waters meet with an eastward
advection of warm, low saline waters, creating an important frontal zone which promotes the
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aggregation of plankton and micronekton as well as larger predators, such as tunas (Fiedler and
Bernard, 1987; Lehodey et al., 1997). As this convergence zone shifts through time, the distribution
and local density of tunas is predicted to shift as well. Lastly, lunar phase was considered as it has
proven informative for explaining variability in catch rates of other pelagic fishes (e.g. Bigelow
et al., 1999; Lowry et al., 2007; Evans et al., 2008). Bigeye tuna has been observed occupying deeper
nighttime depths during the full moon as opposed to lesser illuminated phases (Evans et al., 2008).
If yellowfin behave in a similar manner, this temporal vertical behavior could affect the proportion
of fish vulnerable to purse seine gear throughout the lunar cycle. We obtained moon phase data
using the R package suncalc, and categorized the phases into four categories: new moon, first
quarter, full, and last quarter. Table 3 details the full list of oceanographic metrics we considered.

Metric Description

sst Sea surface temperature (C)
mean.sst Mean sea surface temperature (C) in the upper 200 m of the water

column
var.temp Variance of sea surface temperature (C) in the upper 200 m of the water

column
therm.depth Depth (m) of the estimated thermocline
depth.20 Depth (m) of the 20◦ isotherm
sea.height Estimated sea surface height (m)
mean.sal Mean salinity in upper 200 m of the water column
var.sal Variance of the salinity estimates for the upper 200 m of the water

column
ENSO ENSO anomaly index from Niño Region 4 (5N-5S, 160E-150W)

Table 3: Oceanographic metrics evaluated for use in the suite of standardization models.

We acknowledge that throughout the region of interest for this analysis, oceanographic variability
is likely to be less important than in the more temperate waters. Oceanographic data for this
analysis were obtained from several sources. Thermocline depth and depth of the 20◦ isotherm
were calculated from the Global Ocean Data Assimilation System (GODAS), which is available
monthly at a spatial resolution of 0.333◦ latitude by 1◦ longitude; high-resolution sea surface
temperature data, aggregated to the day at a 0.25◦ degree spatial resolution, were obtained from
the National Oceanic and Atmospheric Administration (Banzon et al., 2019); and salinity at depth
data and sea surface height data were obtained from the E.U.s Copernicus Marine Service,
available monthly at 1/12◦ spatial resolution.

2.2 Data summaries

The filtered data set has been summarized to illustrate the spatiotemporal distribution of catch
and effort (Figures A.1 and 3). Variable correlations for vessel characteristics as well as
oceanography metrics were evaluated to avoid problems of multicollinearity and to select a small
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number of variables predicted to represent important sources of variability in the catch and effort
data (Figure 4).

Figure 3: Distribution of dFAD sets from the filtered data set, by year, from 2010-2018.

Figure 4: Hierarchical cluster correlation plots of the oceanographic and vessel characteristics
variables considered for inclusion as catchability and density covariates in the suite of candidate
models.

The correlation structure among the vessel-based characteristics suggested that gross registered
tonnage, vessel length, and well capacity were highly correlated, with a moderate positive
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correlation with skiff horsepower. Net length and net depth also showed a moderate correlation;
however, inclusion of both variables was likely to result in over-parameterization. We therefore
selected vessel length and purse seine net length to represent vessel/gear characteristics
contributing to efficiency changes. For the oceanographic metrics, thermocline depth, sea surface
height, and depth of the 20◦ isotherm were highly correlated, while sea surface temperature,
ENSO, and the variance in temperatures from the upper 200 m of the water column were all
positively correlated. We selected thermocline depth to explain variability in catchability due to
compression of the upper mixed layer, and ENSO to capture broad-scale fluctuations in sea surface
temperature and the location of the convergence zone between the eastern and western waters.
The salinity variables appeared to group by themselves; however, there were reasonably strong
positive and negative correlations with the variables considered for inclusion, and therefore,
salinity metrics not included in the model evaluations.

Figures 5 and 6 illustrate the distribution of the covariates, selected for inclusion in the candidate
model suite, along with the observed relationship between yellowfin catch rates (mt/set).
Nonlinearities between net length and thermocline depth and yellowfin catch rates were
identified through exploratory analysis, therefore, we modeled these terms as splines in the
candidate model set.

Figure 5: Distribution of covariate values (top), evaluated in the CPUE models, representing ves-
sel, gear, and fishing strategy characteristics, from the filtered data set. On the bottom, yellowfin
CPUE (mt/set) is plotted against the same covariates. The points represent individual observa-
tions from 2010-2018.
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Figure 6: Distribution of environmental covariate values (top) evaluated in the CPUE models,
and yellowfin CPUE (mt/set) plotted against the covariates (bottom), from the filtered data set.
The points represent individual observations from 2010-2018.

2.3 Modeling approach

A suite of geostatistical delta generalized linear mixed models were implemented, using the VAST
package in R (Thorson et al., 2015b), and were used to model yellowfin catch rates. Geostatistical
models explicitly account for spatial and temporal autocorrelation in catch rates using smooth
functions (Thorson et al., 2015b), addressing one of the potential pitfalls of traditional delta-GLMs.
Each model component is estimated using Gaussian Markov random fields, assuming geometric
anisotropy (i.e. the degree of spatial autocorrelation can vary based on directionality of
neighboring knots) to allow for density predictions based on aggregate impacts of the
environment and biological factors; factors that may influence the distribution of a given species
as well as the catchability (Thorson, 2019b).

Quarterly yellowfin catch rates (mt/set) were modeled from 2010-2018, excluding the annual
3-month FAD closure period (July-September), using a delta-gamma spatiotemporal modeling
framework. The probability of a positive catch was assumed to have a binomial error distribution,
while we assumed a gamma error distribution for the magnitude of positive catches, as it has been
shown to outperform the lognormal distribution when the underlying error distribution is
misspecified (pers. comm J. Thorson). Specifically, the linear predictors for encounter probability
and magnitude of positive catch rates (model component, encounter probability or positive catch
rate, is denoted as m) are modeled for knot s and time step t, with the respective link functions
(i.e., logit for the encounter probability and log link for the positive catch rates), as

mi = βm(ti) + ηm(vi) + ωm(si) + εm(si, t) +

ηk∑
k=1

λkQ(i, k)
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where β is the year-quarter effect, η(vi) is a random vessel effect, ω(si) is the spatial effect, ε(si, t)
is the spatio-temporal effect, and λk represents the fixed catchability effects for Q(i, k)
catchability covariates. The spatial variation terms ω(si) were assumed to come from a Gaussian
random field, and treated as random effects, assuming a Matern covariance matrix to account for
spatial autocorrelation.

ωm ∼ MVN(0, σ2
ωmRm)

Separate decorrelation rates Rm (related to the anisotropy) were estimated for each model
component (Thorson, 2019a). The spatio-temporal random effects ε(si, t) account for the
interaction between time and the model spatial structure.

A random vessel effect was included to account for overdispersion and is assumed to follow a
Gaussian distribution with a mean of zero and estimated variance parameter. Density at each knot
in each time period d(s, t) was estimated by obtaining the product of the back-transformed linear
predictors, after dropping the catchability terms. The abundance index I(t) at time t was then
calculated as the sum of the area-weighted densities

I(t) =
Ns∑
s=1

a(s)d(s, t)

where a(s) is the area associated with knot s. Regional indices were calculated as the area in each
region associated with each knot, multiplied by the respective density; standard errors associated
with the indices are calculated internally in Template Model Builder (TMB) using the inverse
Hessian and the delta method (Thorson et al., 2016). The regional indices were estimated in terms
of abundance; these estimates were then standardized to the mean to provide relative abundance
trends over time.

2.3.1 Covariates

The catchability covariates Q(i, k) evaluated included vessel length, net length, set time (hour
before sunrise), species composition cluster, moon phase, and thermocline depth. Exploratory
analyses indicated a non-linear relationships between catch rates and set time, thermocline depth,
and net length, and therefore we evaluated the use of a zero-mean-constrained spline (Wood,
2015) to model these effects, such that the spline did not influence the model intercept (i.e. the
year-quarter effect; Figure A.2).

Lastly, we evaluated the incorporation of a spatially-varying coefficient (SVC) to explain spatial
variation in catch rates associated with ENSO (Thorson and Haltuch, 2019). During El Niño
conditions the convergence zone between the western warm pool and the cooler eastern waters is
pushed farther to the east, while in La Niña phases, the convergence zone is more to the west. As
a result, the direction and magnitude of the effect of the ENSO phase on yellowfin density
throughout the spatial domain of interest, may be highly variable. To address this source of
variability, instead of estimating a single slope parameter associated with the ENSO covariate,
SVCs were used to estimate a zero-centered spatially varying offset. The SVC is treated as a
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random effect to estimate separate slopes for every modeled location, thereby allowing a range of
density responses across space, to fluctuations in the ENSO index (Thorson, 2019c).

2.3.2 Spatial knots

Spatial locations at which the effects were estimated (i.e. the knots) were uniformly placed across
the spatial domain with a specified number of knots (Figure 7). There is a tradeoff between the
spatial resolution of the knot structure and model run time. Each additional knot adds parameters
to the models on the order of the number of time steps multiplied by the number of model
components (here, 2 components: encounter probability and magnitude of positive catches). We
selected a knot value of 150, which approximates to a knot for every 2.5◦ x 2.5◦ cell in the
extrapolation grid. The current version of VAST has the capability to perform bi-linear
interpolation of abundance between knots. This interpolation tool is reasonably fast, and can
provide improvements in the estimation in lieu of increasing the number of spatial knots.
Observed data points were assigned to the nearest knot for estimation (Figure 7).

Figure 7: Spatial knot placement (uniform) and mesh configuration used in the geostatistical
estimation model. Observation-level data points are color-coded based on the nearest knot.

2.4 Model diagnostics and selection

Competing models were evaluated using model convergence statistics, Akaike’s Information
Criterion (AIC), assessing coefficient estimates for variable selection, and comparison of similar
models with the interest in adopting the simplest model when multiple models were providing
similar results. Model diagnostics were employed to evaluate model fit and potential violation of
model assumptions, including evaluation of distributional assumptions, influence measures

15



(Bentley et al., 2012), and analysis of residuals. For comparison, the estimated mean-standardized
recruitment indices from the competing models were compared to each other, as well as to the
nominal CPUE.

2.5 Fishing efficiency

Changes in fishing efficiency under an effort-based management scheme, is often referred to as
effort creep (Pilling et al., 2016). Failing to account for effort creep can lead lead to incorrect
interpretations of trends in abundance due to potentially hyperstable catch rates. Hyperstability
refers to the situation where catch rates remain high even as the underlying abundance declines
(Harley et al., 2001). This an important concern for industrial fisheries generally, but specifically
for the tuna purse seine fisheries. Technology and use of FADs has rapidly enhanced the
sophistication of knowledge fishers have access to, and as a result, they may be better equipped to
locate and harvest tuna schools more efficiently, thereby maintaining catch rate levels while
abundance declines.

Quantifying efficiency gains and appropriately mapping those changes to fluctuations in fishing
mortality or catch rates is often difficult. Global estimates of effort creep generally range between
2 - 5% per annum (Palomares and Pauly, 2019). We have yet to develop a reliable, data-driven
metric of effort creep from the dFAD fishery, suitable for use as an effort adjustment; however,
work is ongoing to address this important knowledge gap. In the absence of such a metric, we
have applied a 2% and 5% effort correction pd, per annum, to evaluate potential changes in the
abundance index as a result. Following Palomares and Pauly (2019), the annual correction factor
Corrt, where t represents years from t = 0 (i.e. 2010), will then be applied to the adjust the
estimated index values, in each year.

Corrt = (1 − pd)t

CPUECorrt = CPUEt · Corrt

3 Results

The nominal CPUE indices have been fairly stable through time (Figure 8), with a slight decline in
Region 4 over the time series, while Regions 3 and 8 demonstrated modest increases between 2015
and 2017.
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Figure 8: Distribution of nominal yellowfin CPUE (mt/set) in the three Regions of interest (3, 4,
and 8) with the gray line representing the mean nominal CPUE (mt/set).

There was little contrast between the resulting abundance indices estimated from the competing
models (Figure 9); however, we selected a ‘preferred’ model (i.e. Model 5) based on model
selection criteria and an interest in retaining the simplest model from those deemed
indistinguishable based on the information criterion (Table 4).

Figure 9: Comparison of relative abundance indices from competingmodels alongside themean-
standardized nominal CPUE, separated by assessment region, from 2010-2018.
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Model Covariates AIC ∆ AIC
1 CL + MP + VL + s(ST) + s(NL) + s(TD) + svc(ENSO) 213735.8 7175.4
2 MP + VL + s(ST) + s(NL) + s(TD) + svc(ENSO) 213742.3 7181.9
3 MP + VL + s(ST) + s(TD) + svc(ENSO) 207896.0 1335.6
4 CL + VL + s(ST) + s(NL) + s(TD) + svc(ENSO) 206563.3 2.9
5 CL + VL + s(ST) + svc(ENSO) 206560.4 0
6 VL + s(ST) + s(NL) + s(TD) + svc(ENSO) 207913.8 1353.4
7 VL + s(ST) + s(NL)+ svc(ENSO) 207905.5 1345.1
8 VL + s(ST) + svc(ENSO) 207912.8 1352.4
9 CL + s(ST) + svc(ENSO) 206566.5 6.1
10 208048 1487.6

Table 4: Suite of model configurations evaluated, with corresponding AIC values used for model
selection. Covariates are indicated by the following: MP =moon phase; CL = species composition
cluster; VL = vessel length; ST = set time (hours before sunrise); NL = net length; TD = thermo-
cline depth; ENSO = El Niño Southern Oscillation index; and SST = sea surface temperature. An
s() around the covariate abbreviation indicates it was fitted as a spline, while svc() indicates a
spatially varying coefficient. Model 5, in bold font, was identified as the preferred model.

The preferred model included the species composition variable, vessel length, set time (hours
before sunrise), with ENSO as a spatially varying density covariate. The three regions had similar
trends in abundance through time, with Region 4 (the easternmost region) exhibiting the greatest
variability. Overall, abundance trends were fairly stable throughout the time period (Figures 10
and 11). Regions 3 and 8 both had a brief period of increased abundance from approximately
2015-2016, followed by a modest decline through 2017. In Region 4, the biomass estimates were
consistently higher than the other regions, but also more variable, with ephemeral spikes in the
index throughout the time series.
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Figure 10: Area-weighted biomass estimates (1000mt) forRegions 3, 4, and 8 of the 2017 yellowfin
tuna stock assessment.

Figure 11: Mean-standardized index estimates (solid lines with points) for Regions 3, 4, and 8 of
the 2017 yellowfin tuna stock assessment, with the gray dashed line representing the standard-
ized time series mean.

The catchability covariates were predicted to explain a combination of fisher and tuna behavior.
The species composition cluster suggested, naturally, that the ‘yellowfin’ cluster (cluster 2)
produced higher yellowfin catch rates. This variable was included to control for the multi-species
aspect of this fishery and for the fact that fishers do not often know the species composition of the
school prior to setting the net. Vessel length, although restricted to the 50-80 m size range,
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remained an important covariate, although with a modest effect. The majority of the vessels
participating in the purse seine fishery fall within the 50-80 m range, but even so, there has been a
gradual increase in vessel size within this size class (Vidal et al., 2019). Set time was included in
the model to capture variability in catch rates associated with the diurnal tuna behavior. The main
distribution of set times spanned from approximately three hours before to two hours after
sunrise, with the peak just before the sun rises over the horizon. We included sets that spanned +/-
five hours from sunrise, thereby excluding afternoon sets. Catch rates were generally highest
pre-dawn, and declined into the morning hours. The inclusion of the ENSO effect suggested a
better fit to the data, although the spatial variability was relatively small (σ = 0.1). Across the
entire spatial domain there was generally little contrast in the effect of ENSO; however, this
variable is capturing variability in the regions where ENSO phase shifts have important effects on
habitat, and therefore, it was retained as a spatially-varying covariate.

Figure 12: Predicted density (log mt/km2) throughout the spatial domain for the time series,
2010-2018.

Model diagnostics did not suggest any major issues for the model fit. The q-q plot (Figure A.3)
demonstrated reasonable adherence to the 1:1 line, without systematic or large departures,
suggesting reasonable assumptions with respect to the error distributions. The distribution of
mean residuals across the extrapolation grid, for both the encounter probability (Figure A.4) and
the positive catch rate (Figure A.5) components, suggested a random distribution of positive and
negative residuals, without any strong patterning through time. In addition, no strong trends in
the influence measures were detected for the covariates included (Figure A.3).

We have yet to develop a reliable metric of effort creep, and given the potential impact efficiency
changes might have on the index over time (e.g. leading to hyperstability), we have implemented
general effort adjustments of 2 and 5% for reference. The departures from the estimated index
increase through time (Figure 13), but the 2% effort adjustment results in indices which are

20



contained within the confidence intervals for the estimated indices; however the 5% adjustment
falls below the lower confidence bounds for the most recent years.

Figure 13: Illustration of the influence a 2 and 5% per annum increase in effective effort was
predicted to have on the estimated abundance indices.

4 Discussion

Understanding recruitment dynamics for yellowfin is important to inform the stock assessment
model as well as for general surveillance of the population. In the WCPO, direct estimates of
yellowfin recruitment are lacking, and therefore, recruitment has traditionally been estimated
internally by the stock assessment models (Tremblay-Boyer et al., 2017). Here, we have presented
a CPUE standardization model for the juvenile component of the fishery to better inform the
model on the recruitment process. The index alone may not directly address recruitment due to
the potential mixture of age classes in the catches; however the index will be evaluated in concert
with gear specific selectivities and size-composition data to disentangle the juvenile signal from
the entirety of the catches to produce recruitment estimates.

Using observer collected data from a time period with 100% coverage enabled an analysis with
comprehensive data on purse seine activity in the region. The estimated abundance indices were
relatively stable over the time series evaluated, in contrast to the recruitment estimates from the
last assessment, which showed high inter-annual variability, especially in Region 3. The estimated
standardized trends are plausible, as biomass was estimated to be fairly stable between 2010 and
2015 (Tremblay-Boyer et al., 2017); however the presence of multiple cohorts in the catches could
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smooth through some of the variability associated with individual recruitment events. Spawning
behavior of yellowfin further complicates recruitment estimation because they do not adhere to a
discrete spawning season, but instead have been found actively spawning throughout the year,
when conditions are favorable (Itano, 2000; Sun et al., 2005). Therefore, identifying discrete
cohorts remains a challenge.

For this analysis, we developed and evaluated a suite of variables predicted to influence yellowfin
catch rates to include in the standardization models, and yet, most were not highly influential.
However, we suspect that the flexibility of the model to implicitly capture variation in space and
time is explaining some of the variability that might otherwise be explicitly explained by the
covariates (e.g. Hodges and Reich, 2010). Of course, there is the potential for influential, but
unknown (either unidentified or identified by lacking adequate data), factors to be informing
fisher decision-making processes and ultimately catch rates. Fishing technologies and strategies
are continually evolving to improve efficiency and maximize profits, and as a result, fishers are
theoretically able to make more informed decisions about where and when to fish. Improving our
understanding of these decision points is paramount for analyzing and interpreting CPUE.

Oceanographic conditions throughout the equatorial region tend to be fairly homogeneous
compared to the more temperate regions of the Pacific. Even so, there are important complexities
associated with the regional currents and countercurrents, and interactions with broad climatic
phenomena (e.g. Yen et al., 2017). Demographic processes in marine fishes can be strongly
influenced by environmental variability at various life stages from egg through the adult phase,
especially at the limits of a species’ geographic range (Myers, 1998). Because we do not have
reliable information on earlier life stages, we have used recruitment to the fishery (approximately
age-1) to develop a recruitment index. Therefore, fluctuations in the index reflect the combined
mortality from various earlier life stages. The environmental covariates included here were
largely to account for changes in catchability (i.e. thermocline depth) and relative density at the
time of the fishing activity (i.e. ENSO), but further work to better understand the mechanisms
underlying recruitment success from hatch to capture in the fishery is needed.

Given the magnitude of the purse seine fishery, catch and effort data are likely to contain valuable
information regarding recruitment trends for yellowfin tuna; however, catch trends may not be
able to tell the whole story. To buffer against uncertainty, we recommend the development of
complementary approaches to better capture trends in recruitment variability. Specifically,
prioritizing validation of an aging method for yellowfin to build confidence in the age
composition estimates in the WCPO and to enable production aging to shed light on changes in
the age structure of the population over time. It may also be possible to develop recruitment
proxies from diet analyses; data for which are readily available from work done by the Pacific
Community (SPC). In addition, future work could focus on incorporating multiple data sources to
further validate the signals detected from the CPUE analysis. For example, matching cohorts from
longline and purse seine catches (using length frequency data) and further exploring correlation
between the two as well as their relationships with CPUE and variability in the environment.

Lastly, we recognize the role effort creep plays in the purse seine fishery, and specifically the
impacts associated with drifting FADs, cannot be ignored. Hyperstability is one of the main
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concerns with using purse seine catch and effort to inform the assessment process, and here, a
hyperstable CPUE index could mask variability in abundance associated with strong cohorts,
thereby dampening the signal of interest. This analysis has not explicitly addressed effort creep,
but doing so remains a top priority moving forward. There is ongoing work to develop a fisher
survey to better understand changes in fishing strategy and efficiency through time, to quantify
the influence of these changes on catch rates, and address factors influencing the decision making
processes (see Wichman et al., 2020). In addition, we are exploring the impacts of FAD density and
FAD technologies on catch rates. Advancing our understanding of changes in fishing mortality
over time is paramount for the reliability of purse seine based abundance indices. Here, we have
demonstrated an approach, using purse seine dFAD catch and effort information, to characterize
recruitment trends in yellowfin, but the intention is to extend this modeling framework to better
characterize skipjack abundance trends as well (Vidal et al., 2020a).
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Appendix

A.1 Supplemental figures

Figure A.1: Vessel participation history and relative contribution to annual catches. The blue
symbols indicate when a vessel entered the fishery, and the red colored symbols indicate the
most recent observation from that vessel. Each line on the y-axis represents a unique vessel.
The symbol sizes are scaled by the individual vessel’s relative contribution to total catches in
each year.
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Figure A.2: Illustration of the nonlinear relationship between yellowfin CPUE and the catchabil-
ity covariates (set time, net length, and thermocline depth), fitted using a zero-mean-constrained
spline with k knots.

Figure A.3: Q-Q plot presented as a diagnostic measure of model fit for the positive catch com-
ponent (left), and influence plots for the catchability covariates (right).

29



Figure A.4: Mean Pearson residuals for the encounter probability, by extrapolation grid cell.

Figure A.5: Mean Pearson residuals for the positive catch rates, by extrapolation grid cell.
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Figure A.6: Distribution of observer reported drifting FAD set times, relative to sunrise, prior to
data filtering.

FigureA.7: Proportion of catch sizes, binned to 20mt, associatedwith the threemain tuna species
for each of the two species composition clusters used in the models (left). On the right, is the ob-
served frequency of the proportion of the dFAD set catches attributed to skipjack. These figures
highlight the differences in catch composition captured by the clustering approach. Cluster 1 is
therefore, the cluster that is dominated by skipjack tuna, whereas cluster 2 tends to have rela-
tively higher proportions of yellowfin and bigeye.
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Figure A.8: Distribution of random spatio-temporal density effects, drawn from a Markov Gaus-
sian random field with a mean of zero.
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A.2 Logbook indices

For comparison, the logbook data were fitted with a similar model structure, to compare to the
observer generated indices, but for a longer time series (2000-2018). The model included, lunar
phase, vessel length, and nonlinear terms for set time and thermocline depth as catchability
covariates, with a spatially varying coefficient for the ENSO effect on density.

Figure A.9: Predicted abundance index using logbook data from 2000-2018. The model structure
was similar, except that net length was unavailable and was therefore not included.
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Figure A.10: Comparison of mean-standardized abundance indices from competing models es-
timated from observer data combined with the indices estimated from the same model, but us-
ing logsheet data (dark dashed line), separated by assessment region, from 2000-2018. The thin
dashed line is the nominal CPUE (mean mt/set) from the observer data.
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