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Executive summary 

Elasmobranch species are bycatch in fisheries managed by the Western and Central Pacific Fisheries 
Commission (WCPFC). These species have limited fishery-dependent data and biological information. 
Traditional stock assessment cannot be performed for most of the stocks. Assessment using alternative 
approaches has become a priority research project. Recently, Clarke and Hoyle (2014) reviewed 
appropriate limit reference points (LRPs) for WCPFC elasmobranchs and provided a conceptual framework 
for selecting appropriate LRPs. In 2015 an expert panel held a workshop to identify the most appropriate 
life history data to be used in calculating the risk-based LRPs. The panel compiled and reviewed over 270 
studies worldwide on 16 WCPFC elasmobranch stocks. 

The current study continues the previous work. The report contains several components related to 
reference point development. In the first section, we apply a total of four methods and use the data in the 
expert panel report to estimate fishing mortality-based reference points (FRPs). As natural mortality M is a 
key variable in three of the four methods, we start with M estimation by using six M estimators as well as 
adopting M values from the literature. Comparison among the seven M estimators shows that the 
estimator based on maximum life span tmax and the estimator based on the von Bertalanffy growth function 
(VBGF, K and Linf) differ markedly from other estimators for most stocks. On average, M from tmax is 1.45 
times higher than the mean value from all seven approaches. In contrast, M based on VBGF is only 0.73 
times of the average.  

The four methods for deriving FRPs are: an empirical relationship between FRPs and life history parameters, 
demographic analysis, the intrinsic population growth rate from literature, and the spawning potential ratio 
(SPR) approach. We provide three reference points, Fmsm, Flim, and Fcrash. As expected, the estimated values 
are similar between multiple methods (i.e. 2 to 4 methods depending on available data) in some stocks but 
vary considerably in other stocks. Because of a lack of selectivity and maturity information, the SPR 
approach is applied to only three stocks. It is difficult to determine what percentage of SPR is appropriate 
for elasmobranchs and how it corresponds to the three FRPs, so this approach has limited value. Since the 
WCPFC has adopted a benchmark 20%SBdynamic10, unfished as the limit biomass reference point for target 
species, we recommend using a similar RP—the combined Flim (cFlim, combined from the three methods) as 
LRP for elasmobranchs. 

In the second section, we review some potential methods for estimating fishing mortality for data-poor 
species, including formal stock assessment, area-based ERA methods, age-based methods, and length-
based methods. We focus on the area-based methods, as varying versions, tailored for varying data 
availability, have been developed and have been applied to two WCPFC species. This group of methods can 
be flexibly modified to suit the available data. To be consistent, this method is recommended for other 
data-poor WCPFC elasmobranch species. 

In the third section, we briefly review other potential management procedures for WCPFC elasmobranchs. 
As a wide range of assessment methods and management procedures have been developed for data-poor 
fisheries, and several comprehensive reviews have already been completed, we only discuss three 
procedures that are potentially promising for WCPFC bycatch. These procedures include catch-rate 
approaches, length-based traffic-light approaches, and catch-only methods. We suggest that before 
adopting a particular approach, it is essential to check the data inventory against the key assumptions 
required by the method, and keep in mind the merit of consistent methodology across multiple species.    

In the fourth section, we review the life history-based approach to estimating a stock recruitment 
relationship (SRR) for sharks, focusing in particular on the approach published by Kai and Fujinami (2018) in 
Fisheries Research. They modelled the SRR using the approach proposed by Mangel et al. (2010), based on 
maximum population growth rate at low population size and spawning biomass per-recruit at equilibrium 
without fishing. They used this approach to derive steepness parameter for both Beverton-Holt and Ricker’s 
models, and argued for use of the estimate based on the Beverton-Holt stock recruitment relationship. 
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They suggested this steepness can be used as a prior for stock assessment. Their paper is, in general, well 
written and provides sufficient explanation to repeat the approach for other species. However, we have 
identified several weaknesses of the approach, including: underestimating uncertainty in input parameters 
and in the stock recruitment relationship, overlooking of the density-dependent effect on life-history 
parameters, and potentially unrepresentative coverage of the population. We conclude that the approach 
is an interesting theoretical idea, but requires further research before applying to sharks for estimating 
steepness priors for stock assessment.   
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1 Introduction 

Fishing impact on elasmobranchs has become an increasing concern in fisheries management and 

biodiversity conservation (Dulvy et al., 2014; Stein et al., 2018). Lack of biological and fisheries data 

has hindered the use of traditional quantitative stock assessments (such as surplus production 

models, statistical catch-at-age models, stock-recruitment models, delay-difference models, and 

virtual population analysis models) and development of management advice based on the output of 

these assessments. Most elasmobranch species impacted by Western and Central Pacific Fisheries 

Commission (WCPFC) managed fisheries have very limited data. Traditional stock assessment has 

been attempted for only four of the 16 stocks of elasmobranchs in the Western and Central Pacific 

Ocean (WCPO) (Table 1). Developing management reference points using alternative approaches has 

been a priority research agenda for the Commission. In 2014, Clarke and Hoyle (2014) conducted a 

thorough review of appropriate limit reference points (LRPs) for WCPFC elasmobranchs. Based on 

the adopted WCPFC’s framework for target species, they provided a conceptual framework for 

selecting potential LRPs for non-target elasmobranchs. Data needs were also identified as a priority 

issue and an expert panel was recommended to identify the most appropriate life history data to be 

used in calculating the risk-based LRPs. Consequentially, a workshop was held in 2015, which 

produced the “Report of the Pacific Shark Life History Expert Panel Workshop”. The panel compiled 

and reviewed over 270 studies worldwide on 16 WCPFC elasmobranch stocks. Since then it has been 

endorsed by the Scientific Committee for the continued development of reference points for 

elasmobranchs based on previous findings and compiled data.  

In April 2018, the Commission called for proposals for identifying appropriate reference points for 

elasmobranchs within the WCPFC. The terms of reference list six tasks: 

1. For those elasmobranchs which have been evaluated using a stock assessment model, recalculate 

the risk-based limit reference points (LRPs, as described in Table 5, WCPFC-SC10-MI-WP-07 (Clarke 

and Hoyle, 2014)) using the updated life history information produced by the Shark Life History 

Expert Panel. 

2. For those elasmobranchs which have not been evaluated using a stock assessment model advise 

on ways of developing an estimate of current fishing mortality (F), for example using catch curves, 

the method used in the bigeye thresher assessment (WCPFC-SC12-SA-IP-17, see updated version Fu 

et al., 2018), or other suitable means. Risk-based LRPs (as described in WCPFC-SC10-MI-WP-07) 

should then be developed for all WCPFC key shark species. 

3. Where the stock-recruitment relationship is highly uncertain, compare Fcurrent to SPR-based LRP 

such as F60%SPR,unfished (or simply F60%) and discuss any new insights into the recommended estimated 

LRPs so that the WCPFC Scientific Committee can decided on a case-by-case basis which LRP is most 

appropriate. 

4. Review the use or otherwise of other potential LRPs based on SPR, reduction of recruitment or 

empirical measures (e.g. catch rate or length values designed to signal unacceptable population 

states). 

5. Advise on any changes or updates to the recommended LRPs in WCPFC-SC10-MI-WP-07 based on 

new developments, including any suggestions for further technical work before consideration of 

adoption of LRPs by fishery managers. 
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6. Review the work presently being undertaken by ISC on the development of stock-recruitment 

relationships and their parameter estimates, such as stock-recruitment steepness for North Pacific 

blue shark and assess the applicability of extending this work to other key shark species, especially 

South Pacific blue shark. 

The report is organized in four sections: (1) Estimating F-based reference points; (2) Potential 

methods for estimating fishing mortality; (3) Other potential management procedures for WCPFC 

elasmobranchs, and (4) Review shark stock-recruitment relationships. Note that section (1) 

addresses tasks 1, 3, 5 and part of 2, because these tasks are all about developing reference points, 

whether the species have been evaluated or not, using risk-based or SPR-based estimators, and 

updating the existing estimates. 
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2 Estimating F-based reference points 

2.1 Data sources 

2.1.1 Life history parameters 

An expert panel was convened in 2015 to review appropriate life history parameters for the fourteen 

WCPFC key shark species (16 stocks). The panel compiled and reviewed over 270 studies worldwide 

on blue, mako, silky, oceanic whitetip, thresher, porbeagle, hammerhead and whale shark species 

(Clarke et al., 2015). Tables containing over a dozen of the most important life history parameters 

and their uncertainties and caveats were constructed for each species. We extracted all relevant 

numbers from the report. Some species and parameters had multiple studies, and we retained all 

individual values by sex. We primarily used “Pacific parameters”, i.e., data from the Pacific Ocean. 

However, for certain parameters that were not available from the Pacific Ocean, “Alternative 

parameters” from other areas (e.g., Atlantic Ocean and Indian Ocean) were used instead (note that 

“Alternative parameters” are also provided in Clarke et al. (2015) report). We have provided a note 

in the results section when an alternative parameter was used for a particular stock. Specifically, we 

borrowed intrinsic rate of increase (r) from “alternative parameters” for two stocks, the Blue shark-

North and the ocean Whitetip shark, and maximum age and age at maturity for smooth 

hammerhead shark. Different units, types of measurement (e.g. fork length, total length, pre-caudal 

length), and equations were used in different studies, and where necessary we converted 

measurements to consistent units and adjusted equations as appropriate, using relevant information 

from the original literature.   

Since the Cairns workshop, updated life history parameters (LHPs) have become available for some 

stocks. However, in this study we did not have time to carry out a thorough review and find all the 

new estimates. We adopted updated estimates for three stocks that were readily known. Grant et 

al. (2018) recently examined the life history of silky sharks from Papua New Guinean waters. The 

newly estimated life history parameters differ significantly from those reported in the early 

literature (Clarke et al., 2015). Fu et al. (2018) updated the maximum life span for the Bigeye 

thresher shark. Hoyle et al. (2017b) used the new maximum life span for the Porbeagle shark. We 

adopted the updated values for these three species. 

2.1.2 Selectivity  

Realised selectivity (i.e. relative catchability at size in all fisheries combined) is required by some 

methods for deriving reference points. However, this is a difficult relationship to estimate, and it 

may vary through time. Elasmobranchs are captured by various fishing gears in the WCPFC fisheries, 

including longline, purse seine, and some gillnet, each of which may have a different selectivity, and 

their effort levels vary through time. In addition, fish availability affects realised selectivity, since 

fishing effort varies spatially, and elasmobranch populations are usually spatially structured. Sexual 

segregation in space is a general characteristic of elasmobranchs (Wearmouth and Sims, 2008; 

Finucci et al., 2018), and spatial segregation between juveniles and adults is also commonly 

observed (e.g. Finucci et al., 2018; Gouraguine et al., 2011; Semba et al., 2013). 
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Moreover, selectivity has been estimated for very few elasmobranchs species. Most sharks are  

captured in longline fisheries (Shark Working Group, 2014), where two types of curves are often 

assumed (Hovgard and Lassen, 2000): dome-shaped and sigmoid (logistic). For example, Rice and 

Harley (2013) assumed the selectivity for the longline bycatch of Silky sharks to be dome shaped 

with a maximum at body length 172 cm. Selectivity for the target longline fishery (targeting the Silky 

sharks) was also assumed to be dome shaped but with maximum selectivity value that ranged from 

168 cm to 204 cm. The selectivity for purse seine unassociated sets was assumed to be logistic with 

size at inflection of 64 cm. For oceanic whitetip sharks, Rice and Harley (2012) assumed that the 

longline bycatch fishery selectivity increased with age and remained at the maximum once attained.  

Selectivity for the target longline fishery was assumed to be dome shaped with a maximum 

selectivity value at 180 cm. Selectivity for purse seine associated sets were assumed to be logistic 

with size at inflection of 110 cm. 

The logistic curve may be more typically assumed for longline for other species. For example, a study 

fitted the logistic size selectivity model to Blue shark catch-at-length data from 17 fleets operating in 

the North Pacific Ocean (Carvalho and Sippel, 2016). The majority of these fleets were longline. The 

selectivity at length l is modelled as 

𝑆𝑙 =
1

1+𝑒−𝑠𝑎(𝐿𝑙−𝑆50)        (Eqn 1) 

Where Sa is the slope parameter, Ll is the pre-caudal length, and S50 is the length at which 50% of 

individuals encountered the gear are hooked. Across the 17 fleets, Sa ranges from 4.05 to 11.37 

(mean = 7.46, sd = 2.29) and S50 ranges from 66.27 to 167.62 (mean = 126.02, sd = 28.44).  

Based on these studies, we assume a logistic curve for Blue shark selectivity and use the means of 

the estimated Sa and Sl from Carvalho and Sippel (2016) study. Because the slope parameter was not 

provided for Silky shark and Whitetip shark in Rice and Harley (2012, 2013) reports, we assume a 

knife-edge selectivity at 64 cm and 110 cm for these two species respectively.  

2.2 Estimating natural mortality rate 

Natural mortality M is an essential parameter for Methods 1, 2, and 4 presented below. For most 

fish species (both teleosts and chondrichthyes), M is typically derived from other life history 

parameters. Although M is available from literature for most stocks (12 out of 16), we are unsure 

whether they are directly measured (e.g. from tagging studies, telemetry, or catch curve analysis) or 

indirectly estimated from other life-history parameters, and in particular whether these values are 

accurate. A range of indirect M estimators have been proposed for information-limited species. 

Kenchington (2014) reviewed 29 of these estimators and proposed a new alternative that requires 

an estimate of effective sample size in addition to other life-history parameters. He found that none 

of the 30 can provide accurate estimates for every species, while several perform so poorly as to 

have no practical utility.  

Recently, Then et al. (2015) compared different approaches and recommended two basic equations, 

one based on the maximum life span, tmax, and the other one based on von Bertalanffy growth 

parameters, K and Linf. These equations were modified or improved from similar equations that had 

been widely used, such as Hoenig (1983) and Pauly (1980) methods, and were not included in 

Kenchington (2014) review. Then et al. (2015) concluded that a tmax based estimator performed the 

best among all estimators evaluated. In our first version of this report, we used the two Then’s 

equations with unequal weight using the inverse prediction error. However, the results from 
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applying the two equations to the 15 WCPFC stocks indicated that the tmax based estimator often 

produced unrealistically large M. The problem may arise from both the estimator itself, and the 

input tmax, which may have been frequently underestimated. Furthermore, many of the indirect 

methods were developed almost entirely from teleosts. Elasmobranchs have lower fecundity, larger 

body size at birth, slower growth, later maturity, and longer life span than most teleosts, so many of 

these indirect methods largely based on teleosts may be inappropriate for elasmobranchs. A study 

from 29 elasmobranch species showed that the most common methods in elasmobranch literature 

appeared to be overestimating M by factors of 1.34 – 1.91 (Moe, 2015). It is well recognized that 

many popular estimators widely used for teleosts are less useful for elasmobranchs (Simpfendorfer 

et al., 2005; Kenchington, 2014b; Moe, 2015).  

In this updated version, we selected six estimators that were either recently developed or 

specifically formulated for elasmobranchs. Hence, including natural mortality adopted from 

literature, we have a total of seven methods for deriving M: 

 

(1) M = 𝑎𝑡𝑚𝑎𝑥
𝑏 = 4.899  𝑡𝑚𝑎𝑥

−0.916       (Eqn 2a, Then1) 

(2) M = 𝑎𝐾𝑏𝐿𝑖𝑛𝑓
𝑐 = 4.118 𝐾0.73𝐿𝑖𝑛𝑓

−0.33      (Eqn 2b, Then2) 

(3) ln(𝑀) = 0.42 ln(𝐾) − 0.83, or 𝑀 = 0.463𝐾0.42    (Eqn 2c, Frisk1) 

(4) 𝑀 =
1

0.44𝑡𝑚𝑎𝑡+1.87
        (Eqn 2d, Frisk2) 

(5) 𝑀 =
1.65

𝑡𝑚𝑎𝑡−𝑡0
         (Eqn 2e, Hisano) 

(6) 𝑀 = {

𝐾

1−𝑒−𝐾(𝑡−𝑡0) ,                        𝑡 < 𝑡𝑠

𝐾

𝑎0+𝑎1(𝑡−𝑡𝑠)+𝑎2(𝑡−𝑡𝑠)2 ,     𝑡 ≥ 𝑡𝑠

     (Eqn 2f, Chen) 

 where {

𝑎0 = 1 − 𝑒−𝐾(𝑡𝑠−𝑡0)     

𝑎1 = 𝐾𝑒−𝐾(𝑡𝑠−𝑡0)         

𝑎2 = −
1

2
𝐾2𝑒−𝐾(𝑡𝑠−𝑡0)

 

and 𝑡𝑠 = −
1

𝐾
ln|1 − 𝑒𝐾𝑡0| + 𝑡0 

(7) M from literature. 

In these equations, tmax is the maximum life span, K, Linf, and t0 are von Bertalanffy growth 

parameters, tmat is age at maturation, ts is age when senescent growth phase begins.  

Eqns 2a and 2b were proposed by Then et al. (2015) (we refer them as Then1 and Then2). Although 

their study focused on improving the estimation of M for both teleosts and elasmobranchs, only four 

elasmobranchs (all in order Carcharhiniformes) were included in the data of a total 230 species. The 

tmax-based equation had a mean prediction error = 0.32 (defined as the root-mean-square between 

the cross-validation predicted M and the true value), sd[a] = 0.11, and sd[b] = 0.02 across all species; 

the growth-based equation had a prediction error = 0.60, sd[a] = 0.80, sd[b] = 0.08, and sd[c] = 0.08 

across all species (Then 2015). 

Eqns 2c, 2d, and 2e were developed specifically for elasmobranchs. Frisk et al. (2001) obtained Eqns 

2c and 2d (referred to as Frisk1 and Frisk2) through regression of data from 30 elasmobranchs 

species in nine families. Eqn 2e was modified from a widely used Jensen (1996) estimator, M = 
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1.65/tmat. This estimator was extended from a theoretical work by Roff (1984). Roff established life 

history correlations for teleosts by incorporating the von Bertallanffy growth function where t0, the 

age when an individual would have been of length 0, was set to 0. As length at birth is usually small 

for teleosts, assuming t0 = 0 has little impact on other life history parameters. However, size at birth 

is much larger for elasmobranchs than teleosts. Hence, Hisano et al. (2011) modified Jensen’s 

estimator by including t0 (referred to as Hisano). For example, for the 16 WCPFC shark stocks the 

mean tmat is 10.26 yrs while the mean t0 is -3.46 yrs. Using Jensen’s estimator would overestimate M 

by 34%. As no variance estimates were provided for the three equations in the original papers, we 

assumed a CV = 0.2 for the process error as in (Quiroz et al., 2010). 

Eqn 2f is an age-dependent estimator developed by Chen and Watanabe (1989) (referred to as 

Chen). This method was one of the five indirect estimators recommended for elasmobranchs (Moe, 

2015) because it was relatively conservative than others while many estimators tended to produce 

upward biased estimation. To obtain a single M for the stock, we took the mean of the estimated M 

between age 1 and tmax. Again, we assumed a CV = 0.2 for the process error. 

Uncertainty is an important factor affecting the reliability of the estimated natural mortality. 

Measurement error in life history parameters can be substantial due to factors such as ageing bias 

and error, fishing selectivity, and unrepresentative sampling across spatially separated life history 

stages. Process error can also be substantial and likely larger than the prediction error associated 

with each equation, since the values used to derive the equations are themselves uncertain but 

treated as known.  

We took uncertainty into account at two levels: measurement error in each life-history parameter 

(i.e., tmat, K, Linf, t0, as well as M from literature, except tmax), and the process error of the M~LHP(s) 

relationship in Eqns 2a to 2f. If tmax has multiple values from different studies, the maximum value 

was used. For other life history parameters, uncertainty was evaluated through Monte Carle 

simulation of 10,000 random samples at each level. At the parameter level, results from multiple 

studies were provided in two forms in the Clarke et al. (2015) report: a vector of single 

measurements and a range from low to high. For measurements in a vector we took 10,000 random 

samples (with replacement) from the vector. For range values we generated 10,000 samples by 

assuming a uniform distribution from low to high values. We used Pacific Ocean studies except when 

a particular parameter was not available from the Pacific, in which case the alternative estimate 

from another region (e.g. Atlantic Ocean or Indian Ocean) was used. These cases are noted in the 

results section. All study sources and all seven methods were given the same weight. For process 

error, estimated variances in the original studies (Then et al. 2015) or an assumed CV = 0.2 (Quiroz et 

al., 2010), when variance was not available, were used to generate parameter distributions. Using 

multiple methods to avoid bias resulting from either life history parameters or M estimators concurs 

with the general recommendations of previous studies (Simpfendorfer et al., 2005; Brodziak et al., 

2011; Zhou et al., 2011; Kenchington, 2014a). Note that Eqn 2 differs from those used in Zhou et al. 

(2011) since the updated Eqn 2a and Eqn 2b were not available then, and their assessment did not 

focus on elasmobranchs.   

After obtaining natural mortality estimates, we proceeded to the methods for deriving reference 

points. 
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2.3 Methods for estimating reference points 

Ideally, reference points (RPs) should be defined for both biomass and fishing mortality. This is a 

common practice for target species. Examples of biomass-based (B-based) reference points include 

Bmsy, Bmey, Blim, Bpa, x%SSB0, etc., while corresponding F-based RPs are Fmsy, Fmey, Flim, Fpa, and Fx%. B-

based RPs play a fundamental role in fisheries management because biomass and its composition 

(i.e., sex, size, and age structure) ultimately determine stock sustainability and fishery production. 

Unfortunately, B-based reference points are more difficult to estimate than F-based RPs and are 

typically obtained through stock assessment modelling using a range of data. Fishing mortality, on 

the other hand, is directly controlled by management. Long-term management of fishing mortality 

will shape the level and structure of population biomass. Theoretically, under stable environmental 

and biological conditions, applying fishing mortality rate at a fixed level, such as F = Fmsy, year after 

year, will lead to B = Bmsy regardless the starting biomass level. The duration to reach this equilibrium 

state depends on the productivity of the stock and the level of its starting biomass. F-based RPs are 

relatively easier to estimate because alternative approaches can be used in addition to stock 

assessment models. 

The level of stock depletion, Bcur/B0, is an important concept in fisheries management. A pre-defined 

depletion (x%B0), expressed as a ratio with values from 0 to 1, is technically a B-based RP. Depletion 

may be estimated without traditional stock assessment modelling. For example, a simple catch trend 

analysis was developed for determining stock status by comparing annual catch to the historical 

maximum catch (Froese and Kesner-reyes, 2002; Pauly, 2008). This method has received widespread 

criticism (Branch et al., 2011; Daan et al., 2011). Additional research on this method has been 

undertaken (Anderson et al., 2012; Carruthers et al., 2012), but using catch data alone to classify 

fisheries status continues to be debatable (Froese et al., 2012; Cook, 2013; Pauly et al., 2013). 

Recently, Zhou et al. (2017) used the RAM Legacy database and developed a boosted regression tree 

(BRT) model to correlate depletion with a range of easily available predictors. However, this method 

may have a low prediction accuracy for some stocks and requires time series of catch data that are 

not available for most WCPFC elasmobranchs. Due to these limitations, this report focuses on F-

based RPs. 

Two main types of reference point are used for commercial species, and considered in relation to 

both pressure (fishing mortality) and state (biomass level). The target reference point (TRP) is 

typically an MSY-related quantity, and the limit reference point (LRP) is defined as the level of 

biomass or fishing mortality at which the risk to the stock (in terms of recruitment impairment) is 

regarded as unacceptably high. A proxy value for the LRP of 20% of the unfished spawning biomass is 

often used for productive stocks such as tuna (for example in Australia and New Zealand). The 

WCPFC adopted a benchmark 20%SBdynamic10, unfished as the limit biomass reference point for target 

species (20% of the average theoretical level of spawning biomass that would be present during 

recent 10 years with no fishing) (Clarke and Hoyle, 2014). If BMSY can be reliably estimated and is 

above B40%, then 0.5BMSY may be an appropriate alternative LRP (Dowling et al., 2008; Sainsbury, 

2008). For less productive stocks (such as some sharks), more conservative biomass LRPs may be 

adopted—B30% and associated fishing mortality F30% being advocated as best practice in some cases 

(see Sainsbury, 2008). Because available information varies between stocks, and the reliability of 

stock assessments, if available, also varies, the following tiered framework has been recommended 

(Clarke and Hoyle, 2014):  
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(1) For those elasmobranchs evaluated using a stock assessment model for which there is confidence 

that the stock-recruitment relationship is appropriately specified, use a fishing mortality-based LRP 

of Fmsy;  

(2) In cases where a stock assessment model was used but the stock-recruitment relationship is 

highly uncertain, also consider SPR-based LRP such as F60%SPR;  

(3) When stock assessments are not available, or when the results are not considered robust, use 

risk-based fishing mortality LRP benchmarks (Fmsm, Flim and Fcrash), as used in Australia (Zhou et al. 

2011). 

The method we used for deriving risk-based reference points assumed that the population dynamics 

could be described by a Graham-Schaefer production model where Fmsm = Fmsy, Flim = 1.5 Fmsm, and 

Fcrash = 2Fmsm = rmax (Zhou et al., 2011). These three reference points were adopted in this report. The 

acronym “msm” stands for “maximum sustainable mortality” for non-retained bycatch, but it is 

equivalent to MSY for commercial species. Hence Fmsm is identical to Fmsy. In addition to the 

recommendation and the requirement set out in the terms of reference, we used four methods to 

estimate reference points. Method 1 was based on the empirical relationship between Fmsy and life 

history parameters, which corresponded to Methods ii to vi in Zhou et al. (2011), except that we 

used M estimators that have been recently updated or tailored for elasmobranchs. Method 2 used a 

demographic model, the Euler-Lotka equation, to derive the intrinsic population growth rate r, and 

assumed Fmsm = 0.5 r. Method 3 used r from the literature, which was identical to Method i in Zhou 

et al. (2011). Method 4 was based on the spawning potential ratio approach and did not directly 

refer to msm or msy, which distinguished it from Methods 1 to 3.      

2.3.1 Method 1: empirical relationship 

An empirical relationship between biological reference points based on fishing mortality (FBRP) and 

life-history parameters (LHPs) was developed from a meta-analysis of 245 data-rich fish species 

worldwide (Zhou et al., 2012). It was found that natural mortality M was the most important LHP 

affecting FBRP. The relationship may vary among taxonomic groups. For example,  

(1) Fmsm1 = 0.87M (SD = 0.05) for teleosts   

(2) Fmsm1 = 0.41M (SD = 0.09) for chondrichthyans    (Eqn 3) 

In addition to the two-level uncertainty in M as described in “Estimating natural mortality rate”, Eqn 

3 involves a third level of uncertainty: process error between FBRP ~ M. Again, we derived statistics of 

Fmsm1 from simulation of 10,000 random samples. The empirical relationship approach corresponded 

to methods ii to vi for sustainability reference points in the SAFE (Zhou et al., 2011). Eqn 3 is 

comparable to recent study by Cortés and Brooks (2018) who recommended that for low 

productivity species, such as many shark stocks, the Fmsy/M ratio should not exceed ≈ 0.4.   

2.3.2 Method 2: Euler-Lotka equation (or demographic model) 

The ability of a species to withstand fishing mortality is determined by its intrinsic ability to increase 

its population. The intrinsic population growth rate, denoted as rm, rmax, or simply r, can be estimated 

by different methods. This is a growth parameter r in the Graham-Schaefer production model. 

However, for sharks it is more commonly derived from the Euler-Lotka equation because life-history 

parameters are relatively easier to obtain than time series of population and fisheries data. The 
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original Euler-Lotka equation has been modified in various ways and has been incorrectly used in 

some studies (see discussion in Cortés, 2016; Pardo et al., 2016). The following (correct) equation is 

commonly used for sharks (Skalski et al., 2008; Cortés, 2016; Pardo et al., 2018): 

𝑒𝑟𝑡𝑚𝑎𝑡 − 𝑒−𝑀(𝑒𝑟)𝑡𝑚𝑎𝑡−1 − 𝑓𝑙𝑚𝑎𝑡 = 0       (Eqn 4) 

Where tmat is age at first breeding, f is constant annual fecundity, lmat the cumulative survival from 

age 0 to age at maturity. Assuming constant natural mortality leads to 𝑙𝑚𝑎𝑡 = 𝑒−𝑀𝑡𝑚𝑎𝑡. Equation (4) 

is equivalent to a model for estimating the limits of fishery exploitation (Myers and Mertz, 1998) 

when it assumes vulnerable age to fishing gear is 1. Age at recruitment is available for 5 out of the 16 

WCPFC stocks reported in Clarke et al. (2015): BSH-N, SMA-N, SMA-S, LMA, and POR. All are 

suggested to be vulnerable to fishing at ages between 0 and 1 (however, see selectivity study for 

BSH below).  

Solving equation (4) for r requires tmat, M, f, as well as the reproduction cycle Rc because f is annual 

fecundity which consists of the mean reported litter size (ls) and reproductive frequency, such that f 

= ls/Rc/2 to account for female pups only. In this equation, r increases as tmat reduces, or M reduces, 

or f increases, or Rc reduces. Both Methods 1 and 2 depend on M, but the effect of M is opposite in 

the two methods. 

We treated the parameter uncertainty in the same way as in Method 1, i.e., using Monte Carlo 

resampling for point values and assuming uniform distribution for range values, and giving the same 

weight to each study. The final distribution was based on 10,000 random samples, whether the 

value was positive or negative. Again, according to a logistic production model 

Fmsm2 = r/2          (Eqn 5) 

2.3.3 Method 3: Intrinsic population growth rate from literature 

Three types of population growth rates were reported in the literature assembled in Shark Life 

History Expert Panel Workshop (Clarke et al., 2015): r, , and rZ(msy) (= r1.5M). Unlike some basic life 

history parameters, fish population growth rates are always model estimates. By adopting these 

estimates we assumed that the original modelling in the literature was reasonable. We converted  

and rZ(msy) to r by r = log() and r = 2rZ(msy) (Cortés, 2016). Again, parameter uncertainty was handled 

in the same way as in Method 1. The primary reference point is Fmsm3 = r/2 as in Eqn 5. 

2.3.4 Method 4: Spawning potential ratio (SPR) 

Reference points based on spawning stock biomass per recruit (or spawning potential ratio, SPR) 

have been used or suggested for data-limited fisheries (Pope, 2000; Le Quesne et al., 2012; Clarke 

and Hoyle, 2014; Prince et al., 2015; Hordyk et al., 2016). Spawning potential ratio is estimated as 

(Goodyear, 1993):  

𝑆𝑃𝑅 =
𝑆𝑆𝐵𝑅𝑓𝑖𝑠ℎ𝑒𝑑

𝑆𝑆𝐵𝑅𝑢𝑛𝑓𝑖𝑠ℎ𝑒𝑑
        (Eqn 6) 

Where SSBR is the spawning stock biomass per recruit. SPR is similar to yield per recruit (YPR) and 

estimated for only a single cohort, so does not consider a stock-recruitment relationship. Assuming a 

constant year class, SSBR can be obtained by following a cohort through their entire life from 

growth, maturation, natural and fishing mortality rates, to the end of their maximum life span. The 

required information includes: growth parameters (i.e., K, Linf, and t0), length at maturity Lmat or 
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maturity ogive mo, maximum age tmax, length-weight relationship (power function parameters a and 

b), and fishing gear selectivity curve. Other data may also be used, including the proportion of fishing 

mortality that occurs before spawning, and the proportion of natural mortality that occurs before 

spawning. Clearly, the SPR approach requires more inputs than the other three methods. In 

particular, selectivity and maturity ogives are typically unavailable for data-poor elasmobranchs. 

Amongst the 16 stocks in the WCPFC region, only four stocks have maturity ogive information (i.e., 

BSH-N, SMA-N, FAL, and SPL). Furthermore, we only found one study on gear selectivity for Blue 

Shark (Carvalho and Sippel, 2016) and assumed selectivity and its function form for Silky shark and 

oceanic Whitetip shark. Therefore, this method was applied to these three stocks only (we assumed 

OCS had the same mo as BSH-N as they had similar Lmat (values for both species largely overlapped 

each other, with a mean Lmat = 192 cm for BSH-N and mean 196 cm for OCS, respectively).  

Unlike MSY-related reference points, the benchmark for SPR is the depletion level of spawning 

biomass per recruit, typically set as F35% to F40% as a proxy for Fmsy, that is, fishing mortality that 

depletes spawning biomass per recruit down to 35% - 40% of unfished level (Gabriel and Mace 

1999). It is worth to point out that although SPR refers to spawning biomass, this biomass is not the 

biomass of the population but a relative value, in terms of “per recruit”. Any arbitrarily number, such 

as 1 or 1000 fish, can be used as the initial population size to derive SPR. Reference points derived 

from SPR, generally expressed as Fx%, are also F-based rather than B-based reference points. They 

refer to the fishing mortality that corresponds to the percentage of depletion in spawning biomass 

from an unfished level on a “per recruit” basis.  

SPR requires a link between Fx% and Fmsy and there has been extensive research on the particular x% 

as proxy for Fmsy. For example in a review of biological reference points for precautionary 

approaches, Gabriel and Mace (1999) recommended that fishing mortality rates in the range F30% to 

F40% be used as general default proxies for Fmsy, in cases where the latter cannot be reliably 

estimated. In the absence of data and analyses that can be used to justify alternative approaches, 

they recommended that F30% be used for stocks believed to have relatively high resilience, F40% for 

stocks believed to have low to moderate resilience, and F35%SPR for stocks with “average” resilience. It 

is becoming increasingly difficult to justify MSY-compatible targets less than 30-40% B0, so F45% is 

recommended for low productivity stocks in New Zealand (Ministry of Fisheries, 2011). Here we 

provided three reference points: F60%, F40%, and F10%. We were unable to investigate what fraction of 

Fmsy the SPR-based F60%, F40% and F10% may correspond to as this requires a stock-recruitment 

relationship and may differ from species to species. To integrate multiple methods, we tentatively 

treated F60% as Fmsm, F40% as Flim, and F10% as Fcrash.  

2.3.5 Joint reference points 

The results from multiple methods were combined to give a more balanced estimation. Depending 

on the available information, two to four methods were applied to each stock and each method was 

given the same weight. The combined reference points are cFmsm, cFlim, and cFcrash. Similar to the 

dilemma encountered in M estimation, using the combined RPs from multiple methods rather than 

choosing a single method is more likely to minimize bias (Simpfendorfer et al., 2005; Brodziak et al., 

2011; Kenchington, 2014c; Moe, 2015). However, the SPR approach concerns a single cohort and 

disregards the stock-recruitment relationship, and is only applied to three stocks. As the 

development of SPR strategy mainly concerned obtaining a large fraction of the MSY in the long 

term and biomass levels were not considered important (Clark, 2002), we recommend using joint 

RPs from Methods 1 to 3 only for the WCPFC stocks.    
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2.4 Results of natural mortality estimation 

Comparison among the seven estimators of natural mortality (the last estimator adopts values from 

literature) indicated that the first two estimators, Then1 and Then2, differed markedly from other 

estimators for most stocks (Figure 1). Eqn 2a (Then1) based on tmax yielded larger M than the 

average for all stocks except Porbeagle shark (Table 2). On average, M from Then1 was 1.23 times 

higher than the mean value of all seven approaches. In contrast, Eqn 2b (Then2) based on growth 

parameters yielded smaller M than the average for all stocks except Porbeagle shark (Table 2). On 

average, M from Then2 was only 71% of the mean value of all seven approaches. The deviations in 

opposite directions from these two estimators may be seen as fortunate, as they offset each other.  

It was interesting to see this stark disparity between the first two methods and other estimators. 

Then et al. (2015) is the most recent development in natural mortality estimation and was 

considered to have improved existing research.   

2.5 Results of estimated reference points 

(1) BSH-N: the Blue shark (Prionace glauca), North Pacific stock 

This stock may be considered “data-rich” amongst the 16 shark stocks because there was sufficient 

information to apply all four methods. The posterior distributions of Fmsm from the four methods 

largely overlapped each other (Figure 2), and the summary statistics were similar between methods. 

For example, the mean Fmsm was 0.10, 0.19, 0.15, and 0.14 for Methods 1 to 4, respectively (Table 3). 

The r values from the literature (Method 3) were typically derived from demographic approaches so 

the results between Methods 2 and 3 should be close. We recognize that if the same life history 

parameters and the same form of Euler-Lotka equation were used in the literature (Method 3), then 

Method 2 would have simply duplicated Method 3.  

It was interesting to see that F60% falls within the range of Fmsm estimated by Methods 1 to 3. 

However, this does not imply that F60% is a proper proxy for Fmsm for this stock because these 

methods may have used different age composition data. For example, the SPR method involved 

larger and older fish than Method 2. The mean S50 from 16 fleets catching Blue shark (Carvalho and 

Sippel, 2016) was 126.0 cm. This translated into a mean age of 2.77 (sd = 1.16, ranging from 1.01 to 

5.73 yrs) based on various von Bertalanffy growth parameters estimated for this stock. The 

demographic method implicitly assumed that recruitment age was 1 yr. If we used a knife-edge 

selectivity at age 2.77, the Euler-Lotka equation yielded a mean Fmsm2 = 0.258 (sd = 0.127), similar to 

F40%. 

Other reference points, i.e., Flim and Fcrash, exhibited similar distribution patterns to Fmsm (Figure 2) 

because they were essentially calculated from Fmsm, except for the SPR method. Because it was 

difficult to determine which one of Methods 1 to 3 was most reliable, we recommended using the 

combined results from all three methods, i.e., cFmsm, cFlim, and cFcrash in Table 4.  

(2) BSH-S: the Blue shark (Prionace glauca), South Pacific stock 

This stock had fewer life-history data available than the same species in the North Pacific. There was 

a lack of maturity ogive and gear selectivity information, so the SPR method cannot be applied. The 

reproductive cycle was also unknown. To use Method 2, we assumed that the reproductive 
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frequency was the same for the North and South stocks, i.e., 1 or 2 yrs (values from two studies, 

Clarke et al., 2015). There was no intrinsic rate of increase (r or λ) available for BSH-S in the Pacific 

and we used the alternative value of r = 0.34 from the Clarke et al. (2015) report. With this borrowed 

information, the analysis resulted in mean Fmsm 0.08, 0.13, and 0.17 for Methods 1 to 3, respectively 

(Figure 3 and Table 4).  

(3) SMA-N: the Shortfin mako shark (Isurus oxyrinchus), North Pacific stock 

The estimated reference points differed considerably between methods (Figure 4), perhaps due to 

large variations in life history parameters from different studies. The mean Fmsm2 was about 1/3 of 

Fmsm1 (Table 4). Reproductive cycle was one of the most uncertain parameters used in Method 2. 

Two studies found Rc = 3 yrs (Clarke et al., 2015), but a more recent study indicated a time shorter 

than 3 yr (Semba et al., 2011). Instead of using Rc = 3 yr, we tested Rc = 2 and 1 yr with all other 

parameters remaining unchanged. The test led to a mean Fmsm2 = 0.03 when Rc = 2 yr (same as Fmsm3) 

and 0.05 for Rc = 1 yr, which were closer to Fmsm1. 

(4) SMA-S: the Shortfin mako shark (Isurus oxyrinchus), South Pacific stock 

Life-history parameters were very limited for the South Pacific stock compared to the North Pacific 

stock. There were no growth parameters (K, Linf, and t0), fecundity, reproductive cycle, and intrinsic 

population growth rate available. Another important life history parameter was maximum age tmax. 

This parameter had not been determined for SMA-S but was considered to be greater than 29 yrs for 

males and greater than 28 yrs for females (Clarke et al., 2015). We used tmax = 29 for both sexes and 

assumed that growth parameters, reproductive parameters, and intrinsic population growth rate 

were the same as SMA-N. Such information borrowing resulted in a wide distribution of Fmsm2 (Figure 

5) and a very small mean Fmsm2 (0.002 rounded to 0.00 in Table 4). The inputs may have led to 

overestimation of M and consequentially overestimating Fmsm1 but underestimation of Fmsm2.  

(5) LMA: the Longfin mako shark (Isurus paucus) 

Longfin mako shark had very few life-history parameters available, i.e., no other information except 

length at birth, length at maturity, and litter size. There were also no alternative parameters 

available from other regions. The limited information was insufficient to apply any method.   

(6) FAL: the Silky shark (Carcharhinus falciformis) 

The early studies reported that Silky shark longevity ranged from 8 to 16 yrs (mean =12.67) (Clarke et 

al., 2015). This range differed markedly from alternative tmax in other regions (30, 32, 19, and 20 yrs, 

mean=25.25). Using the smaller tmax from the Pacific resulted in large Fmsm1 by Method 1 (likely 

overestimation) and small Fmsm2 by Method 2 (likely underestimation). So for this stock we used the 

newly estimated life history parameters, including tmax (28 yr), tmat, Linf, K, t0, Lmat (Grant et al., 2018). 

These new values and a knife-edge selectivity at 64 cm total length led to reasonably similar 

reference points from the four methods (Table 3, Figure 6). For example, Fmsm (or F60%) was 0.06, 

0.07, 0.07, and 0.03 for Methods 1 to 4, respectively.  

However, as discussed in BSH-N, we recommended using the combined RPs from Methods 1 to 3 

(Table 4). The combined mean cFmsm was 0.06 and mean cFlim was 0.09. 
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(7) OCS: the oceanic whitetip shark (Carcharhinus longimanus) 

No estimate of the intrinsic rate of increase was available for the Pacific for OCS so we borrowed 

estimated r from Atlantic and Indian Oceans (Clarke et al. 2015). Similar to FAL, a knife-edge 

selectivity at 175 cm total length was assumed for OCS. The longevity estimates came from two 

studies and differed markedly: 11 yrs and 36 yrs. We used tmax = 36. The estimated reference points 

were not too far apart (Figure 7). The mean Fmsm was 0.07, 0.12, 0.06, and 0.05 from Methods 1 to 4 

(Table 3). Again, we recommended using Methods 1 to 3 where the combined mean cFmsm was 0.08 

and the mean cFlim was 0.12 (Table 4). 

(8) BTH: the Bigeye thresher shark (Alopias superciliosus) 

The estimated intrinsic rate of increase λ by demographic analysis from the literature was 0.996 

(ranging between 0.0978 and 1.014)(Cortés, 2002; Clarke et al., 2015). This suggests that the Bigeye 

thresher shark in the Pacific would suffer a negative population growth rate even with no fishing. 

Longevities of 21 yrs for females and 20 yrs for males were based on the largest observed sizes. 

There was no reproductive cycle information available for BTH so we assume Rc = 1 yr. 

Recently, Fu et al. (2018) used the longevity of 22 yrs for females in the Atlantic in their demographic 

analysis. If we used tmax = 22 yrs for both males and females (all other parameters from the Clarke et 

al. (2015) report), the estimated mean Fmsm was 0.07, -0.01, and 0.004 (rounded to 0.00) for 

Methods 1 and 3, respective, and the combined result of cFmsm was 0.02 (Figure 8, Table 4). 

(9) PTH: the Pelagic thresher shark (Alopias pelagicus) 

There was also no reproductive cycle information available for PTH so we again assumed Rc = 1 yr. 

The estimated reference points varied between the three methods, with mean Fmsm of 0.06, 0.02, 

and 0.03 for Methods 1 to 3 (Table 4, Figure 9). The longevity from literature ranged from 14 to 28.5 

and we again used the maximum value. The estimated natural mortality may have played a role in 

causing the disparity between Methods 1 and 2. The method based on tmax (Eqn 2a) yielded a larger 

M (mean = 0.23) than the method based on growth (Eqn 2b) (mean = 0.13) and M from other 

estimators. It was unclear whether the maximum tmax was still biased low. Conventional techniques 

to resolve growth rings in older shark can be very unreliable. The revision of longevity in white 

sharks would seem to be a good example of the potential underestimation of longevity (Hamady et 

al., 2014).  

(10) ALV: the Common thresher shark (Alopias vulpinus) 

The tmax came from two studies: 25 yrs and 15 yrs. Using the larger value 0f 25 yielded mean M = 

0.26 and 0.12 from Then1 and Then2 estimators. The former is the largest and the latter the smallest 

amongst the seven estimators (Figure 1). All three methods produced moderately similar reference 

points for ALV (Table 4, Figure 10). Again, the combined mean cFmsm of 0.07 was more balanced 

estimate than the individual estimate from Methods 1 to 3 (mean Fmsm = 0.08, 0.07, and 0.05, 

respectively). 
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(11) POR: the Porbeagle shark (Lamna nasus)  

Only two methods were applied to Porbeagle shark, as there was no estimated intrinsic population 

growth rate in literature (Table 4). The estimated M was more similar between the seven methods 

than many other species (Figure 1). Recently, Hoyle et al. (2017b) conducted a stock-assessment for 

the southern hemisphere porbeagle shark and used updated LHPs since the Clarke et al. (2015) 

report. We used their data (in their Table 2, e.g., tmax = 75, tm = 14.5, Linf = 211, K = 0.086, and M = 

0.09). The estimated mean Fmsm was 0.05 and 0.03 for Methods 1 and 2, respectively (Figure 11).  

(12) SPZ: the Smooth hammerhead shark (Sphyrna zygaena) 

Only two methods were applied to the Smooth hammerhead shark, as there was no estimated 

intrinsic population growth rate in literature (Table 4, Figure 12). Moreover, there was also no age at 

maturity tm and longevity tmax from the Pacific Ocean, no reproductive cycle Rc and estimated natural 

mortality rate M from the Pacific or other regions. To apply Method 2, we used alternative 

parameters tm and tmax, and again assume Rc = 1 yr. These treatments led to a mean Fmsm of 0.07 and 

0.03 for Methods 1 and 2, respectively, with a mean cFmsm 0.05. 

(13) SPL: the Scalloped hammerhead shark (Sphyrna lewini) 

The tmax significantly differ between males (21 yrs) and females (35 yrs) and we used 35 yrs for both 

sexes. The estimated reference points (e.g., mean Fmsm = 0.06, 0.06, and 0.03) from the three 

methods were relatively comparable (Table 4, Figures 13) when compared with other species.   

(14) SPK: the Great hammerhead shark (Sphyrna mokarran) 

There was no estimated intrinsic population growth rate available for the Great hammerhead, so we 

used only two methods to derive reference points. Interestingly, this was one of a few stocks where 

Method 2 yielded a higher reference point (mean Fmsm2 = 0.09) than Method 1 (mean Fmsm1 = 0.06, 

Table 4, Figure 14). Although Eqn 2a still gave a larger M (mean 0.15) than Eqn 2b (mean 0.10), the 

difference was smaller than for many other species.  

(15) EUB: the Winghead shark (Eusphyra blochii) 

There was no estimated natural mortality or intrinsic population growth rate available for the 

Winghead shark in the literature so only Methods 1 and 2 were used. The reproductive cycle was 

“seasonal”, which we assumed to mean annual. The estimated M based on tmax (Eqn 2a) was again 

higher than the estimate based on growth parameters (Eqn 2b), i.e., mean M of 0.30 vs 0.18. 

Compared with other stocks, the estimated reference points were relatively similar (Table 4, Figure 

15). The mean Fmsm was 0.08 and 0.11 for Methods 1 and 2, respectively, with a mean cFmsm 0.09. 

(16) RHN: the Whale shark (Rhincodon typus) 

There was no estimated intrinsic population growth rate, natural mortality nor reproductive cycle in 

the literature. Some parameters (e.g., longevity, maximum length, age at maturity) were observed 

values (e.g. tmax includes maximum observed number of growth band pairs), or estimated from very 
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small samples. To apply Method 2, we assumed Rc = 1 yr. The estimated M based on growth 

parameters was very small compared to M based on other estimators (mean 0.03 vs 0.08), but the 

average of 0.08 was smaller than for other species. The low natural mortality contributed to a low 

Fmsm1 (mean 0.03) and a high Fmsm2 (mean Fmsm2 = 0.11) (Table 4, Figure 16).  

2.6 Discussions on F-based reference points 

2.6.1 Comparison between methods 

Method 1 based on empirical relationships were applied to all 15 stocks (except Longfin mako 

shark). Although we also applied Method 2 (demographic analysis) to all 15 stocks, we had to 

borrow some life history parameters from other regions for some stocks and make assumption 

about the reproductive cycles for several stocks. Comparison of these two methods shows that they 

provide similar mean RPs (Figure 17). For example, the mean RPs across the 15 stocks are nearly 

identical between the two methods: 0.06 vs 0.07 for Fmsm, 0.10 vs 0.10 for Flim, and 0.13 vs 0.14 for 

Fcrash, respectively. Both methods have the same number of stocks with a higher RP value than the 

other method (seven stocks plus one stock (SPL) in a tie). However, the estimated RP values can be 

different between the two methods and their correlation is low (Figure 18). The empirical method is 

less likely to yield extreme estimates than the Euler-Lotka equation (e.g., for SMA-S, BTH, and RHN). 

Method 1 also tends to produce smaller uncertainty than Method2, with an overall SD[Fmsm1] = 0.03 

compared to SD[Fmsm2] = 0.04.    

Method 3 based on intrinsic population growth rate from the literature was applied to 10 stocks. 

The result from this method is similar to Method 2. The correlation between Methods 2 and 3 (0.85) 

is much higher than correlation between Methods 1 and 2 (Figure 18).  

Method 4 based on SPR was applied to three stocks. For the Blue shark in the North Pacific F60% 

appears to be a proper proxy for Fmsm as the mean F60% = 0.14 is within the Fmsm range estimated by 

Methods 1 to 3 (Table 3). Similarly, F40% is within the range of Flim estimated by Methods 1 to 3. 

However, F10% is too high compared to Fcrash from other methods. 

For the Silky shark F60% appears to be a more conservative proxy for Fmsm as the mean F60% = 0.03 is 

lower than the Fmsm range estimated by Methods 1 to 3 (i.e. 0.06, 0.07, and 0.07). Instead, F40% (= 

0.05) or slightly lower (e.g. F35%) would be comparable to Fmsm, while F10% is close to Fcrash from other 

methods. The low values for these Fx% may be mainly caused by the knife-edge selectivity set at a 

low 64 cm.     

Similar to BSH-N, for the Ocean whitetip shark it seems appropriate to use F60% as a proxy for Fmsm, 

F40% as a proxy for Flim, but F10% is too large for Fcrash. 

Overall it is difficult to conclude which method is the best across all species. Besides the effect of 

alternative methods, available life-history parameters and their quality have marked impact on the 

quality of the estimated reference points. Table 5 summarizes available data for each stock and the 

relative reliability of the derived reference points. 

2.6.2 Uncertainty in life-history parameters 

A close examination of the life-history parameters fed into the four methods reveals high 

uncertainty in life-history parameters. In particular, maximum age may have been underestimated 
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for most stocks because this parameter is either the observed or estimated maximum age from a 

population that has been fished for many years so fish at maximum age are no longer included in the 

sample. Sample sizes may also be inadequate (since the maximum of a distribution tends to increase 

at larger sample sizes), and sampling fisheries may have selected smaller, younger fish, either 

through gear selectivity or because they fish in areas where older sharks are not present. Moreover, 

recent studies show that the common method of ageing sharks and rays, counting growth zones on 

calcified structures, can substantially underestimate true age (Francis et al., 2007; Hamady et al., 

2014; Harry, 2018). Underestimation of tmax leads to overestimation of natural mortality rate. 

Different studies were often found to produce a wide range of estimates for the same life history 

parameters (including tmax). Large uncertainty in life history parameters leads to a wide spread of the 

estimated reference points, as evidenced in Figures 2 to 16. Greater precision in reference points 

cannot be achieved without greater precision in life-history parameter estimates.  

We note that Method 2 is more likely to produce extreme estimates and even negative Fmsm2. The 

reason behind this may be due to its use of more life history parameters and more assumptions. In 

addition to natural mortality which is used in Method 1, the Euler-Lotka equation requires age at 

maturity, annual fecundity, and reproduction cycle. It also requires the assumptions that survival 

from age 0 to the age at maturity is constant, and that knife-edge selectivity occurs at age 1.  

Mean negative Fmsm2 results from the estimated negative mean r (or  < 1). Although some of the 

LHPs are certainly problematic and are the most likely causes of the negative estimates, the negative 

values are theoretically valid, since it is possible for a population to suffer a period of negative 

growth even without fishing, perhaps due to adverse environmental conditions.  

The bias in tmax and M has an opposite effect on Methods 1 and 2 (Figure 19, Figure 20). 

Interestingly, Method 2 exhibits counter-intuitive behaviour: the longer life span or lower natural 

mortality leads to higher sustainability. Hence, if the methods are used independently (not 

combined), we recommend using Method 1 as it shows an intuitive behaviour and is less likely to 

produce extreme values. Overall, it is recommended to use the combined estimates, i.e., cFmsm, cFlim, 

and cFcrash from Methods 1 to 3 for risk-based reference points, instead of adopting a particular 

method, so the bias in the different methods can at least partially offset each other.  

2.6.3 Effect of gear selectivity 

Selectivity plays a significant role in all methods, because MSY-related RPs vary with the age/size 

composition of the fish used to derive the RPs. Method 1 is based on empirical relationships 

between Fmsy and life-history parameters from formal stock assessments of data-rich stocks. The 

data used in formal stock assessment are gear-specific, meaning that catches by certain gear types 

are used for the assessment. Similarly, applying Method 1 implicitly involves an assumption that the 

estimated reference points go with the catches assuming the same selectivity. However, when a 

stock is impacted by multiple sub-fisheries with different selectivity, it is impractical to set different 

RPs for different sub-fisheries. In such cases, we need to assume that the selectivity in the data-rich 

stocks used to build the empirical relationship is similar to the overall selectivity in the multiple sub-

fisheries.  

On the other hand, the widely adopted demographic approach (Method 2) implicitly assumes that 

fish are vulnerable to the fishery at age 1 and equally vulnerable at all older ages. If the majority of 

fish are not captured until older ages, this method will underestimate RPs, regardless of whether 

other life-history parameters are accurate or not. It appears that the intrinsic population growth 
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rates in literature are often estimated from demographic analysis, suggesting that they are also likely 

underestimated if vulnerable age is greater than 1.  

F-based reference points are both stock-specific and age-specific. The significance of age-specific 

FBRPs are often overlooked. The classic fisheries sciences focus on single stock assessments. A stock’s 

capability to withstand fishing mortality depends on their age/size at recruitment, relative to 

maturity. For example, selectively harvesting only large fish that have spawned in their earlier life 

has a low impact on their population sustainability (if we ignore their potential disproportionate 

contribution to reproductive output (Barneche et al., 2018), fishing induced evolution (Law, 2000; 

Heino et al., 2015), and changes in ecosystem structure (Zhou et al., 2010; Garcia et al., 2012)). On 

the other hand, when fish enter fisheries at young ages, fishing mortality rate must be lower to allow 

a sufficient fraction of the population to reach maturity (noting that low F does not necessary 

translate to a low catch as catch also depends on biomass). Method 1 does not require selectivity (it 

assumes that selectivity is the same as those data-rich stocks used to derive the empirical 

relationship between FBRPs and LHPs), but an estimated or assumed selectivity is needed for Methods 

2 to 4.  

2.6.4 Spawning stock biomass per recruit approach 

We have only applied the SPR approach to three stocks as required LHPs are not available for the 

other 13 stocks. Besides the concerns about uncertainty of input life history parameters and a lack of 

selectivity information, this “per recruit” approach fundamentally differs from other methods. A 

species’ intrinsic productivity determines its ability to sustain fishing impact but the SPR approach 

basically ignores this critical trait. Extensive studies have examined the appropriate Fx% proxy for Fmsy, 

and a range from F20% to F70% have been suggested (see discussion in Brooks et al. 2010). It has been 

well recognized that SPR levels are related to the slope at the origin of stock–recruit curves, and that 

life history is an important consideration. However, the analytical relationship between SPR and the 

underlying stock–recruit curve had not been explicitly explored until the work of Brooks et al. (2010). 

They investigated the relationship between the slope of a stock–recruit function and the maximum 

excess recruitment (MER) in number of individuals. MER differs from MSY in two respects. First, MER 

is derived by solving for a maximum in numbers, whereas MSY is the maximum in weight. Second, 

MER is a property of the stock–recruit function, whereas MSY considers the combined effect of a 

given fishing mortality on YPR and the extent of excess recruitment (Brooks et al. 2010). For the 

Beverton-Holt SRR, the spawning potential ratio (SPR) at MER is 𝑆𝑃𝑅𝑀𝐸𝑅 =
1

√�̂�
, where �̂� is the 

maximum lifetime reproductive rate at low density, a property of the slope b of SRR: �̂� = 𝑏
𝑆0

𝑅0
, 

where R0 and S0 are recruits and spawners when the stock is unexploited. FMER (corresponding to 

SPRMER) is generally greater than Fmsy, but both are comparable when steepness and natural 

mortality are relatively low (commonly the case for elasmobranchs). This study demonstrated that 

SPRx% is a function of the stock productivity quantified as life time reproduction rate, which is a 

product of the slope at the origin of a stock-recruitment function and SPR when no fishing (Figure 

21). In other words, to maintain stock biomass at certain x% of unfished level or of a reference point 

(i.e., 20%B0 or 10%Bmsy) requires varying SPRx% from species to species. Therefore, it is 

inappropriate to use a common x% such as F40% for all stocks unless they have the same productivity. 

Indeed, Brooks et al. (2010) showed that SPRMER varied among 11 elasmobranchs, ranging from 0.26 

to 0.89.  
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The level of risk to sustainability varies between stocks due to their varying productivity and 

compensation (measured by r or the steepness parameter in the stock-recruitment relationship). 

Because SPR does not take the stock-recruitment relationship or population growth rate into 

account, choosing a particular x% for a particular stock is more or less arbitrary. For example, F40% 

can maintain 40% spawning biomass relative to the unfished condition for a single cohort, but it may 

lead SSBcur/SSB0 (depletion level of actual spawning biomass) above or below this level depending on 

the stock’s productivity or compensation. In other words, F40% can be very conservative for a 

productive stock but may be too risky for unproductive elasmobranchs. Unlike Methods 1 to 3, a 

pre-defined Fx% value lacks a theoretical basis. Note that a similar reference point based on 

maximum excess recruitment, SPRMER, can be defined for each species if the steepness parameter is 

known (Brooks et al., 2010).  

2.6.5 Approaches based on population growth rate 

In contrast to the SPR approach, Methods 1 to 3 are based on population growth rate r, where Fmsm 

corresponds to reducing stock biomass to 0.5B0 in the Graham-Schaeffer production model if fishing 

mortality is maintained at this level for a long term. Amongst the three methods in this group, 

Method 1 may deserve some additional discussions. This method is based on established empirical 

relationship between FBRP and LHPs. In the established relationship, FBRP are estimated from stock 

assessment models for data-rich species, so it has taken into account the stock-recruitment 

relationship. Seeking a reliable correlation between Fmsy ~ M has attracted extensive research. 

Because natural mortality is often derived from other life-history parameters, this relationship 

involves uncertainty at three levels: measurement error in LHPs used to derive M (e.g. tmax, K, Linf), 

process error in M ~ LHP(s) relationship, and process error in Fmsy ~ M (or rm ~ M) relationship. The 

first two levels uncertainty also occurs in Method 2 (Euler-Lokta equation) and Method 4 (SPR 

approach) as M is also needed for these methods, but the last level uncertainty is unique to Method 

1 (but other methods also have their own unique uncertainties). Eqn 3 is for class Chondrichthyes in 

general, and the estimated coefficient can be different between orders in the same class (for 

example, Carcharhinifores has a smaller coefficient than Lamniformes) (Zhou et al. 2012). Cortes and 

Brooks (2018) suggest that the Fmsy/M ratio should not exceed 0.4 for shark species. They further 

suggest that if the stock is harvested before reaching maturity, as a rule of thumb the Fmsy/M ratio 

should not exceed 0.2, 0.5, and 0.8 for low, medium and high productivity stocks, respectively. 

To validate the results from these studies, we examined the relationship between intrinsic 

population growth rate rm and M using Euler-Lotka equation. Assuming litter size = 13.3 (mean of the 

14 stocks in this report, except very uncertain whale shark), and reproductive cycle of one year, we 

simulated maturation age from 5 to 40 years in Eqn (4) to obtain both rm and M. Figure 22 shows a 

clear linear relationship between rm and M when M is smaller than 0.17, (i.e. rm ≈ M ≈ 2Fmsy) but rm 

increases more quickly than M when M > 0.17 (Fmsy > 0.5M). Because the change is less dramatic 

comparing to SPR in Figure 21, Method 1 based on natural mortality is more reliable than Method 4 

based on SPR approach, although it may be slightly too conservative for many stocks.  

Method 2 requires more LHPs than Method 1, which could be an advantage if these LHPs exist and 

are reasonable accurate. On the other hand, our results indicate this method is more likely to 

produce extreme estimates and even negative Fmsm2. Using more life history parameters may absorb 

more uncertainty and more assumptions. For example, age at maturity, annual fecundity, and 

reproduction cycle required by Euler-Lotka equation may be difficult to obtain or highly uncertain. 
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The assumptions of constant M from age 0 and knife-edge selectivity at age 1 are also difficult to 

hold.  

2.6.6 Theoretical basis for Methods 1 to 3 

It is worthwhile to recall that the biomass dynamics model provides the technical foundation for the 

three RPs (Fmsm, Flim, and Fcrash) estimated by Methods 1 to 3. Each RP has a corresponding 

equilibrium biomass: Bmsm = 0.5B0, Blim = 0.25B0, and Bcrash = 0. In classical single-stock dynamics 

theory, if fishing mortality is maintained at one of the three F levels for a long time, the stock 

biomass will tend towards the corresponding B level regardless of the initial biomass level and the 

stock’s productivity. However, these reference points do not directly relate to spawning biomass. It 

is more likely that Blim is closer to 20% or 30%SBdynamic10,unfished than Bmsm so Flim is recommended as 

the limit reference point for WCPFC bycatch, given the fact that the WCPFC has adopted a 

benchmark 20%SBdynamic10, unfished as the limit biomass reference point (Flim) for target species. 

The Schaefer production model is a symmetrical curve, which assumes that the maximum yield 

occurs at Bmsy = B0/2. This model is widely accepted for teleosts, but there is a concern that the curve 

may not be symmetric for elasmobranchs. If this is the case, a general surplus production (Pella-

Tomlinson) model (Pella and Tomlinson, 1969) may be more appropriate. However, the shape 

parameter is rarely available for most groups of animals, including sharks.  

2.6.7 Management objectives and reference points for non-target species 

The Convention on the Conservation and Management of Highly Migratory Fish Stocks in the 

Western and Central Pacific Ocean (CCMWCPO) stipulates management objective for target species 

to “maintain or restore stocks at levels capable of producing maximum sustainable yield, as qualified 

by relevant environmental and economic factors” (Article 5). This is simply MSY-based target and 

mirrors the objective in FAO Code of Conduct for Responsible Fisheries (CCRF) and UN Convention 

on the Law of the Sea (UNCLOS). In addition to a target, fisheries management often specifies limit 

reference points. Limit reference points are set primarily on biological grounds to protect the stock 

from serious, slowly reversible or irreversible fishing impacts, which include recruitment overfishing 

and genetic modification. The distinction between retained and by-catch species is a result of human 

values and utilisation, rather than one of biology or ecology. In that limit reference points are set to 

so as to prevent slowly reversible or irreversible biological impacts there is no biological basis for by-

catch and retained species having different limit reference points (Sainsbury 2008). As such, for non-

target species, the CCMWCPO adopts “a view to maintaining or restoring populations of such species 

above levels at which their reproduction may become seriously threatened” (Article 10). Apparently, 

this view matches the limit reference point for target species. Hence, setting aside ecological 

interaction among species, the biological objective is consistent between target and non-target 

species.  

In the present report, we developed three reference points (Fmsm, Flim and Fcrash) rather than a single 

LRP. Providing multiple reference points is helpful as they explicitly link to the level of ecological risk 

as described in   
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Table 6 (Zhou et al. 2011). For this reason, we removed the word “limit” from the original title. These 

are the same reference points adopted for Bigeye thresher shark (Fu et al. 2018) and Porbeagle 

shark (Hoyle et al. 2017) where the three RPs are termed as maximum impact sustainable threshold 

(MIST) limit reference points (LRP). However, a particular stock cannot have three different “limit 

reference points”. We must choose one out of these three as the LRP. For commercial species, Fmsy is 

often a target reference point (TRP) and Flim a LRP (Sainsbury, 2008), although defining a TRP or LRP 

is not purely a scientific question but also a management and societal choice. Similarly, for bycatch 

species a limit reference point is essentially the acceptable level of risk to sustainability. From the 

scientific point of view, if we wish to reduce fishing impact on ecosystem structure and function (a 

key goal in Ecosystem-based fisheries management), it is more sensible to adopt a common and 

impartial benchmark for all competitive species in the same ecosystem, whether it is commercial 

species or bycatch species, than to treat them differently. From the management point of view, this 

is also a simpler procedure. This is similar to the previous recommendation for WCPFC 

elasmobranchs (Clarke and Hoyle, 2014). WCPFC has adopted 20%SBdynamic10,unfished as a LRP for target 

species. The notation SBdynamic10,unfished is adapted from SB0, the virgin spawning biomass when there 

was no fishing. This biomass is fundamentally different from SBSPR,unfished, and is difficult to estimate 

without time series data and traditional stock assessment. Out of the three RPs (Fmsm, Flim and Fcrash), 

Flim corresponds to Blim that is 25% of fishable virgin biomass B0 and is closer to 20%SBdynamic10,unfished 

than the other two RPs. Therefore, in this study Flim corresponds most closely to the requirements of 

Article 10 of the CCMWCPO.  

For the sake of discussion, the analysis in this report deals with each stock or species independently 

without taking ecological interactions into account. Because most elasmobranchs are typically high 

trophic level predators, the abundances of their prey species may have declined due to fishing, 

which may have already led to a proportional decline of these elasmobranchs from their unfished 

population size (Zhou and Smith, 2017). In addition to this bottom-up effect, any additional fishing 

mortality on predators will further reduce their biomass. Hence, accepting F = Flim will eventually 

drive population lower than Blim for top predatory sharks so adopting LRP F = Fmsy (corresponding to 

Bmsy = 50% B0) is more precautionary for elasmobranchs.  

Incorporating reference points into management of non-target species has been adopted in some 

countries. In New Zealand, Ministry for Primary Industries has developed Spatially Explicit Fisheries 

Risk Assessment method (Ministry for Primary Industries, 2016), which is designed to estimate 

fisheries impact and reference points spatially for non-target species, and to inform risk 

management responses for these species. In Australia, a comprehensive Guide to AFMA’s Ecological 

Risk Management has been developed for management of non-target species (AFMA, 2017). The 

area-based risk assessment method is used for ecological risk assessment in which reference points 

are an essential component. The WCPFC may consider these existing examples and adopt 

constructive elements for the risk management of these shark bycatch.  

2.7 Recommended reference points and further research for WCPFC 
elasmobranchs 

Our analyses and discussions support the previous recommendations of Clarke and Hoyle (2014). 

Considering the current and previous studies, we provide the following recommendations: 

(1)  Reference points should adopt a tiered (based on availability of information) framework. For 

those elasmobranchs evaluated using a stock assessment model, reference points estimated in the 
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same stock-assessment should be adopted. This will avoid the potential inconsistency of 

demographic composition used to estimate Fcur and FBPR when they are derived separately.  

(2) When stock assessments are not available, or when the results are not considered robust by the 

WCPFC Scientific Committee, risk-based fishing mortality benchmarks (Fmsm, Flim and Fcrash) developed 

in the present report are recommended.  

(3) Caution is needed when key life-history parameters are copied from literature, such as tmax. It is 

important to continue research to provide or improve estimates of life-history parameters. A meta-

analysis should be considered to integrate studies on growth, maturity, and other LHPs from 

sampling across the whole population in the WCPO.  

(4) Selectivity should be estimated for all elasmobranchs in the WCPFC jurisdiction. If selectivity 

cannot be modelled, a knife-edge size of entry may be determined by length samples of the 

observed catch. 

(5) Further examination and research on spawning potential ratio approach is needed. Until the 

particular FSPRx% that ensures low risk to population sustainability can be determined for each stock, 

we do not recommend SPR approach for setting a limit reference point for elasmobranchs using one 

generic value for all species.    

(6) Adopt the combined LRP (cFlim) derived in this study as tentative limit reference point for 

elasmobranchs managed by WCPFC. These estimates should be reviewed and updated in three to 

five years when new methods or additional data become available.  

(7) In the future if the Commission deems that ecological interactions among species and ecosystem 

structure conservation are essential elements in the management of shark species, a relative lower 

fishing mortality benchmark such as Fmsm should be considered as a limit reference point for these 

top predators. 
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3 Potential methods for estimating fishing 
mortality 

3.1 Traditional stock assessment 

This is the ideal approach for estimating both reference points and current fishing mortality. 

Traditional stock assessment models include surplus production models (biomass dynamics models), 

statistical catch-at-age models, delay-difference models, and virtual population analysis models. 

Traditional stock assessment models require various data, including at least a time series of catch 

and biomass index (often CPUE) records. The models produce biological and management quantities 

that quantify biological status, fishing impact, and at the same time produce corresponding 

reference points (i.e., there is no need to calculate reference points separately using additional 

models). This cohesive approach avoids possible inconsistency between reference points and 

biological status because both refer to the same type of fish in terms of their age/size/sex 

composition.  

3.2 Area-based ERA methods  

Unfortunately, the types of data required for traditional stock assessment models are generally 

unavailable for lower-value or bycatch species. Alternative data-poor techniques are needed for 

these species. In the last two decades, an area-based ecological risk assessment approach has 

become increasingly popular. The assessment involves two separate components: (1) deriving 

reference points based on biological and life-history traits as we have described in the previous 

section; (2) estimating fishing impact using fishery and ecological data. 

The sustainability assessment for fishing effect (SAFE) (Zhou and Griffiths, 2008; Zhou et al., 2009a, 

2011) is an area-base ERA method to estimate the annual instantaneous fishing mortality for a 

species in defined period (i.e. one year):  

𝐹 =
𝐶

�̅�
≈

∑ 𝑎𝑠|𝐴𝐽,𝑡𝑡

𝐴𝐽
𝑞ℎ𝑞𝜆(1 − 𝑆)  (Eqn 7) 

Where C is catch, �̅� is average abundance over the period, AJ is the species distribution range within 

the jurisdiction, as|AJ,t is gear affected area by one unit of fishing effort when fishing site s is within AJ 

at time t, (a combination of habitat-dependent encounterability qh and size- and behaviour-

dependent selectivity q), and S is the discard survival rate or escapement rate in some gear types 

(e.g. gear fitted with bycatch reduction device). This equation assumes that fish density is constant 

within its distribution range, and encounterability and selectivity can be predefined by fish size and 

behaviour. It implies that fishing mortality is the fraction of overlap between fished area and the 

species distribution area within the jurisdiction (availability), adjusted by catchability and post-

capture mortality. This simple approach has been referred to as base SAFE (or bSAFE, AFMA, 2017). 

If catch data are available in some years, fish density and gear efficiency may be estimated so bSAFE 

can be enhanced: 
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 𝐹 =
𝐶

�̅�
=

∑ (𝑑𝑠𝑎𝑠|𝐴𝐽,𝑡𝑡 )

∑ (𝑑𝑠𝐴𝑠,𝐽)𝑠
𝑄(1 − 𝑆)  (Eqn 8) 

where ds is fish density at site s, Q is catch efficiency. This version has been referred to as enhanced 

SAFE (or eSAFE, AFMA, 2017). 

        

Eqns (7 and 8) assume no local depletion effects from repeated fishing at the same location, i.e., 

populations rapidly mix between fished and unfished areas. The fishing mortality will likely be 

overestimated if this assumption is not satisfied.   

These basic equations have been modified in various ways depending on available data. 

Modification can be made to each of the input variables in the equations. In particular, if there is 

sufficient information to estimate CPUE trends, biomass and fishing mortality can be estimated using 

biomass dynamic models. This approach was used in the WCPFC stock assessments for bigeye 

thresher and porbeagle sharks (Fu et al 2018; Hoyle et al 2017).  

3.2.1 Species distribution 

Species distribution can be obtained from survey data (Zhou and Griffiths, 2008; Zhou et al., 2009b; 

Ministry for Primary Industries, 2016; Grüss et al., 2018), existing distribution maps based on habitat 

and other information (Zhou et al., 2009a; Ministry for Primary Industries, 2016), and fishery data 

(Zhou et al., 2009c, 2015; Hoyle et al., 2017c; Fu et al., 2018). Relative fish density is an important 

feature of species distribution. Depending on available information, homogeneous or random 

distribution may be assumed for data-poor species. If catch at location or presence-absence are 

available, heterogeneous density can be estimated and predicted through various statistical models 

as such GLMM, GAM, N-mixture, and geostatistical models (Zhou and Griffiths, 2007, 2008; Zhou et 

al., 2013; Hoyle et al., 2017c; Fu et al., 2018; Grüss et al., 2018). Models that include environmental 

data can be used to extend predicted distributions into areas with insufficient fishery data (Hoyle et 

al 2017).  

3.2.2 Area affected by fishing 

The simplest method is to divide the management area into many small equal-sized cells and count 

the number of cells with fishing effort greater than a threshold (e.g., 3 boat-days or 1 unit of fishing 

effort) (Zhou and Griffiths, 2008; Griffiths et al., 2018). It may be preferable to calculate actual gear 

affected area from gear dimension (i.e., length of longline, gillnet, and seine, or trawl opening width) 

and soak time (Zhou et al., 2011, 2013; Ministry for Primary Industries, 2016). The total area affected 

by fishing is a function of the total fishing effort and the gear-affected area per set. 

3.2.3 Gear efficiency 

This term is sometime called catch efficiency, fishing power, or catchability. Unlike catchability 

parameter q in stock assessment model, Q is the probability of catching a particular fish in one gear 

setting (deployment) when that fish is within the gear affect area. It may be considered as the 

combined effect of encounterability and selectivity (Zhou et al., 2011, 2016). For data-poor species, 

a constant value may be assumed and assigned to encounterability and selectivity for each gear type 

based on fish size and behaviour (e.g. low 0.33, medium 0.67, high 1.0). If sufficient set-by-set catch 
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data are available, gear efficiency can be estimated by abundance and detectability (referred to as 

N-mixture) models (Zhou and Griffiths, 2007; Zhou et al., 2013, 2014; Campbell et al., 2017). 

Gear efficiency Q is directly related to catchability q in stock assessment models. When individuals 

are assumed to be randomly or evenly distributed in stock distribution area A, the relationship 

between these two quantities is q = Qa/A, where a is the average gear affected area by one unit of 

fishing effort. Hoyle et al. (2017) and Fu et al. (2018) took a different approach to derive catchability 

for Porbeagle shark and Bigeye thresher shark. They used a subset of the observer data within a 

subsection of the assessment area A where the data are believed to have good quality. They fitted 

a Bayesian state-space biomass dynamic model to an index of relative abundance in the selected 

sub-area. Catchability q is one of the three parameters (the other two parameters are carrying 

capacity K and intrinsic population growth rate r) in the biomass dynamics model. This q is then 

adjusted by area and used to estimate fishing mortality. This approach may be compared with the N-

mixture model for estimating gear efficiency.  

3.2.4 Discard survival rate and escapement 

Bycatch species are often returned to the sea and some of these fish may survive. When there is no 

data available, survival rate may be assumed, for example S = 0 as the most conservative option. 

Results from field studies are available for some elasmobranchs (Campbell et al., 2017; Ellis et al., 

2017). Fu et al. (2018) derive this variable for Bigeye thresher shark using a uniform distribution with 

bounds [0.3, 0.7] based on the calculated proportion of BTH released alive in the SPC and US 

observer datasets. 

Modification of fishing gear can facilitate escapement of some bycatch species. For example, prawn 

trawl rigged with turtle excluder devices (TEDs) and bycatch reduction devices (BRDs) can reduce a 

range of species groups caught in tropical Australia (Brewer et al., 2006). Nets with a combination of 

a turtle excluder device and bycatch reduction device reduced the catches of turtles by 99%, sharks 

by 17.7%, and rays by 36.3%. Similarly, a study on the demersal fish-trawl fishery found that BRDs 

significantly improved the escape proportions for most chondrichthyans by 20–30% (Wakefield et 

al., 2017). The results of these and other studies may be used as the escapement rate in calculation 

of fishing mortality for similar gear types.  

3.3 Age-based methods—catch curve 

Statistical catch-at-age methods are considered the state-of-the-art in modern stock assessment. 

Catch curves represent the simplest catch-at-age methods. If catch-at-age data are available, catch 

curve analysis may be carried out to estimate total mortality Z and fishing mortality F if natural 

mortality M is known. There are alternative methods for estimating Z from catch curve data, 

including regression-based methods, the Chapman-Robson estimator, and the Heincke estimator. 

These methods generally require that vulnerability to fishing gear is constant above the age when 

maximum catch occurs, and that the population has a stable age structure. For example, a dome-

shaped selectivity curve may distort the linear relationship between log(catch) and age. Catch curve 

analysis can be applied to catches taken in the same year so the fish are composed of cohorts born 

in different years. In this case catch curve analysis has to assume (1) a constant recruitment for these 

cohorts; (2) similar survival history for these cohorts (Quinn and Deriso, 1999).    
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In additional to potential violations of assumptions, non-random sampling, and inaccurate ageing 

data, stochastic error in the true mortality rate, recruitment, and ageing affect the accurate of the 

estimated mortality. Comparison between the Chapman-Robson and regression estimators found 

the Chapman-Robson estimator to be more accurate than regression methods (Dunn et al., 2002). 

Another comparison study comparing three catch-curve methods (the Chapman–Robson, 

regression, and Heincke estimators) also showed that the Chapman-Robson estimator generally out-

performed the other two methods (Smith et al., 2012) and was recommended, after correction for 

over-dispersion, for estimating total mortality. 

3.4 Length-based methods 

The most common length-based model is the Beverton-Holt “per-recruit” estimator (BHE) based on 

von Bertalanffy growth model with an assumption that total mortality Z is constant beyond the age 

of recruitment (Quinn and Deriso, 1999). Z is calculated as 

𝑍 =
𝐾(𝐿𝑖𝑛𝑓−�̅�)

�̅�−𝐿𝑐
         (Eqn 9) 

where K and Linf are VB growth parameters, �̅� is the mean length in the catch, and Lc is the length at 

recruitment age. The BHE (Eqn 9) assumes steady-state conditions, deterministic vB growth function, 

a constant mortality rate of all fully recruited fish, and continuous and constant recruitment to the 

fishery.  

As length is a function of age, length frequency data can be converted to age under the assumption 

of deterministic growth following a vB growth model. Hence, the length converted catch curve 

(LCCC) method was developed. It has been shown that the standard LCCC overestimates Z, but by 

explicitly considering seasonal growth oscillations LCCC can produce unbiased estimates (Pauly et al., 

1995).  

Recently, Hordyk et al. (2014, 2016) have developed the length-based spawning potential ratio (LB-

SPR) mortality estimator. This is an equilibrium age-structured model that converts the predicted 

age distribution of the catch to a length distribution. Given known M/K, the LB-SPR estimates the 

parameters F/M from the standardized length composition of the catch.  

Huynh et al. (2018) compared these three length-based methods used Monte Carlo simulations 

across a range of scenarios with varying mortality and life history characteristics. They showed that 

neither the LCCC nor the BHE was uniformly superior in terms of bias or root mean square error 

across simulations, but these estimators performed better than LB-SPR, which had the largest bias in 

most cases. Generally, if the ratio of natural mortality (M) to the von Bertalanffy growth rate 

parameter (M) is low, then the BHE is preferred, although there is likely to be high bias and low 

precision. If M/M is high, then the LCCC and BHE performed better and similarly to each other.  

The requirement of constant fishing mortality and recruitment over time has been relaxed by a 

recent developed length-based method. Rudd and Thorson (2017) extended the length-only 

approaches to account for time-varying recruitment and fishing mortality using a Length-based 

Integrated Mixed Effects (LIME) method. LIME requires a single year of length data and basic 

biological information and can fit to multiple years of length data, catch, and an abundance index if 

available.  

The most recent development in this area is length-based Bayesian biomass estimation method 

(LBB) (Froese et al., 2018). The method estimates asymptotic length, length at first capture, relative 
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natural mortality, and relative fishing mortality using length frequency data. Standard fisheries 

equations can then be used to approximate current exploited biomass relative to unexploited 

biomass. 

3.5 Discussion on estimating fishing mortality 

Clearly, the traditional stock assessment is the first choice for estimating current fishing mortality 

(and reference points) if required data are available. When using data-limited approaches, their 

assumptions and caveats should be kept in mind.  

Area-based methods involve a series of assumptions regarding species distribution pattern and 

range, gear efficiency, discards survival rate and escapement rate. Accuracy can be improved with 

more data and better estimators, but uncertainly may still be high for some species.    

Age and length-based methods generally require constant recruitment, growth, natural mortality, 

and fishing mortality, in addition to the requirement that the age composition and length frequency 

data in the sample truly represent those of the exploited age/size range of the stock. In addition, as 

discussed in the previous section, ageing sharks and rays can have high errors (Francis et al., 2007; 

Hamady et al., 2014; Harry, 2018). Moreover, age data are expensive to obtain and the samples 

often come from selected sub-populations.   

Similarly, real fisheries data may violate many assumptions required by length-based methods. In a 

review of data-poor methods, Edwards (2015) recommended that pending further testing by 

proponents of these approaches, they were not considered suitable for immediate application in 

New Zealand. 

Amongst the four categories of potential methods, the area-based ERA method has been widely 

applied to bycatch risk assessment. Conceptually, the method is analogous to formal stock 

assessment as both indicator (Fcur) and reference points (FRPs) are equivalent to those in formal stock 

assessment. This group of methods can be flexibly modified to suit the existing data. Indeed, varying 

versions have been developed according to available data. Furthermore, this method has been 

applied to two WCPFC elasmobranch species (Bigeye thresher and Porbeagle shark). We recommend 

this method to be the first choice for data-poor elasmobranch species in WCPO.  

The most important piece of information required by area-based method is fishing effort data. A 

recent analysis of data for sharks caught in longline and purse seine fisheries in the WCPO reveals 

fishing effort data exist for several shark species (Rice, 2018). In addition to the two species that 

have already been assessed, these species include Silky shark, Blue shark, Pelagic thresher, Common 

thresher, Oceanic Whitetip, Shortfin mako, and Whale shark. It is possible that similar analysis can 

be carried out for these species.   
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4 Other potential management procedures for 
WCPFC elasmobranchs  

A wide range of assessment methods and management procedures have been developed for data-

poor fisheries in the past two decades. The methods vary from life-history-based to catch-only, from 

qualitative to quantitative, and from traditional to simple rules. These research also prompt several 

reviews of the methods and procedures (e.g., Edwards, 2015; Geromont and Butterworth, 2015; 

Oliveira et al., 2017). It is unnecessary and unrealistic to repeat the review, but a few methods show 

potential merit for testing of WCPFC stocks.  

4.1 Catch-rate (CPUE) approach 

The New Zealand Ministry for Primary industries has accepted a method where an F-proxy is 

estimated as catch/CPUE, where CPUE is derived from a standardisation model (generalised linear 

model). This model assumes CPUE is analogous to biomass (i.e., the F-proxy is a relative exploitation 

rate). If the catch and CPUE are the same data set then effectively catch/CPUE = effort, but in 

practice the CPUE dataset is a subset of the catch. For example, the Assessment Plenary for Rig shark 

(Mustelus lenticulatus) agreed to use the average CPUE during the period 2005–2015, a period of 

relatively stable CPUE and catches, as a proxy for Bmsy. Reference points may then follow, usually an 

Fmsy proxy based on the average F during the same period. This is done from consideration of fishery 

(catch) history, and expert opinion. This method has been used for both rig and school sharks (e.g., 

https://fs.fish.govt.nz/Page.aspx?pk=113&dk=24365). This approach may only work when there is a 

long and reliable time series of catch and CPUE.   

4.2 Traffic-light framework 

Caddy (1999, 2002) developed a series of limit reference points based on measures or proxies for 

fishing mortality rate or stock size, relating to the biology, economic, and social aspects of a fishery. 

Many of these LRPs may be difficult to apply to WCPFC bycatch due to lack of data, but a length-

based LRP may be useful. The total mortality limit reference point is derived by replacing the mean 

length in the catch in Eqn (9) by length at maturity:  

𝑍𝐿𝑅𝑃 =
𝐾(𝐿𝑖𝑛𝑓−𝐿𝑚𝑎𝑡)

𝐿𝑚𝑎𝑡−𝐿𝑐
          Eqn (10) 

This LRP implies that mean length in the catch must be greater than the mean size at maturity.  

Alternative length-based approaches have been developed (see Geromont and Butterworth, 2015; 

Oliveira et al., 2017; Froese et al. 2018). These methods require assumptions that the stock is 

equilibrium, recruitment and mortality are time-invariant, and selectivity is knife-edged above the 

age at first capture. Length-based indicators have previously been developed for WCPFC 

elasmobranchs using standardized length data (Francis et al., 2014; Cortés et al., 2017; Hoyle et al., 

2017a, 2017b). However, simulations suggest that they may be relatively insensitive indicators of 

population status (Clarke & Hoyle 2014).  

https://fs.fish.govt.nz/Page.aspx?pk=113&dk=24365
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4.3 Catch-only methods 

There has in recent years been an increasing interest in developing catch-only methods. These 

methods require only time series of catch data and perhaps some life history parameters, so they 

can be applied to many fisheries where catch records are available. These methods typically require 

information about stock depletion. Model performance will be affected by the depletion level 

chosen so methods that assume a common depletion have limited application. Amongst the catch-

only methods, Catch-MSY (Martell and Froese, 2013; Froese et al., 2017) and OCOM (Zhou et al., 

2017b) attempt to come up a depletion prior based on catch history. Hence, they are more 

promising than other catch-only methods. Catch-MSY and OCOM produce time series of biomass, 

fishing mortality, and both F-based and B-based reference points such as Bmsy and Fmsy. The main 

disadvantage of catch-only methods is their potentially inaccurate results for some stocks, 

particularly for unproductive, lightly fished, or highly depleted stocks.  

Before deciding which category of approaches may be tested for WCPFC elasmobranchs, a few 

factors should be taken into consideration. It is essential to examine the data inventory, including 

the types of data available and their quality and quantity. The key assumptions required by each 

potential method should be examined. As the WCPFC is concerned with multiple species, applying 

consistent methodology across multiple species could facilitate both assessment and management.    
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5 Review of Shark Stock-Recruitment 
Relationship 

5.1 Introduction 

Stock recruitment relationships are very influential in stock assessments and can substantially affect 

MSY-related parameters. They are also considered very difficult to estimate from fishery data (Lee et 

al., 2012). Current practice in many WCPFC stock assessments is to consider a range of plausible 

values of steepness, giving equal weight to each of them (e.g., Tremblay-Boyer et al., 2018; Vincent 

et al., 2018), but determining plausibility also requires some information, and the chosen values 

imply a prior. It would be very useful to be able to infer prior distributions for stock recruitment 

relationships from another data source, such as life history parameters.  

ISC scientists have been involved in developing and applying models to predict stock recruitment 

relationships based on early life history, with applications to Pacific bluefin tuna (Mangel et al., 2010, 

2013), billfish (Brodziak and Mangel, 2011; Brodziak et al., 2015), and recently also sharks (Kai and 

Fujinami, 2018).  

Task 6 in the term of reference requests a review of the work presently being undertaken by ISC on 

the development of stock-recruitment relationships and their parameter estimates. Stock-

recruitment steepness for North Pacific blue shark has been estimated recently using life-history 

parameters. Task 6 also requests an assessment of the applicability of extending this work to other 

key shark species, especially South Pacific blue shark. 

Here we review the life history-based approach to estimating a stock recruitment relationship for 

sharks, focusing in particular on the approach published by Kai and Fujinami (2018) in Fisheries 

Research.  

5.2 Overview 

In Kai and Fujinami (2018) (KF) the authors consider the relationship between blue shark spawning 

stock size and recruitment to the age 1 year-class. They model this relationship using the approach 

proposed by Mangel et al. (2010) (referred to as Mangel hereafter), based on maximum population 

growth rate at low population size and spawning biomass per-recruit at equilibrium without fishing 

(i.e., virgin population). They use this relationship to infer the proportion of maximum recruitment 

that occurs at 20% B0 (steepness), under several different stock recruitment relationships. They 

argue for use of the estimate based on the Beverton-Holt stock recruitment relationship, and 

provide an estimate of steepness with a form of uncertainty that they suggest can be used as a prior.  

The adaptation of the method to sharks has been performed effectively. The paper is, in general, 

well written and provides sufficient explanation to repeat the approach for other species. The 

implementation for blue sharks is competently performed and well justified, although when 

repeating the analysis we obtained a different result (0.71 rather than 0.58).  

However, for the reasons identified below we consider the approach implemented here for sharks, 

and proposed by Mangel, to be an interesting theoretical idea, but doubt its practical utility in its 
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present form. We have reservations about using Mangel’s method, or its application here to sharks, 

to provide priors for stock assessment.  

5.3 Method in general, including Mangel et al. (2010) 

Estimation error. When developing a prior distribution, estimation error is the key issue. The prior 

should describe the distribution of relative probabilities for all potential parameter values. KF and 

Mangel simulated process uncertainty in a small population, and their resulting distribution 

described the estimates one might obtain by sampling a small population. The process error 

approach was, as described by Mangel, an ad hoc approach for assigning a probability distribution, 

and did not contain the information about the relative probabilities of different steepness values 

implied by a prior. To explore estimation error, one could implement a Monte Carlo procedure to 

recalculate steepness given resampled plausible values of all the important input parameters, such 

as alternative ogives or estimates for M, the shape of the SRR, maturity, the growth curve, length-

weight relationship, etc. We demonstrate below that using such an approach to generate a more 

realistic uncertainty distribution would result in a much less informative prior for north Pacific blue 

shark.  

Uncertainty in natural mortality. The method of KF, like the approach of Mangel, relies strongly on 

estimates of age-dependent mortality and pre-recruit mortality. Mangel (page 99) say “Perhaps 

most importantly, Equations 20 and 26 show that as soon as we are able to develop a demographic 

model for the survival of a cohort, we are close to being able to obtain a point estimate for 

steepness.”  

This also implies that the functional form of density dependence in recruitment is determined 

entirely by age-dependent mortality and reproductive rates averaged across the population. 

However, the true M at age is unknown, and various alternative assumptions could be made. The 

appendix in KF presented a range of possibilities and finally selected an approach based on the 

(Lorenzen, 2005) method, which assumed that natural mortality was inversely proportional to body 

length. However, there is little evidence to support the Lorenzen method over the others for blue 

sharks, and the true uncertainty would be better represented by sampling from approaches at 

random. Moreover, as noted by KF, Peterson and Wroblewski (1984) advised (with respect to their 

own method) that “the relationship between mortality rate and size can only be viewed as a central 

tendency for organisms in an ecosystem as a whole and may not be applicable to individual species” 

and cautioned against its use as an estimator for a specific species. This excellent advice is equally 

applicable to the Lorenzen (2005) method.  

Assumptions about natural mortality of pre-recruits are likely to be more accurate and precise for 

sharks than they are for broadcast spawning fish, which is one advantage when estimating 

demographic models of cohort survival. Pre-recruit mortality rates for pelagic fish, which Mangel 

based on estimates reported by (McGurk, 1986), are highly uncertain. In fact (McGurk, 1987) later 

recalculated his size to mortality relationship using fish data only and changed the size exponent 

from -0.25 to -0.39, which may have significant implications for predicted mortality rates. This 

highlights the degree of variability among species and taxonomic groups, and the potential for error 

when applying a general principle to a specific case without fully considering uncertainty.  
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The choice of stock-recruitment function. Steepness is typically estimated from sufficiently 

contrasting and reliable pairs of stock-recruitment data. Rather than using data on stock and 

recruitment, the method reviewed here uses the maximum population growth rate s at low 

population size and spawning biomass per-recruit �̅�𝑓 at no fishing (i.e., virgin population) to predict 

steepness. The prediction strongly depends on the shape of the spawner recruit curve. This 

sensitivity is shown by the very different steepness estimates of 0.584 based on the Beverton-Holt 

curve, and 0.851 based on the Ricker curve.  

In choosing a value of steepness for blue shark, KF argue that the Ricker curve is not appropriate 

“because there is little scientific evidence of cannibalism by adult blue sharks on juvenile blue 

sharks” which by elimination leaves the BH model. 

However, these two curves are far from the only options – they are simply two mathematically 

convenient ways of summarising possible stock recruitment curves. They have little inferential value 

in estimating the appropriate value of steepness to use for a stock. If a species truly has a consistent 

SRR, there is no reason to assume a priori that its shape matches BH or any other simple and 

convenient curve. As acknowledged by Mangel et al. (2013) Punt et al. (2005) stated “other (more 

complicated) forms may provide better representations of the existing data”. For example, the low 

fecundity stock recruitment relationship (Taylor et al., 2013), which is often used for sharks, has a 

very flexible shape. With this curve, as KF note, a single value for maximum reproductive rate can be 

associated with various steepness estimates. Accordingly, even precisely- s at 

low population size and �̅�𝑓 at no fishing cannot be assumed to imply a precise value of steepness. 

Effect of density-dependence on life history parameters and estimated h. Stock-recruitment 

functions (including Beverton-Holt and Ricker models) are density-dependent, meaning that the 

stock is more productive at low density than at high density. Such density-dependent mechanisms 

manifest through life-history traits, including natural mortality rate and reproductive rate, as well as 

other parameters such as growth rate, maturation age and size, fecundity, egg size, etc. (Rochet, 

2000). Traditionally, SRR is estimated from time series of stock-recruitment data at varying density (a 

wide range of data points). In KF and Mangel, h is defined as a function of both population growth 

rate at low population size s, and spawning biomass per-recruit at unfished virgin biomass �̅�𝑓. 

These two variables should have been calculated from life history parameters (LHPs, including 

fecundity, litter size, survival rate, weight at age, etc.) obtained from the two very different 

population densities. However, both KF and Mangel used the same LHPs to calculate the two 

variables, meaning that this approach is essentially using one data point (one set of LHPs) to derive a 

SR curve, even though the LHPs at virgin biomass and low population size are very different. The 

same LHPs cannot be used for two completely different statuses.  

Population coverage. The estimated life history parameters are assumed to apply to the whole 

population, but this assumption may not be valid. The parameters have actually been estimated 

from a subset of the population in space and time, with particular environmental conditions and 

history. This is of course a general criticism that can be applied to all population model parameters 

but must also be considered here. It may be particularly difficult to estimate population-level 

parameters for sharks, because sexual segregation in space is a general characteristic of 

elasmobranchs (Wearmouth and Sims, 2008; Finucci et al., 2018), and spatial segregation between 

juveniles and adults is also commonly observed (e.g., Gouraguine et al., 2011; Semba et al., 2013; 

Finucci et al., 2018). Blue shark populations are known to be spatially segregated by size and sex 

(Clarke et al. 2015). Estimates of population parameters vary widely among studies, with (for 

example) female longevity estimates varying from 12 in a study off the northwest coast of Mexico 
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(Blanco-Parra et al., 2008) to 28.6 in a Taiwanese northwest Pacific study (Hsu et al., 2011). Accurate 

estimates of population-level parameters require understanding of both parameter variation and 

stock distribution. These factors add uncertainty to the estimates and may, depending on the stock 

structure, add bias. Longevity estimates, for example, can often be biased low by surveying a subset 

of the population.  

5.4 Simulation 

We repeated the analyses of Kai and Fujinami (2018) incorporating some of the suggestions above.  

5.4.1 Methods 

Parameter values are reported in Table 7.  

𝑎 = 0: 𝑎𝑚𝑎𝑥 

Growth was modelled using the von Bertalanffy growth equation.  

𝐿𝑎 = 𝐿∞(1 − 𝑒−𝑘(𝑎−𝑎0)) 

Mortality at age was defined in the same way as KF, with MT defined across the ages of 0 (i.e. ac was 

set to 0) to amax.  

𝐿𝑐 = 𝐿𝑎=𝑎𝑐 

𝑀𝑎 =
𝑀𝑇(𝑎𝑚𝑎𝑥 − 𝑎𝑐)

𝑙𝑜𝑔 (
𝐿𝑐

𝐿𝑐 + 𝐿∞(𝑒𝑥𝑝(𝑘(𝑎𝑚𝑎𝑥 − 𝑎𝑐)) − 1)
)

𝑙𝑜𝑔 (
𝐿𝑎

𝐿𝑎 + 𝐿∞(𝑒𝑥𝑝(𝑘) − 1)
) 

Probability of maturity, weight at age, and fecundity at age were calculated as follows.  

𝑝𝑚𝑎𝑡𝑎 =
1

1 + 𝑒𝑥𝑝(𝑐3 + 𝑐4 . 𝐿𝑎)
 

𝑤𝑎 = 𝑐1 . 𝐿𝑎
𝑐2 

𝑙𝑖𝑡𝑡𝑒𝑟𝑎 = 𝑐5 + 𝑐6 . 𝐿𝑎 

We could not determine the value used by KF for pre-recruit survival at stage 3 (juveniles), and 

chose to set it to the estimated annual survival rate at age 0. Since this is an annual survival rate, it 

implies full recruitment at age 1.  

𝑆𝑝𝑟𝑒 = 𝑆0. 𝑆1. 𝑆2. 𝑆3 

Survivors per recruit were calculated from age 1.  

𝑆𝑎 = ∏ 𝑒𝑥𝑝(−𝑀(𝑖))

𝑎−1

𝑖=1

 

Female spawning biomass per female recruit was calculated as follows.  

𝑊𝑓 = ∑ 𝑆𝑎𝑊𝑓(𝑎)𝑝𝑓,𝑚(𝑎)

𝑎𝑚𝑎𝑥

𝑎=1

 

We modified equation (9) in Kai and Fujinami (2018) for calculation of s, individuals per spawning 

biomass, to adjust for relative productivity at age, following equation 41 in Mangel et al 2010. This 
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modification is needed since a summation appears to be omitted in KF’s equation (9), probably 

because the summation is carried out as part of their simulation. The sex ratio is applied to both the 

individuals spawned and the spawning biomass, so cancels out.  

𝛼𝑠 = 𝑆𝑝𝑟𝑒𝑆𝑐𝑦𝑐𝑙𝑒

∑ 𝑆𝑎. 𝑝𝑓,𝑚(𝑎). 𝑙𝑖𝑡𝑡𝑒𝑟𝑎
𝑎𝑚𝑎𝑥
𝑎=1

𝑊𝑓
 

Steepness was calculated as follows: 

ℎ =
𝛼𝑠(1 − 𝑠𝑟)𝑊𝑓

4 + 𝛼𝑠(1 − 𝑠𝑟)𝑊𝑓
 

5.4.2 Parameter values 

We tested only two of the many sources of uncertainty. Potential values of MT were obtained from 

Campana et al. (2005), Table 14, the mean of which (0.23) was used by KF as their estimate. Based 

on the values reported by Campana et al. (2005), we estimated mean as 0.23 and standard deviation 

as 0.08, and sampled random values of MT from this distribution.  

Maximum age values were reported for blue shark (both north and south) by Clarke et al. (2015) of 

12, 15, 20-24 (set to 22), 29, 21, and 20. These values were resampled randomly with replacement, 

with n = 200,000.  

The model was implemented in R, and all code is provided in Appendix 1.  

5.4.3 Results and Discussion 

With the base values, Beverton-Holt steepness was estimated to be 0.71. This is higher than the 

estimate of 0.58 provided by KF. The explanation of this difference is unclear and should be explored 

further. The R code provided in Appendix 1 can be used for this purpose.  The main differences 

between the analyses are our use of 1 year rather than age 0 as the age of recruitment, and our use 

of the point estimate of steepness with the base parameter values rather than the mean of 200 

simulations.  

Including two sources of estimation uncertainty resulted in a much wider uncertainty distribution 

(Figure 23) for Beverton-Holt steepness h than proposed by Kai and Fujinami (2018) based on 

process error. The distribution included estimates below 0.2. These represent unrealistic scenarios in 

which the assumed mortality was above replacement level. A more thorough exploration of 

uncertainty should address this by selecting scenarios that include plausible combinations of life 

history parameters, with growth rate greater than zero.  

5.5 Conclusions – applicability of method to species in general 

Given the above, it seems premature to use steepness distributions based on the methods proposed 

by Kai and Fujinami (2018) and Mangel et al. (2010) as prior distributions in stock assessments. 

Consideration of estimation uncertainty in just a few of the input parameters considerably broadens 

the uncertainty distribution. Considering uncertainty in other parameters is likely to add 

considerably more variability.  

The method may be useful for comparing reproductive strategies among shark species, or for 

identifying factors that are particularly influential and therefore warrant further research.  
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To use the method for these purposes, it will be important to perform the analyses with appropriate 

consideration of estimation error in all input parameters, and in the shape of the SRR curve. This 

would demonstrate how much uncertainty there is in the estimates of steepness, and which factors 

are most important in determining it. It is also necessary to use LHPs appropriate for populations at 

a) very low population size, and b) virgin biomass. 

Finally, we would like to recommend: (1) modelling estimation error for h, rather than using the 

numerical simulation method. An estimation error approach is likely to provide a much wider 

distribution of plausible values for steepness than the distribution presented here. (2) Using multiple 

alternative models to characterise the plausible distribution of natural mortality. A single model can 

considerably underestimate the uncertainty in this key parameter. Reproductive output per 

spawner, and hence the steepness estimate, is likely to be highly sensitive to the selected particular 

M estimator. Potential bias in natural mortality due to underestimation of longevity, and uncertainty 

about the natural mortality of pre-recruits should also be considered. (3) Conducting sensitivity tests 

to examine the effect of density-dependent mechanisms on LHPs and resulting h. (4) Where whole-

population estimates are unavailable, considering uncertainty by using alternative estimates of life 

history parameters.  
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Table 1. WCPFC key elasmobranchs species reviewed by the Pacific Shark Life History Expert Panel 

Workshop (2015, WCPFC-SC11-2015/EB-IP-13) 

ID Stock Code Recent 
assessment 

Method Result 

1 Blue shark – North 
Pacific 

BSH-N 2017 SS3 Fmsy = 0.35 

F12-14 = 0.13 

2 Blue shark – South 
Pacific 

BSH-S 2016 Multifan-CL Results inconclusive 

3 Shortfin mako North 
Pacific 

SMA-N 2015 Indicators Results inconclusive 

4 Shortfin mako (South 
Pacific 

SMA-S    

5 Longfin mako LMA    

6 Silky shark (WCPO) FAL 2013 SS3 Fmsy = 0.08 

Fcur = 0.358 

7 Oceanic whitetip 
(WCPO) 

OWT/OCS 2012 SS3 Fmsy = 0.07 

Fcur = 0.469 

8 Bigeye thresher 
(Pacific) 

BTH 2017 Quantitative 
ERA 

F00-14/Flim = 0.33  

F00-14/Fmsm = 0.54 

9 Pelagic thresher 
shark 

PTH    

10 Common thresher 
shark 

ALV    

11 Porbeagle shark 
(Southern 
hemisphere) 

POR 2017 Quantitative 
ERA 

F06-14/Flim = 0.002  

F06-14/Fmsm = 0.007 

12 Smooth 
hammerhead 

SPZ    

13 Scalloped 
hammerhead 

SPL    

14 Great hammerhead SPK    

15 Winghead EUB    

16 Whale shark (Pacific) RHN 2018 Quantitative 
ERA 

Not see 
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Table 2. Comparison of mean M estimated from Eqns 2a (M.1) and 2b (M.2) with all estimators 

(M.all) for the 15 elasmobranch stocks. On average, M from both Eqns 2a and 2b is 1.11 times 

higher than M from all estimators. 

ID Stock M.1/M.all M.2/M.all 

1 BSH-N 0.98 0.73 

2 BSH-S 1.26 0.78 

3 SMA-N 1.09 0.88 

4 SMA-S 1.57 0.85 

5 LMA 0.00 0.00 

6 FAL 1.73 0.47 

7 OCS 1.09 0.69 

8 BTH 1.71 0.66 

9 PTH 1.50 0.83 

10 ALV 1.30 0.63 

11 POR 0.78 1.09 

12 SPZ 1.60 0.87 

13 SPL 1.36 0.84 

14 SPK 1.06 0.72 

15 EUB 1.50 0.88 

16 RHN 1.15 0.44 

 Mean 1.23 0.71 
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Table 3. Comparison of estimated reference points by four methods for three shark stocks in the WCPFC managed areas. cFmsm, cFlim, and cFcrash are 

combined from 1 Methods 1 to 4. L10% and H90% are 10% and 90% percentiles.  

 

 

 

 

 

ID Stock QuantityF msm1 F msm2 F msm3 F 60% cF msm F lim1 F lim2 F lim3 F 40% cF lim F crash1 F crash2 F crash3 F 10% cF crash

1 BSH-N mean 0.10 0.19 0.15 0.14 0.14 0.14 0.28 0.22 0.27 0.23 0.19 0.37 0.29 0.77 0.40

1 BSH-N sd 0.04 0.08 0.07 0.04 0.07 0.06 0.11 0.11 0.07 0.11 0.08 0.15 0.14 0.14 0.25

1 BSH-N cv 0.42 0.41 0.49 0.27 0.48 0.42 0.40 0.49 0.27 0.46 0.42 0.40 0.49 0.19 0.63

1 BSH-N median 0.09 0.19 0.15 0.14 0.13 0.14 0.28 0.23 0.26 0.23 0.18 0.38 0.30 0.79 0.34

1 BSH-N L10% 0.05 0.09 0.04 0.10 0.06 0.08 0.14 0.05 0.19 0.09 0.10 0.18 0.07 0.57 0.13

1 BSH-N H90% 0.15 0.28 0.24 0.18 0.24 0.22 0.43 0.36 0.35 0.37 0.29 0.57 0.49 0.94 0.83

6 FAL mean 0.06 0.07 0.07 0.03 0.05 0.08 0.10 0.10 0.05 0.08 0.11 0.13 0.13 0.13 0.13

6 FAL sd 0.03 0.05 0.02 0.01 0.03 0.05 0.07 0.02 0.01 0.05 0.06 0.09 0.03 0.04 0.06

6 FAL cv 0.56 0.70 0.25 0.27 0.61 0.56 0.67 0.25 0.28 0.58 0.56 0.66 0.25 0.34 0.48

6 FAL median 0.05 0.07 0.07 0.03 0.04 0.07 0.10 0.11 0.05 0.07 0.09 0.13 0.14 0.12 0.12

6 FAL L10% 0.02 0.01 0.04 0.02 0.02 0.03 0.01 0.06 0.04 0.04 0.04 0.01 0.09 0.10 0.06

6 FAL H90% 0.10 0.13 0.08 0.04 0.09 0.15 0.19 0.12 0.07 0.14 0.20 0.25 0.16 0.17 0.20

7 OCS mean 0.07 0.12 0.06 0.05 0.07 0.10 0.18 0.09 0.09 0.12 0.14 0.24 0.12 0.25 0.19

7 OCS sd 0.03 0.06 0.02 0.02 0.04 0.04 0.09 0.03 0.03 0.06 0.06 0.12 0.04 0.08 0.10

7 OCS cv 0.40 0.51 0.30 0.29 0.59 0.40 0.50 0.30 0.30 0.56 0.40 0.50 0.30 0.33 0.53

7 OCS median 0.07 0.11 0.06 0.05 0.06 0.10 0.17 0.08 0.09 0.10 0.13 0.22 0.11 0.23 0.16

7 OCS L10% 0.04 0.05 0.03 0.03 0.03 0.06 0.07 0.05 0.06 0.05 0.07 0.09 0.07 0.15 0.08

7 OCS H90% 0.10 0.20 0.08 0.07 0.14 0.16 0.30 0.12 0.13 0.21 0.21 0.40 0.16 0.37 0.34
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Table 4. Comparison of estimated reference points by three methods for the 15 shark stocks in the WCPFC managed areas. cFmsm, cFlim, and cFcrash are 

combined from 1 Methods 1 to 4. L10% and H90% are 10% and 90% percentiles.  

   

ID Stock QuantityF msm1 F msm2 F msm3 cF msm F lim1 F lim2 F lim3 cF lim F crash1 F crash2 F crash3 cF crash

1 BSH-N mean 0.10 0.19 0.14 0.14 0.14 0.28 0.22 0.21 0.19 0.38 0.29 0.29

1 BSH-N sd 0.04 0.08 0.07 0.08 0.06 0.11 0.11 0.11 0.08 0.15 0.14 0.15

1 BSH-N cv 0.43 0.40 0.49 0.52 0.43 0.40 0.49 0.52 0.43 0.40 0.49 0.52

1 BSH-N median 0.09 0.19 0.15 0.13 0.14 0.28 0.23 0.20 0.18 0.38 0.30 0.27

1 BSH-N L10% 0.05 0.09 0.04 0.05 0.07 0.14 0.05 0.08 0.10 0.19 0.07 0.11

1 BSH-N H90% 0.15 0.29 0.24 0.25 0.22 0.43 0.35 0.37 0.30 0.57 0.47 0.50

2 BSH-S mean 0.08 0.13 0.17 0.13 0.12 0.19 0.26 0.19 0.16 0.25 0.34 0.25

2 BSH-S sd 0.03 0.04 0.00 0.05 0.04 0.06 0.00 0.07 0.05 0.07 0.00 0.09

2 BSH-S cv 0.35 0.29 0.00 0.37 0.35 0.29 0.00 0.37 0.35 0.29 0.00 0.37

2 BSH-S median 0.08 0.13 0.17 0.13 0.12 0.19 0.26 0.19 0.16 0.25 0.34 0.26

2 BSH-S L10% 0.05 0.08 0.17 0.06 0.07 0.12 0.26 0.09 0.09 0.16 0.34 0.12

2 BSH-S H90% 0.11 0.17 0.17 0.17 0.17 0.26 0.26 0.26 0.22 0.34 0.34 0.34

3 SMA-N mean 0.06 0.02 0.03 0.04 0.09 0.04 0.05 0.06 0.12 0.05 0.06 0.08

3 SMA-N sd 0.03 0.04 0.01 0.03 0.04 0.05 0.01 0.04 0.06 0.07 0.01 0.06

3 SMA-N cv 0.48 1.73 0.21 0.87 0.48 1.42 0.21 0.78 0.48 1.30 0.21 0.75

3 SMA-N median 0.05 0.02 0.03 0.04 0.08 0.03 0.05 0.05 0.11 0.05 0.06 0.07

3 SMA-N L10% 0.03 -0.02 0.02 0.01 0.04 -0.02 0.03 0.01 0.06 -0.02 0.05 0.01

3 SMA-N H90% 0.09 0.07 0.04 0.07 0.14 0.11 0.06 0.11 0.19 0.14 0.08 0.15

4 SMA-S mean 0.06 0.00 0.03 0.03 0.09 0.01 0.05 0.05 0.12 0.02 0.06 0.07

4 SMA-S sd 0.03 0.03 0.01 0.04 0.05 0.04 0.01 0.05 0.06 0.05 0.01 0.06

4 SMA-S cv 0.51 15.69 0.21 1.14 0.51 4.25 0.21 0.98 0.51 2.80 0.21 0.93

4 SMA-S median 0.05 0.01 0.03 0.03 0.08 0.02 0.05 0.05 0.11 0.02 0.06 0.06

4 SMA-S L10% 0.03 -0.05 0.02 -0.01 0.04 -0.05 0.03 0.00 0.05 -0.05 0.05 -0.01

4 SMA-S H90% 0.10 0.04 0.04 0.07 0.15 0.06 0.06 0.11 0.20 0.08 0.08 0.14
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Table 4 continues 

 

ID Stock QuantityF msm1 F msm2 F msm3 cF msm F lim1 F lim2 F lim3 cF lim F crash1 F crash2 F crash3 cF crash

6 FAL mean 0.06 0.07 0.07 0.06 0.08 0.10 0.10 0.09 0.11 0.13 0.13 0.12

6 FAL sd 0.03 0.05 0.02 0.03 0.05 0.07 0.02 0.05 0.06 0.09 0.03 0.07

6 FAL cv 0.56 0.69 0.25 0.54 0.56 0.67 0.25 0.53 0.56 0.66 0.25 0.53

6 FAL median 0.05 0.07 0.07 0.07 0.07 0.10 0.11 0.10 0.10 0.13 0.14 0.13

6 FAL L10% 0.02 0.01 0.04 0.02 0.03 0.01 0.06 0.04 0.04 0.01 0.09 0.05

6 FAL H90% 0.10 0.13 0.08 0.10 0.15 0.19 0.12 0.15 0.21 0.25 0.16 0.21

7 OCS mean 0.07 0.12 0.06 0.08 0.10 0.18 0.09 0.12 0.14 0.24 0.12 0.16

7 OCS sd 0.03 0.06 0.02 0.05 0.04 0.09 0.03 0.07 0.06 0.12 0.04 0.09

7 OCS cv 0.41 0.51 0.30 0.58 0.41 0.50 0.30 0.58 0.41 0.50 0.30 0.57

7 OCS median 0.07 0.11 0.06 0.08 0.10 0.17 0.08 0.11 0.13 0.23 0.11 0.15

7 OCS L10% 0.04 0.05 0.03 0.03 0.06 0.07 0.05 0.05 0.07 0.09 0.07 0.07

7 OCS H90% 0.11 0.20 0.08 0.16 0.16 0.30 0.12 0.24 0.21 0.40 0.16 0.31

8 BTH mean 0.07 -0.01 0.00 0.02 0.10 0.00 0.01 0.04 0.14 0.00 0.01 0.05

8 BTH sd 0.03 0.04 0.01 0.04 0.05 0.04 0.01 0.06 0.07 0.05 0.02 0.08

8 BTH cv 0.47 -5.31 2.40 1.97 0.47 -35.45 1.83 1.63 0.47 11.06 1.61 1.53

8 BTH median 0.06 0.01 0.00 0.02 0.09 0.01 0.00 0.02 0.13 0.01 0.01 0.03

8 BTH L10% 0.03 -0.06 -0.01 -0.03 0.05 -0.06 -0.01 -0.03 0.06 -0.06 -0.01 -0.03

8 BTH H90% 0.12 0.03 0.02 0.08 0.17 0.05 0.02 0.12 0.23 0.07 0.03 0.16

9 PTH mean 0.06 0.02 0.03 0.04 0.09 0.04 0.04 0.06 0.13 0.05 0.05 0.08

9 PTH sd 0.03 0.03 0.01 0.03 0.05 0.04 0.01 0.04 0.07 0.05 0.02 0.06

9 PTH cv 0.53 1.07 0.34 0.82 0.53 0.96 0.34 0.78 0.53 0.91 0.34 0.78

9 PTH median 0.06 0.03 0.02 0.03 0.09 0.04 0.04 0.05 0.13 0.06 0.05 0.06

9 PTH L10% 0.03 -0.01 0.02 0.01 0.05 -0.01 0.02 0.01 0.06 -0.01 0.03 0.02

9 PTH H90% 0.10 0.06 0.04 0.08 0.15 0.09 0.06 0.12 0.20 0.11 0.08 0.16
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Table 4 continues. 

 

ID Stock QuantityF msm1 F msm2 F msm3 cF msm F lim1 F lim2 F lim3 cF lim F crash1 F crash2 F crash3 cF crash

10 ALV mean 0.08 0.07 0.05 0.07 0.12 0.11 0.08 0.10 0.16 0.14 0.10 0.14

10 ALV sd 0.03 0.03 0.02 0.03 0.05 0.05 0.02 0.05 0.07 0.07 0.03 0.06

10 ALV cv 0.40 0.48 0.29 0.46 0.40 0.47 0.29 0.45 0.40 0.47 0.29 0.45

10 ALV median 0.08 0.07 0.05 0.07 0.12 0.10 0.07 0.10 0.16 0.14 0.10 0.13

10 ALV L10% 0.04 0.03 0.04 0.04 0.06 0.04 0.06 0.06 0.09 0.05 0.07 0.07

10 ALV H90% 0.12 0.11 0.08 0.11 0.19 0.17 0.11 0.16 0.25 0.22 0.15 0.21

11 POR mean 0.05 0.03 0.04 0.08 0.04 0.06 0.10 0.06 0.08

11 POR sd 0.03 0.03 0.03 0.04 0.04 0.04 0.05 0.06 0.06

11 POR cv 0.50 1.14 0.78 0.50 1.01 0.73 0.50 0.95 0.72

11 POR median 0.05 0.03 0.04 0.07 0.04 0.06 0.09 0.06 0.08

11 POR L10% 0.03 -0.01 0.01 0.04 -0.01 0.01 0.05 -0.01 0.01

11 POR H90% 0.08 0.06 0.07 0.12 0.09 0.11 0.16 0.12 0.15

12 SPZ mean 0.07 0.03 0.05 0.10 0.04 0.07 0.13 0.06 0.10

12 SPZ sd 0.03 0.04 0.04 0.05 0.05 0.06 0.07 0.06 0.08

12 SPZ cv 0.50 1.42 0.89 0.50 1.20 0.81 0.50 1.11 0.79

12 SPZ median 0.06 0.02 0.05 0.09 0.03 0.08 0.12 0.04 0.10

12 SPZ L10% 0.03 -0.03 -0.01 0.04 -0.03 -0.01 0.06 -0.03 -0.01

12 SPZ H90% 0.11 0.07 0.10 0.17 0.11 0.14 0.22 0.14 0.19

13 SPL mean 0.06 0.06 0.03 0.05 0.09 0.09 0.05 0.07 0.11 0.12 0.07 0.10

13 SPL sd 0.02 0.02 0.01 0.02 0.03 0.03 0.02 0.03 0.05 0.05 0.02 0.05

13 SPL cv 0.39 0.41 0.31 0.47 0.39 0.40 0.31 0.46 0.39 0.40 0.31 0.46

13 SPL median 0.05 0.06 0.02 0.04 0.08 0.09 0.03 0.06 0.11 0.12 0.05 0.09

13 SPL L10% 0.03 0.03 0.02 0.02 0.05 0.04 0.03 0.03 0.06 0.06 0.05 0.05

13 SPL H90% 0.09 0.08 0.04 0.08 0.13 0.13 0.06 0.12 0.18 0.17 0.09 0.16
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Table 4 continues 

 

 

 

 

 

ID Stock QuantityF msm1 F msm2 F msm3 cF msm F lim1 F lim2 F lim3 cF lim F crash1 F crash2 F crash3 cF crash

14 SPK mean 0.06 0.09 0.07 0.09 0.14 0.11 0.12 0.18 0.15

14 SPK sd 0.02 0.03 0.03 0.03 0.04 0.05 0.05 0.06 0.06

14 SPK cv 0.39 0.31 0.40 0.39 0.31 0.41 0.39 0.31 0.41

14 SPK median 0.06 0.09 0.07 0.08 0.14 0.11 0.11 0.18 0.14

14 SPK L10% 0.03 0.06 0.04 0.05 0.08 0.06 0.06 0.11 0.08

14 SPK H90% 0.09 0.13 0.11 0.13 0.19 0.17 0.17 0.25 0.23

15 EUB mean 0.08 0.11 0.09 0.13 0.16 0.14 0.17 0.21 0.19

15 EUB sd 0.03 0.04 0.04 0.05 0.06 0.06 0.07 0.07 0.08

15 EUB cv 0.40 0.36 0.39 0.40 0.35 0.40 0.40 0.35 0.40

15 EUB median 0.08 0.11 0.09 0.12 0.17 0.14 0.16 0.22 0.19

15 EUB L10% 0.05 0.05 0.05 0.07 0.08 0.07 0.09 0.11 0.10

15 EUB H90% 0.13 0.15 0.14 0.19 0.23 0.22 0.26 0.30 0.29

16 RHN mean 0.03 0.11 0.07 0.05 0.17 0.11 0.06 0.22 0.14

16 RHN sd 0.01 0.02 0.04 0.02 0.02 0.06 0.03 0.03 0.09

16 RHN cv 0.44 0.14 0.60 0.44 0.14 0.60 0.44 0.14 0.59

16 RHN median 0.03 0.11 0.08 0.05 0.17 0.10 0.06 0.22 0.15

16 RHN L10% 0.01 0.10 0.02 0.02 0.14 0.03 0.03 0.19 0.04

16 RHN H90% 0.05 0.13 0.13 0.07 0.20 0.19 0.10 0.27 0.25
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Table 5. Available data from WCPFC-SC11-2015/EB-IP-13 (number of studies in parenthesis) and relative 

quality of the estimated reference points for WCPFC key elasmobranchs species. Alternative r is adopted 

from regions outside Western and Central Pacific Ocean. New data are used for three stocks. 

ID Code LHP RP quality 

1 BSH-N t0 (5) 
L0 (3) 
Tmat (2) 
K(5) 
Linf (6) 

Tmax (3) 
L50 (3) 
Gp (2) 
Rc (2) 
Ls (2) 

W.b (1) 
M (2) 

 (2) 
r (1) 
r1.5M (1) 

High 

2 BSH-S t0 (2) 
L0 (0) 
Tmat (1) 
K (2) 
Linf (2) 

Tmax (2) 
L50 (2) 
Gp (1) 
Rc (0) 
Ls (1) 

W.b (1) 
M (1) 

 (0) 
r (0) Alt 
r1.5M (0) 

Low 

Alternative r  

3 SMA-N t0 (5) 
L0 (6) 
Tmat (6) 
K (6) 
Linf (6) 

Tmax (3) 
L50 (5) 
Gp (4) 
Rc (2) 
Ls (5) 

W.b (2) 
M (4) 

 (4) 
r (0) 
r1.5M (0) 

High 

4 SMA-S t0 (0) 
L0 (1) 
Tmat (1) 
K (0) 
Linf (0) 

Tmax (1) 
L50 (51 
Gp (0) 
Rc (0) 
Ls (0) 

W.b (1) 
M (1) 

 (0) 
r (0) 
r1.5M (0) 

Low 

 

5 LMA t0 (0) 
L0 (1) 
Tmat (0) 
K (0) 
Linf (0) 

Tmax (0) 
L50 (1) 
Gp (0) 
Rc (0) 
Ls (1) 

W.b (0) 
M (0) 

 (0) 
r (0) 
r1.5M (0) 

NA 

6 FAL t0 (3) 
L0 (5) 
Tmat (2) 
K (3) 
Linf (2) 

Tmax (3) 
L50 (5) 
Gp (2) 
Rc (1) 
Ls (4) 

W.b (1) 
M (2) 

 (0) 
r (2) 
r1.5M (1) 

High 

(L0, Tmat, K, Linf, 
Tmax from Grant 
et al. 2018) 

7 OWT/OCS t0 (1) 
L0 (3) 
Tmat (2) 
K (2) 
Linf (2) 

Tmax (2) 
L50 (3) 
Gp (2) 
Rc (1) 
Ls (5) 

W.b (1) 
M (1) 

 (0) 
r (0) Alt 
r1.5M (1) 

Medium  

Alternative r  

8 BTH t0 (1) 
L0 (2) 
Tmat (1) 
K (1) 
Linf (1) 

Tmax (1) 
L50 (1) 
Gp (0) 
Rc (0) 
Ls (1) 

W.b (2) 
M (1) 

 (1) 
r (0) 
r1.5M (1) 

Medium 

(Tmax from Fu et 
al. 2018) 
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Table 5 continues 

ID Code LHP RP quality 

9 PTH t0 (1) 
L0 (1) 
Tmat (1) 
K (1) 
Linf (1) 

Tmax (2) 
L50 (2) 
Gp (1) 
Rc (0) 
Ls (1) 

W.b (2) 
M (2) 

 (1) 
r (0) 
r1.5M (1) 

Medium 

10 ALV t0 (1) 
L0 (2) 
Tmat (2) 
K (2) 
Linf (2) 

Tmax (2) 
L50 (2) 
Gp (0) 
Rc (0) 
Ls (1) 

W.b (0) 
M (1) 

 (1) 
r (0) 
r1.5M (1) 

Medium 

11 POR t0 (1) 
L0 (1) 
Tmat (1) 
K (1) 
Linf (1) 

Tmax (1) 
L50 (1) 
Gp (1) 
Rc (1) 
Ls (1) 

W.b (1) 
M (1) 

(0) 
r (0) 
r1.5M (0) 

Low 

(Tmax, K, M from 
Hoyle et al. 
2017) 

12 SPZ t0 (1) 
L0 (2) 
Tmat (1) 
K (1) 
Linf (1) 

Tmax (1) 
L50 (1) 
Gp (1) 
Rc (0) 
Ls (1) 

W.b (1) 
M (0) 

 (0) 
r (0) 
r1.5M (0) 

Low 

 

13 SPL t0 (0) 
L0 (3) 
Tmat (1) 
K (1) 
Linf (1) 

Tmax (1) 
L50 (1) 
Gp (1) 
Rc (1) 
Ls (1) 

W.b (1) 
M (1) 

 (0) 
r (1) 
r1.5M (1) 

Medium 

14 SPK t0 (0) 
L0 (1) 
Tmat (1) 
K (1) 
Linf (1) 

Tmax (1) 
L50 (1) 
Gp (1) 
Rc (1) 
Ls (1) 

W.b (1) 
M (0) 

 (0) 
r (0) 
r1.5M (0) 

Low 

 

15 EUB t0 (0) 
L0 (2) 
Tmat (1) 
K (1) 
Linf (1) 

Tmax (1) 
L50 (1) 
Gp (1) 
Rc (1) 
Ls (1) 

W.b (1) 
M (0) 

 (0) 
r (0) 
r1.5M (0) 

Low 

 

16 RHN t0 (0) 
L0 (3) 
Tmat (2) 
K  (2) 
Linf (2) 

Tmax (1) 
L50 (6) 
Gp (0) 
Rc (0) 
Ls (1) 

W.b (0) 
M (1) 

 (0) 
r (0) 
r1.5M (0) 

Low 
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Table 6. Biological reference points, proposed ecological risk assessment categories, and ecological 

consequences for WCPFC bycatch species. 

 

  
 F < Fmsm Flim > F ≥ Fmsm Fcrash > F ≥ Flim F ≥ Fcrash 

Risk Low Medium High Extreme high 

Ecological 
consequence 

Overfishing not 
occurring. May 
keep population 
above 50% of 
virgin level 

Overfishing is 
occurring but 
population can be 
sustainable 

May drive 
population to 
very low levels in 
longer term  

Population is 
unsustainable in 
long term – 
possibility of 
extinction 
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Table 7: Parameter values used in estimation of stock recruitment relationship.  

Parameter Value 

Linf 243.3 cm 
K 0.144 yr-1 
a0 -0.849 yr 
ac 0 yr 
c1 5.859 x 10-6 
c2 3.093 
c3 24.52 
c4 -0.16 
c5 -45.54 
c6 0.455 
MT 0.23 yr-1 
sr 0.5 
S0 0.965 yr-1 
S1 1 yr-1 
S2 0.993 yr-1 
S3 e-M(age=0) 
Scycle 1 yr 
agemax 20 yr 
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Figure 1. Comparison of estimated M from seven estimators for the 15 elasmobranch stocks. Estimator 7 

is based on values from the literature. 
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Figure 2. Density distributions of estimated reference points for Blue shark in the North Pacific Ocean 

(BSH-N) from four alternative methods. For the SPR method, F40% is used as Fmsm, F40% as Flim, and F10% as 

Fcrash. 

 

Figure 3. Density distributions of estimated reference points for Blue shark in the South Pacific Ocean 

(BSH-S) from three alternative methods. 

 

Figure 4. Density distributions of estimated reference points for Shortfin mako shark in the North Pacific 

Ocean (SMA-N) from three alternative methods. 
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Figure 5. Density distributions of estimated reference points for Shortfin mako shark in the South Pacific 

Ocean (SMA-S) from three alternative methods. 

 

Figure 6. Density distributions of estimated reference points for Silky shark in the Pacific Ocean (FAL) 

from four alternative methods using newly estimated life-history parameters (Grant et al. 2018). 

 

Figure 7. Density distributions of estimated reference points for Oceanic whitetip shark in the Pacific 

Ocean (OCS) from four alternative methods. 
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Figure 8. Density distributions of estimated reference points for Bigeye thresher shark in the Pacific 

Ocean (BTH) from three alternative methods. 

 

Figure 9. Density distributions of estimated reference points for Pelagic thresher shark in the Pacific 

Ocean (PTH) from three alternative methods. 

 

Figure 10. Density distributions of estimated reference points for Common thresher shark in the Pacific 

Ocean (ALV) from three alternative methods. 
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Figure 11. Density distributions of estimated reference points for Porbeagle shark in the Pacific Ocean 

(POR) from three alternative methods. 

 

Figure 12. Density distributions of estimated reference points for Smooth hammerhead shark in the 

Pacific Ocean (SPZ) from three alternative methods. 

 

Figure 13. Density distributions of estimated reference points for Scalloped hammerhead shark in the 

Pacific Ocean (SPL) from three alternative methods. 
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Figure 14. Density distributions of estimated reference points for Great hammerhead shark in the Pacific 

Ocean (SPK) from three alternative methods. 

 

Figure 15. Density distributions of estimated reference points for Winghead shark in the Pacific Ocean 

(EUB) from three alternative methods. 

 

Figure 16. Density distributions of estimated reference points for Whale shark in the Pacific Ocean (RHN) 

from three alternative methods. 
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Figure 17. Comparison of estimated Fmsm and Flim between Methods 1 to 4 for the 16 shark stocks (RP 

cannot be estimated for stock #5 LMA). 

 



 71  

 

 

Figure 18. Comparison of estimated Fmsm between four alternative methods for the 16 shark stocks (RP 

cannot be estimated for stock #5 LMA). The line indicates where Fx = Fy. 
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Figure 19. Methods 1 and 2 sensitivity to estimated maximum age. The example is Fmsm for Blue shark in 

the Northern Pacific with all other life history parameters remaining unchanged. The vertical line is the 

estimated tmax. 

 

Figure 20. Methods 1 and 2 sensitivity to estimated natural mortality. The example is Fmsm for Blue shark 

in the Northern Pacific. The vertical line is the estimated M. 
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Figure 21. Relationship between reference points based on spawning potential ratio (SPR) and stock 

productivity measured as life time reproductive rate (x-axis). SPRMER is the spawning potential ratio at 

maximum excess recruitment in number, and SPRcrash below which the stock will become extinct. 
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Figure 22. Intrinsic population growth rate r as a function of natural mortality M based on Euler-Lotka 

equation and mean fecundity of sharks species in the WCPFC. The thin line is r = M. 
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Figure 23: Probability density distribution for von Bertalanffy steepness h, including uncertainties 

associated with maximum age and mean natural mortality.  
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7 Appendix 1: R code for testing stock-recruitment 
steepness 

#-------------------- 

# Parameter values 

#-------------------- 

 

# Age and growth 

amax <- 20 

Linf <- 243.3 

k <- 0.144 

a0 <- -0.849 

ac <- 0 # First age, used in Lorenzen.  

 

# Length-weight 

c1 <- 5.859E-6 

c2 <- 3.093 

c1m <- 1.21E-5 

c2m <- 2.94 

 

# Maturity 

c3 <- 24.52 

c4 <- -0.16 

 

# Littersize-length 

c5 <- -45.54 

c6 <- 0.455 

 

# Natural mortality 

MT <- 0.23  # Target natural mortality 

sr <- 0.5 

 

S0 <- 0.965 # Occurrence rate of embryos from fertilised eggs, beta distributed 

S1 <- 1 # Assumed, though max may actually be survival rate of pregnant females 

S2 <- 0.993 # Neonates: proportion of abnormal embryos, beta distributed 

 

# Reproduction 

y <- 1 # Reproductive period 

Scycle <- 1/y 

 

#-------------------- 

# Functions 

#-------------------- 

 

# vonB function 

vb <- function(a, Linf, k, a0) Linf * (1-exp(-k * (a - a0))) 

 

# M function 

calcM <- function(amax, Linf, k, a0, MT, ac) { 

  LL <- vb(seq(0, amax, 1), Linf, k, a0) 

  Lc <- vb(ac, Linf, k, a0) 

  (MT * (amax - ac) / log(Lc / (Lc + Linf * (exp(k * (amax - ac))- 1)))) * log(LL / (LL + 

Linf * (exp(k) - 1))) 

} 

 

# am=20 

# Mtest <- calcM(amax=am, Linf, k, a0, MT=0.23, ac=0) 

# plot(0:am, Mtest, type="l", xlab = "Age") 

# mean(Mtest) 

# exp(-Mtest[2]) 

# L <- vb(0:am, Linf, k, a0) 

# p_mat <- 1 / (1 + exp(c3 + c4 * L)) 

# plot(0:am, p_mat, type = "l") 
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# Combined function 

calc_h <- function(a_s, sr, Wf) { 

  h <- a_s * (1 - sr) * Wf / (4 + a_s * (1 - sr) * Wf) 

  return(h) 

}   

 

# Steepness function 

est_steepness <- function(amaxx=amax, Linfx=Linf, kx=k, a0x=a0, MTx=MT,  

acx=ac, c1x=c1, c2x=c2, c3x=c3, c4x=c4, c5x=c5, c6x=c6, srx=sr, S0x=S0, 

S1x=S1, S2x=S2, Scyclex=Scycle, rec_age=1) { 

  a <- 0:amaxx 

  L <- vb(a, Linfx, kx, a0x)          # Length at age 

  Lc <- vb(acx, Linfx, kx, a0x)       # Length of minimum age for estimating mean M 

  p_mat <- 1 / (1 + exp(c3x + c4x * L)) # Maturity 

  W <- c1x * (L)^c2x                  # Length-weight relationship 

  litter <- c5x + c6x * L             # Fecundity 

  litter[litter < 0] <- 0 

  M <- calcM(amaxx, Linfx, kx, a0x, MTx, acx) # Natural mortality 

  S3 <- exp(-M[1])                    # Juvenile mortality. How old is S3? Assume 0 

  Spre <- S0x * S1x * S2x * S3        # Total pre-recruit mortality 

  Sac <- Sa <- vector("double", length = length(a)) 

  recind <- rec_age + 1 

  Sac[recind] <- 1                    # Recruitment at age rec_age (should be 1) 

  Sa <- exp(-M) 

  for (i in recind:amaxx) { 

    Sac[i + 1] <- Sac[i] * Sa[i] 

  } 

  Wfa <- Sac * W * p_mat              # Female spawning biomass at age 

  Wf <- sum(Wfa) 

  # new individuals per spawning biomass, weighted by abundance at age 

  alpha_s <- Spre * Scyclex * sum(Sac * p_mat * litter) / sum(Sac * p_mat * W) 

  #  alpha_s <- sum(litter) * Spre * Scyclex / sum(W) 

 

  h <- calc_h(a_s=alpha_s, sr = srx, Wf = Wf) 

  return(h) 

} 

 

#-------------------- 

# Results 

#-------------------- 

est_steepness() 

est_steepness(rec_age = 0) 

 

est_steepness(amax=12) 

est_steepness(amax=24) 

 

est_steepness(MT=0.2) 

est_steepness(MT=0.3) 

 

est_steepness(ac = 0) 

est_steepness(ac = 0.1) 

est_steepness(ac = 1) 

 

# Randomization 

nsamp = 200000 

MT_r <- rnorm(nsamp, mean = 0.23, sd=0.08) 

amax_r <- sample(x=c(12, 15, 22, 29, 21, 20), nsamp, replace = TRUE) 

 

stpp <- rep(0, nsamp) 

for (i in 1:nsamp) { 

  stpp[i] <- est_steepness(amaxx = amax_r[i], MTx = MT_r[i]) 

} 

windows() 

hist(stpp, xlim = c(0,1), nclass = 50, freq = FALSE, main = "Uncertainty distribution for 

h", xlab = "h") 

savePlot("steep_prior_MT_amax.png", type = "png") 
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