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EXECUTIVESUMMARY
The present study evaluates potential alternative assessment methods for
sharks, using oceanic whitetip shark (Carcharhinus longimanus) as a case
study, allowing comparisons with the current age-structured integrated
stock assessment of this species. The laĴer was conducted in parallel to the
present study, and used Stock Synthesis 3 (SS3) soĞware.

The most recent previous integrated assessment of oceanic whitetip
shark concluded that the stock was overfished and that overfishing was
continuing. To minimise ongoing fisheries impacts on this species, a non-
retention measure (Conservation and Management Measure CMM 2011-
04) was imposed by the Western and Central Pacific Fisheries Commission
(WCPFC); however, the non-retention of oceanic whitetip shark also
introduced additional uncertainty about the value of indicators such as
catch-per-unit-effort (CPUE) for the monitoring of population status. In
conjunction with limited data about the efficacy of measure CMM 2011-04
for limiting fishingmortality, the current stock status of this species remains
uncertain.

Here, we compared three approaches in conjunction with the current
integrated stock assessment of oceanic whitetip shark. These approaches
were catch-only simulations, a general spatial risk assessment model, and a
Bayesian dynamic surplus production model. We also illustrate the impact
of different assumptions on estimates of fishing mortality (F ) and risk
(F/Fcrash) to the oceanic whitetip shark stock in the Western and Central
Pacific Ocean.

Our findings suggest that catch-only methods are most valuable as a tool
to refine Bayesian priors in more sophisticated analyses, as on their own,
catch-only methods are dependent on assumptions and provide no relevant
management outputs. Nevertheless, we show that by making simple and
relatively broad assumptions about the current depletion level, catch alone
can constrain initial (unfished and/or starting depletion for the catch time
series) population size and productivity and, thereby, serve as a a priori
constraint on these parameters.

The application of dynamic surplus production models (DSPMs) showed
that these model may provide a reasonable tool to rapidly assess shark
stocks, either alongside or instead of fully integrated stock assessments.
Dynamic surplus production models can be readily applied to sharks: their
implementation in widely-available soĞware packages means that they are
a cost-effective assessment tool that requires few assumptions. In addition,
thesemodels can provide estimates ofmanagement-relevant quantities (e.g.,
stock status, fishing mortality), which have been shown to be robust for
sharks. Furthermore, depletion-based catch-only simulations can be used
to construct useful priors for Bayesian implementations of these models.
Nevertheless, the reliance of DSPMs on a reliable biomass index (e.g., CPUE
time series with contrast) and on complete removal estimates (i.e. the
availability of a catch series which accurately reflects total catch) limits their
application to species for which these time-series data can be derived. This

3 Comparing alternative assessment methods for sharks



aspect may exclude the application of DSPMs to species with poor historical
identification records such as many shark species.

We also applied a spatial risk assessment (SRA), as this approach only
requires recent catch and effort data to estimate fishing mortality, so is less
constrained by historical data limitations. Because SRAs generally do not
use complete time series of removals, they cannot provide information about
stock status. The most commonly employed SRAmethods are conceptually
similar to fisheries surveys, as they use estimates of gear efficiency to scale
observed spatial catch to overall catch via a spatial population density
estimate. To derive absolute fishing mortality and risk, however, these
methods need to make assumptions about the spatial interaction of the
fishing gear with the local population density. This scaling is difficult to
establish for longline gear and has a large effect on estimated risk.

For this reason, we suggest that risk assessment methods are employed
when 1) no robust time series for catch and CPUE can be derived, and 2)
it is possible to make reasonable assumptions about the spatial effect of the
fishing gear. Even with these limitations risk assessment methods can be
particularly valuable for prioritising assessment and conservation efforts, as
they can be readily employed across species in a standardised framework,
even for species with limited historical data.

Application of a variety of models to the oceanic whitetip shark stock
showed that DSPM, SRAs and SS3 provided similar results, but SRA results
were strongly dependent on the assumption of spatial gear effects. All
methods suggested that there is a substantial risk that current fishing
mortality remains above Fcrash, the fishing mortality that would lead
to extinction in the long term (and by extension, well above Flim and
FMSM ). The SS3 assessment estimated slightly higher overall fishing
mortality and lower productivity and stock status, and therefore provides
the most pessimistic view of current fishing mortality and sustainable
fishing mortality. All methods suggest that reductions of fishing mortality
below likely values in the last year of the assessment (2016; ≈ 45% total
fishing mortality including haul-back, handling and post-release mortality)
would substantially lower existential risks for this stock.

Based on our findings, we suggest that the Scientific CommiĴee considers
the following:

• Inferences from different models indicate that oceanic whitetip shark
continues to be overfished, and overfishing may still be occurring
owing to incidental mortality from fishing, despite non-retention
measure CMM 2011-04. Estimated fishing mortality rates for the last
year in the assessment (2016) lead to substantial risk that the stock will
not persist.

• Spatial risk assessment methods should be employed for species
with poor historical records (e.g., poor species identification), but for
which recent records are judged reliable. In addition, a standardised
methodology based on spatial risk assessment methodology could be
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employed to prioritise assessment and conservation efforts.

• Surplus production models can provide a robust cost- and time-
effective way to assess shark populations, and provide similar outputs
to fully integrated stock assessments such as SS3. Therefore, they may
be considered as a rapid assessment tool, either alongside or instead
of fully integrated stock assessments, which could be employed for
species of high priority.

• Depletion-based catch-only simulations should be considered for
constructing priors for DSPMs and to understand the amount of
additional information provided by fiĴing the DSPM.
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1. INTRODUCTION

Oceanic whitetip shark (Carcharhinus longimanus) occurs globally in tropical
and subtropical areas, and frequently features as bycatch in tuna and
billfish fisheries worldwide. In the past, this species accounted for a large
proportion of total bycatch in Western and Central Pacific Ocean tuna
fisheries, suggesting high historical abundance. Nevertheless, precipitous
declines have been observed in many abundance indicators of this species
worldwide.

In the Western and Central Pacific Ocean, the most recent assessment
of oceanic whitetip shark concluded that the stock was overfished
(Rice & Harley 2012), even though this conclusion was caveated by
uncertainties about input data and biological parameters. Based on
this assessment, the Western and Central Pacific Fisheries Commission
(WCPFC) adopted Conservation and Management Measure CMM 2011-04,
prohibiting retention of oceanic whitetip shark.

An updated catch-per-unit-effort (CPUE) standardisation of catch rates
suggested an ongoing decline from the last year of the previous assessment
(Rice et al. 2015). In addition, a recent expert review of shark life history in
the Western and Central Pacific Ocean further confirmed the considerable
uncertainty in the biological parameters for oceanic whitetip shark (Clarke
et al. 2015), notably in growth parameters and liĴer size, which are
influential in stock assessments as they relate to stock productivity.

Previous efforts for the reconstruction of catches for this species highlighted
low and uneven observer coverage over the temporal and spatial extent of
the assessment (Rice 2012, 2018). The adoption of CMM 2011-04 introduced
additional uncertainty for the most recent years of the planned 2019
assessment period, as the retention ban could lead to under-estimation of
unobservedmortalities given that the requirement to report dead discarded
sharks was only agreed by theWCPFC to apply from 2017 onward (WCPFC
2016). Post-release mortality of live captures can also further increase
fishing mortality (Common Oceans (ABNJ) Tuna Project 2019). In parallel,
Rice (2018) recently reported that CMM 2011-04 had not been adopted
comprehensively across fleets, adding to the uncertainty in the predictions
of true fishing-induced mortality across fishing fleets. The same report
found that the reported catches and discards for oceanic whitetip shark
had increased between 2010 and 2015, although this may have been due
to increasing aĴention to accurate reporting of shark catches over time
in conjunction with gradual implementation of species-specific reporting
requirements.

An updated stock assessment, using an integrated assessment model on the
Stock Synthesis 3 (SS3) platform has been conducted for the 15th annual
meeting of the WCPFC Scientific CommiĴee (SC 15) to update the stock
status and estimates of fishing mortality for oceanic whitetip shark in the
Western and Central Pacific Ocean (Tremblay-Boyer et al. 2019). Owing
to the above-mentioned uncertainty in data inputs, and corresponding
uncertainties about previous assessment outcomes, the Scientific CommiĴee
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proposed a project (Project 92) at its 14th annual meeting (SC 14) to compare
alternative assessment approaches with the previously applied integrated
modelling approach.

A range of models has been applied to sharks in the Western and Pacific
Ocean and other regions (Bonfil 2005). While some assessments, such as
those for silky shark (Clarke et al. 2018) and oceanic whitetip shark (Rice
& Harley 2012) have been based on catch-at-age stock assessment models
(Stock Synthesis 3; Methot Jr &Wetzel 2013), other recent assessments have
focused on spatial methods, such as risk assessment methods (Neubauer et
al. 2018), and hybrid spatial risk-assessment/stock assessment frameworks
(Fu et al. 2017, Hoyle et al. 2017). Here, we first describe the general
frameworks as they have been applied to shark species in recent assessments
for theWCPFC, and compare the different approaches in their assumptions,
data requirements and estimated quantities. We thendiscuss the application
of these methods to oceanic whitetip shark, for which we compared
a) information provided by catch alone, b) a dynamic Bayesian surplus
production model (McAllister & Edwards 2016) and c) a spatial risk-
assessment method based on the SAFE method (Sustainability assessment
of fishing effects; Zhou et al. 2011) and recently proposed extensions (Zhou
et al. 2013, Zhou et al. 2014). These models are compared with data
requirements, assumptions and outcomes of the integrated SS3 assessment
where possible.

2. METHODS

2.1 Potential assessmentmethods for sharks

Here, we briefly review methods applied to shark assessments in the
Western and Central Pacific Ocean, noting that other methods may provide
alternatives (e.g., see in-depth discussion in Bonfil 2005). Where relevant,
the laĴer are referred to here, but the primary focus of the present summary
was on methods applied to WCPFC assessments (see Table 1 for the basic
data requirements, assumptions and outputs of the different assessment
approaches). Included in our review are quantitative assessment methods,
representing a Level-3 assessment in the Ecological Risk Assessment for
the Effects of Fishing (ERAEF) framework (outlined by Hobday et al.
2011). Qualitative (Level 1) and semi-quantitative (e.g., productivity-
susceptibility; Level 2) approaches to (risk-)assessments are not included
here; a discussion of the relative data needs and merits of these different
levels of (risk-)assessment is provided by Hobday et al. (2011).

2.1.1 Catch-onlymethods

Most quantitative assessment methods require catch data (except for yield-
per-recruit methods; Bonfil 2005). The main difference among methods
is how catch data are used (i.e., current catch or time series). In many
instances, especially for sharks, catch needs to be scaled from observer data
to overall effort (i.e., reported catches oĞendonot provide a reliable estimate
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Table 1: Comparison of different approaches to stock assessments reviewed in the present study,
showing necessary data inputs, key assumptions, and outputs (CPUE, catch-per-unit-effort, B,
biomass; MSY, maximum sustainable yield; F, fishing mortality). Model type distinguishes between
models with similar levels of complexity and input requirements. Models and quantities that are used
for alternative oceanic whitetip shark assessments in this report are highlighted in bold.

Approach Model type Model/package
names

Inputs Assumptions Outputs

Catch-only
methods

Catch
abundance

COM-SIR,
SSCOM,
mPRM

Catch time
series

Assumed
catch-effort or
catch-biomass
relationship

Stock status
(B/BMSY )

Depletion-
based

SSRA, CMSY,
DBSRA

Catch time
series

Current
depletion level

Initial
population,
productiv-
ity, MSY

Quantitative
(Level 3)
spatial risk
assessment

Spatial
contrast

(e)SAFE,
SEFRA

Current catch
and effort

Gear-affected
area, species
distribution

Current
population,
current F

Temporal
contrast

MIST Catch and
effort time
series
(sub-area)

Catch known,
CPUE reflects
abundance,
productivity
summarised in
single rate,
catchability
transferable
across space

Population
density,
current and
past F

Dynamic
surplus
production
(SP) and delay
difference
(DD)

Dynamic SP DBM, JABBA Catch and
effort (or
abundance
index) across
assessment
area

Catch known,
CPUE reflects
abundance,
productivity
summarised in
single rate

Stock status,
current and
past depletion
and F

DD models Catch and
effort (or
abundance
index) across
assessment
area,
biological data

Catch known,
CPUE reflects
abundance,
representative
biological data
(e.g., growth)

Stock status,
current and
past depletion
and F

Integrated
(age/size
structured)
stock
assessments

SS3, CASAL,
MULTIFAN

Catch and
effort (or
abundance
index) across
assessment
area,
composition
data,
biological data

Catch known,
CPUE reflects
abundance,
composition
data useful to
estimate
selectivity,
recruitment

Stock status,
current and
past depletion
and F
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of the number of captured sharks), and total catch in itself is, therefore,
uncertain. Some methods aĴempt to use catch time-series data alone as a
proxy for abundance trends or to constrain certain management-relevant
parameters, such asmaximumsustainable yield (MSY). Thesemethods have
not yet been applied to sharks in the Western and Central Pacific Ocean,
but were proposed for inclusion in the present review by SC 14 and are,
therefore, included here.

Methods that use only catch data usually have to make strong assumptions
about how catch trends relate to either abundance directly, or to fishing
effort (i.e., effort dynamics). The laĴer assumption effectively imputes effort
to generate catch-per-unit-effort (CPUE) and to estimate relative abundance
trends. Both assumptions are strong in the sense that the assumptions about
the relationship between catch and abundance or catch and effort directly
dictate the estimated abundance trend. This aspect can lead to strongly-
biased inferences for any stock alone, even if the methods may perform
well on average (Carruthers et al. 2014). Super-ensemble models, which
pool estimates from a range of values derived from catch-only methods, can
address this shortcoming to some extent (Anderson et al. 2017), but require
the fiĴing of a range of models (and deciding which models to use) and
deciding on relative weights.

An alternative approach is to supplement catch data with assumptions
about the stock status itself (called “depletion based methods” sensu
Carruthers et al. 2014). Although stock status is an assumed rather than
an estimated quantity in these methods, it is possible to obtain valuable
estimates of othermanagement quantities (e.g., MSY; Martell & Froese 2013,
Froese et al. 2017). Stock status assumptions are also used in stochastic
stock-reduction-based methods (Walters et al. 2006), such as depletion-
based stock reduction analysis (Dick & MacCall 2011).

Depletion-basedmethodsmake use of the aspect that catch is oĞen assumed
to be a known quantity in stock assessments: it is not data that are fiĴed
to, but rather catch acts as an external constraint on the model. This
aspect makes catch particularly useful to a priori (in a Bayesian sense)
constrain historical and present absolute stock abundance and productivity
in assessments of any type. In addition to assumptions about current
depletion status, obtaining an a priori constraint on absolute population
size requires a prior distribution on productivity (e.g., intrinsic population
growth rate for a surplus production model, or growth, natural mortality
and recruitment for integratedmodels such as Stock Synthesis 3). With these
assumptions, it is possible to evaluate (i.e., by simulating from a population
dynamics model) the combinations of population size and productivity that
lead to assumed current depletion levels under known catches. The catch-
constrained absolute population size and productivity can then be used to
derive MSY under a given population dynamics model.

Although depletion-based catch-only simulations can be used to constrain
the overall population size, the assumption about current stock status, in
conjunction with observed catches, leads to an implicit prior on fishing
mortality and, thereby, implies a prior on risk of overfishing. Thesemethods
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are, therefore, most valuable in the context of generating informative
priors for more sophisticated assessments. For example, we applied a
depletion-based method to oceanic whitetip shark, but instead of using
the outputs from these simulations as standalone estimates, we used
this method to generate prior distributions for a surplus production
assessment of this species. This approach recognises that catch and
assumptions about stock status are a priori constraints on population size
and productivity (Froese et al. 2017, Walters et al. 2006), but are most useful
if complemented by information that constrains fishing mortality and stock
status a posteriori. The laĴer constraint is applied by catch-per-unit-effort
data in risk assessments or stock assessments models (Walters et al. 2006,
Carruthers et al. 2014, Froese et al. 2017).

2.1.2 Spatial risk assessmentmethods

Spatial risk assessments (SRAs) augment catch data with spatially resolved
effort data and life-history reference points to calculate fishingmortality and
sustainability risk (e.g., in the form of the risk-ratio, which sets F relative
to a life-history-derived reference point that measures sustainability risk).
Risk assessment methods usually only rely on recent catch and, therefore,
do not require a complete time series of catch data, nor assumptions about
catch being complete or CPUE time series data being unbiased indicators of
relative abundance. The lack of temporal contrast to constrain the model is
then compensated in one of two ways.

The first way in which a SRA model can derive fishing mortality is via an a
priori constraint on either the current population sizeNcurr (e.g., Neubauer
et al. 2018) or gear efficiency (Q, which is directly related to catchability q,
see Appendix subsection A.1; Zhou et al. 2013). For example, for seabirds
and other species such as some marine mammals, estimates of Ncurr are
oĞen available from census counts or abundance surveys (e.g., mark-
recapture or distance-sampling surveys). A different way to constrainNcurr

is from sensitive genetic markers through either genetic mark-recapture or
population genetics, although the laĴer oĞen requires strong assumptions
or allowing for large uncertainties (Neubauer et al. 2018). In addition,
population genetic estimates of population size pertain to a population
as a whole (e.g., the Indo-Pacific Ocean population of whaleshark, rather
than the Western and Central Pacific Ocean stock of this species), whereas
a region-specific assessment (e.g., an assessment of the stock within the
Western and Central Pacific Ocean) may only want to consider a proportion
of the overall population. In this case, one can consider using the spatial
density (relative abundance) of the overall population to estimate the stock
that resides within theWestern and Central Pacific Ocean. It is then possible
to consider the laĴer as a closed sub-population (stock), and to examine
the risk for this sub-population. Alternatively, one can consider the risk
posed by fisheries to the sub-population (e.g., within the Western and
Central Pacific Ocean) to the total (e.g., Indo-Pacific Ocean) population
(e.g., Neubauer et al. 2018), or expand the risk assessment by considering
fishing effort from other regions (e.g., as in the porbeagle shark assessment;
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Hoyle et al. 2017). Although the former approach of assessing the sub-
population only has more direct relevance for management within the
Western and Central Pacific Ocean, the laĴer approach of assessing impact
fromfishing on the sub-population for the total stockmakes fewer biological
assumptions about population structure and potential movements within
the larger population.

Similarly, methods that assume known gear efficiency, such as the SAFE
method (Zhou et al. 2011), can scale directly to a total population size and
fishing mortality: this method acts as a fisheries survey in that estimated
mean densities for the gear-affected area (the area that is effectively fished
by a single unit of effort; e.g., the area that is affected by a single longline
set or hook, depending on the unit of effort) are scaled to the overall habitat
area (e.g., suitable habitat within the Western and Central Pacific Ocean).

If current population size or gear efficiency cannot be constrained a priori,
they can, in theory, be estimated together from direct estimation by using
contrast in repeated measures of spatial catch and effort, together with a
measure of gear-affected area (e.g., by using the N-mixture model used in
the eSAFE method; Zhou et al. (2013), Zhou et al. (2014)). The laĴer has a
clear advantage over CPUE trend-based estimation of populations (e.g., in
surplus production or catch-at-age models) as it is only necessary to assume
that current CPUE in space represents the spatial distribution of the focal
species.

The gear-affected area is a key parameter in this framework, as it is a direct
factor for scaling estimated densities at the spatial scale of effort units to
population size across the total habitat. The gear-affected area may be
constrained a priori for some gear types (e.g., trawl); however, for longlines,
the area that is effectively fished by each set or hook is difficult to estimate;
it depends not only on the gear characteristics (e.g., depth), but also on
the physical conditions (e.g., currents) and the focal species’ sensory and
swimming capacity, and its level of aĴraction to the bait (Zhou et al. 2014,
Jordan et al. 2013). While spatial quantitative risk assessments can constrain
fishingmortality and risk while using only recent catch and effort data, they
do require strong assumptions about the gear efficiency and/or the spatial
area that is affected by each unit of effort.

2.1.3 Surplus productionmodels

Dynamic surplus production models (DSPM) are fiĴed based on state-
space equations (McAllister & Edwards 2016, Froese et al. 2017) and do
not require equilibrium assumptions that make traditional approaches to
surplus production assessments difficult to justify (Bonfil 2005). Examples
of packages that implement DSPMs are JABBA (“Just Another Bayesian
Biomass Assessment”; Winker et al. 2018) and BDM (“Bayesian biomass
dynamics model” Edwards 2017). The DSPMs tend to use an index of
abundance (usually CPUE) to constrain the time series of abundance. These
models (and other stock assessments) are, therefore, dependent on CPUE
being a reliable index of abundance, an assumption that is oĞen violated. In
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addition, they rely on either a full time series of catch or a strong assumption
about the depletion level at the start of the time series (the initial depletion).
Although productivity is usually estimated within DSPMs, it is usually
useful to also constrain productivity via an informative prior (Edwards
2017).

Despite these dependencies on temporally resolved data, their simplicity
and relative robustness make DSPMs an appealing framework for shark
assessments, where data of biological processes such as growth and
recruitment are oĞen sparse (Bonfil 2005). In addition, the direct integration
of DSPMs with many theoretical frameworks can be appealing in that
productivity parameters can be derived using life-history theory (see
below). For these reasons, DSPMs offer a cost-effective alternative to fully-
integrated stock assessments, and provide many of the same outputs that
can be used for management: being based on a dynamic model, one can
easily deriveF relative to reference points, and inspect current and/or future
stock status under alternative scenarios of fishing mortality.

In the Western and Central Pacific Ocean, DSPMs have not been applied
to stock assessments by themselves, but in a hybrid framework in two
instances: for porbeagle shark (Hoyle et al. 2017) and bigeye thresher shark
(Fu et al. 2017). In both instances, a Bayesian DSPMwas fiĴed to data over a
small (calibration) area, and the estimates of catchability were then used to
estimate fishing mortality across the larger overall habitat. This approach is
conceptually similar to SRAs, but also requires the same assumptions as a
surplus productionmodel applied on its own (at least in the calibration sub-
area). Nevertheless, it provides additional realism in that it is not necessary
to assume that the fishery affects the stock in a homogeneous way across
the stock’s habitat. Additional biological realism may also be achieved
by modelling productivity in more explicit terms (i.e., via delay difference
models that represent growth, natural mortality and recruitment, but do not
require size or age composition data; Bonfil 2005).

2.1.4 Integrated assessmentmethods

In contrast to surplus production models, which constrain stock status
and fishing mortality by catch and abundance indices alone, integrated
assessments such as statistical catch-at-age models (e.g., Stock Synthesis,
CASAL) will add further constraints on productivity via composition
data (e.g., age-composition data). Other additional data sources can be
integrated to further constrain growth, recruitment or movement dynamics
(e.g., length-frequency data, growth data, tagging data). The integration
of different data sources to constrain processes within the model makes
integrated assessment models more biologically realistic and potentially
more apt at describing population dynamics and, therefore, at obtaining
unbiased estimates of population status and of risk of overfishing. For
example, age or size composition data can help resolve dynamics due to
transient age and/or size structures and, thereby, lead to reduced bias (e.g.,
Punt & Szuwalski 2012).
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Nevertheless, the added complexity of integrated stock-assessment models
and potential conflicts between data sources can also make integrated
assessments considerablymore difficult to apply and interpret than surplus-
production or delay-difference models. For instance, composition data,
while being potentially useful, can also be a substantial source of bias
if the processes that produce these data are not adequately modelled
(Maunder & Piner 2017, Minte-Vera et al. 2017, Francis 2011). For this
reason, composition data are oĞen down-weighted a priori (i.e., before fiĴing
the assessment model), and oĞen provide liĴle, if any, information about
biomass trends, though they may still inform selectivity and recruitment
(e.g., Clarke et al. 2018). This aspect is particularly relevant for relatively
data-poor species such as most sharks, where composition data are usually
sparse and have liĴle weight (or information content) in integrated models
(Rice & Harley 2012, Clarke et al. 2018). Similar to its more simple surplus-
production and delay-difference counterparts, the temporal contrast in
CPUE is oĞen the dominant influence on estimated assessment trends
Ludwig and Walters 1985, Maunder and Piner 2017, Minte-Vera et al. 2017,
Francis 2011. For both types of assessments (production versus catch-at-
age), the assumption that standardised CPUE is an informative indicator of
biomass trends is, therefore, a key assumption.

2.2 Application to oceanicwhitetip shark

In this section, we applied depletion-based catch-only methods, surplus
production models and SRA models to oceanic whitetip shark in the
Western and Central Pacific Ocean. To ensure comparable outcomes, we
assumed a closed population for all models (as is usual in single-stock
assessment models such as surplus production models or single stock Stock
Synthesis models), including the risk-assessment model, noting that the
population structure of oceanic whitetip shark is poorly resolved, especially
in the Pacific Ocean, and that the assumption of a single closed sub-
population is a technical convenience rather than a biological reality.

2.2.1 Choosing referencepoints: estimatingRmax

A reference point is a benchmark that can be used to measure the status
of a species or impact of fishing on a species. Depending on the type of
reference points, these may be benchmarks that should be avoided (i.e.,
a limit reference point) or a target ot be achieved (i.e., a target reference
point). Clarke and Hoyle (2014) and Zhou et al. (2018) evaluated methods
to derive reference points for elasmobranchs in the Western and Central
PacificOcean. Both studies proposed a number of potential reference points,
and suggested a variety of methods to derive them; however, to date,
there are no formally agreed reference points for sharks in the Western and
Central Pacific Ocean. Given the small current relative population size of
oceanic whitetip shark, we compared current fishing mortality, estimated
from different methods to Flim as a tentative limit reference point for sharks,
and to Fcrash, the fishing mortality that would lead to extinction in the
long term. If one assumes a simple Schaefer surplus production model,
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then Fcrash = Rmax, the maximum population growth rate (intuitively, a
population cannot be sustained if fishing removesmore individuals than the
population canmaximally produce), and Flim = 0.75Rmax. Accordingly, we
defined the risk of overfishing as the fishingmortality relative toRmax (Zhou
et al. 2018). Risk in terms of alternative fishing mortality reference points
(e.g., maximum sustainable mortality; MSM) are products of the definition
used here (e.g., FMSM = 0.5Fcrash; Zhou et al. (2018)).

Population growthRmax was calculated frommethods in Pardo et al. (2018)
based on the Euler-Lotka equation (see also Zhou et al. 2018), adjusted
for survival to age at first maturity (Pardo et al. 2016). Estimating Rmax

serves a dual purpose here: it can act as a reference point for depletion-
based catch-only and SRA methods that cannot estimate stock productivity
independently, but can also act as a prior for a DSPM for which Rmax is the
productivity parameter.

Life history input values for the Euler-Lotka equation were compiled from
ranges and point estimates reported in Clarke et al. (2015), with some
adjustments to accommodate recent growth and aging studies (D’Alberto
et al. 2017, Joung et al. 2016). Specifically, although a low number of
mature individuals were measured, D’Alberto et al. (2017) found a much
higher age-at-maturity for oceanicwhitetip shark sampled fromPapuaNew
Guinea than those found previously in other regions. For each life-history
input, valueswere simulated fromadistribution that encompassed reported
values in Clarke et al. (2015), D’Alberto et al. (2017), and Joung et al. (2016),
with a mode or mean centred on reported means or modes where available
(see Figure 1 for the simulated inputs and Figure 2 for the resulting value of
Rmax). When only ranges were reported, the distributions were constructed
to encompass those ranges as extreme quantiles (i.e., near the 5th and 95th
percentile).

We also integrated over methods to derive natural mortality in the
simulation procedure. Specifically, we used methods described in Jensen
(1996) (age-at-maturity based), HewiĴ and Hoenig (2005) (maximum age
based), and Pardo et al. (2016) (expected life-span derived) by simulating
Rmax from the inputs under these mortality assumptions and combining
the outputs. This lead to a broader distribution for Rmax than would be
obtained if one considered a single method to estimate natural mortality.
The calculated Rmax included high values compared with values reported
in Clarke et al. (2015), but was similar to ranges reported for OCS in Pardo
et al. (2016) and point estimates were near identical to those reported from
combining methods to estimate F based reference points in Zhou et al.
(2018).

2.2.2 Input data

We used predicted total catch in space and time as reconstructed in
Tremblay-Boyer andNeubauer (2019). Catchwas reconstructed over a time-
span of 1995–2016, over a geographic extent from 30◦ S to 30◦ N. Catch
reconstructions were based on observer data for the Western and Central
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Figure 1: Input values for Rmax simulations for oceanic whitetip shark, based on parameter values
reported in the literature (vB, vonBertalanffy).

Pacific Ocean and used negative-binomial generalised linear mixed models
(GLMMs). Briefly – observed interactions were modelled as a function
of effort (measured in number of hooks), flag state, targeting and fishing
practice (deep vs. shallow sets), and oceanographic variables. The model
was then used to extrapolate interactions (captures) from observed effort
to total fishing effort. Here, we used the median predicted catch from
the best of a set of candidate models as the reference case (the model-
predicted trajectories are shown in Figure 3, with spatial predictions shown
in Appendix A, Figure B-2).

As retention is prohibited under CMM2011-04, we subtracted live discards
from estimated catches, based on themodel for reported observer fate codes,
with additional assumptions about mortality of discarded sharks. We used
three scenarios for discard and post-release mortality (Figure 4):

1. 100% mortality of all retained and discarded sharks, henceforth
called “MedianDM100” scenario, where median corresponds to the
estimated catch level and DM stands for discard mortality. 100%
discard mortality corresponds with assumptions in the previous
(2012) stock assessment, providing an upper bound for fishing
mortality),

2. 44% total mortality applied on discards (i.e., including haul-back,
handling and post-release mortality; henceforth called the “Medi-
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Figure 2: Simulated distribution over Rmax for oceanic whitetip shark using distributions over input
parameters shown in Figure 1.

anDM44”). Discards were taken as median-estimated total discards
modelled from observer fate codes. 25% haulback and handling mor-
tality was applied oceanic whitetip shark discards (T. Peatman, cited
in Common Oceans (ABNJ) Tuna Project 2019), with additional post-
releasemortality applied to obtain totalmortality corresponding to the
lower bound for total mortality found for other species in Common
Oceans (ABNJ) Tuna Project (2019). The choice of the lower bound for
total mortality for OCS takes into account that oceanic whitetip shark
appear to bemore frequently released alive thanmost other species (T.
Peatman, cited in Common Oceans (ABNJ) Tuna Project 2019). This
scenariowas judged themost plausible given available information on
post-release mortality of pelagic sharks caught on longlines,

3. 25% mortality applied oceanic whitetip shark discards (T. Peatman,
cited in Common Oceans (ABNJ) Tuna Project 2019), and no post-
release mortality applied (i.e., to provide a lower bound on fishing
mortality, henceforth called “MedianDM25” - all live discards are
assumed to survive).

These mortality scenarios adjust recent trends in fishing mortality, but do
not vary the absolute catch level across the time series. The laĴer aspect is
inconsequential as assessment models will generally adjust the population
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Figure 3: Model-predicted total catch of oceanic whitetip shark (oceanic whitetip shark) by year
from (a) longline and (b) purse-seine fishing (grouping associated and un-associated sets. (c)
Estimated catch-per-unit-effort (expected oceanic whitetip shark captures per hook).

size to compensate for additional removals (i.e., only changing the trend
in catches provides different overfishing-status-relevant information to the
model). We, therefore, focused on scenarios with different mortality trends
(i.e., the discard mortality scenarios detailed above).

CPUEwas analysedwith an analogousmodel (Tremblay-Boyer&Neubauer
2019), but using only a subset of consistently well-observed fisheries (i.e.,
sub-seĴing the observer programmes), andmodelling on a finer spatial scale
with more specific gear covariates (Figure 5).

2.2.3 Applying depletion-based catch-only models: prior constraints
onpopulation size andproductivity

As mentioned above, catch-only simulations based on prior assumptions
about depletion, may be most useful in the context of deriving prior
constraints on population size and productivity. Th assumption about
the current depletion level can be vague; however, it is likely that catches
on the order of magnitude observed for oceanic whitetip shark have had
some impact, especially given the life-history traits of shark species. For
this reason, current abundance (or biomass) is likely smaller than it was
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Figure 4: Estimated catch (black line) of oceanic whitetip shark, accounting for estimated discards
adjusted for 25% discard mortality (green line), and catch with a total of 44% discard mortality,
including haulback, handling and post-releasemortality (blue line).

historically. A conservative (i.e., not overly informative) assumption may
be that i) current abundance is less than at the start of the catch time-series
in 1995 (e.g., , N2016/N1995 < 0.9) and ii) current abundance is greater than
0 (i.e., based on the observation that catches are not zero).

Based on these simple assumptions, a population model (e.g., a Schaefer
surplus production model) was used to simulate population trajectories
subject to observed catches from awide prior on initial abundance and stock
productivity (Martell & Froese 2013). Stock trajectories that do not meet
the a priori constraints on stock status (i.e., N2016/N1995 < 0.9; N2016 > 0)
are then discarded (filtered). This method relies on a complete catch time
series unless initial depletion can be specified. For oceanic whitetip shark,
we assumed an initial depletion level (in 1995) between 5% and 80% of the
pre-fishing abundance (0.05 < N1995/K < 0.8). We then used the sample of
filtered trajectories to generate a prior for the the pre-fishing biomass (K),
initial depletion (N1995) and productivity (Rmax) in the surplus production
model.

2.2.4 Applying surplus production models to oceanic whitetip shark in
theWCPFC

We applied the Schaefer surplus production model implemented in the bdm
R package (Edwards 2017) to catch and CPUE data for oceanic whitetip
shark in the Western and Central Pacific Ocean. We used a classic Schaefer
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Figure 5: Estimated catch-per-unit-effort (expected oceanic whitetip shark captures per hook).

production model, although other hybrid production functions can be used
with this R package. The population dynamics are parametrised in terms of
the relative depletion (xt = Nt/K), with relative harvest Ht also expressed
in relative terms (Ht = Ct/K):

xt+1 = xt + g(xt)−Ht (1)
g(xt) = Rmaxxt (1− xt) . (2)

Priors for intrinsic population growth Rmax were derived as a log-normal
distribution fiĴed to simulated, filtered Rmax values from the depletion-
based catch-only simulations. The prior for the carrying capacity K was
derived as a log-normal distribution from the prior simulations (outlined
above). Importantly, the period for predicted catch starts only in 1995, when
catches were relatively high (Figure 3). The laĴer suggests that fishing
mortality prior to 1995 may have been similarly high and, therefore, the
initial depletion level is highly uncertain. A prior for initial depletion was
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set as log-normal prior based on retained prior-predictive draws. We also
included a sensitivity to investigate the sensitivity of conclusions on the
assumed initial depletion by roughly halving the prior mean for initial
depletion.

CPUE was identical to the index used in the integrated stock assessment
(Tremblay-Boyer et al. 2019). CPUE observation error was calculated from
the standardised CPUE.

All estimation was done within the bdm package, with Markov Chain
Monte Carlo (MCMC) in the underlying Bayesian estimation soĞware Stan
(Stan Development Team 2018) used to estimate parameters. We ran the
MCMC for 100 000 iteration, discarding the first 10 000 iterations as burn-
in, and keeping 100 samples from each of 4 chains. The package allows
for efficient set-up of surplus production models, and the sampler was fast,
taking about 4 minutes for 100 000 iterations.

2.2.5 Spatial risk-assessment for oceanicwhitetip shark in theWestern
andCentral PacificOcean

To compare results from the surplus production model to a risk assessment
approach, we found that we needed to use model-based estimation of
population size: There was no sensible way to constrain either Ncurr or
gear efficiency Q a priori for oceanic whitetip shark in the Western and
Central Pacific Ocean. A previous study estimated a range of 19 200–191 000
individuals for the historical effective population size (Ne; Ruck 2016);
however, these values are not estimates of current census population size,
and seem inconsistent with observed and estimated catches over time
(estimated at >500 000 for some years). Historical census population size
(Nc) may be an order of magnitude (for long-lived species with low natural
mortality M, such as whales) to two orders of magnitude (for species
with high M such as most fishes) higher than the historical Ne (Dudgeon
et al. 2012), and may contain liĴle information about current population
size. In the absence of robust information of stock structure and present-
day effective population size in the Indo-Pacific, it appears difficult to use
genetics to constrain oceanic whitetip shark population size.

An alternative way to specifying Ncurr or gear efficiency Q was proposed
by Zhou et al. (2013): their method extended N-mixture models that are
commonly used in terrestrial surveys (Royle & Dorazio 2006, RaĞery 1988)
to the estimation ofNcurr in the fished area andQ, based on repeated fishing
events on a spatial grid. To apply this method, it is essential to obtain both
contrast in Q (i.e., by including different gear types or fleets), and repeated
trials in each area (Zhou et al. 2014). Here, we extended this method to
simultaneously estimate Q and oceanic whitetip shark density over the
total habitat area of oceanic whitetip shark in the WCPO (i.e., assuming a
closed population in the WCPO). To derive total current population size
and current fishing mortality, population density and gear efficiency are
combined with an estimate of the area affected by each unit of effort (the
“gear-affected area”).
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Deriving an estimate of the gear-affected area for longline fisheries is
difficult for a number of reasons. Although the efficacy of longlines is known
to vary with gear depth and hook spacing, liĴle is known about the spatial
area that is effectively fished by the gear (e.g., by a single set or hook Zhou
et al. 2014, Jordan et al. 2013). Jordan et al (2013) suggest that olfactory
aĴraction may be on the order of kilometres, but this aĴraction is likely to
depend on currents (advection and diffusion), soak time, and aĴractiveness
of bait. Zhou et al. (2013) used a band of 1 km width as the distance of
aĴraction for a number of elasmobranch species (i.e., 500 m either side of
the longline). Here we use a range of potential aĴraction distances: 500 m,
1 km, 2 km and 10 km width, noting that a distance between 2 km and
10 km corresponds to values suggested in Jordan et al (2013) and appear
more likely a priori than short aĴraction distances given oceanic whitetip
shark biology. We will use a value of 2 km as a base-case here, but note that
higher values are possible.

As no information of longline characteristics was available, we assumed
a hook spacing of 50 m on average. This spacing is potentially slightly
larger than the hook spacing for most tuna longlines, but smaller than the
spacing for shallow billfish sets (e.g., Bigelow et al. 2006). Hook spacingwas
multiplied by the width of the affected area (i.e., the aĴraction distance) per
hook to obtain a = [2.5, 5, 10, 50]ha for aĴraction distances of 500 m, 1 km,
2 km, and 10 km, respectively.

Only observer data from the last three years available for this study (i.e.,
2014, 2015 and 2016) were used to fit the N-mixture model, as the model
assumes a stationary population. We also restrict ourselves to longline
catches since the estimates for purse-seine catches in 2016 are negligible
compared to longline catches. Calculations of fishing mortality were
derived for the most recent year only (2016), with the same three discard
mortality scenarios as for the surplus production model. For internal
consistency (and to avoid using the data twice), we predicted catch for
the entire fleet from the N-mixture model instead of using the catch-
reconstruction model employed by Tremblay-Boyer et al. (2019). The
estimated catches were compared to ensure that fishing moralities derived
from the N-mixture model were not overly influenced by differences in
assumed catches. Additional technical detail on the implementation of the
N-mixture model for oceanic whitetip shark is given in Appendix A.2.

3. RESULTS

3.1 Depletion-based catch-only simulations

Catch-only simulations showed that based on estimated removals over time,
only a subset of initial values of population size (N1995) and population
growth Rmax were plausible under the assumption that the current stock
status is at least 20% lower than it was in 1995 (Figure 6). Especially
high values of Rmax were filtered out as these oĞen lead to scenarios of
increasing abundance under known removals. In the absence of any a priori
constraints on current depletion level, a vague log-normal prior on initial
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stock size led to a marginal prior distribution for stock status that implied
a nearly unaffected stock and no risk of overfishing (see unfiltered panels
of Figure 6). This high a priori stock status is an artefact of the scale of
N1995 and K (i.e., via assumptions about initial depletion level N1995/K),
which are both necessarily positive, but without an a priori-informed upper
bound on the absolute population size. The stock status assumption in
conjunction with the catch time-series introduces an upper bound and
thereby constrains the priors for initial population size and productivity.
Alternative catch scenarios of current mortality (i.e., scenarios of discard
mortality) led to similar implied priors for all parameters except the risk
ratio (Figure 6, and Appendix A, Figures B-3, B-4). As expected, the value
for the risk ratio is highest a priori with an assumed 100% discard mortality
(the default in the previous assessment) and lowest with an assumed 75%
survival (i.e., without post-release mortality).

3.2 Surplus production assessment of oceanicwhitetip shark

The joint prior derived from depletion-based catch-only simulations (Figure
7) was applied to the surplus production model, with only small differences
in the prior for the three discard mortality scenarios.

The surplus production model estimated all parameters well (Figure 8 and
Appendix A, Figure B-5), constraining Rmax to the lower end of the prior
range. The fit to CPUE data was suboptimal for parts of the time series
(Figure 9), but this outcome was largely due to high estimated observation
error, which provided a relative weak constraint for fiĴing CPUE. When
the observation error was reduced (by a factor of 4, for illustration), the
fits were improved (Figure B-6), but did not markedly change any of the
parameter estimates and especially derived quantities such as overfishing
risk (Figure B-8).

The fits of the surplus production model indicated a steep decline in
abundance since the mid-1990s to levels below 10% of unfished abundance
in 2016 (0.07; 95% confidence interval [0.03; 0.16] across all discardmortality
scenarios; Figures 8 and 9). The depletion estimate was sensitive to
assumptions of initial depletion in 1995, with runs with higher initial
depletion leading to estimates of lower relative abundance in 2016 (Figure
8).

While the assumption about initial depletion drives differences in other
model parameters, it hardly affects the estimate of current fishing mortality
relative to Fcrash. Estimated fishing mortality increased to levels above
Fcrash in the early 2000s and remained critically high until 2012, irrespective
of the discard mortality scenario (Figure 9) or initial population status
(Figure B-7). Assuming different discard mortality scenarios resulted
in different estimates of current fishing mortality and trends: although
the estimated stock status in 2016 was near identical across the different
scenarios (Figure 8), the highest mortality scenario, assuming 100% discard
mortality, estimated a continued high fishing mortality (i.e., P (F >
Fcrash) ≈ 0.97) and a decline over the most recent years. Both scenarios
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Figure 6: Summary of prior predictive simulations under assumed 44% discardmortality scenario for
oceanic whitetip shark. Top row: Simulated population trajectories (in terms of relative abundance
Nt/K) coloured by the value of the draw from the prior distribution of Rmax. For each simulation
trajectory, a set of values for carrying capacity, initial depletion, and Rmax were drawn from their
prior distribution, and the median estimated catch from the catch reconstruction was applied, with
an assumed 44% total discard mortality. A subset of 1000 trajectories is shown on the left hand
side, and a subset of 1000 trajectories from the filtered set (after applying constraints on current
depletion (abundance relative to 1994). The corresponding draws from the prior distribution of
stock size in 1994 are shown (2nd row) for the original prior and the constrained (filtered) prior.
The prior distribution over stock status corresponding to the unconstrained prior (left) and the
constrained prior (right) is shown in the third row. The constrained prior can be thought of as a joint
Bayesian prior over parameters and current stock status in the simple surplus productionmodel, and
therefore implies a constrainedprior forRmax andoverfishing risk(last row; overfishing risk in termsof
Fcurr/Fcrash = Fcurr/Rmax).
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Figure 7: Priors for initial depletion (initial depletion retained from depletion-based catch-only
simulations, and alternative (alt) scenario with higher initial depletion) , the logarithm of the carrying
capacity K, and intrinsic growth (Rmax) for each discard mortality scenario of oceanic whitetip
shark bycatch as applied for the surplus production model of oceanic whitetip shark. Discard
mortality scenarios were 100% discard mortality (MedianDM100), median estimated live discards
(75%alive)withnopost-releasemortality(MedianDM25), andassuming44% total discardmortality
(MedianDM44).

of discards (25% and 44% total mortality, corresponding to zero and 25%
post-release mortality) suggested a relatively flat abundance trend for the
last two years, owing to a substantial reduction in fishing mortality to levels
near Fcrash (Figure 9).

Projections using estimated catch and discardmortality scenarios suggested
limited to no rebuilding over five years from 2016 (the last assessment
year) to 2021 even under reduced mortality (i.e., 0% or 25% post-release
mortality), but a high likelihood of a population crash (i.e., the simulated
population hit the lower bound of the assessment model set at a relative
depletion of 1e-5) under a scenario of 100% discard mortality (Figure 10).

3.3 Spatial riskassessmentforoceanicwhitetipshark intheWesternand
Central PacificOcean

The N-mixture model converged (Figure B-9) towards an estimate of
relatively low gear efficiency over the gear-affected area (Q ≈12%; Table
B-1). The model fit was considered adequate (Figure B-10); there were no
residual paĴerns with respect to flag or longitude and latitude (Figure B-
11). The estimated relative abundance surface indicated a clear preference
for equatorial warm-water areas (Figure 11). Grid cells beyond 30◦North
and 30◦South (the limit of data used in the integrated stock assessment
ad surplus production model) had a predicted abundance near zero,
suggesting that estimates of abundance and risk are comparable.
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Figure 8: Marginal posterior densities for derived parameters (harvest rate, risk ratio of overfishing
F/Fcrash) and selected estimated parameters (carrying capacityK, catchability q, intrinsic popula-
tion growthRmax and relative depletion) for different discardmortality scenarios of oceanic whitetip
sharkbycatch, anddifferentassumptionsof initial depletion level(lowvshigh initial depletion; seeFig-
ure7). Discardmortality scenarioswere100%discardmortality(MedianDM100),medianestimated
livediscards(75%alive)withnopost-releasemortality(MedianDM25), andassuming44% total dis-
cardmortality(MedianDM44). Vertical line forF/Fcrash correspondswithfishingmortalityofoceanic
whitetip shark that leads to extinction (i.e.,F/Fcrash = 1).

Estimated catch from the N-mixture model corresponded closely with catch
from the catch-reconstruction model for 016 (Figure 12). The estimated
total abundance was markedly affected by the assumption about the size
of the gear-affected area, which indicated a strong dependency of the
risk of overfishing on the assumed spatial extent of the gear-affected area
(Figure 12). For a large (0.5 km2 or 50 ha) gear-affected area, all mortality
scenarios on discards led to substantial risk of F > Fcrash. For an assumed
area of 0.1 km2 (or 10 ha), any post-release mortality led to a substantial
risk that F > Fcrash. Even for a smaller assumed spatial extent of the gear-
affected area (0.05 km2 or 5 ha), there was some risk of F > Fcrash.

3.4 Comparingmethods

Only fishing mortality rates can be meaningfully compared among SRA,
DSPM, and SS3 models: the SRA does not give information about
the current depletion status. We note nevertheless, that inferred stock
trajectories and depletion levels were very similar between SS3 and surplus
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Figure 9: Fitting of catch-per-unit-effort (CPUE) data by the surplus production model of oceanic
whitetip shark over time (dark shading, inter-quartile; light shading, 95% confidence interval). Top
row: PredictedCPUEwith input CPUE(points) and observation error (inter-quartile range) from the
surplusproductionmodel. Middle row: Timeseriesof risk ratioofoverfishingF/Fcrash estimated in the
surplus productionmodel. Bottom row: Estimated relative depletion(relative to unfished abundance
K). Discardmortalityscenarioswere100%discardmortality(MedianDM100),medianestimated live
discards (75% alive)with no post-releasemortality (MedianDM25), and assuming 44% total discard
mortality (MedianDM44). (Note that the stockwas not unfished in the first year of the time-series.)

production assessments (see Tremblay-Boyer et al. 2019, for estimated
biomass trends and depletion levels). In addition, we can compare
estimated abundance in 2016 from the DSPM and the SRA. For the
SRA, estimated posterior median population size for intermediate (and
potentially most plausible) gear-affected areas of 5 and 10 ha were 483 000
(CI[294 000,1 040 000]) and 241 000 (CI[147 000,520 000]), respectively. The
DSPM output falls within the range of median SRA outcomes, with an
estimate of around 363 000 remaining OCS in 2016 (CI[164 000,816 000];
Figure 8).

All three assessment types suggested that themost likely scenario of current
fishing mortality (approximately 45% total discard mortality) still carries a
high risk of inducing fishingmortalities at or aboveFcrash (and by extension,
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Figure 10: Marginal posterior densities of projected oceanic whitetip shark abundance in 2021 from
the Bayesian surplus production model under different bycatch discard mortality scenarios. Discard
mortality scenarios were 100% discard mortality (MedianDM100), median estimated live discards
(75%alive)withnopost-releasemortality(MedianDM25), andassuming44% total discardmortality
(MedianDM44).

well above FMSM and Flim; Table 2, Figure 13). The integrated stock
assessment suggested consistently higher fishing mortality than both the
DSPM and the SRA. The laĴer two approaches estimated that the scenario
that did not consider post-release mortality had some chance that F <
Fcrash, whereas the SS3 assessment suggested that all three fishingmortality
scenarios lead toF2016 ≥ Rmax when one considers the estimatedRmax from
the DSPM as a suitable value for Fcrash.
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Figure 11: Estimated relative abundance surface determined by sea-surface temperature by the
Bayesian N-mixture model for oceanic whitetip shark in theWestern and Central Pacific Ocean (CV,
coefficient of variation). The limit of the data used for the integrated stock assessment (30◦North to
30◦South) is shown for reference.

4. DISCUSSION
We applied a surplus production and spatial risk assessment framework
to provide alternative perspectives on the status of oceanic whitetip shark
in the Western and Central Pacific Ocean. Although age-structured stock
assessment models are oĞen regarded as the “gold standard” for stock
assessments, it can be argued that for information-poor fisheries “[t]here is
no single “best” model that should be used for fisheries stock assessments”
(Bonfil 2005). Applying a range of models fit to available data provides
an opportunity to detect inconsistencies, coincidences and paĴerns. Such a
multi-model assessment approach also includes a comparison of outcomes
across different analyses to critically assess the conclusions, allowing for the
improvement of data and future assessments.

We showed that estimated catches alone, in conjunction with a prior belief
that observed catches have affected the stock status of oceanic whitetip
shark, can constrain the initial population size and Rmax to some extent,
but these simulations cannot provide useful management information as
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Figure 12: Estimated oceanic whitetip shark abundance and estimated fishing mortality in the
WesternandCentral PacificOcean,under threedifferentbycatchdiscardmortality scenarios. Discard
mortality scenarios were 100% discard mortality (MedianDM100), median estimated live discards
(75%alive)withnopost-releasemortality(MedianDM25), andassuming44% total discardmortality
(MedianDM44). Top panel: Marginal posterior distribution of estimated shark abundance for four
differentassumedsizesof gear-affectedarea(violinplotswith2.5%,50%,97.5%posteriorquantiles)
and estimated discard mortalities (median and 95% confidence interval). Bottom panel: Fishing
mortality (violin plots with 2.5%, 50%, 97.5% posterior quantiles) for four different assumed sizes of
gear-affected area and the three discard mortality scenarios. Also shown is the median value (red
dashed horizontal line) for the a priori derivedRmax = Fcrash, as well as 0.75Rmax = Flim (orange
dotted horizontal line) and 0.5Rmax = FMSM (dark green dashed-dotted horizontal line) .

the overfishing risk is indirectly defined a priori. Contrast in CPUE or
spatial catch and effort are required to constrain current population size,
stock status and/or the risk of overfishing a posteriori. We did not apply
catch-only frameworks that infer stock status and/or the risk of overfishing
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Figure 13: Fishing mortality estimated for oceanic whitetip shark (violin plots; plotted with identical
widths for visibility (i.e., the area of the surface does not integrate to 1), with 2.5%, 50%, 97.5%
posterior quantiles) for three different assessment methods (spatial risk assessment (SRA) using
a 10 ha gear affected area corresponding to a 2km attraction range, or 1 km either side of baited
hooks), dynamic surplus production model (DSPM), and stock synthesis (SS3)). Solid horizontal
lines show the simulated prior median value for Fcrash = Rmax [red] (Flim = 0.75Rmax [orange],
FMSM = 0.5Rmax [green]) and posterior median estimates of the same quantities from the DSPM
(dotted lines). Discard mortality scenarios were 100% discard mortality (MedianDM100), median
estimated live discards (75% alive) with no post-release mortality (MedianDM25), and assuming
44% total discard mortality (MedianDM44). The distribution for fishing mortality values for the
spatial risk assessment(SRA)and thedynamicsurplusproductionmodel(DSPM)reflectsparameter
uncertainty, whereas the distribution for the SS3 fishing mortality reflects model grid-runs, which
usemaximum likelihood inference and do not havemeasures of estimation (parameter) uncertainty
attached. Thesizeof the inter-quantile ranges is thereforenotcomparablebetweenSS3andtheother
model types.

risk from trends in catch alone as these inferred trends tend to be strongly
confounded with the effects of (or assumptions about) changing effort,
targeting or avoidance measures (Anderson et al. 2017). Although multi-
model inference can integrate over these assumptions to derive a consensus
estimate of stock status from catch alone (Anderson et al. 2017), this
integration entails fiĴing a large number of different models, and will
still depend on the specific models and their weight in such an ensemble
approach.
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Table 2: Probability (risk) that fishing mortality exceeds Fcrash, Flim, and FMSM for the spatial
risk assessment (SRA; using a 10 ha gear affected area corresponding to a 2km attraction range,
or 1 km either side of baited hooks), the dynamic surplus production model (DSPM), and Stock
Synthesis 3. Risk is shown in terms of a priori derived Rmax values (Prior) and in terms of
estimatedRmax from the surplus production model (Posterior). The risk for fishing mortality values
for the SRA and the DSPM reflects parameter uncertainty, whereas the distribution for the SS3
fishing mortality reflects model grid-runs, which use maximum likelihood inference and do not have
measures of estimation (parameter) uncertainty attached. Discard mortality scenarios were 100%
discardmortality (MedianDM100),median estimated live discards (75% alive)with no post-release
mortality (MedianDM25), and assuming 44% total discardmortality (MedianDM44).

Model Mortality P(F > Fcrash) P(F > Flim) P(F > FMSM )

Prior Posterior Prior Posterior Prior Posterior

SRA MedianDM100 0.96 0.98 0.98 1.00 1.00 1.00
MedianDM44 0.74 0.90 0.88 0.96 0.97 0.99
MedianDM25 0.42 0.73 0.69 0.87 0.89 0.97

DSPM MedianDM100 0.84 0.97 0.95 0.99 0.99 1.00
MedianDM44 0.29 0.62 0.57 0.84 0.88 0.98
MedianDM25 0.07 0.27 0.21 0.56 0.63 0.87

SS3 MedianDM100 1.00 1.00 1.00 1.00 1.00 1.00
MedianDM44 1.00 1.00 1.00 1.00 1.00 1.00
MedianDM25 0.27 1.00 1.00 1.00 1.00 1.00

The surplus production model can be thought of as a simplified assessment
(relative to age- or size-structured assessments such as SS3). Although the
biological assumptions in surplus production models may be considered
overly simple, they also serve to make fewer assumptions. For sharks, large
uncertainties oĞen remain about fundamental biological parameters such
as age-at-first-reproduction, theoretical maximum age, fecundity or growth
rates. The single productivity parameter Rmax that is used in DSPMs can
be reasonably constrained from theory and by using depletion-based catch-
only simulations, and no additional assumptions about productivity are
needed. Biological information and uncertainty can still considered when
deriving a Bayesian prior Rmax, and is therefore still integral to a DSPM
assessment. The relative performance of either the surplus production or
the age-structure (e.g., SS3) model will depend on trends in CPUE and
the influence of transient age and size structures (e.g., Ludwig & Walters
1985, Punt & Szuwalski 2012). This choice is difficult to make a priori,
and producing (formal or informal) multi-model inference for stocks with
sparse compositional data could, therefore, be considered the most robust
approach (Bonfil 2005). However, given cost-constraints, DSPMs may
provide useful information of stock dynamics and over-fishing risk thatmay
be sufficient in many cases.

The surplus production model inference showed a substantial decline in
oceanic whitetip shark numbers from the mid 1990s until the most recent
years in the assessment (the minimum year depends on the assumed
mortality scenario, see Figure 9). The estimated stock status below 10% of
carrying capacity, and the unsustainable estimated fishing mortality over
most of the assessment period suggest that the extent of reductions in fishing
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mortality through non-retention and minimisation of discard mortality are
the key uncertainties about the persistence of the stock into the future.
Under scenarios of high discard mortality, the stock is unlikely to be able
to persist.

The stock status estimate from the surplus production assessment was
slightly higher than that from the integrated stock assessment (7% in the
DSPM vs. 3% in SS3), the laĴer estimating a relative abundance under
5% of un-fished abundance. There are a number of potential causes for
this discrepancy: For example, assumptions about initial depletion/fishing
mortality or selective removal ofmature individuals in the integratedmodel
can lead to differences in the estimate stock status. The surplus production
model cannot account for selective removal of large, mature individuals,
and therefore represents total abundance rather than spawning stock
abundance. As such, the surplus production model may underestimate the
degree of recruitment over-fishing, and over-estimate productivity at low
population size.

Both the integrated SS3 assessment and theDSPMuse standardized longline
CPUE to drive abundance trends in themodels. CPUEwas highly uncertain
and variable for early years, when observer coverage was sparse, and may
have been additionally impacted by conservation measures such as CMM-
2011-04, which potentially lead to a decline in reported numbers of hooked
sharks if the laĴer are cut free before being landed on board. Additionally,
the ban on shark lines and wire traces brought about by CMM-2014-05 may
have led to reduced shark catch-rates, meaning that recent CPUE may be
under-estimated.

The SRA does not rely on a complete time-series of CPUE, and could
therefore be considered a more robust alternative to estimate recent fishing
mortality. Despite key differences in data inputs andmethods, results about
the magnitude of 2016 fishing mortality from the SRA were similar to those
from the DSPM and SS3. We aligned the spatial risk assessment modelling
approach as closely as possible with the other assessment methodologies
to highlight the key assumptions and impacts. Estimated catch from this
method and the catch-reconstruction model used for the other assessment
methods applied to oceanic whitetip shark correspond closely. Estimates of
the risk of overfishing are, therefore, only linked to different assumptions.
The spatial risk assessment method used here can be considered a model-
based estimation of a fisheries survey, and scaling up to total abundance
and risk of overfishing risk is dependent on assumptions about the spatial
impact of the gear. This assumption is necessary for any SRA in which
population size cannot be constrained a priori.

The SRA allowed us to derive a current population size, and estimates of
F2016 on the basis of estimated catch relative to the estimated population.
For assumptions of large gear-affected areas (i.e., ≥0.1 km2 or 10 ha, our
base assumption), we obtained estimates of current F that corresponded
with conclusions of the surplus production assessment: with 100% assumed
discard mortality, there was a high risk that F2016 > Fcrash, whereas the
estimate for F2016 was considerably lower for scenarios of higher discard
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survival. Nevertheless, at themost likelymortality scenario, which includes
direct mortality and post-release mortality, a non-negligible risk remained
that F2016 > Fcrash (Table B-1). There is, therefore, a non-zero risk that the
population will not persist under this mortality scenario.

In combination, the DSPM and SRA approaches highlight the need to
further minimize fishing mortality to sustain the oceanic whitetip shark
population in the Western and Central Pacific Ocean. Current fishing
mortality estimates for this species are highly uncertain owing to high
uncertainty about discard mortality (Common Oceans (ABNJ) Tuna Project
2019), nevertheless, even the most optimistic scenario (no post-release
mortality) carries a high risk for OCS for all models but the DSPM, and the
most realistic scenario (44% total mortality) carries substantial risk across all
models, especially when one considers the posterior distribution of Rmax

from the DSPM as a proxy for Fcrash (in that case P(F > Fcrash) ≥ 0.62
across all models; Table 2). Understanding discardmortality (i.e., the sum of
haul-back, handling and post-release mortalities) for oceanic whitetip shark
therefore needs to be a priority to ensure thatmeasures aimed atminimising
fishing mortality of oceanic whitetip shark are effective and contribute to
rebuilding the population from current low levels.

Based on the method comparison and results of this study, a possible
framework for assessing shark and other bycatch species is illustrated in
Figure 14. The comparison of assessment approaches showed that when
data are sufficient (i.e., a time series of removals and CPUE exist and judged
a sufficiently reliable indicator of abundance), a surplus production model
could be considered a cost-effectivemethod to rapidly and frequently assess
bycatch species such as pelagic sharks. By carefully constructing priors for
the assessment, one can integrate biological and domain knowledge, yet
avoid having to run a large amount of model-uncertainty scenarios that are
oĞen necessary in integrated assessments such as SS3 (i.e., grid runs in the
integrated assessments). As a result, one can focus on key uncertainties such
as mortality scenarios and initial depletion level. More time-intensive and
costly integrated assessments such as the SS3 assessment could then be used
for priority species, where prioritization could include cost, stock status,
and overfishing risk. SRA approaches can help with prioritisation as the
relatively simple SRA framework can be applied across a range of species,
even those with poor historical time-series data. If the gear-affected area
can be quantified, the SRA can be used to get an estimate of absolute F ,
however, SRAmethods can still be used in a semi-quantitative (i.e.,relative)
way to prioritise assessment and conservation efforts.

ACKNOWLEDGEMENTS
Many thanks to Dr. Shelley Clarke for valuable pointers over the course of
this project. The authors also thank Sebastian Pardo for kindly sharing his R-
code for estimating uncertainty in rmax. Funding for thisworkwas provided
through the Global Environmental Facility (GEF) funded United Nations
(UN) Food and Agriculture Organization (FAO) Common Oceans (ABNJ)

33 Comparing alternative assessment methods for sharks



Prioritization

Goal

Quantitative spatial 
risk-assessment

Spatial gear 
effects

Status estimation

Integrated 
stock-assessment

Surplus 
production

model

CPUE/catch
time-series

Composition 
data

Priority 
species

No CPUE/catch
time-series

Semi-quantitative 
spatial 

risk-assessment
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Tuna Project executed through the Western and Central Pacific Fisheries
Commission (WCPFC).
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APPENDIXA: Supplementary technical detail

A.1 Relationship between surplus production and risk assessments.

One can show that the relationship between catchability q as used in a simple
stock assessment and gear efficiency Q as used in a spatial risk-assessment
or survey is simply:

q =
aQ

A
(A-1)

with a the area affected by the gear (e.g., area swept by trawl gear, or
aĴraction area for baited longline or hook-an-line), and A the over-all area
of the assessment. To derive this, note that in a typical assessment, catch (C)-
per-unit effort (E) is assumed to be proportional to abundance, such that:

C

E
= qN (A-2)

In the survey method or spatial risk assessment, the catch in the gear-
affected area a is simply the size of the area, multiplied by the gear efficiency
Q (i.e., the proportion of the local density that is removed per unit effort) and
the density of the focal species (N/A)

C

E
=

aQN

A
(A-3)

Equating equationsA-2 andA-3 gives the above stated relationship between
q and Q.

A.2 Statistical detail for the N-mixture model used in the spatial risk
assessment forOCS

The N-mixture model can be wriĴen as:

ni,k ∼ P (hi,kaDi), (A-4)
Ci,k ∼ B(ni,k, Qk), (A-5)

where ni,k is the abundance of oceanic whitetip shark in the gear-affected
area, hi,k is the number of hooks in area i for fleet k, and a, is the affected
area per hook. The parameter Di = Ni/Ai is the density (numbers per grid
area) of oceanic whitetip shark in grid i. The model can be considered a
generative model: the number of sharks available per spatial unit of effort
(i.e., the area affected by a unit of effort, e.g., a single hook) for each fleet in
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each grid cell i is random and follows a Poisson (P ) distribution with mean
Da

i = aDi = aNi/Ai. The catch for each fleet k in grid cell i is a binomial (B)
draw given a specific fleet’s gear efficiency Qk.

For consistency, we defined fleets in terms of the same variables that were
included in the catch-reconstruction model that was used for both the
current project and the integrated assessment ((Tremblay-Boyer et al. 2019)).
Specifically, fleets were characterised by vessel flag, set type (deep versus
shallow sets), and target cluster (i.e., k is defined by the unique combinations
of these variables). Although different set types may affect a, we subsumed
this effect into the gear-efficiency parameter Q. We modelled Q as:

log
(

Q

1−Q

)
= βQX + ωflag + ζflag-year (A-6)

The parameter X is a design matrix with contrasts for (predicted) deep
and shallow sets and for targeting cluster (as per catch reconstruction in
Tremblay-Boyer et al. 2019), with coefficients βQ estimated for both effects.
Flag (ωflag) and flag-year (ζflag-year) were treated as random effects, which
capture differences in fishing operations (flag) and potentially changing
practices due to implementation of conservation measures by fleets (flag-
year effect). All random effects had informed half-normal priors with a
standard deviation of 2 for the random effect standard deviation (on the
logit scale).

The spatial density of oceanic whitetip sharks was modelled as logDa
i =

µD + f(SSTi), where µD is the mean density per unit of effort and f(SSTi) is
a smooth (spline) function of sea-surface temperature in grid i. The overall
model differs from the catch-reconstruction model in that the abundance
and capture process are explicitly separated. This separation allowed
extrapolation of shark density beyond fished grid cells.

For the estimation, it is possible to explicitly integrate over the latent
abundance process (the Poisson component of the model above), yielding
a Poisson model P (hi,kD

a
i Qk) (e.g., RaĞery 1988). The expected number of

individuals Ni in grid i is then a−1AiD
a
i . To account for the overdispersion

of captures, we used a three-parameter version of the negative-binomial
(NB) distribution (see Tremblay-Boyer et al. 2019 for detail) instead of
the Poisson distribution. The NB model is commonly interpreted in
terms of overdispersion (e.g., aggregation of individuals) relative to a
Poisson distribution (randomly-distributed individuals in space). The NB
model used here has two additional parameters (compared to the poisson):
an overdispersion parameter (ϕ) and an exponent ν that describes how
overdispersion varies with the mean of the distribution.

The definition of current abundance Ncurr =
∑

iNi =
∑

i a
−1AiD

a
i implies

that it is possible to estimate the current abundance Ncurr in principle.
Nevertheless, this estimate is reliant on an estimate of the gear-affected area.
For this reason, the estimation ofNcurr has the same limitation as the scaling
of survey estimates of biomass to a total biomass estimate. Although the
estimation of Ncurr provides a method for not requiring knowledge of gear
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efficiency Q and the distribution of the focal species a priori, this method
does not remove all unknowns from the estimation of N .)

The difficulty to disentangle Q and N in N -mixtures is well known, and
Bayesian priors can help place constraints on these parameters (RaĞery
1988). For instance, it can be assumed that the likelihood of catching an
oceanic whitetip shark (given that it is present in the gear-affected area) is
probably >1%; i.e., more than 1 in 100 sharks will be hooked given they are
present in the area, but this value depends on what is considered the spatial
extent of the gear-affected area. Given that some sharks may be satiated or
otherwise not aĴracted to the bait, the gear efficiency is probably well below
1. We used a prior on the logit scale for the mean efficiency that was centred
on 0 (i.e., Q = 0.5), with a standard deviation of 1. We then formulated our
prior formeandensity per hook areaDa

i , so that the product ofQ andDa
i was

within a reasonable range: itwould appear a priori implausible that themean
density is such that over plausible values ofQwewould observe one oceanic
whitetip shark per 10 hooks on average, or one oceanic whitetip shark for
every ten million hooks (given known catches and total number of hooks
used in the Western and Central Pacific Ocean). Therefore, we constrained
the prior for logDa

i as a normal distribution that leads to a joint prior over
Q andDa

i that remains within the a priori constraints (see Figure A-1 for the
joint prior).

The stanmodel used for inference is shownbelow in full. Themodelwas run
using MCMC for 5000 iterations aĞer discarding 1000 iterations as burn-in.
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FigureA-1: Priors to constrain gear efficiencyQ andmeandensity per hook areaDa
i . Left panel: Prior

over Q. Right panel: Expectation for the number of oceanic whitetip shark caught per longline hook
implied by the joint prior overQ andDa

i . (The observed mean number of oceanic whitetip shark for
the dataset is plotted as the vertical line for reference.)

/ / modified from code generated with brms 2 . 8 . 0
func t ions {

r e a l neg_binomia l_2_tr ia l s_ lpmf ( i n t y , r e a l mu,
r e a l phi , i n t T ) {
re turn neg_binomial_2_lpmf ( y | mu * T , phi * T)

;
}
i n t neg_binomia l_2_ t r ia l s_rng ( r e a l mu, r e a l phi ,

i n t T ) {
re turn neg_binomial_2_rng (mu * T , phi * T) ;

}
r e a l neg_binomial_2_nu_lpmf ( i n t y , r e a l mu, r e a l

phi , r e a l nu , i n t T ) {
re turn neg_binomial_2_lpmf ( y | mu * T , phi * T

* (mu^nu ) ) ;
}
i n t neg_binomial_2_nu_rng ( r e a l mu, r e a l phi , r e a l

nu , i n t T ) {
re turn neg_binomial_2_rng (mu * T , phi * T * (mu
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^nu ) ) ;
}

}
data {

in t < lower=1> N; / / number of observat ions
int < lower=1> N_grid ; / / number of grid c e l l s
in t < lower=1> N_pred ; / / number of pred grid c e l l s
i n t pred_grid [N_pred ] ; / / p red i c t ion grid
i n t pred_hooks [N_pred ] ; / / hooks fo r catch pred i c t ion
int < lower=1> n_sc ; / / number of gear−a f f e c t ed area

scenar ios
r e a l hook_area [ n_sc ] ; / / gear a f f e c t ed area
vec tor [ N_grid ] Area ; / / area of each grid c e l l
i n t Y[N] ; / / response va r i ab l e − i n f e r ence
i n t t r i a l s [N] ; / / number of hooks − i n f e r ence
int < lower=1> K; / / number of population−l e v e l

e f f e c t s
matrix [N, K] X ; / / population−l e v e l design matrix
matrix [N_pred , K] Xp ; / / e f f e c t s fo r pred i c t ion (

design matrix )
/ / data fo r smooth terms
i n t Ks ;
matrix [N, Ks ] Xs ;
matrix [ N_grid , Ks ] Xss ;
/ / data of smooth s ( SST , k=3)
i n t nb_1 ; / / number of bases
i n t knots_1 [ nb_1 ] ;
matrix [N, knots_1 [ 1 ] ] Zs_1_1 ;
matrix [ N_grid , knots_1 [ 1 ] ] Zss_1_1 ;
/ / data fo r group−l e v e l e f f e c t s of ID 1 ( f l ag )
in t < lower=1> N_1 ;
in t < lower=1> M_1 ;
in t < lower=1> J_1 [N] ;
in t < lower=1> Jp_1 [N_pred ] ;
/ / data fo r group−l e v e l e f f e c t s of ID 2 ( f lag−year )

in t < lower=1> N_2 ;
in t < lower=1> M_2 ;
in t < lower=1> J_2 [N] ;
in t < lower=1> Jp_2 [N_pred ] ;
matrix [N_1 , 3 ] f a t e ; / / mor ta l i ty scenar ios , predic ted

discards by f l ag * mort
}
transformed data {

i n t Kc = K − 1 ;
matrix [N, K − 1] Xc ; / / centered vers ion of X
matrix [N_pred , K − 1] Xcp ; / / centered vers ion of X
vector [K − 1] means_X ; / / column means of X before

center ing
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fo r ( i in 2 :K) {
means_X [ i − 1] = mean(X[ , i ] ) ;
Xc [ , i − 1] = X[ , i ] − means_X [ i − 1 ] ;
Xcp [ , i − 1] = Xp[ , i ] − means_X [ i − 1 ] ; / / f o r

pred i c t i ons
}

}
parameters {

vec tor [Kc ] b ; / / population−l e v e l e f f e c t s
r e a l temp_Intercept ; / / temporary i n t e r c ep t
r e a l b_Intercept_mu ; / / temporary i n t e r c ep t
/ / parameters fo r smooth terms
vec tor [Ks ] bs ;
rea l < lower=0> phi ;
rea l < lower=0> nu ;
/ / parameters of smooth s ( SST , k=3)
vec tor [ knots_1 [ 1 ] ] zs_1_1 ;
rea l < lower=0> sds_1_1 ;
vector < lower =0 >[M_1] sd_1 ; / / group−l e v e l standard

dev ia t ions
vec tor [N_1] z_1 [M_1 ] ; / / unscaled group−l e v e l

e f f e c t s
vector < lower =0 >[M_1] sd_2 ; / / group−l e v e l standard

dev ia t ions
vec tor [N_2] z_2 [M_2 ] ; / / unscaled group−l e v e l

e f f e c t s

}
transformed parameters {

vec tor [ knots_1 [ 1 ] ] s_1_1 = sds_1_1 * zs_1_1 ;
/ / group−l e v e l e f f e c t s
vec tor [N_1] r_1_1 = ( sd_1 [ 1 ] * ( z_1 [ 1 ] ) ) ;
vec tor [N_2] r_2_1 = ( sd_2 [ 1 ] * ( z_2 [ 1 ] ) ) ;
/ / group−l e v e l e f f e c t s
vec tor [N] mu = b_Intercept_mu + Xs * bs + Zs_1_1 *

s_1_1 ; / / expected population dens i ty
vec tor [N] p = temp_Intercept + Xc * b ; / / gear

e f f i c i e n c y
fo r (n in 1 :N) {
p [n ] += r_1_1 [ J_1 [n ] ] + r_2_1 [ J_1 [n ] ] ; / / add random

e f f e c t s fo r gear
p [n ] = i nv_ l og i t (p [n ] ) ;

}
}
model {

/ / p r io r s inc luding a l l cons tants
t a r g e t += normal_lpdf ( b | 0 , 3 ) ;
t a r g e t += normal_lpdf ( b_Intercept_mu | −9, 2 ) ;
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t a r g e t += normal_lpdf ( temp_Intercept | 0 , 1 ) ;
t a r g e t += normal_lpdf ( bs | 0 , 3 )
− 1 * normal_lccdf (0 | 0 , 3 ) ;

t a r g e t += normal_lpdf ( zs_1_1 | 0 , 1 ) ;
t a r g e t += s tudent_ t_ lpdf ( sds_1_1 | 3 , 0 , 20)
− 1 * s tuden t_ t _ l c cd f (0 | 3 , 0 , 20) ;

t a r g e t += s tudent_ t_ lpdf ( sd_1 | 3 , 0 , 2 )
− 1 * s tuden t_ t _ l c cd f (0 | 3 , 0 , 2 ) ;

t a r g e t += s tudent_ t_ lpdf ( sd_2 | 3 , 0 , 2 )
− 1 * s tuden t_ t _ l c cd f (0 | 3 , 0 , 2 ) ;

t a r g e t += normal_lpdf ( z_1 [ 1 ] | 0 , 1 ) ;
t a r g e t += normal_lpdf ( z_2 [ 1 ] | 0 , 1 ) ;

/ / l i k e l i hood inc luding a l l cons tants
fo r (n in 1 :N) Y[n ] ~ neg_binomial_2_nu ( exp (mu[n ] ) *

p[n ] , 1 / phi ^2 ,nu , t r i a l s [ n ] ) ;

}
generated quan t i t i e s {

/ / a c tua l population−l e v e l i n t e r c ep t
r e a l b_Intercept_p = temp_Intercept − dot_product (

means_X , b ) ;
vec tor [N] pY ;
vec tor [ N_grid ] mu_p ;
matrix [ N_grid , n_sc ] N_p ;
matrix [ N_grid , n_sc ] FS ;
vec tor [N_pred ] p_pred ;
matrix [ N_grid , 3 ] pred_catch ;
vec tor [ N_grid ] hooks ;

/ / p red i c t ion for pso t e r i o r p red i c t i ve d iagnos t i c s
fo r (n in 1 :N) pY[n ] = neg_binomial_2_nu_rng ( exp (mu[n

] ) * p[n ] , 1 / phi ^2 ,nu , t r i a l s [ n ] ) ;

/ / p red i c t i ons on over−a l l gr id
mu_p = b_Intercept_mu + Xss * bs + Zss_1_1 * s_1_1 ;

/ / predic ted dens i ty
p_pred = temp_Intercept + Xcp * b ; / /
pred_catch = rep_matrix ( 0 , N_grid , 3 ) ; / / predic ted

catch
hooks = rep_vector ( 0 , N_grid ) ;
fo r (n in 1 :N_pred ) {

i n t draw ;
p_pred [n ] += r_1_1 [ Jp_1 [n ] ] + r_2_1 [ Jp_2 [n ] ] ;
p_pred [n ] = i nv_ l og i t ( p_pred [n ] ) ;
draw = neg_binomial_2_nu_rng ( p_pred [n ] * exp (mu_p[

pred_grid [n ] ] ) , 1 / phi ^2 , nu , pred_hooks [n ] ) ;
hooks [ pred_grid [n ] ] += pred_hooks [n ] ;
fo r ( f in 1 : 3 ) pred_catch [ pred_grid [n ] , f ] += draw*
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f a t e [ Jp_1 [n ] , f ] ; / / apply mor ta l i ty s cenar ios
}

fo r ( sc in 1 : n_sc ) {
N_p[ , sc ] = exp (mu_p) . * ( Area / hook_area [ sc ] ) ; / /

expected densi ty over grid
FS [ , sc ] = ( i nv_ l og i t ( b_Intercept_p ) * exp (mu_p)

. * hooks ) . / N_p[ , sc ] ; / / s p a t i a l F = expected
catch over expected numbers in each grid

}
}
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APPENDIXB: Supplementaryfigures and tables
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Figure B-2: Model-predicted longline catch of oceanic whitetip shark by year for the Western and
Central Pacific Ocean, with the boundary of the Western and Central Pacific Fishery Commission
indicated by the red line.

Table B-1: Marginal posterior estimates for selected parameters of the N-mixture model applied to
oceanic whitetip shark in the Western and Central Pacific Ocean. Parameters included shark density
D = exp(µD); gear efficiency Q= intercept component of βQ (back-transformed); sd, standard
deviation of randomeffects parameters.

Parameter Mean SD 2.5% 50% 97.5% Rhat

D 4.33e-05 3.77e-01 2.17e-05 4.26e-05 9.58e-05 9.99e-01
Q 1.41e-01 4.84e-01 5.58e-02 1.43e-01 3.01e-01 9.99e-01

phi 6.03e-01 2.50e-01 2.47e-01 5.62e-01 1.18e+00 1.00e+00
nu 1.20e+00 8.19e-02 1.05e+00 1.20e+00 1.36e+00 1.00e+00

sd(Flag) 7.74e-01 4.44e-01 3.63e-02 7.98e-01 1.68e+00 1.00e+00
sd(Flag-year) 7.95e-01 4.27e-01 5.44e-02 8.09e-01 1.62e+00 1.00e+00
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Figure B-3: Summary of prior predictive simulations under assumed 75% live-discards for oceanic
white-tip shark, and no post-releasemortality. Top row: Simulated population trajectories (in terms
of relative abundanceNt/K) coloured by the value of the draw from the prior distribution of Rmax.
For each simulation trajectory, a set of values for carrying capacity, initial depletion, andRmax were
drawn from their prior distribution, and estimated catch with estimated discards were applied with no
discardmortality. A subset of 1000 trajectories is shown on the left hand side, and a subset of 1000
trajectories from the filtered set (after applying constraints on current depletion (abundance relative
to 1994). The corresponding draws from the prior distribution of stock size in 1994 are shown (2nd
row) for the original prior and the constrained (filtered) prior. The prior distribution over stock status
corresponding to the unconstrainedprior (left) and the constrainedprior (right) is shown in the third
row. Theconstrainedpriorcanbethoughtofasa jointBayesianprioroverparametersandcurrentstock
status in the simple surplus productionmodel, and therefore implies a constrained prior forRmax and
overfishing risk (last row; overfishing risk in terms ofFcurr/Fcrash = Fcurr/Rmax).
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Figure B-4: Summary of prior predictive simulations under assumed 100% discard mortality for
oceanic white-tip shark. Top row: Simulated population trajectories (in terms of relative abundance
Nt/K) coloured by the value of the draw from the prior distribution of Rmax. For each simulation
trajectory, a set of values for carrying capacity, initial depletion, and Rmax were drawn from their
prior distribution, andestimatedcatch from thecatch reconstructionwas appliedwith100%mortality
(i.e., no survival for discarded sharks). A subset of 1000 trajectories is shown on the left hand
side, and a subset of 1000 trajectories from the filtered set (after applying constraints on current
depletion (abundance relative to 1994). The corresponding draws from the prior distribution of
stock size in 1994 are shown (2nd row) for the original prior and the constrained (filtered) prior.
The prior distribution over stock status corresponding to the unconstrained prior (left) and the
constrained prior (right) is shown in the third row. The constrained prior can be thought of as a joint
Bayesian prior over parameters and current stock status in the simple surplus productionmodel, and
therefore implies a constrainedprior forRmax andoverfishing risk(last row; overfishing risk in termsof
Fcurr/Fcrash = Fcurr/Rmax).
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Figure B-5: Markov Chain Monte Carlo traceplots for derived parameters (harvest rate and risk
ratio of overfishing (F/Fcrash) and selected estimated parameters in the surplus production model
of oceanic whitetip shark (log carrying capacity K, catchability q, intrinsic population growth Rmax

and relative depletion). Discard mortality scenarios were 100% discard mortality (MedianDM100),
median estimated live discards (75% alive) with no post-release mortality (MedianDM25), and
assuming 44% total discard mortality (MedianDM44). The horizontal line for F/Fcrash corresponds
withF/Fcrash = 1, the fishingmortality that leads to extinction.
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Figure B-6: Fitting of catch-per-unit-effort (CPUE) data using the surplus production model for
oceanic whitetip shark with reduced CPUE observation error (original observation error plotted; dark
shading, inter-quartile; light shading, 95% confidence interval). Top row: Predicted CPUE and inter-
quartile from the surplus production model with reduced CPUE observation error. Middle row: Time
series of risk ratio of overfishing F/Fcrash estimated in the surplus production mode. Bottom row:
Estimated relative depletion (relative to unfished abundanceK). Discard mortality scenarios were
100% discard mortality (MedianDM100), median estimated live discards (75% alive) with no post-
releasemortality (MedianDM25), and assuming 44% total discard mortality (MedianDM44). (Note
that the stockwas not unfished in the first year of the time-series.)
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Figure B-7: Fitting of catch-per-unit-effort (CPUE) data using the surplus production model for
oceanic whitetip shark with a reduced prior for the initial population (median CPUE and observation
errorplotted; dark shading, inter-quartile; light shading,95%confidence interval). Top row: Predicted
CPUE and inter-quartile from the surplus production model. Middle row: Time series of risk
ratio of overfishing F/Fcrash estimated in the surplus production model. Bottom row: Estimated
relative depletion (relative to unfished abundance K). Discard mortality scenarios were 100%
discardmortality (MedianDM100),median estimated live discards (75% alive)with no post-release
mortality (MedianDM25), and assuming 44% total discardmortality (MedianDM44). (Note that the
stockwas not unfished in the first year of the time-series.)
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Figure B-8: Marginal posterior densities for selected estimated parameters (carrying capacity K,
catchability q, intrinsic population growth Rmax and relative depletion) and derived parameters
(harvest rate and risk ratio of overfishing (F/Fcrash) in the surplus production model for models
run with the estimated observation error (OE; solid lines) and observation error set to a quarter
of the original observation error (OE/4, dashed lines). Discard mortality scenarios were 100%
discardmortality (MedianDM100),median estimated live discards (75% alive)with no post-release
mortality(MedianDM25), andassuming44% total discardmortality(MedianDM44). Thevertical line
forF/Fcrash correspondswithF/Fcrash = 1, the fishingmortality that leads to extinction.

53 Comparing alternative assessment methods for sharks



nu sd(Flag) sd(Flag−year)

D Q phi

0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500

0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

0.1

0.2

0.3

0.4

0.5

0.0

0.5

1.0

1.5

2.0

2.5

0.00005

0.00010

0.00015

1.0

1.2

1.4

Chain
1
2
3
4

Figure B-9: Markov Chain Monte Carlo traceplots for selected parameters of the N-mixture model
of oceanic whitetip shark (shark density D = exp(µD), gear efficiency Q= intercept component of βQ

(back-transformed)).
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FigureB-10: Rootogramtoassessmodelfitof theN-mixturemodel foroceanicwhitetipshark(OCS)
in the Western and Central Pacific Ocean. Expected counts are shown as a line (on square-root
scale),with observedcounts ”hanging” from the line, indicating over- andunder-predictionbasedon
the distance of the bar from the y =0 line.
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Figure B-11: Residuals from the N-mixture model for longitude, latitude and fishing fleet flag
identification (ID).
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