

TECHNICAL AND COMPLIANCE COMMITTEE Fifteenth Regular Session 25 September – 1 October 2019 Pohnpei, Federated States of Micronesia

TRENDS IN THE SOUTH PACIFIC ALBACORE LONGLINE

AND TROLL FISHERIES

WCPFC-TCC15-2019-IP10¹ 18 July 2019

Paper by SPC-OFP and Secretariat

¹ This version was posted for SC15 Meeting on 18 July 2019 as WCPFC-SC15-2018/SA WP08

SCIENTIFIC COMMITTEE FIFTEENTH REGULAR SESSION

Pohnpei, Federated States of Micronesia 12-20 August 2019

TRENDS IN THE SOUTH PACIFIC ALBACORE LONGLINE AND TROLL FISHERIES

WCPFC-SC15-2019/SA-WP-08

Stephen Brouwer¹, Graham Pilling¹, Peter Williams¹ and the WCPFC Secretariat

¹ Oceanic Fisheries Programme, The Pacific Community (SPC)

Contents

1	Executive Summary	1
2	Introduction	1
3	Patterns of longline and troll fishing 3.1 Catch 3.2 Effort 3.3 Catch per unit effort	2 2 2 3
4	Transshipment information	3
5	Albacore stock status	3
Re	eferences	5
Ta	bles	6
Fi	gures	9
Aj	opendix 1: Summaries of south Pacific albacore longline and troll catch, by flag/geograp region $\$	hic 19
A	opendix 2: Notes on the time series of longline VMS information in the South Pacific	25
Aj	opendix 3: High Seas transshipment data for albacore based on CMM 2009-06 report- ing	27

1 Executive Summary

This paper presents a compendium of fishery indicators for south Pacific albacore tuna, as requested at previous WCPFC-related meetings. These indicators include: total catch; catch by gear; and longline effort and nominal troll and longline CPUE trends, along with their spatial patterns. Commentary provided includes comparisons of 2018 values to 2017 and to the average over 2013-2017. Information provided includes data loaded into databases as of 16^{th} July 2019. Note that catch levels and their distribution amongst areas may change as more data become available. This paper complements the information provided by Brouwer et al. (2019) that summarises the latest trends for the main target species for the fisheries of the Western and Central Pacific Fisheries Commmission (WCPFC).

Transshipment data are available over the period from the inception of transshipment reporting (July 2010) to March 2019. Data presented represent high seas transshipments only; they do not include in-port or in-zone transshipments. Monthly reported transshipment levels fluctuate notably, and may reflect logistical/operational factors rather than fishing activity. There is a notable peak in transshipment activity in October 2017 (4,186 mt) of which 57% was reported by China (2,404 mt), and 27% by Vanuatu (1,122 mt) fleets. It should be noted that transshipment levels are unlikely to be fully reported for the most recent 18 months.

The average stock status in 2016 (the last year of the assessment) across the 72 model runs was $SB_{latest}/SB_{F=0} = 0.52$, below the interim target reference point $(SB_{latest}/SB_{F=0} = 0.56)$ established by the WCPFC in 2018 (WCPFC, 2018). Due to the complex interactions between the major species-specific fisheries, it is difficult to correctly interpret the stock status-related implications from the trends in any indicators in isolation from other data sets and a population dynamics model. Therefore, we summarise the stock status from the most recent assessment (2018), and update an analysis of the potential longterm stock consequences of recent fishing patterns on the south Pacific albacore stock relative to the agreed biomass limit reference point assuming 2018 status quo effort. This analysis uses stochastic stock projections and incorporates the recommendations on inclusion of uncertainty from WCPFC-SC14. Based upon the 2018 stock assessment, assuming 2018 catch levels through 2018-2035, the main difference from previous reports is that, provisional catch in 2018 was lower than levels seen in 2013 and 2014. The stock is projected to decline from 2016 (SB_{latest}/SB_{F=0} = 0.52) to SB₂₀₃₅/SB_{F=0} = 0.39 at the end of the projection period. When compared to the biomass Limit Reference Point (SB_{LRP}) the risk of $SB_{2035}/SB_{F=0} < SB_{LRP}$ is 23%. Overall, vulnerable biomass (biomass vulnerable to longline fisheries; a CPUE proxy) is estimated to decrease by 36% relative to 2013 levels (a year where some CCMs considered the longline fishery to have an adequate catch rate to meet economic fishery objectives) (SPC-OFP, 2018).

2 Introduction

At the 7th Technical and Compliance Committee, some members requested a paper on south Pacific albacore be prepared by the Western and Central Pacific Fisheries Commission (WCPFC) Secretariat. That request indicated the paper should contain all available catch and transshipment data available, and should highlight trends. The paper was first prepared by the Secretariat for WCPFC8 in March 2012. It has since been updated frequently, taking into consideration further requests from members.

This paper presents trends in catch, effort and Catch Per Unit Effort (CPUE) both spatially and temporally for the south Pacific albacore fishery. In addition, information on transshipment patterns are presented, consistent with WCPFC and SPC-OFP (2013). Following the request for further information to assist in the interpretation of key observations, and noting that it is difficult to correctly interpret the stock status-related implications of trends in any indicators in isolation of other data sets, and population dynamics models, the potential consequences of recent fishing levels for future south Pacific albacore stock status are evaluated using stochastic projections.

The analyses presented are based on data available to SPC as of 16^{th} July 2019. The overall catch, and its distribution amongst spatial areas, may change as more data become available. Please note that the figures may include or exclude specific fleets that are included in summaries made for other purposes (e.g. CMM tables) and therefore the reported values (catch, effort, CPUE, etc.) may not be identical to those presented in other documents. Additional information by latitudinal zone, requested at WCPFC9, are posted as Microsoft Excel files annexed to this paper (SC15-SA-WP-08a and SC15-SA-WP-08b). The vessel number data are for south of 20° S.

3 Patterns of longline and troll fishing

Two groups of fleets exploit south Pacific albacore, longline and troll vessels. In this section we examine trends in their catch, effort and catch rate (CPUE). Catch and effort information come primarily from logsheet returns, or for the high seas from the provision of aggregate data from distant water fishing nations.

3.1 Catch

Annual catch estimates for albacore in the south Pacific (south of the equator) as a whole peaked in 2017 at 95,463 mt (all gears) (Figure 1). Catch by longliners represented 96% of the catch weight in 2018 at 69,128 mt. The 2018 longline catch was 26% lower than 2017. Provisional other catch (2,731 mt - the majority being being troll catch) was 7% higher than 2017. The longline catch in the EPO south of the equator contributed 27% of the total catch in 2016, but 15% in 2017, however, data from one large fleet are currently missing for 2017 (Williams, 2019 and Williams and Reid, 2019).

By comparison, the 2018 total albacore catch within the southern part of the WCP-CA¹ Table 1) was 64,900 mt and the longline catch was 62,153 mt. High seas longline catch estimates represent 46% of the 2018 total, and have ranged from 31-51% of the total over the last 10 years. By flag (or attributed nationality based on charter agreements), China and Chinese Taipei had the highest catch estimates of south Pacific albacore in 2018 (21,175 mt and 9,318 mt respectively), representing 49% of the total catch (Table A1-1), with 67% of their catch was taken on the high seas (Table A1-2).

Four flag states reported troll catch within the WCP-CA during the period 2000 to 2018, namely Canada, the Cook Islands, USA and New Zealand (Table A1-3) totalling 2,747 mt. Troll activity has been reported only in the New Zealand EEZ and on the high seas in 2018 (Table 2). Catch estimates for 2018 were 475 mt for the high seas and 2,272 mt for the New Zealand EEZ. The total troll catch in 2018 was 11% higher than the 2017 catch.

The spatial pattern of south Pacific albacore catch over the long-term (1950-2013), the last 5 years (2014-2018) and 2018 alone, are shown in Figure 2. In recent years, catch has been concentrated in the 10-20°S latitudinal band. Note that while 2018 estimates remain provisional, the geographic distribution of catch is generally consistent with that seen in recent years, however, in the most recent years there is a large increase in catch between $10-20^{\circ}$ S around 170° W.

3.2 Effort

It is challenging to identify the specific species being targeted by longline vessels, particularly within the aggregate data received from particular fleets fishing on the high seas. To more directly relate the patterns seen in effort to the declared south Pacific albacore catch, we have evaluated fishing effort south of 10° S to approximate south Pacific albacore targeting (noting that this will include longline effort targeting swordfish) and to attempt to exclude tropical longline fishery effort.

Raised effort data for the southern WCP-CA south of 10°S were available up to 2018 (Figure 3). We note there is considerable uncertainty in 2018 effort estimates. The number of deployed hooks in 2018 within the WCP-CA south of 10°S was 11% lower than in 2017, and 22% lower than the high seen in 2012. The estimated longline effort in this region was estimated at 249 million hooks in 2018.

Effort data from VMS provides the most 'up to date' information available, given that logsheet effort for recent years may be incomplete, and hence the uncertainty in raised annual logsheet effort estimates for 2018 is high. VMS data analysed represents days-at-sea and includes fishing and transit activity, but excludes data close to port. As for the aggregate longline data, it does not allow information on the species targeted by vessels during fishing to be assessed. In turn, some trends over time may be influenced by increased coverage of VMS across longline vessels in the south Pacific, while data for certain EEZs may be incomplete or non-existent. A list of notes on the VMS data and a table of effort by high seas area are provided in Appendix 2. To overcome the absence of VMS data for some EEZs, data were augmented with logsheet information in these locations.

¹Note that these annual catch estimate-based tables approximate the southern area of the WCP-CA as far as possible, given that some EEZs and high seas area span the equator.

Effort south of 10°S (VMS days-at-sea, augmented by logsheet days) both within EEZs and on the high seas generally increased through to 2013 but has declined slightly since then. Around 25% of the VMS days occurred within the high seas in 2018 (Table 3). Overall effort has increased in the EEZs and decreased on the high seas (Table 3). Of the VMS days in 2018 within the international waters 21% was in region I5 east of the Line Islands and French Polynesia, and 53% from region north and northeast of New Zealand (I7) (Figure 4; Figure A2-1; Table A2-1).

3.3 Catch per unit effort

Figure 5 presents nominal longline south Pacific albacore CPUE series by key fleets south of 10° south (note, the values presented in Brouwer et al. (2019) are south of the equator and will therefore differ from those presented here), some key changes in CPUE in the recent periods were:

- Japanese longline CPUE in 2018 (11.3 Kg per 100 hooks) was a 26% decrease on 2017, the 2013-2017 average was 14.48 Kg per 100 hooks;
- Fiji longline CPUE in 2018 (18.56 Kg per 100 hooks) was a 11% decrease on 2017, the 2013-2017 average was 18.03 Kg per 100 hooks;
- Chinese longline CPUE in 2018 (27.7 Kg per 100 hooks) was a 13% decrease on 2017, the 2013-2017 average was 24.35 Kg per 100 hooks;
- Chinese Taipei longline CPUE in 2018 (30.28 Kg per 100 hooks) was a 10% increase on 2017, the 2013-2017 average was 24.77 Kg per 100 hooks.

Examining longer-term trends, the average nominal CPUE for the Fiji fleet was 23.67 Kg per 100 hooks between 1991 and 2000, while that for the Chinese Taipei fleet was 34.85 Kg per 100 hooks. In contrast, the Japanese fleet averaged 17.95 Kg per 100 hooks over that time.

The relative spatial pattern of CPUE is presented in Figure 6 for two time periods, and for 2018. In the period 1950-2000, catch rates were relatively high across much of the southern WCP-CA, in particular within high seas areas and the EEZs of New Caledonia, Vanuatu and Tonga. Catch rates in the recent period (2001-2018) are generally lower across the region. It is notable that increases in effort within particular $5^{\circ}x5^{\circ}$ squares are generally matched by declines in CPUE. The CPUE in the high seas east of New Zealand was high in 2018.

Figure 7 presents nominal south Pacific albacore CPUE series for two troll fleets. The CPUE of the US fleet generally declined over the period 1987 to 2006, with catch rates in the most recent years of activity being comparable to that in the mid-2000s. By comparison, the nominal CPUE of the New Zealand fleet has generally been lower, but relatively stable.

4 Transshipment information

High seas transshipment data are available from July 2010 to March 2019; no in-port or in-zone transshipment data are presented. Fluctuations in reported transshipments may reflect logistical/operational factors rather than fishing activity. It is noted that historically south Pacific albacore would have been offloaded directly to canneries (e.g. Pago Pago, American Samoa, or Levuka, Fiji) rather than being transshipped on the high seas. There is a notable peak in transshipment activity in September of each year while Vanuatu has had the highest transhipment volumes in the past, and the highest peak in the time series was in October 2017 (4,186 mt) (Figure 8), of which 2,403 mt was by China and 1,122 mt Vanuatu. Further transshipment information by flag and month is presented in Appendix 3. It should be noted that transshipment levels are unlikely to be fully reported for the most recent 18 months. Transshipment data for 2018 to 2019 should, therefore, be considered preliminary and subject to change.

5 Albacore stock status

The most recent south Pacific albacore stock assessment was conducted in 2018 (Tremblay-Boyer et al., 2018) and used data up until the end of 2016. SC14 provided advice to the Commission based upon the the structural uncertainty grid that was used to characterize uncertainty in the assessment. This included

different levels of natural mortality, stock recruitment relationship steepness, and weighting of the input length data. Estimates are presented in Table 5, and the Majuro plot in Figure 9.

As noted in previous papers (e.g. Harley and Williams 2013), it is difficult to correctly interpret the stock status-related implications of trends in any indicators in isolation of other data sets and a population dynamics model. To examine the potential consequences of recent fishing levels relative to the agreed biomass limit reference point for south Pacific albacore (20% SB_{recent}/SB_{F=0}), stochastic 20-year effort-based projections were performed under different assumptions of population dynamics (defined by 72 stock assessment runs from the 2018 Multifan-CL stock assessment, as selected by SC14 to present key uncertainties within SC14 advice), and future conditions (variability in future recruitment around the stock-recruitment relationship), consistent with the recommendations on inclusion of uncertainty within projections from WCPFC-SC9 and in Berger et al. (2013).

There had been small reductions in southern longline catch in 2018 compared to 2017 (Figure 3). We therefore update the status quo projection assuming future southern longline and troll fishery catch would continue into the future at levels equal to those seen in 2018 (based on the information available to SPC as at 6^{th} June 2019). Potential future adult (spawning) biomass levels relative to unfished levels were examined, and the probability that the south Pacific albacore stock may fall below the biomass Limit Reference Point (SB_{LRP}) was calculated (Figure 10).

Across the 72 stock assessment models used within the analysis, the average stock status in 2016 (the last year of the assessment) was $SB_{current}/SB_{F=0} = 0.52$, below the interim target reference point $(SB_{recent}/SB_{F=0} = 0.56)$ established by the WCPFC in 2018 (WCPFC, 2018). If 2018 catch levels continue into the future, however, the stock is predicted to continue to decline on average, falling to $SB/SB_{F=0} = 0.39$ in 2035, this is a slight improvement on previous estimates. The main difference from previous reports is that, as provisional effort in 2018 was lower than levels seen in 2013 and 2014 (Figure 3). When compared to the biomass Limit Reference Point (SB_{LRP}) the risk of $SB_{2035}/SB_{F=0} < SB_{LRP}$ is 23%. Overall, vulnerable biomass (biomass vulnerable to longline fisheries; a CPUE proxy) is estimated to decrease by 36% relative to 2013 levels (a year where some CCMs considered the longline fishery to have an adequate catch rate to meet economic fishery objectives) (SPC-OFP, 2018).

Acknowledgments

The authors would like to thank John Hampton and Sam McKechnie for useful comments on earlier drafts of this paper.

References

- Berger, A., Pilling, G., Kirchner, C., and Harley, S. (2013). Proposed F-based limit reference points for bigeye, yellowfin and south Pacific albacore tuna. WCPFC-SC9-2013/MI-WP-03.
- Brouwer, S., Pilling, G., Williams, P., and Hampton, J. (2018). A compendium of fisheries indicators for tuna stocks. Technical Report WCPFC-SC14-2018/SA-WP-02.
- Brouwer, S., Pilling, G., Williams, P., and Hampton, J. (2019). A compendium of fisheries indicators for tuna stocks. Technical Report WCPFC-SC15-2019/SA-WP-01, Pohnpei, Federated States of Micronesia, 12 - 20 August 2019.
- Hampton, J. and Williams, P. (2008). Compendium of fisheries indicators for target tuna species. WCPFC-SC4-2008/SA-WP-9 Rev. 1.
- Harley, S. and Williams, P. (2013). A compendium of fisheries indicators for bigeye, skipjack, yellowfin, and south Pacific albacore tunas. WCPFC-SC9-2013/SA-WP-06.
- Harley, S., Williams, P., and Hampton, J. (2012). A compendium of fisheries indicators for bigeye, skipjack, yellowfin, and south Pacific albacore tunas and south Pacific swordfish. WCPFC-SC8-2012/SA-WP-02.
- Harley, S. J., Davies, N., Tremblay-Boyer, L., Hampton, J., and McKechnie, S. (2015). Stock assessment of south Pacific albacore tuna. WCPFC-SC11-2015/SA-WP-06, Pohnpei, Federated States of Micronesia, 5–13 August 2015.
- Pilling, G., Williams, P., Brouwer, S., and Hampton, J. (2017). A compendium of fisheries indicators for tuna stocks. Technical Report WCPFC-SC13-2017/SA-WP-06.
- Pilling, G., Williams, P., and WCPFC Secretariat (2016). Trends in the south Pacific albacore longline and troll fisheries. Technical Report WCPFC-SC12-2016/SA-WP-06, Bali, Indonesia, 3-11 August 2016.
- SPC (2013). Potential target reference points that consider profitability of fleets: south Pacific albacore longlining as an example. WCPFC-MOW2-WP-01.
- SPC-OFP (2018). Potential target reference points for south pacific albacore. Technical Report WCPFC15-2018-10 rev1, Fifteenth regular session, Honolulu, Hawaii, USA. 10-14 December 2018.
- SPC-OFP and WCPFC (2015). Trends in the south Pacific albacore longline and troll fisheries. WCPFC12-2015-14.
- Tremblay-Boyer, L., Hampton, J., McKechnie, S., and Pilling, G. (2018). Stock assessment of south Pacific albacore tuna in the WCPO. Technical Report WCPFC-SC14-SA-WP-05.
- Vincent, M., Pilling, G., and Hampton, J. (2018). Incorporation of updated growth information within the 2017 WCPO bigeye stock assessment grid, and examination of the sensitivity of estimates to alternative model spatial structures. Technical Report WCPFC-SC14-2018/ SA-WP-03.
- WCPFC (2018). Fifteenth regular session of the commission summary report. Technical report, The Commission for the Conservation and Management of Highly Migratory Fish Stocks in the Western and Central Pacific Ocean, Fifteenth Regular Session of the Commission Honolulu, Hawaii, USA. 10-14 December 2018.
- WCPFC and SPC-OFP (2013). South Pacific albacore fishery. WCPFC10-2013-IP02.
- Williams, P. (2019). Scientific Data Available to the Western and Central Pacific Fisheries Commission. Technical Report WCPFC-SC15-2019/ST-WP-01.
- Williams, P. and Reid, C. (2019). Overview of Tuna Fisheries in the Western and Central Pacific Ocean, including Economic Conditions - 2018. Technical Report WCPFC-SC15-2019/GN-WP-01.

Tables

Table 1: Annual southern WCP-CA albacore longline catch estimates (excluding archipelagic waters) by EEZ and High Seas, for the most recent 10 years. Note: Available operational and aggregate logsheet data raised to annual catch estimates. EEZ are approximate 200-mile boundaries; High seas is the high seas in the WCPFC Convention Area, south of the equator. Allocation of flag catch to EEZ is approximate due to the lack of operational logsheet data in some cases.

EEZ	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
American Samoa	4,667	2,830	3,188	2,833	1,782	2,410	1,764	1,376	1,760	1,511	1,380	1,427
Australia	1,867	$1,\!256$	1,471	706	627	655	708	656	911	1,007	803	732
Cook Islands	2,999	$2,\!467$	$4,\!643$	4,861	$5,\!584$	$10,\!475$	5,989	4,484	4,556	$3,\!178$	3,328	$3,\!804$
Fiji	$3,\!998$	$4,\!520$	$5,\!609$	5,744	$4,\!156$	4,275	$3,\!642$	3,927	5,837	4,933	$5,\!874$	$5,\!633$
High seas	$16,\!276$	$23,\!030$	30,260	$36,\!870$	22,922	29,567	29,371	20,298	20,869	16,748	$34,\!675$	$28,\!654$
Jarvis (USA)	0	0	0	0	0	0	0	0	0	0	0	0
Kiribati	675	360	$1,\!125$	1,272	550	$1,\!240$	822	$1,\!253$	2,588	4,760	332	69
Matthew and Hunter	6	2	24	15	7	10	0	0	2	1	5	1
New Caledonia	1,312	$1,\!484$	$1,\!611$	1,923	1,732	1,700	1,712	1,624	1,569	1,735	1,718	1,742
Niue	216	337	241	196	0	0	362	208	206	92	13	414
New Zealand	277	382	422	460	418	266	302	311	223	233	181	239
French Polynesia	3,924	3,060	3,560	$3,\!482$	3,223	3,591	$3,\!495$	3,743	3,392	3,243	2,127	3,074
PNG	1,919	507	864	795	294	801	237	308	459	$1,\!149$	$1,\!680$	894
Solomon Islands	5,035	$6,\!637$	10,112	$7,\!279$	6,505	8,126	8,999	$14,\!159$	$10,\!870$	3,768	5,758	7,362
Tokelau	0	144	0	0	108	254	0	8	$1,\!446$	1,962	867	536
Tonga	354	220	124	57	36	760	1,469	264	710	1,189	627	719
Tuvalu	459	159	351	674	459	918	$1,\!478$	489	427	1,545	1,418	940
Vanuatu	5,065	$5,\!474$	$5,\!492$	2,935	6,143	4,323	6,899	$5,\!475$	$4,\!490$	6,816	8,492	4,396
Wallis and Futuna	0	0	0	0	3	0	0	0	0	0	0	0
Samoa	$3,\!113$	2,342	2,816	2,529	1,415	2,037	$1,\!640$	800	840	946	2,339	1,517
Total	$52,\!162$	55,211	71,913	$72,\!631$	$55,\!964$	$71,\!408$	68,889	$59,\!383$	$61,\!155$	$54,\!816$	$71,\!617$	$62,\!153$
EEZ Percent	69	58	58	49	59	59	57	66	66	69	52	54
HS percent	31	42	42	51	41	41	43	34	34	31	48	46

Table 2: Annual southern WCP-CA albacore troll catch estimates by EEZ and High Seas, for the most recent 10 years. Note: Available operational and aggregate logsheet data raised to annual catch estimates. EEZ are approximate 200-mile boundaries (excluding archipelagic waters); High seas is the high seas in the WCPFC Convention Area, south of the equator.

EEZ	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
High seas	352	151	237	307	472	235	390	466	177	166	519	475
New Zealand	1,736	3,352	1,794	1,832	2,787	2,727	2,836	1,937	$2,\!425$	1,969	$1,\!959$	2,272
Total	2,088	$3,\!503$	2,031	2,139	$3,\!259$	2,962	3,226	2,403	$2,\!602$	2,135	$2,\!478$	2,747
EEZ Percent	83	96	88	86	86	92	88	81	93	92	79	83
HS percent	17	4	12	14	14	8	12	19	7	8	21	17

Table 3: Total VMS days-at-sea (augmented by logsheet information) by year and geographic area in the WCP-CA south of 10°S.

	2012	2013	2014	2015	2016	2017	2018
EEZ	$77,\!354$	79,776	66,705	67,744	$73,\!596$	74,235	$70,\!467$
High seas	$23,\!178$	31,795	27,197	$23,\!540$	21,014	26,278	$23,\!289$
Total	100,532	$111,\!571$	$93,\!902$	91,284	$94,\!610$	100,513	93,756
Percent EEZ	77	72	71	74	78	74	75
Percent High seas	23	28	29	26	22	26	25

Year	Annual total	Monthly
2010	4 091	
2010	9.454	788
2012	5.487	457
2013	9,321	777
2014	9,583	799
2015	9,943	829
2016	18,597	1,550
2017	18,193	1,516
2018	23,168	1,931
2019	4,830	403

Table 4: Annual total and monthly average transshipment in mt (July 2010 to April 2019).

Table 5: Estimates of reference points and stock status from the last (2018) south Pacific albacore tuna stock assessment (southern WCPFC region only), based upon 72 model runs used to capture uncertainty (10^{th} percentile, median and 90^{th} percentile) recent refers to 2013-2016 (Tremblay-Boyer et al. 2018).

Management	10^{th} percentile	Grid median	90 th percentile
quantity			
MSY (mt)	70,856	98,080	130,220
$SB_{latest}/SB_{F=0}$	0.37	0.52	0.69
$SB_{recent}/SB_{F=0}$	0.37	0.52	0.63
SB_{recent}/SB_{MSY}	1.96	3.3	6.56
SB_{MSY}	39,872	$68,\!650$	100,773
$SB_{F=0}$	407,792	462,633	$534,\!040$
$\mathbf{F}_{recent}/\mathbf{F}_{MSY}$	0.08	0.2	0.41

Figures

Figure 1: South Pacific albacore catch by gear (total south Pacific Ocean, including archipelagic waters).

Figure 2: Albacore tuna catch distribution by gear type and 5x5 degree region in the south Pacific ocean for the period 1950-2013 (top), 2014 -2018 (middle) and 2018 (bottom). Circle size represents total catch volume with maximum circle size presented in the legends.

Longline effort (hooks) south of 10°S in the WCP_CA

Figure 3: Temporal trends in effort (millions of hooks) in the southern longline fishery (WCP-CA south of 10° S).

Figure 4: Longline VMS days-at-sea (augmented by logsheets) within the southern WCP-CA at $1^{\circ}x1^{\circ}$ south of $10^{\circ}S$. Maximum circle size = 1,190 days.

Figure 5: Trends in the nominal CPUE (Kg per 100 hooks) over time for key fleets in the southern WCP-CA south of 10° S.

Figure 6: Albacore tuna longline CPUE distribution for the period 1950-2000 (top), 2001-2017 (middle) and 2018 (bottom). CPUE (kg/100 hooks) for a given $5^{\circ}x5^{\circ}$ square is indicated by the colour of the circle, while the relative size of the circle give an indication of the underlying effort over the period (millions of hooks). Note the change in scales between plots.

Troll (1982-2018)

Figure 7: Trends in troll CPUE (albacore mt/day) over time for two troll fleets.

Year-month

Year-month

Figure 8: Reported transshipment (mt) by flag and month for 2012 to 2015 (top) and 2016 to 2019 - bottom). Source: WCPFC Transshipment Events Database (7 June 2019).

Figure 9: Assessed South Pacific albacore stock status relative to $SB_{F=0}$ (x-axis) and F_{MSY} (y-axis). The red zone represents spawning potential levels lower than the agreed LRP which is marked with the solid black line $(0.2SB_{F=0})$. The orange region is for fishing mortality greater than F_{MSY} (F=F_{MSY}; marked with the black dashed line). The green point is the stock status in the terminal year (2016) for the diagnostic case run and the lightgreen points indicate the stock status from other runs in the structural uncertainty grid. The green dashed line represents the WCPFC agreed target reference point (SB/SB_{F=0} = 0.56)

Figure 10: Stochastic projections of adult stock status under 2018 longline and troll effort levels. The limit reference point $(20\% \text{ SB}_{F=0})$ is indicated by horizontal dashed red line and the target reference point $(56\% \text{ SB}_{F=0})$ is indicated by horizontal dashed green line. Note: uncertainty after 2016 represents both structural uncertainty and stochastic recruitment (7200 simulation runs).

Appendix 1: Summaries of south Pacific albacore longline and troll catch, by flag/geographic region

Table A1-1: Annual southern WCP-CA albacore longline catch estimates by Vessel Nation, 2002 - 2018. Note: Available operational and aggregate logsheet data raised to annual catch estimates (ACE). Differences in annual totals between this table and Table 1 result from rounding errors. Southern WCP-CA approximated - some EEZ and high seas areas span the equator.

Flag	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
Australia	553	490	667	743	2,591	1,925	1,277	1,523	745	653	709	773	737	949	1,101	831	752
Belize	$1,\!467$	885	353	7	0	164	7	26	10	105	32	0	0	0	0	0	0
Cook Islands	490	1,358	1,869	2,371	2,223	$2,\!644$	2,224	$1,\!551$	2,423	2,182	2,757	$1,\!354$	1,186	1,167	1,265	2,567	$1,\!635$
China	2,704	6,002	5,828	4,026	7,111	5,416	$15,\!058$	20,093	12,926	$11,\!847$	24,523	23,788	$14,\!476$	$14,\!486$	$16,\!118$	$29,\!143$	21,175
Spain (EC)	0	0	2	2	0	0	33	35	6	3	2	2	1	0	1	1	1
Fiji	$7,\!282$	6,310	10,867	11,077	$11,\!481$	$6,\!930$	9,262	12,098	8,604	9,947	9,370	8,702	7,014	6,975	$7,\!254$	9,764	8,832
FSM	0	0	0	0	0	0	0	0	1	1	161	634	401	1,224	1,923	251	1,924
Japan	$2,\!638$	$3,\!148$	4,005	$4,\!654$	$3,\!290$	2,990	2,371	2,824	$2,\!638$	$2,\!170$	2,085	1,819	1,269	855	1,558	1,825	$1,\!159$
Kiribati	0	0	0	0	0	0	0	0	66	200	349	40	7	358	508	635	340
Republic of	$2,\!850$	1,394	743	2,167	790	1,080	$1,\!143$	1,208	1,027	488	892	767	689	1,012	1,383	1,134	1,097
Korea																	
New Caledo-	$1,\!165$	1,111	1,468	1,590	$1,\!358$	1,324	1,506	$1,\!649$	1,939	1,736	1,715	1,714	$1,\!630$	1,583	1,747	1,733	1,752
nia																	
Niue	0	0	0	55	213	216	337	154	97	0	0	0	0	0	0	0	0
New Zealand	$2,\!545$	2,971	1,248	602	496	357	382	422	460	418	266	302	311	223	233	181	239
French Polyne-	$4,\!557$	$3,\!846$	2,218	2,426	2,918	3,957	3,068	3,560	$3,\!483$	3,225	$3,\!594$	3,512	3,744	$3,\!392$	3,245	2,127	3,074
sia																	
PNG	82	645	1,529	2,181	1,741	1,556	437	807	791	245	693	235	308	336	77	655	96
Portugal (EC)	0	0	0	0	0	0	0	0	0	4	1	67	1	0	0	0	0
Solomon	121	95	207	0	0	0	0	0	7,708	899	0	0	$14,\!241$	11,216	0	0	1,921
Islands																	
Senegal	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Tonga	$1,\!189$	611	182	283	414	390	220	124	57	34	20	13	25	29	42	26	21
Tuvalu	0	0	0	0	0	0	0	0	0	184	432	169	78	97	52	175	121
Chinese	$16,\!452$	$12,\!680$	9,200	8,384	8,206	8,683	$7,\!053$	$11,\!105$	$13,\!004$	$12,\!956$	$11,\!620$	$13,\!387$	7,367	7,949	$11,\!858$	$12,\!455$	9,318
Taipei																	
USA	$6,\!105$	4,232	$2,\!620$	$3,\!060$	4,146	5,298	$3,\!686$	$3,\!937$	4,082	2,555	3,461	2,213	1,543	1,961	$1,\!655$	$1,\!408$	1,441
Vanuatu	$5,\!275$	3,182	6,261	$7,\!684$	$7,\!955$	6,119	4,805	$7,\!979$	10,033	$4,\!694$	$6,\!688$	7,754	$3,\!554$	6,505	$3,\!847$	4,331	$5,\!650$
Wallis and Fu-	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0
tuna																	
Samoa	4,223	2,253	1,233	1,263	2,113	$3,\!113$	2,342	2,816	2,529	$1,\!415$	2,038	$1,\!642$	800	840	946	$2,\!374$	$1,\!606$
Total	$59,\!698$	$51,\!213$	50,500	52,575	$57,\!046$	$52,\!162$	55,211	71,911	$72,\!629$	$55,\!964$	71,408	68,887	59,382	$61,\!157$	$54,\!813$	$71,\!616$	$62,\!154$

Table A1-2: Annual southern WCP-CA albacore longline catch estimates by Vessel Nation, 2002 - 2018. Note: Available operational and aggregate logsheet data raised to annual catch estimates (ACE). Differences in annual totals between this table and Table 1 result from rounding errors. Southern WCP-CA approximated - some EEZ and high seas areas span the equator.

\mathbf{EEZ}	Flag	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
AS	US	$5,\!334$	3,204	2,019	2,880	4,078	$4,\!667$	2,830	3,188	2,833	1,782	2,410	1,764	1,376	1,760	1,511	$1,\!380$	1,427
AU	AU	505	391	587	619	2,526	$1,\!867$	$1,\!256$	$1,\!471$	706	627	655	708	656	911	1,006	803	732
CK	BZ	0	70	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	CK	490	$1,\!344$	1,866	$2,\!276$	$1,\!993$	2,385	1,918	$1,\!357$	2,229	$2,\!178$	2,726	1,223	1,073	1,039	1,200	$2,\!385$	731
	CN	0	0	0	0	0	0	0	0	0	148	$2,\!970$	2,223	$3,\!186$	2,240	1,418	687	$1,\!112$
	FJ	0	0	0	0	0	0	0	0	139	395	329	80	0	0	0	0	0
	\mathbf{FM}	0	0	0	0	0	0	0	0	0	0	134	573	174	$1,\!199$	556	248	1,919
	KI	0	0	0	0	0	0	0	0	0	0	244	29	0	0	0	0	0
	\mathbf{KR}	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	4
	\mathbf{PF}	0	14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	TW	11	12	0	0	0	311	64	972	192	163	311	0	0	0	0	6	38
	US	617	420	297	16	0	304	485	590	975	581	653	271	41	75	0	0	0
	VU	0	15	9	0	0	0	0	1,723	1,326	2,119	$3,\!108$	$1,\!590$	10	3	3	2	0
	WS	18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FJ	CK	0	0	0	5	0	0	0	0	0	0	0	0	0	0	0	0	0
	CN	77	63	151	151	131	400	135	375	152	295	430	302	202	639	926	214	16
	FJ	5,528	3,755	5,855	$5,\!439$	$5,\!334$	3,512	$4,\!376$	5,228	$5,\!580$	3,757	$3,\!844$	3,259	3,725	$5,\!190$	4,005	$5,\!658$	$5,\!615$
	\mathbf{KR}	0	0	0	0	0	0	0	0	11	69	0	38	0	0	2	0	0
	NZ	0	0	0	0	0	80	0	0	0	0	0	0	0	0	0	0	0
	TV	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
	TW	374	116	36	2	2	6	7	6	1	5	0	3	1	1	0	0	2
	VU	304	119	33	1	5	0	2	0	1	30	1	41	0	7	0	1	0
HS	AU	48	99	80	124	65	58	21	52	39	26	54	65	81	38	95	28	20
	BZ	1,467	805	2	7	0	19	0	2	0	0	0	0	0	0	0	0	0
	CK	0	14	3	5	75	156	180	31	50	4	23	28	0	1	7	98	309
	CN	2,494	5,588	5,271	2,465	4,480	2,857	12,409	14,932	11,460	7,763	16,244	12,889	5,888	5,832	2,058	17,835	12,907
	ES	0	0	2	2	0	0	33	35	6	3	2	2	1	0	1	1	1
	FJ	709	1,294	2,160	2,210	2,012	1,042	1,337	2,133	1,357	2,480	2,466	1,885	1,781	1,078	1,139	1,480	1,554
	FM	0	0	0	0	0	0	0	0	1	1	26	61	227	25	1,367	3	4
	JP	2,466	2,909	3,978	4,533	1,909	1,690	1,382	1,563	907	1,645	1,127	1,248	1,207	644	559	683	364
	KI	0	0	0	0	0	0	0	0	0	193	16	3	1	218	292	242	285
	KR	1,837	1,095	444	1,787	307	408	410	521	421	226	427	425	149	257	462	632	521
	NC	4	23	94	10	8	12	22	38	16	4	14	2	6	12	12	14	10
	NU	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0
	NZ	23	35	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	PF	2	19	7	134	72	33	8	0	1	2	3	17	1	0	2	0	0
	PG	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	152	0
	PT	0	U	0	0	0	0	0	0	0	4	1	67	1 050	0	0	0	0
	SB	0	0	0	0	0	0	0	0	2,498	74	0	0	1,058	485	0	0	18
	TO	344	293	3	27	9	36	0	0	0	0	0	0	1	0	0	1	0

 Table A1-2: (continued)

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
TW 14,721 11,627 7,105 5,660 4,418 5,180 3,742 5,525 11,862 8,607 6,531 8,880 6,591 7,057 8,657 9,817 7,604 US 155 555 304 166 4,775 5,866 5,166 4,785 5,268 7,976 1,865 2,219 3,605 3,178 5,095 1,925 3,589 WS 0 0 0 0 0 0 0 0 0 1 2 0 0 0 3,589 KI BZ 0 0 351 0 0 0 0 0 0 0 0 0 0 0 0 0 1,59 3,329 1,82 3,339 1,82 3,33 1,35 3,329 1,82 3,33 1,35 3,329 1,82 3,34 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0
INS 155 555 304 164 688 327 259 159 275 192 307 178 126 126 144 288 153 WS 0 0 0 0 0 0 0 0 0 0 0 108 2,219 3,65 3,18 5,055 1,952 3,64 4,937 KI BZ 0 0 351 00 <
VU 4,058 1,560 4,778 5,866 5,166 4,455 3,226 5,268 7,976 1,685 2,219 3,605 3,178 5,095 1,952 3,564 4,937 KI BZ 0 0 0 0 0 0 0 0 0 1 2 0 <
WS 0 0 0 0 0 0 1 2 0 0 0 35 89 KI BZ 0 351 0 0 0 0 32 0 32 0 <t< th=""></t<>
KI BZ 0 0 31 0 0 0 0 32 0 0 0 0 0 CN 0 48 9 0 0 0 1 157 398 202 221 308 1,355 3,329 182 33 FJ 0 0 0 0 06 16 41 29 16 152 149 66 0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
FM 0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
KI00000000667463101079855KR692262234134131189140261358993351863496124101199TV00000000000003480000000000TW23941162814426398266481303273502632526683333US0000000000000000VU0230966815322311240338273742415021796220MAFJ017492242210147800111011011NC11702000000000011011011011011011011011011011011011011011011011000000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
US 0 1 1 1 0
VU 0 230 96 68 153 223 112 403 382 73 74 24 150 217 96 2 0 MA FJ 0 17 4 9 2 4 2 10 14 7 8 0 0 1 1 0 1 NC 1 1 7 0 2 0 0 0 0 1 0 0 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 <th1< th=""> <th1< th=""> 1</th1<></th1<>
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
NC 1 1 7 0 2 0 0 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 0 1 0 1 0
VU 0 1 0 2 0 14 1 0 4 0 NC NC 1,160 1,087 1,367 1,579 1,348 1,312 1,484 1,611 1,923 1,732 1,700 1,712 1,624 1,569 1,735 1,718 1,742 NU CK 0 0 0 47 0 0 87 99 0 0 85 33 0 0 0 412 FJ 0
NC N.C 1,160 1,087 1,367 1,579 1,348 1,312 1,484 1,611 1,923 1,732 1,700 1,712 1,624 1,569 1,735 1,718 1,742 NU CK 0 0 0 47 0 0 87 99 0 0 85 33 0 0 0 412 FJ 0 0 0 0 0 0 0 0 0 0 0 412 NU 0 0 0 0 0 0 0 0 0 203 92 13 0 NU 0 <
NU CK 0 0 0 87 99 0 0 85 33 0 0 0 412 FJ 0 0 0 0 0 0 0 0 0 203 92 13 0 NU 0 0 0 55 211 216 337 154 97 0 <t< th=""></t<>
FJ 0 0 0 0 0 0 0 0 277 157 203 92 13 0 NU 0 0 0 55 211 216 337 154 97 0
NU 0 0 0 55 211 216 337 154 97 0 <t< th=""></t<>
PF 0
TW 34 0 0 0 0 0 0 0 0 0 0 0 18 3 0 0 2 NZ NZ 2,522 2,936 1,246 602 496 277 382 422 460 418 266 302 311 223 233 181 239 PF KR 0
NZ NZ 2,522 2,936 1,246 602 496 277 382 422 460 418 266 302 311 223 233 181 239 PF KR 0 <
PF KK 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
PF = 4,555 = 3,813 = 2,211 = 2,259 = 2,840 = 3,924 = 3,000 = 3,500 = 3,482 = 3,225 = 3,591 = 3,495 = 3,743 = 3,592 = 3,243 = 2,127 = 3,074 = 2,000 = 1,140 = 2,040 = 1,040 =
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
SB BZ 0 10 0 0 143 7 24 10 103 0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
SB 121 05 207 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 Table A1-2: (continued)

EEZ	Flag	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
	TV	0	0	0	0	0	0	0	0	0	12	0	0	0	0	0	0	0
	TW	274	196	906	$1,\!394$	$1,\!831$	$1,\!443$	2,032	$3,\!118$	378	2,727	$3,\!240$	2,424	278	0	$1,\!314$	$1,\!970$	$1,\!111$
	VU	307	305	756	487	1,039	385	558	325	17	187	875	1,222	138	0	0	118	239
TK	CK	0	0	0	0	0	0	33	0	0	0	0	0	0	127	58	84	183
	$_{\rm FJ}$	0	0	0	0	0	0	0	0	0	75	93	0	2	1	0	0	0
	KI	0	0	0	0	0	0	0	0	0	0	26	0	5	140	108	296	0
	TV	0	0	0	0	0	0	0	0	0	16	134	0	0	0	0	0	0
	TW	0	0	0	0	0	0	0	0	0	17	0	0	0	0	0	0	0
	US	0	0	0	0	0	0	111	0	0	0	0	0	0	0	0	0	0
	VU	0	0	0	0	0	0	0	0	0	0	0	0	0	1,177	1,795	487	354
ТО	CN	0	0	0	0	0	0	0	0	0	0	11	155	106	61	1	7	12
	$_{\rm FJ}$	0	0	27	0	0	0	0	0	0	0	29	123	0	3	1	0	134
	ТО	845	318	179	256	405	354	220	124	57	34	20	13	24	29	42	25	21
	TW	0	0	0	0	0	0	0	0	0	2	700	$1,\!179$	133	618	1,145	595	552
TV	CK	0	0	0	0	0	49	20	56	35	0	3	0	0	0	0	0	0
	CN	0	0	0	0	0	1	0	0	0	77	0	0	128	149	279	474	138
	FJ	0	31	180	119	1	152	15	124	182	160	539	191	148	69	707	380	145
	$_{\rm JP}$	2	3	0	0	0	0	0	0	241	5	57	0	0	0	0	0	0
	KI	0	0	0	0	0	0	0	0	0	0	17	0	0	0	0	0	0
	\mathbf{KR}	184	18	41	162	6	171	123	127	204	51	19	22	135	108	508	451	552
	TV	0	0	0	0	0	0	0	0	0	142	234	157	77	95	51	112	105
	TW	0	0	4	15	0	0	1	0	12	3	0	88	1	0	0	0	0
	US	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
	VU	0	0	0	0	0	86	0	45	1	22	48	1,021	0	6	0	1	0
VU	BZ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	CK	0	0	0	85	63	54	62	3	10	0	0	0	0	0	0	0	0
	CN	115	202	241	985	$1,\!465$	1,262	$1,\!197$	2,230	847	$2,\!378$	2,843	5,101	4,421	4,211	6,246	6,280	3,262
	FJ	883	$1,\!155$	$2,\!240$	$3,\!057$	$3,\!300$	1,666	2,263	1,896	1,241	1,932	714	1,085	893	279	569	2,060	1,013
	JP	0	0	0	0	7	0	0	0	0	0	0	0	0	0	0	0	0
	KR	62	4	0	0	21	0	7	0	0	0	0	0	0	0	0	0	0
	TW	1,015	635	1,034	1,286	$1,\!892$	1,116	1,038	1,162	508	1,253	403	462	83	1	0	0	0
	VU	605	951	588	1,261	1,592	966	907	202	329	579	363	251	78	0	0	152	121
WF	\mathbf{PF}	0	0	0	- 33	0	0	0	0	0	0	0	0	0	0	0	0	0
	WF	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0
WS	WS	4,205	2,253	1,233	1,263	2,113	3,113	2,342	2,816	2,529	1,415	2,037	$1,\!640$	800	840	946	2,339	1,517

Year	Canada	Cook	New	USA	Total
		Islands	Zealand		
2000	351	335	3,336	2,433	$6,\!455$
2001	206	202	2,736	2,107	5,251
2002	144	166	3,012	1,337	$4,\!659$
2003	0	688	3,721	$1,\!574$	5,983
2004	63	376	3,212	960	$4,\!611$
2005	72	89	2,855	576	3,592
2006	135	121	2,043	587	2,886
2007	27	53	1,736	272	2,088
2008	0	0	3,352	151	3,503
2009	0	0	1,794	237	2,031
2010	0	0	1,832	307	2,139
2011	1	0	2,787	471	3,259
2012	0	0	2,727	235	2,962
2013	0	0	2,836	390	3,226
2014	0	21	1,937	445	2,403
2015	0	21	2,425	156	$2,\!602$
2016	0	21	1,969	145	2,135
2017	55	0	1,959	464	2,478
2018	0	0	2,272	475	2,747

Table A1-3: Annual south Pacific albacore troll catch estimates by flag, 2000 - 2018.

VMS effort (days) south of 10°S in the WCP-CA

Figure A1-2: Longline VMS days-at-sea (augmented by logsheets for French Polynesia) within the southern WCP-CA at $1^\circ x1^\circ$, south of $10^\circ S$.

Appendix 2: Notes on the time series of longline VMS information in the South Pacific

The analysis summarises the longline VMS information available to SPC through the FFA and WCPFC over the period 2010-2018, by geographic region of the southern WCPFC-CA. Effort in that database corresponds to days-at-sea (i.e. includes fishing and transiting). Please note:

- This analysis uses annual VMS data available up to and including 16^{th} July 2019;
- Effort represents total longline effort, not just that targeted at South Pacific albacore;
- VMS effort presented for EEZs includes that in archipelagic waters;
- Effort data for some countries (e.g. those with domestic longliners not on FFA VMS) will not be included within EEZ patterns;
- Effort for some countries (e.g. New Caledonia; French Polynesia) may be incomplete;
- Some trends may result from improved VMS coverage of vessels over time;
- EEZ effort excludes the Indonesian EEZ.

Table A2-1: Total VMS days-at-sea by year in International Waters, south of 10°S (Figure A2-1).

International waters code	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
H4	0	0	0	0	0	0	0	0	0	0	0
I2	225	192	169	185	236	293	244	371	639	593	598
I5	533	1,349	$5,\!420$	4,531	5,049	10,775	8,094	7,001	7,583	8,168	4,858
I7	$5,\!946$	$7,\!687$	$10,\!650$	$12,\!628$	10,465	$13,\!459$	13,111	11,511	8,298	10,855	$12,\!349$
I8	2,127	1,763	2,778	3,358	2,368	2,915	2,758	$3,\!075$	$3,\!434$	$5,\!188$	4,587
I9	290	1,161	1,764	2,612	5,060	4,352	2,989	1,582	1,060	1,473	897
Total	9,121	$12,\!152$	20,781	$23,\!314$	$23,\!178$	31,794	27,196	$23,\!540$	21,014	$26,\!277$	$23,\!289$

Figure A2-1: Map of International Waters in the southerly WCPFC-CA.

Table A2-2: Map key (Figure A2-1).

Code	Area	Color
H4	International waters between Tuvalu, Phoenix and Tokelau	Brown
H5	International waters between Phoenix and Line groups	Bright green
I2	High seas pocket between FSM, Solomon Islands, Kiribati, RMI,	Red
	Nauru and Tuvalu	
I5	International waters between Phoenix and Line groups and east	Pink
	of Line group	
I7	High seas area to the east of Australia and New Zealand	Light green
I8	High seas pocket between Fiji, Vanuatu and the Solomon Islands	Purple
19	High seas pocket between the Cook Islands and French Polynesia	Yellow

Appendix 3: High Seas transshipment data for albacore based on CMM 2009-06 reporting

The tables below show high Seas transshipment data for albacore, by flag, year and month from July 2010 - March 2019.

Notes:

- 1. The requirement to report (within 15 days of transshipment) high seas transshipment activities commenced in July 2010.
- 2. The data refer to high seas transshipments inside and outside the WCPFC Convention Area, and it should be noted that a proportion of the catch will likely have been caught within EEZs in the Convention Area and the IATTC Convention area.
- 3. Weights are in kg.

CCM responsible for reporting for the Fishing Vessel	Jul	Aug	Sept	Oct	Nov	Dec
Belize	0	0	0	0	2,837	0
China	0	0	166,000	$210,\!668$	$247,\!192$	17,091
Chinese Taipei	0	115,000	$165,\!552$	$125,\!298$	$147,\!809$	20,582
Indonesia	0	0	0	0	44,170	869
Japan	0	900	0	$53,\!543$	$35,\!437$	30,000
Korea (Republic of)	16,984	0	22,303	41,890	0	6,389
Philippines	0	0	0	7,500	0	4,848
Solomon Islands	0	0	0	0	0	0
Vanuatu	0	$1,\!435,\!000$	$270,\!600$	232,293	$521,\!630$	148,835
Total	$16,\!984$	$1,\!550,\!900$	$624,\!455$	$671,\!192$	$999,\!075$	$228,\!614$

Table A3-1: 2010.

CCM responsible	Jan	Feb	Mar	\mathbf{Apr}	May	Jun	Jul	Aug	${f Sept}$	Oct	Nov	Dec
for reporting for												
the Fishing Vessel												
Belize	2,015	0	0	36,000	0	0	710	0	0	0	0	0
China	5,073	$101,\!989$	24,854	$31,\!588$	31,987	29,524	$61,\!905$	$748,\!608$	$34,\!656$	82,198	$63,\!458$	28,013
Indonesia	0	0	0	794	8,277	0	0	0	8,322	$29,\!668$	0	7,220
Japan	$10,\!850$	79,731	22,475	0	1,850	5,777	822	2,900	0	32,364	57,286	$4,\!687$
Korea (Republic of)	$42,\!584$	3,017	45,988	$33,\!941$	$5,\!622$	$16,\!595$	$3,\!678$	0	1,225	13,768	$98,\!599$	6,360
Philippines	0	0	0	400	0	500	17,303	2,284	0	10,346	0	6,723
Solomon Islands	0	0	0	0	0	0	0	0	0	0	0	0
Vanuatu	100,000	110,000	1,020,165	290,970	597	13,700	816,794	$313,\!038$	62,000	12,857	0	$341,\!175$
Total	$978,\!878$	$477,\!595$	$2,\!012,\!132$	$408,\!499$	100,393	259,750	$1,\!613,\!952$	$1,\!532,\!525$	$452,\!848$	$276,\!160$	$540,\!194$	801,118

Table A3-2: 2011.

Table A3-3: 2012.

CCM responsible	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	${f Sept}$	Oct	Nov	Dec
for reporting for												
the Fishing Vessel												
Belize	0	0	0	0	0	0	841	0	0	0	0	0
China	67,701	$95,\!807$	61,927	103,977	8,055	20,149	$305,\!884$	216,568	$118,\!390$	6,507	0	11,276
Chinese Taipei	$87,\!183$	438,492	$127,\!178$	$91,\!510$	12,089	0	$326,\!644$	406,037	0	18,305	0	457,106
Indonesia	$1,\!894$	4,820	1,900	0	0	11,505	0	0	0	0	0	4,656
Japan	0	31,016	1,774	12,999	1,575	$13,\!449$	66,858	2,597	$72,\!544$	0	3,281	0
Republic of Korea	3,777	13,163	$14,\!234$	$5,\!454$	12,710	$16,\!829$	6,312	0	0	0	4,920	0
Philippines	1,500	0	$4,\!684$	0	0	0	0	0	19,278	0	0	0
Solomon Islands	0	0	0	45,500	0	0	0	0	0	0	0	0
Vanuatu	$544,\!933$	108,000	$161,\!242$	90,280	$1,\!657$	0	764,900	185,000	0	165,000	105,000	0
Total	706,988	$691,\!298$	$372,\!939$	349,720	36,086	61,932	$1,\!471,\!439$	810,202	210,212	189,812	$113,\!201$	$473,\!038$

Table A3-4: 2013.

CCM responsible for reporting for the Fishing Vessel	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec
Belize	0	0	0	0	0	0	0	0	0	0	0	0
China	42,364	7,376	84,590	24,498	90,383	805,828	0	110,513	$542,\!675$	282,996	1,048,906	127,757
Chinese Taipei	$33,\!541$	0	5,000	59,423	50,711	0	157, 174	140,100	532,164	39,331	543,864	498,889
Indonesia	0	0	6,891	286	5,800	0	0	0	0	0	0	2,403
Japan	0	0	$9,\!481$	38,422	3,100	39,089	$13,\!602$	42,460	147	$14,\!639$	10,539	2,765
Republic of Korea	0	$45,\!342$	53,797	0	29,523	$26,\!676$	0	20,268	0	0	24,377	18,848
Philippines	0	0	4,959	0	7,982	0	0	$15,\!527$	0	0	2,798	0
Solomon Islands	0	0	0	0	0	0	0	0	0	0	0	0
Vanuatu	0	$361,\!951$	$175,\!489$	165,000	28,228	28,496	1,062,757	174,754	$864,\!995$	249,017	412,360	130,000
Total	$75,\!905$	$414,\!669$	$340,\!207$	$287,\!629$	215,727	900,089	$1,\!233,\!533$	$503,\!622$	$1,\!939,\!981$	$585,\!983$	2,042,844	$780,\!662$

Table A3-5: 2014.

CCM responsible	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	${f Sept}$	Oct	Nov	Dec
for reporting for												
the Fishing Vessel												
Belize	0	0	0	0	0	0	0	0	0	0	0	0
China	$224,\!998$	875	26	31,578	$138,\!573$	331,788	$102,\!822$	$1,\!551,\!373$	$115,\!965$	6,825	12,505	$171,\!219$
Chinese Taipei	985,503	636	386,115	$8,\!688$	31,399	529	0	0	$576,\!390$	129,558	$1,\!109,\!509$	449,172
Indonesia	0	0	0	0	0	3,728	0	0	0	0	0	0
Japan	$3,\!626$	0	27,308	0	2,000	200	20,533	0	$23,\!693$	8,005	0	0
Republic of Korea	0	22,285	0	8,844	3,393	$13,\!958$	46,724	6,004	$37,\!687$	74,214	0	$37,\!621$
Philippines	0	1,162	0	0	0	0	0	0	0	0	0	0
Solomon Islands	0	0	0	0	0	0	0	0	0	0	0	0
Vanuatu	691,021	0	2,620	0	0	$12,\!639$	$17,\!935$	49,549	$1,\!895,\!708$	578	$205,\!667$	0
Total	$1,\!905,\!148$	24,958	$416,\!069$	49,110	$175,\!365$	$362,\!842$	188,014	$1,\!606,\!926$	$2,\!649,\!443$	$219,\!180$	$1,\!327,\!681$	658,012

Table A	13-6:	2015.
---------	-------	-------

CCM responsible for reporting for the Fishing Vessel	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec
Belize	0	0	0	0	0	0	0	0	0	0	0	0
China	273,169	$215{,}527$	3,889	16	350,861	$557,\!865$	5,512	70,724	1,102,161	$181,\!347$	$122,\!120$	168,717
Chinese Taipei	$449,\!399$	7,915	$12,\!663$	19,320	0	6,246	$61,\!526$	80,938	329,500	419,241	294,284	$274,\!693$
Indonesia	0	0	0	0	0	0	0	0	0	0	0	0
Japan	1,515	5,101	$5,\!645$	2,221	119	0	647	1,466	0	$5,\!587$	6,566	0
Republic of Korea	2,444	22,212	43,063	3,759	25,975	50,251	$127,\!526$	26,143	0	100,741	4,395	21,934
Philippines	0	0	0	0	0	0	0	0	0	0	0	0
Solomon Islands	0	0	0	0	0	0	0	0	0	0	0	0
Vanuatu	9,294	5,049	409	$90,\!697$	4,265	4,601	0	817,041	1,508,373	687,413	160,944	1,190,359
Total	$735,\!821$	$255,\!804$	$65,\!669$	$116,\!013$	$381,\!220$	$618,\!963$	$195,\!211$	$996,\!312$	$2,\!940,\!034$	$1,\!394,\!329$	$588,\!309$	$1,\!655,\!702$

Table A3-7: 2016.

CCM responsible	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	${f Sept}$	Oct	Nov	Dec
for reporting for												
the Fishing Vessel												
Belize	0	0	0	0	0	0	0	0	0	0	0	0
China	$115,\!400$	187,463	$385,\!696$	898,315	783,017	370	$1,\!098,\!679$	2,046,259	$1,\!258,\!269$	1,028,406	869,370	0
Chinese Taipei	$873,\!578$	407	47,290	6,081	17,946	0	$901,\!867$	484,572	$555,\!906$	$399,\!841$	$561,\!586$	$521,\!253$
Indonesia	0	0	0	0	0	0	0	0	0	0	0	0
Japan	2,560	0	331	0	134	1,988	13,900	12,000	4,830	0	$9,\!639$	46,529
Republic of Korea	2,821	$3,\!631$	37,070	29,140	20,184	$7,\!152$	26,756	188,441	118,212	$187,\!865$	$151,\!934$	29,322
Philippines	0	0	0	0	0	0	0	0	0	0	0	0
Solomon Islands	0	0	0	0	0	0	0	0	0	0	0	0
Vanuatu	9,871	28,238	71,941	20,172	352	3,084	$188,\!895$	$937,\!255$	$1,\!654,\!204$	$642,\!294$	$635,\!085$	469,531
Total	1,004,230	219,739	$542,\!328$	953,708	$821,\!633$	$12,\!594$	$2,\!230,\!097$	$3,\!668,\!527$	$3,\!591,\!421$	$2,\!258,\!406$	$2,\!227,\!614$	1,066,635

Table A3-8: 2017.

CCM responsible for reporting for the Fishing Vessel	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec
Belize	0	0	0	0	0	0	0	0	0	0	0	0
China	91,280	1,822,209	108,552	526	$28,\!601$	$771,\!543$	$453,\!820$	1,879	$2,\!253,\!152$	2,403,932	10,212	38,636
Chinese Taipei	840,630	39,726	664,783	49,596	60,490	$263,\!585$	971,775	709,197	$707,\!535$	526, 328	265, 325	6,421
Indonesia	0	0	0	0	0	0	0	0	0	0	0	0
Japan	0	0	0	1,095	0	0	0	34,153	0	4,934	43,106	$13,\!858$
Republic of Korea	72,225	56,070	$48,\!649$	18,069	8,269	$27,\!823$	193,395	189,097	$34,\!395$	129,594	65,785	79
Philippines	0	0	0	0	0	0	0	0	0	0	0	0
Solomon Islands	0	0	0	0	0	0	0	0	0	0	0	0
Vanuatu	101,369	13,198	178,822	57,754	80,000	370,842	$932,\!147$	461,393	$837,\!433$	1,122,039	$2,\!641$	4,945
Total	$1,\!105,\!504$	$1,\!931,\!203$	1,000,806	$127,\!040$	$177,\!360$	$1,\!433,\!793$	$2,\!551,\!137$	$1,\!395,\!719$	$3,\!832,\!515$	$4,\!186,\!827$	387,069	$63,\!939$

Table A3-9: 2018.

CCM responsible	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	\mathbf{Sept}	Oct	Nov	Dec
for reporting for												
the Fishing Vessel												
Belize	0	0	0	0	0	0	0	0	0	0	0	0
China	$1,\!252,\!107$	$2,\!304,\!154$	317,004	$118,\!276$	1,846,264	907,129	390,208	$885,\!532$	1,768,175	1,043,146	590,837	388,821
Chinese Taipei	$1,\!145,\!930$	1,363,445	69,267	$161,\!974$	$367,\!380$	$212,\!544$	1,413,752	$611,\!576$	428,995	439,241	$321,\!620$	335,765
Indonesia	0	0	0	0	0	0	0	0	0	0	0	0
Japan	639	30,499	$18,\!542$	7,977	0	$1,\!678$	0	0	$9,\!437$	112	63	$9,\!486$
Republic of Korea	$67,\!650$	45,182	24,074	56,270	$15,\!247$	$47,\!629$	87,007	$73,\!972$	$153,\!958$	$106,\!635$	$55,\!637$	39,503
Philippines	0	0	0	0	0	0	0	0	0	0	0	0
Solomon Islands	0	0	0	0	0	0	0	0	0	0	0	0
Vanuatu	$270,\!596$	4,528	$107,\!290$	1,300	0	1,201	813,700	$1,\!136,\!559$	$212,\!318$	$1,\!074,\!314$	$11,\!643$	323
Total	2,736,922	3,747,808	$536,\!177$	345,797	$2,\!228,\!891$	$1,\!170,\!181$	2,704,667	2,707,639	$2,\!572,\!883$	$2,\!663,\!448$	$979,\!800$	773,898

Table A3-10: 2019.

CCM responsible for reporting for the Fishing Vessel	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	\mathbf{Oct}	Nov	Dec	
Belize	0	0	0	0	C		0	0	0	0	0	0	0
China	483,118	$1,\!465,\!419$	251,738	0	0		0	0	0	0	0	0	0
Chinese Taipei	$1,\!117,\!643$	433,219	$241,\!148$	0	0		0	0	0	0	0	0	0
Indonesia	0	0	0	0	C	1	0	0	0	0	0	0	0
Japan	0	0	$31,\!436$	0	C	1	0	0	0	0	0	0	0
Republic of Korea	49,371	80,609	82,520	0	0		0	0	0	0	0	0	0
Philippines	0	0	0	0	C	1	0	0	0	0	0	0	0
Solomon Islands	0	0	0	0	C	1	0	0	0	0	0	0	0
Vanuatu	72,080	494,329	27,415	0	0		0	0	0	0	0	0	0
Total	1,722,212	$2,\!473,\!576$	$634,\!257$	0	C	l.	0	0	0	0	0	0	0