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Executive Summary

Following the decline in the pole and line �shery, the purse seine �shery operating within Papua
New Guinea (PNG) archipelagic waters has been used to provide an index of abundance for the
Papua New Guinea/Solomon Islands region of the skipjack assessment model since 2014. �e
purse seine �shery within PNG archipelagic waters is well established, but the �shing strategies
have changed dramatically through time. During the 1990s and early 2000s, the �shery was
largely focused around �sh aggregation devices (FADs). Gradually, �shing e�ort has shi�ed away
from FADs and more towards unassociated sets, and over the past �ve years the �eet has
predominantly targeted free-schooling aggregations. An important challenge when standardizing
catch per unit e�ort (CPUE) is accounting for di�erences in �shing strategies, and for that reason
we chose to use CPUE data from associated sets only, as there has been a consistent time series of
�shing activity focused on �oating objects since 1997. �is document describes the generalized
linear modeling approach used to standardize CPUE from the PNG archipelagic purse seine �eet
for the period 1997-2018. �e standardized index suggests the �shery has been relatively stable
for the past decade with increasing variability in the most recent time periods. We have
highlighted uncertainties associated with the index and have provided recommendations for
future improvements.

Introduction

In the western and central Paci�c Ocean (WCPO) the skipjack tuna Katsuwonus pelamis �shery is
largely a purse seine �shery, with about 79% of the skipjack harvest in 2017 landed by the purse
seine �eet (Williams and Reid, 2018). Purse seiners concentrate �shing e�ort on aggregations of
�sh, and for that reason standardized purse seine catch per unit e�ort (CPUE) metrics may be
hyperstable and relatively insensitive to changes in stock abundance over time (Hoyle et al., 2014).
In addition, the continual incorporation of new technologies and strategies by the �shing �eet in
an e�ort to increase e�ciency and maximize pro�t margins suggests that the traditional unit of
e�ort, the set, has not remained constant through time (i.e. e�ort creep; Pilling et al., 2016).
Despite these challenges, purse seine �shing is a major component of the skipjack �shery in the
WCPO, and the catch and e�ort data associated with this �shery likely contain valuable
information regarding changes in abundance through time. �e standardization approach
described below has been developed to account for factors that may have in�uenced CPUE, for
the Papua New Guinea/Solomon Islands region of the skipjack assessment model, but which are
unrelated to changes in abundance.

In 2014, a standardized index of abundance from the Papua New Guinea (PNG) archipelagic purse
seine �shery was developed (Pilling et al., 2014), and deemed appropriate for use in the
assessment given the relative stability of the �eet and anchored-FAD (aFAD) �shing strategy
through time (Sokimi, 2009). By 2015, the �shery had shi�ed from �shing almost exclusively
associated sets to about 40% of the overall purse seine e�ort being performed on �oating objects.
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In this document, associated sets are de�ned as those that target schooling aggregations of �sh
associated with �oating objects, whereas unassociated sets target free-schooling �sh aggregations.
Floating objects, in this context, include man-made anchored and dri�ing FADs (e.g., buoys or
ra�s), as well as natural �oating objects, such as logs, whales, and whale sharks, around which
�sh may aggregate. �e trend towards unassociated sets has continued into 2018, with
approximately 15-25% of the sets made between 2016 and 2018 in PNG archipelagic waters
performed on �oating objects, with the remaining sets targeting free-schooling aggregations. �e
shi� in �shing strategies employed through time, combined with continual improvements in
vessel and �shing technologies, are expected to impact abundance trends derived from CPUE. To
address these changes, we modeled catch rates from associated sets made by a core �eet of vessels
with a consistent history of �shing activity in the region.

�e objective of this analysis is to provide a standardized index of skipjack abundance from purse
seine CPUE for the Papua New Guinea/Solomon Islands region of the 2019 skipjack stock
assessment model. We used a Tweedie generalized linear modeling approach to model skipjack
catch rates through time from purse seine sets associated with �oating objects. �e associated
�shery has persisted since 1997 and represents a consistent time series of relatively stable �shing
practices, and was therefore deemed appropriate for the development of a standardized index of
skipjack abundance.

Methods

Preparation of the dataset

�e time series of operational (logsheet) data available from purse seine vessels �shing within
PNG archipelagic waters (i.e. the Bismarck Sea) between 1997 and 2018, were examined (Figure 1).
Papua New Guinea (PNG) and Philippines (PH) �agged vessels had the most consistent time
series, and therefore were used in the CPUE analysis. In previous analyses, PNG �agged vessels
were used exclusively, but there was evidence of similar �shing pa�erns between PNG and PH
vessels as well as �ag switching between these nations, justifying retention of the PH vessels for
this analysis. Data, including the set type and catch (in mt), were available from 132 vessels of
varying time series lengths. Some vessels had an intermi�ent time series, or one of relatively
short duration, due to �eet evolution (e.g., decommissioning of older vessels and addition of
newer vessels). Logsheet records with an associated set type of anchored FAD (aFAD), dri�ing
FAD (dFAD), or other associated (e.g., dri�ing logs, whales, whale sharks; ASSOT) were retained.

During the initial standardization of purse seine CPUE for this region (Pilling et al., 2014), only
associated sets (aFAD, dFAD, or ASSOT) were used because the predominant �shing strategy of
the �eet was associated with �oating objects. However, through time, the �shing strategy in the
region has largely shi�ed towards unassociated sets, and in 2016, the standardization analysis
incorporated unassociated sets as well (Tremblay-Boyer et al., 2016). �is issue was again
revisited in 2019, and we have elected to include only associated sets in this analysis, as changes

3



in �shing strategy may confound changes in abundance, even when accounting for the set type in
the standardization model.

We further subset the data to remove extreme catch observations, determined as being outside the
99.9th quantile of observed catch by set (> 217 mt). Skunk sets, de�ned as sets with less than one
mt of total tuna catch (approximately 3.5% of the logsheet sets), were omi�ed from the analysis as
they were assumed to represent a failed set and were not expected to be representative of
abundance. We did however, retain sets with total tuna catch greater than one mt even if the total
amount of skipjack was relatively as low (e.g., primarily a yellow�n set), as these sets were
considered informative for the estimation of trends in abundance. We identi�ed a ‘core �eet’ of
vessels from the �ltered data set, deemed representative of the �shery over time, for the analysis.
�e selection criteria for the core �eet is described below.

Core fleet determination

A ‘core’ group of �shing vessels was selected, based on a combination of �shing history and catch
rates, and was assumed to be representative of the purse seine �eet, �shing associated sets,
through time. �e core �eet consisted of 33 vessels, selected from the initial 132 vessels in the
dataset, which provided a reasonable time series of information for modeling catch rates. Using
criteria similar to that implemented in 2016 (Tremblay-Boyer et al., 2016), vessels were retained
only if they had been active for at least 18 quarters (∼ 20% of the time series; with at least one set
in each quarter), and had at least one catch in the top 95% of catches for a given year. Data for a
given quarter were retained for each vessel only if they performed at least �ve sets during that
three month period. In the previous analysis, a criterion of six active quarters was used; we
increased the selection criterion to 18 quarters in an a�empt to retain a �eet of vessels that had a
reasonably consistent history of �shing activity in the region, throughout the time period of
interest. �e resulting dataset represented 44% of the e�ort data and of the 46% catch data, for the
time series.

Clustering

A k-means clustering algorithm was used to create an additional explanatory variable to describe
species composition, at the set level. Clustering allows for a reduction in the variability among
individual sets by classifying sets into a pre-de�ned number of groups, based on the species
composition of the catch. Because the purse seine �eet in PNG waters may switch between
targeting and/or catching schools that are predominantly of one species or another (i.e., skipjack
or yellow�n), we wanted to account for the variability in catch rates associated with the
dominant species harvested in a given set. �e dominant species in the catch composition from a
given set, based on the proportion of each tuna species (in mt), was used to determine the cluster
association. Cluster groupings of two, three, and four were evaluated, with two groups being
preferred — a skipjack cluster and a yellow�n tuna cluster.
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Tweedie GLM

We used a Tweedie generalized linear modeling (GLM) approach to model skipjack CPUE (mt/set)
as a function of covariates, due to potential pitfalls associated with delta-lognormal (a.k.a hurdle)
models, described in detail by �orson (2017). Delta-lognormal models are commonly used for
�sheries CPUE standardization (Maunder and Punt, 2004; Lynch et al., 2012) by modeling the
probability of non-zero catch, assuming a binomial error structure, and the positive CPUE data
with a log-normal distribution, assuming statistical independence between the two model
components. �is assumption of independence may be unrealistic for ecological systems because
regions of high density are likely to have high encounter probabilities (Royle and Nichols, 2003).
Similarly, abundant species may be distributed more widely, increasing encounter probability
throughout their range while less abundant species may exhibit patchier distributions and overall
lower catch rates.

�e Tweedie GLM is suitable for non-negative continuous data with a high density of
observations at zero, and addresses the concerns described above in a uni�ed framework by
modeling skipjack CPUE from set i (Ci) as,

Ci ∼ Twp(µi, φ)

where
µi = exp(ηi)

ηi = β0 + βxX

and ηi is the linear predictor for the observed skipjack CPUE, at the set level, using the log-link
function. Here, βx is a vector of regression coe�cients and X is a matrix of predictor variables.
�e variance of Ci is assumed to be a function of the estimated dispersion φ and power p
parameters (see Jorgensen, 1997 and Bonat and Kokonendji, 2017 for details).

V (Ci) = φµp
i

We �t the GLMs using the R package glmmTMB (Magnusson et al., 2016).

A suite of candidate models was developed based on expert knowledge of �shery dynamics
through time. We evaluated four predictor variables: year-quarter, vessel identi�er, set type
(aFAD, dFAD, ASSOT), and cluster grouping; all predictor variables were treated as factors. We
included one interaction term in the suite of candidate models, the interaction between set type
and cluster. �e preferred model was selected through an evaluation process that considered the
Akaike Information Criterion (Akaike, 1973), residual pa�erns over space and time, and
contribution of covariates to �nal indices, based on step and in�uence plots. �ese criteria were
applied in light of retaining as simple a model structure as possible to facilitate the interpretation
of year-quarter e�ects.
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Results

�e nominal CPUE trends for skipjack and yellow�n tuna were generally positive throughout the
most recent years in the time series (Figure 2). �ere has been a marked shi� in �shing strategy
from associated sets to unassociated sets and a transition in the vessels that comprise the PNG
purse seine �eet. �e core �eet used in this analysis included 33 vessels, a decrease from the 37
vessels used in 2016 (Tremblay-Boyer et al., 2016) but an increase from the 13 used in 2014 (Pilling
et al., 2014; Figure 3). In recent years, the core vessels have �shed primarily on ASSOT sets
(Figure 4), although the species composition by set type has remained relatively stable through
time (Figure 5). �e core �eet was absent from the most recent three quarters of the time series, a
period during which the third largest median nominal CPUE value was observed (preceded by
two observations from 1998).

We utilized two clusters for the model cluster variable associated with set-level species
composition. �e two clusters were de�ned as sets predominantly harvesting skipjack or
yellow�n (Figure 6), and explained 79% of the variation in species composition. �e proportion of
sets harvesting primarily yellow�n has generally increased through time.

�e �nal GLM included year-quarter, cluster, and vessel identi�er as factors; no interaction terms
were included. �e resulting standardized CPUE skipjack index has been reasonably stable
through time, with increasing variability in recent years (Figure 7). �e step plots illustrate the
relative change in the standardized index with the addition of covariates, while the in�uence plots
depict the in�uence a covariate has on the index, given the change in its distribution through time
(Bentley et al., 2012). For example, if a covariate in a given time step has a large positive in�uence
value, it suggests that the standardized index would be higher if that covariate were omi�ed.
Cluster has been an in�uential variable through time, with a negative trend, such that in recent
years the CPUE would be lower without the species composition variable included in the model
(Figure 7). �ere is a positive trend in the in�uence of the vessel e�ect on the model through time,
a potential indication of e�ort creep, with newer vessels demonstrating higher rates of skipjack
catch in the more recent years as compared to vessel sets from the earlier part of the time series.

�e dispersion and power parameters were estimated to be 2.94 and 1.54, respectively. Model
diagnostics for the preferred model indicated approximately normally distributed quantile
residuals, but with some consistently large, positive residuals throughout the time series (Figure
8). �e spatial residuals do not display any concerning clustering in space.

Discussion

�e purse seine �shery in PNG archipelagic waters has demonstrated dynamic and adaptive
�shing behaviors throughout this time series. �e standardized index of abundance for skipjack
tuna from the purse seine �eet �shing in PNG archipelagic waters (Figure 7; bo�om-le� panel)
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has been relatively stable through time, although with greater �uctuations in recent years. �e
PNG �agged �eet was initially selected for standardization due to a relatively consistent time
series of purse seine e�ort focused on aFADs (Pilling et al., 2014); however, the �shery has been
gradually moving away from aFAD focused e�ort and increasingly targeting free schooling
skipjack unassociated with �oating structures. �is pa�ern continued through 2018 with the
proportion of e�ort and harvest coming from unassociated sets increasing over time (Figures 3
and 4). �e vessels participating in the �shery have also evolved throughout the time series as the
more historical vessels are departing the �shery and newer vessels are entering. We have used a
conservative approach by modeling only associated sets and by extending the time period
requirement of active �shing e�ort, for inclusion in the core �eet, to 18 quarters. �ese decisions
were intended to minimize the impact newer vessels might have on the standardized index
through time, but this approach is not sustainable in the long-term as vessel replacement and
upgrades are expected to continue as long as the �shery is pro�table, and fewer vessels are
�shing schools associated with �oating objects. In the interest of maintaining a stable �eet for the
analysis, we have been unable to provide a standardized CPUE index for the three most recent
time periods, due to inactivity by the core �eet. In the future, standardizing purse seine CPUE in
the Papua New Guinea/Solomon Islands region of the skipjack assessment model will likely
require an analysis of unassociated catch rates. Further research into the appropriate e�ort
metrics for free-school sets and standardization approaches is recommended to produce an index
capable of reliably estimating changes in abundance over time.

Changes in species composition (as represented by the cluster variable) have been in�uential
through time, as the number of sets harvesting primarily yellow�n as has been slowly increasing.
�e cluster variable was included in the model to control for variability associated with
targeted/harvested species, as catch characteristics of skipjack are expected to change as a result.
Set type (aFAD, dFAD, ASSOT) had very li�le in�uence on the overall index, and was therefore
dropped from the model. Here, we have modeled associated set catch rates from logsheet data
only; however, there remain important questions about the changes in �shing behaviors over
time. For example, has the shi� towards unassociated sets been related to market drivers,
management scheme, or abundance of skipjack versus yellow�n? Although the dominant species
in a set has been used to explain some of the variation in catch rates, it should be noted that most
sets are not exclusively of one species or another and most o�en the harvests are a mixture of
skipjack and yellow�n. �ese changes in �shing strategies over a relatively short time period is
notable, and worthy of further investigation. Additional information regarding FAD densities and
tuna behavior around FADs is an important research area related to purse seine CPUE analyses.

�e in�uence of the vessel e�ect shows a positive trend through time, and may be suggestive of
changes in e�ciency, an aspect of the analysis that requires additional a�ention. A reliable
database documenting vessel and gear characteristics (e.g., vessel length, engine power, net
length, number of support vessels) as well as technologies employed by the skipper (e.g.,
echo-sounder equipped FADs, remote sensing so�ware) is of great importance for purse seine
�sheries more generally to control for changes in e�ective e�ort through time (e.g., Torres-Irineo
et al., 2014). In addition, in the wider �shery it may prove valuable to explore observer and vessel
monitoring system (VMS) data to investigate alternative approaches for quantifying e�ort beyond
the set. �ese data elements may help to mitigate the impact of e�ort creep (Pilling et al., 2016) on
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standardized CPUE indices. E�ort creep has the potential to mask true trends in abundance
causing hyperstability of the index by assuming e�ective e�ort has remained constant when in
fact, less e�ort is required to �nd, catch, and process the same amount of �sh through time due to
technological innovation. In addition, a vessel a�ributes database may enable expansion of or
elimination of the core �eet. It may be possible to include a mixture of newer and older vessels,
assuming we can statistically control for the di�erences in e�ciency amongst them. �e proposed
database should help to quantify these important changes through time.

We acknowledge the uncertainties regarding the use of this purse seine CPUE index of abundance
for Paci�c skipjack tuna, and recommend continued research into standardization approaches
(see recommendations in Hoyle et al., 2014). As pole and line indices are no longer reliable for the
�shery in PNG archipelagic waters, there is a salient need to improve upon the datasets describing
the characteristics of this purse seine �shery and technologies �shers are using to prosecute it.
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Figures

Figure 1: Aggregated e�ort (number of sets) and skipjack CPUE (mean CPUE, mt/set) by 0.5 degree cell, in
PNG archipelagic waters, from 1997 to 2018.
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Figure 2: Summary of quarterly catch (top) and CPUE (bo�om; nominal, mt/set) for skipjack and yellow�n
tuna from 1997 to 2018. �e boxplots highlight the median in red with the colored boxes covering the 25th
ot 75th quartiles of CPUE observed for that quarter.
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Figure 3: Key vessel statistics for the core �eet: relative contribution to the annual catch over time (le�) and
distribution of set type over the 1997-2015 and 2016-2018 periods. �e period split was chosen to highlight
the new data incorporated since the last CPUE standardization in 2016. �e vessels are split between those
that belonged to the core �eet for previous standardizations (gray background; red text for 2013 core
vessels, blue text for additional 2016 core vessels, and gray text for vessels new to the analysis in 2019).
Within each category the vessels are ranked by total catch 1997-2018, with greatest catch at the bo�om;
bubble size is scaled by the vessel contribution to annual catch. �e �gure on the right shows all sets made
by the vessels selected to be in the core �eet. �e core �eet contributes much less to the overall proportion
of total skipjack in recent years, than it did in the original analysis.
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Figure 4: Number of quarterly purse seine sets alongside the proportion of sets and skipjack catch, by set
type, over the time series. �e top �gures illustrate the number and proportion of sets and proportion of
skipjack catch over the time series from the un�ltered data set. �e bo�om �gures show the number and
proportion of sets and proportion of skipjack catch, by set type, for the �ltered data used in this analysis
(i.e., sets associated with �oating objects).
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Figure 5: Species composition of purse seine harvest, represented as a proportion, by set type and year
from 1997-2018.
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Figure 6: Cluster characteristics and catch summaries for the �nal species composition cluster variable. In
each plot blue represents skipjack, yellow represents yellow�n tuna, and red indicates bigeye tuna. �e two
cluster groupings are representative of sets that harvested primarily skipjack (blue) or yellow�n (yellow).
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Figure 7: Step (le�) and in�uence (right) plots for each explanatory variable, building up to the �nal model.
In the step plot, the current standardized index is shown in bold, the index from the previous step is drawn
with a dashed line and earlier indices are in gray. �e right-hand panel depicts the in�uence of each
covariate on the index through time.
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Figure 8: Key diagnostics for the �nal Tweedie GLM.
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Figure 9: Standardized CPUE indices from the �ltered data set with associated sets (solid line) and all set
types (dashed line). �e di�erence between the two indices (all set types index subtracted from the
associated set only index) is shown with segments branching o� the horizontal line at an index value of 0.
When the standardized CPUE index estimated from associated sets is higher than the standardized CPUE
index estimated from all set types (including unassociated sets), the points are red (point sizes are scaled
according to the absolute di�erence between the indices), and when the associated index is lower, the
points are blue.
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