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EXECUTIVE SUMMARY 
 

SC14 requested that this paper be submitted to WCPFC15. It has not been modified from its 

original version. Comments and suggestions raised by members at SC14 are provided in 

section 5.1.4 of the SC summary report and are summarised below.  

 

1. The operating models for skipjack are closely aligned with the most recent stock 

assessment and are based on a single species model. Several CCMs expressed the 

view that the operating models should allow the impacts on other species to be 

considered when testing management procedures for a particular stock. Future 

developments of the operating models should, to the extent possible, take greater 

account of multi-species and mixed fishery considerations. 

2. An important source of uncertainty is the potential for “implementation error” which 

occurs when the fishery does not follow the management regulations specified by the 

Harvest Control Rule. The proposed suite of operating models do not include any 

scenarios for potential implementation error. Further discussion at SC (and other 

meetings) will  be necessary in order to agree a clear definition of implementation 

error; to what extent it may occur, and what scenarios should be included in the 

uncertainty grid to address it. 

3. SC noted that the selection and refinement of operating models and other components 

of the MSE process will involve an extended iterative and consultative process. 
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Executive Summary

The MSE evaluation framework is constructed from two main components, an operating model
(OM) and a management procedure (MP). In this paper we are specifically concerned with the
process of developing and parameterising the OMs that represent the behaviour and dynamics of
the fish populations and the fishing fleets that exploit them, a process termed ’conditioning’.

For the MSE framework, a range of OMs should be identified, each one representing a specific
plausible hypothesis on stock biology (e.g. natural mortality, movement) or fishery dynamics (e.g.
effort creep). The aim is to ensure that the OMs cover all important sources of uncertainty, against
which the performance of a MP should be evaluated

We outline the important sources of uncertainty that should be considered when conditioning OMs.
With a focus on skipjack tuna and the tropical purse seine fishery, a candidate group of OMs is
proposed which is split into reference sets (most plausible and consequential scenarios to be tested)
and robustness sets (still plausible but considered as ’what if’ scenarios). The following uncertainty
grid with a reference set comprising 72 scenarios (see table below and section 3.2 for full details)
reflect key uncertainties that may influence future management performance.

This paper presents the first round of conditioning the OMs and should be periodically reviewed
and updated to ensure that the range of OMs used in the analysis remains appropriate.

Axis Levels Options
Reference Robustness 0 1 2

Process Error
Recruitment Variability 2 1982-2014 2005-2014
Observation Error
Catch and effort 2 20% 30%
Size composition 1 all models (see section 2.2.4)
Tag recaptures 1 2 status quo low none
Model Error
Steepness ‡ 3 0.8 0.65 0.95
Mixing period (qtr) ‡ 2 1 2
Tag overdispersion ‡ 3 high medium low
Movement 1 1 estimated El Nino/La Nina
DD catchability (k) ‡ 1 1 0 -0.5
Implementation Error
Effort creep 1 1 0% 2% cont.

Table: Skipjack OM uncertainty grid. Scenarios shown in bold are proposed for the reference set.
‡ denotes those scenarios for which a dedicated fit of MULTIFAN-CL is required.
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Our considerations of OM scenarios that should be carried forward to the MSE evaluations can be
broadly categorised into the following five groups:

1. Changes to the model that apply to all scenarios: Natural mortality is modelled as
a spline function (with 4 nodes) and the weighting of length composition data is fixed at 20
(the value used for the 2016 reference case assessment).

2. Uncertainties from the stock assessment grid that have been retained for the
MSE grid: Values for steepness, tag mixing rate and effort creep are carried over from
previous studies without change. In addition the currently defined year ranges for recruitment
variability are retained.

3. New settings for the MSE grid: Additional sources of uncertainty include observation
error in catch, effort and size composition data; density dependent catchability and revised
values for tag overdispersion.

4. Lower priority elements: Variability in the age at maturity, the regional distribution of
recruitment and autocorrelation in recruitment have little impact on model quantities and
are not included in either the reference or robustness sets.

5. Areas for future work: Uncertainty in tag reporting rates and regional variation in growth
and maturity have been highlighted for further investigation. Similarly procedures for apply-
ing alternative movement hypotheses and for including additional process error in projections
through the effort deviations should be investigated.

We invite WCPFC-SC to consider the following questions:

• have all important sources of uncertainty been considered?

• do the ranges of parameter values adequately reflect uncertainty in the dynamics of the
resource?

• are the scenarios properly allocated between reference and robustness sets?
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1 Introduction

The harvest strategy approach provides a framework for taking the best available information about
a stock or fishery and applying an evidence and risk-based approach to setting harvest levels. A
key element of the harvest strategy approach are harvest control rules (HCRs) that determine how
much fishing can take place given the status of the target stock. It is recommended that candidate
HCRs are tested, prior to implementation in the fishery, to determine the extent to which they
achieve defined management objectives. The most widely adopted process for testing HCRs (and
management procedures) prior to implementation is based on simulation analysis and is termed
management strategy evaluation (MSE).

1.1 MSE Framework

A more comprehensive overview of the MSE framework is provided in Scott et al. (2018). In brief,
the MSE evaluation framework (Figure 1) is constructed from two main components, an operating
model (OM) and a management procedure (MP). The OM is a mathematical representation of
the "true" system, rather like a stock assessment. It simulates the real world by attempting to
capture all existing knowledge and data processes for the exploited populations and associated
fisheries. Our knowledge of the dynamics of populations and fisheries is often incomplete. The OM
should therefore allow for the evaluation of the consequences for management by testing different
hypotheses about those dynamics. In this respect a suite of different OMs may be identified, each
one representing an alternative hypothesis. Very often the OMs will include a greater level of
complexity than that used for the stock assessment so that all important sources of uncertainty
might be appropriately included in the evaluation process.

Figure 1: Conceptual diagram of the MSE framework.

The process for testing and agreeing a management procedure can be summarised in the following
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7 steps (Punt and Donovan, 2007).

1. Identify and prioritise the management objectives in qualitative terms.

2. Translate the qualitative objectives into quantitative performance indicators.

3. Develop and parameterise operating models representing plausible dynamics of the resource
or system (a process termed conditioning).

4. Identify candidate management procedures.

5. Simulate the future performance of each management procedure by applying them to the
resources or systems represented by the operating models.

6. Summarise the performance of each management procedure in terms of the performance
indicators (from step 2).

7. Identify the management procedure most likely to meet the management objectives.

In this paper we are specifically concerned with step 3, the process of developing and parameterising
the operating models that represent the behaviour and dynamics of the fish populations and the
fishing fleets that exploit them. This is a particularly important process in the development of
the MSE framework and will require ongoing work to periodically re-evaluate the selection of OMs
to use in the evaluations. Periodic review of the OMs will ensure that any new data or updated
information can be incorporated into the analyses and provides an opportunity to review the bounds
and limits used to define exceptional circumstances (see Section 4). This paper therefore presents
the first round of conditioning the OM and may be considered a ’living document’ that can be
periodically reviewed to ensure that the range of OMs used in the analysis remains appropriate.

1.2 Conditioning the Operating Model

Conditioning an operating model (Rademeyer et al., 2007) involves fitting the model to data in
much the same way that a stock assessment model is fit to the available catch, size composition
and tag recapture data. Because we do not have perfect knowledge of the dynamics of the resource,
uncertainties will always be present in any assessment of the status or productivity of the fishery.
Our objective is to identify a suite of models that adequately characterises the range of uncertainty
so that we can find the MP that performs best and is robust to that uncertainty.

1.2.1 Accounting for Uncertainty

Stock assessments conducted by the Pacific Community (SPC) have typically presented a range of
model configurations, termed the uncertainty grid, that explore the sensitivity of the assessment
results to alternative assumptions about model settings for which the data are often uninformative
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(Table 1). Examples include the steepness of the stock recruitment relationship; the period re-
quired for tagged fish to become fully mixed with the general population or the relative importance
(weighting) that different data sources (size composition, tag recaptures, CPUE) should be given
in the assessment model. In some cases a preferred set of assumptions (diagnostic case) has been
identified that might be considered to give the most likely representation of stock status. More
recently, however, all of the assessment models from the uncertainty grid have been presented and
management advice has been based on the resulting range of potential stock status values across
the whole uncertainty grid. A weighting may be applied to each of the models in cases where some
might be considered more or less likely to represent the true population.

Axis Code Levels Options Importance
0 1 2

Steepness A 3 0.8 0.65 0.95 Moderate/High
Length comp. wtg B 3 20 10 50 Moderate
Mixing period (qtr) C 2 1 2 Moderate
Tag overdispersion D 3 Default Estimated Fixed High

Table 1: Skipjack 2016 stock assessment uncertainty grid (McKechnie et al., 2016b).

The stock assessment uncertainty grid is a useful starting point for considering the range of uncer-
tainty that should be included in the suite of OMs for the MSE analyses. However, the assessment
uncertainty grid is concerned primarily with those factors that impact the historical trajectory of
the stock, as estimated by the stock assessment. When projecting assessment results forwards in
time, as performed by the MSE simulations, it may be necessary to consider a different set of
sensitivities in order to adequately capture the most important sources of uncertainty.

A number of previous studies have categorised the types of uncertainty based on their different
sources (Rosenberg and Restrepo, 1994; Francis and Shotton, 1997; Kell et al., 2007). Punt et al.
(2014) recommend that, at minimum, an MSE should consider (i) process uncertainty, in particular
through variation about the stock-recruitment relationship; (ii) parameter uncertainty, with refer-
ence to stock productivity and the overall size of the resource; (iii) observation error, in the data
used when applying the management strategy. They note, however, that the choice of uncertainty
to include in any MSE will be case specific.

1.2.2 Reference and Robustness Sets

It is considered best practice to divide the suite of OMs into a reference set and a robustness set
(Rademeyer et al., 2007). The reference set is considered to reflect the most plausible hypotheses
and forms the primary basis for identifying the ’best’ management strategy.

The robustness set comprises hypotheses that are considered less likely but still plausible. The
scenarios considered in the robustness set will differ among fisheries but may include, for example,
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alternative hypotheses on the quality of historical data (eg. errors in catch statistics); the avail-
ability of future data (eg. future tagging programs); environmental effects that may impact on the
spatial distribution or carrying capacity of the resource, or changes in the structure of the fishery
such as gear changes that may affect selectivity or catchability.

The performance measures will be calculated from the reference set whilst the robustness set will
be used to give a secondary indication of the performance of the management strategy.

The full list of uncertainties to be considered can be extensive. It is therefore important to identify
the most important and influential sources of uncertainty in order to limit the final number of
scenarios to a practical number that can be realistically considered, given the usual restrictions on
processing power and evaluation time, whilst ensuring the key sources of uncertainty are sufficiently
accounted for. A full factorial combination of model scenarios, in which each scenario is matched
with every other scenario, rapidly becomes overly large and unmanageable. It will therefore be
necessary to trim the grid of scenario combinations to exclude combinations considered less plau-
sible, for example combinations of fast growth rates (implying a very productive stock) with low
natural mortality (often associated with slow growing less productive stocks). In addition scenarios
from the robustness set might be considered as one off sensitivity runs rather than a defined grid
of scenario combinations.

In Section 2 we present an overview of the important issues to consider when conditioning an OM
along with a description of previous work undertaken to investigate these issues and how they
relate to skipjack in the WCPO. In Section 3 we draw on this general overview, and a number of
additional analyses, to provide specific recommendations on scenarios to be included in the suite
of OMs and how those scenarios should be divided between the reference and robustness set. It
may not be possible to examine all these scenarios due to technical limitations of the modelling
framework or data deficiencies, and in Section 4 we consider what additional work will be required
in order to address these issues.

2 Designing the MSE

Following a review of candidate tools for OM development, MULTIFAN-CL has been identified as
the most appropriate tool to use as the OM within the MSE simulation framework for WCPO stocks
and fisheries (Scott et al., 2016, 2017a) and a number of technical developments have recently been
implemented to provide the software with the necessary functionality (Davies et al., 2017, 2018).
The most recent stock assessment of skipjack in the WCPO was conducted using MULTIFAN-CL
and this assessment and the data upon which it relies will form the basis of the OM. There are
however a number of additional sources of data and alternative modelling approaches that might
also be considered when choosing the suite of OMs and plausible states of nature that comprise
the reference and robustness sets. These alternative approaches are further discussed in Sections
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2.2 and 3.1.6.

2.1 Data Sources

The data used for the stock assessment include fishery specific catch and effort, size composition
data and a substantial quantity of tag release and recapture information. The details of these
data have been documented in previous papers to the WCPFC-SC (McKechnie et al., 2016b,c;
McKechnie, 2016; Peatman et al., 2016) and are not described further here.

An important consideration is the likely availability and quality of future data. The assessment
of skipjack in the WCPO relies heavily on standardised indices of abundance derived from pole
and line fisheries and on tag release and recapture information. Pole and line fisheries in many
regions of the skipjack assessment have declined substantially in recent years and now represent
only a small fraction of the total skipjack catch. It is unclear whether these fisheries will be able
to continue to provide reliable indices of abundance for skipjack. Tagging cruises continue on a
periodic basis but are subject both to future funding and to the competing data demands of other
assessments. The design of tagging programmes in recent years has been modified to try to tag
greater numbers of bigeye and yellowfin tuna.

2.2 Plausible States of Nature

Ideally, the range of uncertainties considered in an MSE should be sufficiently broad that new infor-
mation collected after the management strategy is implemented should reduce rather than increase
the range (Punt and Donovan, 2007). In practice, however, it is often not practical to consider
all sources of uncertainty and decisions will need to be made on which alternative scenarios are
the most important and consequential and therefore need to be included. In the following sections
we address a number of potential sources of uncertainty. We consider their likely importance and
review the available information on them with specific regard to skipjack in the WCPO.

2.2.1 Stock Structure

Skipjack distribution is influenced by their environment. Skipjack inhabit the oceanic surface layers
of the warm waters of the tropics and warm water current systems of sub-tropical regions. They
have limited tolerance to low levels of dissolved oxygen and low temperatures due to their high
metabolic rate and large red muscle mass. They have limited ability to thermoregulate and, apart
from occasional brief dives to deeper water, are restricted to the surface waters having an optimal
temperature range between 19◦C to 26◦C (Boyce et al., 2008).

Skipjack in the WCPO are, for the purposes of stock assessment, assumed to comprise a single pan-
mictic stock having a distribution that extends from about 40◦N to 40◦S that roughly corresponds
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to the 20◦C surface isotherm. However, the sub-structure of the skipjack population throughout
the Pacific Ocean is not fully understood. It is considered unlikely that all adults have an equal
opportunity of breeding with each other and that the population is therefore not truly panmictic.
Whilst it is considered that skipjack follow some form of population structuring across the Pacific
it remains unclear whether this structuring is based on stable geographic boundaries or on a con-
tinuous cline where the chance of any two fish breeding is inversely proportional to the distance
between them (Wild and Hampton, 1994).

The current stock assessment of skipjack in the WCPO assumes a spatial structure comprised
of 5 regions and movement between these regions is assumed to occur instantaneously at the
beginning of each time period. An alternative spatial structure (Ochi et al., 2016) was investigated
and compared with the reference case assessment model. Model estimates from the revised spatial
structure were broadly similar with the reference case assessment although overall levels of depletion
showed moderate differences (McKechnie et al., 2016a).

SEAPODYM (Lehodey and Senina, 2009) is a model developed for investigating the spatio-temporal
dynamics of fish populations under the influence of both fishing and the environment in which move-
ment is constrained by physical and biological environmental observations. Similarly, Ikamoana
(Scutt Phillips et al., 2018) is an individual based model that replicates the movement processes
of Eulerian models, such as SEAPODYM and MULTIFAN-CL, using similar habitat-dependent
movement processes. An updated version of SEAPODYM 3.0 has been applied to skipjack tuna in
the Pacific Ocean (Senina et al., 2016) to estimate stock structure and potential movement rates
based on a 2◦ and 1 month spatial and temporal resolution. The potential application of these
model estimates is further discussed in section 3.1.6.

MULTIFAN-CL estimates recruitment from a single stock and recruitment relationship (SRR) and
distributes these recruits amongst the assessment regions according to an estimated relative propor-
tion of recruitment which does not change systematically through time (i.e. some random deviation
may apply). In this way the overall recruitment level is determined from the overall abundance
of skipjack. This assumption may be reasonable when considering the historical trajectory of the
stock but may not be appropriate when conducting projections under varying rates of exploitation.
For cases where one or more regions may be subject to localised depletion, skipjack abundance
in those regions could be estimated at artificially high levels because the model assumes that the
proportional distribution of recruitment does not change systematically. A potential solution, that
would be more consistent with the assumption that skipjack are not truly panmictic, would be to
estimate region specific SRRs. A common steepness parameter might apply to each SRR, to reduce
the number of estimated parameters, but R0 (the level of recruitment at virgin biomass) would be
estimated separately for each region. This feature is not currently available in MULTIFAN-CL but
could be implemented for use in future evaluations.
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2.2.2 Parameter Non-stationarity

Parameter non-stationarity refers to the variation in parameter estimates over time, space, or some
other determining factor. It has implications for many of the assumptions that are necessarily made
when assessing the status of a resource including the biological characteristics of the population,
rates of movement and factors that may vary with stock abundance.

Growth and Maturity

Biological characteristics of fish populations can vary over time and space. Previous studies on
skipjack suggest that growth rates may vary between areas of the Pacific (Wild and Hampton,
1994; Maunder, 2001) and that growth may be faster in regions close to the equator (Leroy, 2000).
Growth and maturity are intrinsically linked and faster growing individuals are likely to reach
sexual maturity at an earlier age (Charnov and Berrigan, 1991). Changes in growth rates may
be linked to environmental conditions or to density dependent effects and in some cases temporal
changes in growth and maturity have been linked to fishing, where individuals grow faster and
mature at a younger age under exploitation; a process known as fishery induced evolution (Law,
2000; Heino et al., 2015) although this is often only the case for populations subject to very high
rates of exploitation.

In the current skipjack assessment, growth, natural mortality and maturity are all assumed to be
invariant over time and space. Skipjack mean length at age is assumed to follow the same von
Bertallanfy growth curve estimated from previous skipjack assessments and maturity to follow a
knife-edge pattern with all fish two quarters or less being immature and all fish older being fully
mature (McKechnie et al., 2016b). The assessment estimates an age specific natural mortality that
remains fixed through time and across regions.

Following SC12, analyses were conducted to address the concerns of some CCMs regarding some of
the model assumptions of the 2016 skipjack stock assessment including, amongst others, the form
of the natural mortality function, alternative growth functions and the assessment’s sensitivity to
age at maturity (McKechnie et al., 2016a). The analysis investigated a range of approaches for
modelling natural mortality and concluded that a spline function (with four nodes) provided a
more parsimonious model and more realistic estimates of natural mortality at the youngest age.
Across the range of approaches, model quantities and resulting reference points were very similar
to the reference case assessment. Based on these findings we recommend that the four knot spline
function be used to model natural mortality in the OM.

Numerous studies have been conducted to determine growth rates in skipjack (see Wild and Hamp-
ton (1994)) and a selection are presented in Figure 2. These studies have typically been based on
samples taken from a distinct region of the Pacific Ocean and have used a variety of capture meth-
ods and estimation techniques. Few, if any, can be considered representative of skipjack across the
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Figure 2: Sample growth models

whole assessment area. Whilst there is clearly uncertainty regarding the growth assumptions to be
used in the OM it is difficult to know what an appropriate range of uncertainty might be.

The sensitivity of the 2016 stock assessment to alternative age at maturity assumptions has also been
investigated (McKechnie et al., 2016a). Increasing the age at which skipjack were assumed to reach
full maturity from three quarters to four quarters resulted in reduced estimates of adult biomass
throughout the time series, but had relatively little impact on key reference point values (F/FMSY ,
SB/SBF =0) and in terms of total biomass (B/BF =0) the two models were almost identical. From
these results, uncertainty in maturity can be considered a lower priority for inclusion in the OM
scenarios.

Maturity and growth are intrinsically linked and it might be expected that any temporal and spa-
tial variation in growth rates will be accompanied by corresponding changes in maturity. There is,
however, limited opportunity to incorporate temporal or spatial variability in biological character-
istics in the current implementation of MULTIFAN-CL. The biological characteristics of a stock
are important and potentially influential inputs to the OM and there remains a requirement for
studies that can determine these values and their likely variability across the geographic range of
the stock assessment.

Density Dependent Processes

Other model parameters, such as fishery catchability, may also vary over time, space, or in response
to some density dependent process. Typically a linear relationship is assumed between CPUE and
abundance and in the current skipjack assessment, catchability is estimated individually for each of
the fisheries represented in the assessment. For those fisheries for which CPUE was not standard-
ised, catchability was allowed to vary progressively over time, but was assumed to be independent
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of abundance. The potential for non-linear dynamics in the CPUE abundance relationship has
been proposed by several studies (Harley et al., 2001; Maunder et al., 2006) and investigated with
specific reference to WCPO skipjack (Scott et al., 2015b). The true relationship is difficult to
determine, however, the erroneous assumption of a linear relationship with stock abundance, when
a non-linear relationship actually exists, can lead to an underestimation of the extent to which a
stock is being depleted through fishing and from a fisheries management perspective it can lead to
bias in the estimated magnitude of effort change required to manage a stock to biomass targets.
Given the uncertainty in the relationship between skipjack abundance and purse seine CPUE in
particular, this will be considered further in Section 3.

Movement

The stock assessment of skipjack in the WCPO is based on a spatial structure comprising 5 re-
gions. MULTIFAN-CL distributes the population amongst these regions by estimating the relative
proportion of recruitment in each region and age-specific, seasonal movement, both of which are
assumed to remain constant across all years. However, movement among the assessment regions
is likely to be strongly influenced by climatic conditions that are known to vary over time, most
notably through the El Niño Southern Oscillation (ENSO). The occurrence of La Niña and El Niño
ENSO events affects the east-west displacement of the warm pool which, in turn, affects the spatial
distribution of skipjack in the WCPO and the fishing fleets that target them (Lehodey et al., 1997).

Parameter non-stationarity is a broad subject area with implications for numerous sources of un-
certainty. Aspects of parameter non-stationarity are considered further in section 3 with specific
reference to recruitment (Section 3.1.1); growth (Section 3.1.2); movement (Section 3.1.6) and
density dependent catchability (Section 3.1.7).

2.2.3 Process Error

Process error arises through natural variability in the biotic and abiotic processes that impact
on population dynamics. For example the extent of natural mortality experienced by larval fish
can vary substantially depending on several factors such as the availability of suitable prey items
or the abundance of predators. Small changes in the timing of key events, such as plankton
blooms or predator migration rates, can lead to substantial changes in conditions for survival and
consequently in the numbers of fish that recruit to the fishery (Cushing, 1990). These conditions
are difficult, if not impossible, to predict but can have a significant impact on the state of the
resource. The simplifying assumption is typically made that future variability will be consistent
with the variability observed over some historical period. A common approach when conducting
projections is to run multiple iterations with future variability imposed through re-sampling of the
historical deviates from a fitted stock and recruitment relationship. The period over which this
historical sample is taken and the extent of variability that it covers is therefore an important
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consideration when running stochastic projections (Pilling et al., 2016). Uncertainty in future
recruitment levels and the nature of variability (e.g. autocorrelation) is a key consideration when
testing the robustness of HCRs and specific recruitment scenarios are further considered in Section
3.

Additional mechanisms for incorporating process error into the simulations include the effort devi-
ations, the extent to which model estimates of effort deviate from observed effort. These represent
’noise’ in the relationship between fishing effort and fishing mortality and are further discussed
with respect to both observation error and process error in Section 2.2.4 and 3.1.3.

2.2.4 Observation Error

Observation error is the difference between a measured value of a quantity and its true value. It
includes natural errors that occur in any data collection procedure as well as systematic errors
(affecting all measurements) that can arise from, for example, the miscalibration of instruments.
Observation error is a key source of uncertainty and a particularly important consideration with
respect to the input data to the MP. The key input data include fishery specific estimates of catch,
effort, size composition and tag recaptures, all of which will be subject to observation error to a
greater or lesser extent.

When generating tag recapture data for the future the number and spatial distribution of tag
releases must be specified by the user. Observation error is introduced into the tag recapture
data based upon the OM estimation of the multinomial probability of recapture given the release
samples. In this sense the probability of recapture of tagged fish is determined from the internal
calculations of MULTIFAN-CL and cannot be specified by the user. The user must, however,
specify the quantity of tags to be released, the regions from which those releases will be made
and the fishery selectivity from which the length distribution of the releases will be generated. A
summary of historical tag releases is shown in Table 2.

Region Historical
SSAP RTTP PTTP JTTP

1977-1980 1989-1992 2006-2014 1998-2014
1 1 (83) 0 0 57 (305)
2 7 (1125) 9 (866) 11 (1335) 34 (103)
3 9 (4554) 5 (2049) 8 (825) 4 (49)
4 2 (2699) 7 (1933) 3 (6880) 18 (66)
5 3 (3924) 10 (2541) 16 (5641) 0

Table 2: Tag release summary for WCPO skipjack: Number of tag release events by region and
tagging program. The average number of fish tagged and released per release event is shown in
brackets.
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2.2.5 Model Error

Model error arises from the possibility that the model is deficient in some way. For example, a
simple linear model might be considered deficient if it were used to describe a clearly non-linear
process. Model error is associated with the structural design of the model such as the functional
form of the stock and recruitment relationship or the particular growth model employed (Richards,
Von Bertalanffy, etc.).

Parameter error is the possibility that the parameters used to define the model are incorrect, given
that the model form is correct. Parameter error occurs because there is only a limited amount of
data from which to estimate the parameters and because the parameters themselves may evolve
through time (non-stationarity). For the purpose of this analysis we consider model error and
parameter error together as a single category and several important elements of model error have
already been discussed in section 2.2.2.

With specific reference to the skipjack assessment, potential sources of model error include the
assumed steepness of the stock and recruitment relationship (Figure 3) and the period of time to
allow for adequate mixing of tagged fish with the wider population. Both of these error sources are
already included in the stock assessment uncertainty grid of models. The existing range of values
(0.65, 0.8 and 0.95 for steepness; 1 and 2 quarters for mixing) are considered to sufficiently span
the range of uncertainty and it is proposed that both of these axes of uncertainty be maintained in
the reference set of OMs.

Figure 3: Fitted SRR and estimated annual recruitment (1982:2015) for all 54 models in the
uncertainty grid. Reference case estimates shown in black.

The current skipjack assessment applies a single, annual stock and recruitment relationship for all
regions of the assessment. Recruits are then proportionally allocated across quarters and regions
according to a time invariant distribution. A comparison with the results of a model in which a
quarterly SRR was fitted (Figure 4) shows the distribution of recruits across regions and quarters
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is very similar. The seasonal and regional distribution of recruits appears to be well estimated by
the assessment and there is no requirement for additional uncertainty in this regard.

Figure 4: Quarterly regional recruitment distribution across the grid, averaged over years
(1982:2015). Red lines show the quarterly regional recruitment distribution from the quarterly
SRR sensitivity model.

Other important sources of parameter error relate specifically to the use of tag release and recapture
data within the assessment model. They include factors such as the tag overdispersion settings and
the reporting rate of recaptured tags. Overdispersion occurs when the observed variance exceeds
the variance assumed by the model and is an important consideration with respect to tag data that
often show high variance in recapture rates. A range of overdispersion values were included in the
uncertainty grid of the 2016 stock assessment and in Section 3 we further consider the extent of
overdispersion that may apply to WCPO skipjack tag recapture data.

The reliability with which recaptured tags are reported as having been recaptured is a key consid-
eration when analysing tag recapture data and is an area of active research in support of WCPO
stock assessments (Berger et al., 2014; Peatman et al., 2016). Information from tag seeding exper-
iments, undertaken by on-board observers, is used to determine prior estimates of the likelihood
that a recaptured tag will be detected by the crew and reported as having been recaptured. These
prior estimates of reporting rate are further modified by MULTIFAN-CL during the assessment
fitting process and in many cases the resulting rate is greater than the rate estimated from the
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tag seeding experiments. The tag reporting rates as estimated from MULTIFAN-CL across the
assessment uncertainty grid (Figure 5) show a range of values for most reporting groups (although
a small number are consistently estimated at the upper bound) indicating that some variability in
the tag reporting rate parameter is imposed on the model through the range of settings that are
already considered in the uncertainty grid. A single trial run in which the reporting rates were
fixed at the prior values gave estimates of very high biomass in some regions that could not be
considered plausible. We do not, therefore, propose any additional uncertainty be included in the
uncertainty grid, with specific regard to tag reporting rates, beyond that which is already imposed
through the variation of other parameters. We do, however, recommend that this component of
uncertainty be re-considered in future iterations of the OM conditioning process.

●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●

●●●●●●●●●

●●●●●●●●● ●●●●
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Figure 5: Estimated tag reporting rates across the grid of model runs.

2.2.6 Implementation Error

Implementation error results when the management actions specified by the HCR are not followed
precisely by the fishery. Some level of implementation error is almost always inevitable especially in
cases where a single species HCR is applied to fisheries that may opportunistically target a range of
species. At a finer scale, the HCR may specify the overall catch or effort to be applied but not the
distribution of that catch or effort amongst the various fisheries. Purse seiners increasingly account
for the majority of skipjack catches and previous analyses have shown that the biomass target
reference point for skipjack can be achieved over a range of different FAD and free-school effort
distributions (OFP, 2014). However, the results may be impacted in cases where the true effort
distribution deviates significantly from that assumed in the evaluations. The simplest assumption
is that the outcome of the HCR will be precisely implemented and that each fishery will be subject
to a proportional change in catch or effort as a result. Deviations from this assumption will be
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subject to the results of ongoing negotiations through WCPFC.

3 Conditioning the OM

In section 2 we have outlined various sources of uncertainty and discussed their importance with
regard to the assessment and management of skipjack in the WCPO. In this section we describe
additional runs and analyses that have been conducted to further investigate the key sources of
uncertainty and our attempts to define appropriate bounds for them. In section 3.2 we propose the
components of the MSE uncertainty grid and how the different scenarios might be grouped into
reference and robustness sets.

3.1 Model Runs and Analyses

Several elements of the assessment uncertainty grid have been retained for inclusion in the MSE
uncertainty grid (steepness, tag overdispersion, tag mixing), and a number of additional elements
are proposed. In some cases additional analyses have been conducted to further investigate the
most appropriate parameter values, whilst in others the same parameter values have been carried
over. We describe specific analyses to investigate appropriate parameter values for growth, tag
overdispersion and the extent of observation error in catch and effort data and the reasons for
selection or rejection of models from the MSE uncertainty grid. In cases where it has not been
possible to conduct the necessary analyses we identify potential avenues for future investigations.

3.1.1 Recruitment Variability

The latest skipjack assessment indicates a progressive trend for increasing recruitment over time
(Figure 6). It is not known if the recently observed higher levels of recruitment will persist into
the future or if future recruitment will revert to the longer term, lower levels. Previous analyses
for skipjack have typically considered two levels of recruitment variability. The first based on long
term recruitment over the period 1982 to 2014 and the second on recent recruitment for the period
2005 to 2014 (see Figure 6). We propose two recruitment scenarios be represented in the reference
set of operating models, one based on longer term recruitment over the period 1982 to 2014 and
the second based on the higher recent recruitments for the period 2005 to 2014.

Due to the low number of observations for the most recent cohorts, recruitment estimates in the
terminal time periods of the model can be poorly estimated. Retrospective analyses conducted as
part of the 2016 skipjack stock assessment (McKechnie et al., 2016b) indicated that recruitment in
the last two quarters of the assessment were poorly estimated and were therefore fixed at geometric
mean of the time series. We therefore omit the recruitment estimates for the terminal assessment
year (2015) when re-sampling recruitment for stochastic projections.
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Figure 6: Deviations from the fitted Beverton Holt stock and recruitment model (reference case)
with loess smoother fitted over the period 1982:2014. Future projections draw random deviates, at
the annual level, from either the long-term (1982:2014) or short-term (2005:2014) periods. Dotted
lines show mean recruitment over the long and short-term periods.

Autocorrelation measures the similarity of observations as a function of the time lag between them.
The extent of autocorrelation in recruitment is an important consideration both for the historical
fit of an assessment and when generating future recruitment series for projections. Estimates
from MULTIFAN-CL fits for WCPO skipjack indicate that first order autocorrelation in annual
recruitment (ρ) is low (median ρ = 0.04 across all grid scenarios) and recruitment and biomass
estimates across model combinations with and without autocorrelation in recruitment gave almost
identical results. We therefore consider autocorrelation in recruitment to have a low priority for
inclusion in the OM scenarios.

3.1.2 Growth

A small number of sensitivity trials were conducted to investigate the consequences of alternative
growth assumptions on model estimates. Relatively simple trials in which either length at the
youngest and oldest ages was fixed and the rate of growth between these two points varied or
growth rate was fixed but length at the oldest age varied (Figure 7) showed that increasing the
growth rate or the size at the oldest age resulted in lower estimates of adult biomass and an
SB/SBF =0 around 4% to 6% lower than the reference case assessment, whilst reducing the growth
rate or the size at the oldest age gave estimates of adult biomass that were slightly higher and an
SB/SBF =0 around 4% to 6% higher than those of the reference case assessment. It should be noted
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Figure 7: Growth model sensitivity

that no corresponding changes were made to maturity at age and that the range of growth models
investigated was relatively small in comparison to the range of models determined from previous
studies.

The alternative growth parameters assumed for these trials was based on relatively arbitrary choices.
The results provide an indication of the sensitivity of the model estimates to alternative growth
assumptions but do not provide any guidance on appropriate distributions for those parameters. In
Appendix A.2 we describe an approach using the variance covariance matrix as calculated from the
hessian of the fitted model to derive appropriate parameter distributions for generating variability
in growth. However, we consider this work to be preliminary and does not yet provide a sufficiently
reliable basis for the specification of variability in growth in the OM.

3.1.3 Observation Error in Catch, Effort and Size Composition Data

Catch and effort data

Methods for generating future data with observation error in MULTIFAN-CL are described in
Davies et al. (2017). Observation error for catch and effort data are derived assuming a log-
normal error distribution. A single, user defined, coefficient of variation is specified for catch, or
effort, which applies across all fisheries and all periods in the model. Previous investigations of
the inclusion of observation error in catch and effort data (Scott et al., 2017b) have been based
on an arbitrary CV of 0.1. To try to determine a more appropriate value we applied an approach
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based on a linear regression of catch against effort. We fit a simple linear model to the observed
catch and effort data for purse seine fisheries for each fishery and quarter (Figure 8) from which we
calculated the standard error of the residuals about the fitted model and divided this by the mean
of the predicted values to obtain a coefficient of variation for each fishery and quarter (Table 3).
The calculated CVs vary markedly between fisheries and to a lesser extent across quarters.

σest =

√∑
(Y − Y ′)2

N − 1 (1)

CV = σest∑
Y ′/N

(2)
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Figure 8: Linear regression of catch on effort for purse seine fisheries. (Note that in this figure
a single regression is fit through all 4 quarters whereas in the analysis above separate regressions
were fit to each fishery and quarter).

Using this approach, we estimated the CVs for the historical period (1972 to 2015) and for the
results of future stochastic projections with increasing values for the input CV (0.1, 0.2 and 0.3).
We found the estimated CV for the future period was always greater than the input CV and that
the range of estimated values was always smaller than that of the historical period (Figure 9). An
input CV of 20% resulted in a median output CV of 0.36 which is close to that calculated for the
same fisheries for the historical period (0.38). Based on these results CVs of 0.2 and 0.3 may be
considered appropriate values for the generation of catch and effort observation error to include in
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the reference set of operating models for skipjack.

We note however, that there are well established procedures for monitoring and reporting catch and
effort in most of the fisheries targeting skipjack and that it is unlikely that error in the observation of
these quantities will be as high as 30% to 40%. The CV estimated through this approach represents
a combination of observation error in the reported values of catch or effort and also process error
in the underlying relationship between catch and effort. This process error is captured by the
MULTIFAN-CL fitting process in the estimation of effort deviations. Stochastic projections that
incorporate re-sampling from the effort deviations (in the same way that recruitment deviations
are currently re-sampled) would provide a more comprehensive simulation approach and would
separate the sources of error more appropriately into their constituent components. This feature
for MULTIFAN-CL projections is currently under development but once implemented would be the
preferred approach.

Fishery Quarter
1 2 3 4

PS-1 0.601 0.556 0.755 1.001
PS-ASS-2 0.334 0.335 0.452 0.345
PS-4 0.308 0.306 0.279 0.238
PS-ASS-4 1.323 0.418 0.646 0.747
PS-UNA-2 0.283 0.274 0.297 0.288
PS-ASS-5 0.285 0.310 0.254 0.288
PS-UNA-5 0.239 0.311 0.304 0.263
PS-UNA-4 0.997 0.503 0.706 0.699
PS-ASS-3 0.252 0.308 0.498 0.306
PS-UNA-3 0.281 0.219 0.274 0.285

Table 3: Fishery and quarter specific CVs for catch and effort for purse seine fisheries.

Size composition data

Observation error in size composition data is generated from a multinomial distribution (Davies
et al., 2017). The variability in the generated data can be controlled through the effective sample
size (ESS) which is specified by the user for each individual size composition. As such, there is
considerable flexibility for the specification of size composition observation error between fisheries
and across time. As a first choice of appropriate values to use we have taken the estimated ESS
as determined from a MULTIFAN-CL model fit using the self-scaling multinomial fitting option
(Davies et al., 2018)which estimates fishery specific ESS (Table 4). No alternative ESS values are
proposed at present.
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Figure 9: Boxplot of the estimated CV in the catch effort relationship (ie. the CV as determined
from eqns 1 and 2) for purse seine fisheries for varying input CVs. Horizontal grey lines indicate
the approximate inter-quartile range of the historically observed CVs.

3.1.4 Overdispersion

The 2016 assessment investigated the sensitivity of the assessment model to the value of the overdis-
persion parameter in the negative binomial likelihood for the tagging data. Alternative assumptions
about overdispersion produced the most significant deviations from the estimates of the reference
case model of all of the sensitivity analyses considered (McKechnie et al., 2016b).

Options for both fixing the overdispersion parameter at some pre-defined value and for estimating it
within the model have been previously explored. Estimated values for overdispersion varied amongst
model runs between values of around 2.5 and 4.5. However, the option to estimate the extent of
overdispersion in the distribution of tag recaptures is a relatively new feature in MULTIFAN-CL and
the extent to which the data support the estimation of this parameter requires further investigation.
Alternative modelling approaches based on the Tagest model (Sibert et al., 2012) using the same
skipjack tagging data suggest that direct estimation of the extent of overdispersion is difficult.

The default setting of MULTIFAN-CL approximates the Poisson distribution which is generally
considered to significantly under-estimate the variance in tag recaptures. It is therefore desirable
that some level of overdispersion be specified, however, the degree of overdispersion that should
be applied is less clear. Based on the findings of the sensitivity analyses conducted for the last
skipjack assessment we propose that 3 levels of overdispersion (τ = 2.5, 4, 8) be carried forward
to the reference set of OMs (see Figure 10), but recommend that further work is conducted in this
area to determine the most appropriate values of overdispersion.
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Fishery Region Catch/Effort Scaler ESS
PL 1 1 1 55
PS 1 2 1 29
LL 1 1 1 7
PL 2 1 1 14
PS-ASS 2 2 1 44
PS-UNA 2 2 1 39
LL 2 1 1 12
PL 5 1 1 22
PS-ASS 5 2 1 38
PS-UNA 5 2 1 35
LL 5 1 1 10
PL 3 1 1 14
PS-ASS 3 2 1 47
PS-UNA 3 2 1 40
LL 3 1 1 49
Dom-PH 4 1 1 26
Dom-ID 4 1 1 21
PS 4 2 1 42
PL 4 1 1 16
PS-ASS 4 2 1 12
PS-UNA 4 2 1 10
Dom-VN 4 1 1 43
LL 4 1 1 6

Table 4: Fishery specific effective sample sizes as estimated from MULTIFAN-CL using the self-
scaling multinomial fitting option.

3.1.5 Length Composition Weighting

One of the difficulties in fitting integrated models is the need to assign relative weightings to the
different data components. It is increasingly recognised that some data components should be
actively down-weighted in some situations to allow other more reliable, or less numerous, data to
inform the model (Francis, 2011). The uncertainty grid of the 2016 skipjack assessment included
three levels of weighting for the length composition data, although in practice these weightings had
relatively little influence on model quantities, in particular SB/SBF =0 (McKechnie et al., 2016b).

For skipjack tuna the tagging data provide most of the information on scaling overall biomass and
on parameters such as natural mortality and movement. The assumed level of overdispersion for the
tagging data therefore has greater influence on model quantities as it impacts the most influential
data components in the assessment. We therefore propose that alternative weighting of the length
composition data be dropped from the MSE uncertainty grid and that a single weighting value of
20 be applied across all scenarios.
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Figure 10: Negative binomial probability densities with varying levels of overdispersion (τ) with
mean values of 20 and 75 corresponding approximately to the range of the number of recaptures for
a given release group and fishery combination. At low overdispersion (τ → 1) the negative binomial
approximates the Poisson distribution. Probability densities corresponding to overdispersion values
of 2.5, 4 and 8 are also shown.

3.1.6 Movement

A potential approach for including temporal variability in movement rates would be to estimate
separate movement matrices for specific ENSO conditions (El Niño, La Niña, neutral) and to
randomly replace the movement matrix used in the MULTIFAN-CL projections to simulate the
appropriate oscillatory dynamics in climate. ENSO specific estimates of movement for the skipjack
regions can be determined from SEAPODYM and have already been estimated using a similar model
that employs an individual-based modelling approach, Ikamoana, (Scutt Phillips et al., 2018).

The estimation of ENSO specific movement rates for skipjack using SEAPODYM has yet to be
completed and no trials of this approach have, to date, been undertaken. The approach may not
be as straight forward as simply plugging in an alternative movement matrix. Both SEAPODYM
and Ikamoana estimate greater connectivity between assessment regions than MULTIFAN-CL i.e.
higher levels of movement in particular between regions 2 and 5. This may occur because movement
rates in MULTIFAN-CL do not contain inter-annual variation, consequently, contrasting movements
associated with El Niño and La Niña conditions may lead to averaging of the estimates over the
assessment time period. An initial comparison between the movement estimates of MULTIFAN-CL
and Ikamoana suggest that the MULTIFAN-CL movement rates are close to those estimated by
Ikamoana for neutral ENSO conditions.
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3.1.7 Density Dependent Catchability

Previous analyses to investigate the potential impact of hyperstability on skipjack (Scott et al.,
2015b) concluded that, underestimating the extent of hyperstability in CPUE will likely lead to
an overestimation of the necessary change in effort that is required to achieve a desired change in
stock biomass. However, the degree of hyperstability that might be operating in the WCPO purse
seine fisheries is difficult to estimate, in particular due to potential confounding with changes in
purse seine efficiency that occur through time.

Hyperstability in CPUE can affect the performance of a HCR. We propose that some consideration
of the potential for hyperstability in CPUE be retained in the MSE evaluations and the function-
ality currently exists in MULTIFAN-CL to incorporate this. However, given the high degree of
uncertainty of the extent of hyperstability that may be operating in WCPO purse seine fisheries
we recommend that it be considered as part of the robustness set rather than the core reference set
of model scenarios.

3.2 Operating Model Selection

The key sources of uncertainty to be considered in the OMs and their proposed parameter values
are summarised in Table 5. Where appropriate the scenarios have been provisionally allocated to
reference and robustness sets. The scenarios listed in table 5 represent a combination of model fits
and projection settings. As such, some of the scenarios, specifically those scenarios listed under
model error, will require refitting of MULTIFAN-CL assessments, whereas scenarios relating to the
projection settings, such as recruitment variability or the level of observation error, will not.

3.2.1 Reference and Robustness Sets

The selection of OMs identified in Table 5 results in a reference set of 18 models and 72 scenarios,
assuming a full factorial design. Additional models identified for the robustness set may be run as
one off scenarios thereby reducing the overall number of evaluations that need to be conducted.

We note that scenarios based on changes in the rate of movement between regions are currently
included in the uncertainty grid but no trials have yet been conducted to investigate these sce-
narios. These analyses will be possible once the relevant movement rates have been estimated
from SEAPODYM. In the meantime this axis of uncertainty has been provisionally tabled for the
reference set.
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Axis Levels Options
Reference Robustness 0 1 2

Process Error
Recruitment variability 2 1982-2014 2005-2014
Observation Error
Catch and effort 2 20% 30%
Size composition 1 all models (see section 2.2.4)
Tag recaptures 1 2 status quo low none
Model Error
Steepness ‡ 3 0.8 0.65 0.95
Mixing period (qtr) ‡ 2 1 2
Tag overdispersion ‡ 3 4 2.5 8
Movement 1 1 estimated El Nino/La Nina
DD catchability (k) ‡ 1 1 0 -0.5
Implementation Error
Effort creep 1 1 0% 2% cont.

Table 5: Skipjack OM uncertainty grid. Scenarios shown in bold are proposed for the reference
set. ‡denotes those scenarios for which a dedicated fit of MULTIFAN-CL is required.

3.2.2 Model Validation

In this section we consider the validity of the models we have identified for the OM uncertainty grid.
Throughout the process of conditioning the OMs, consideration must be taken of how the suite
of models corresponds to the real world system, or at least our perception of it. At the simplest
level, the models should appear to be realistic representations of the stock and fisheries. There is
no simple test to establish the validity of a model and instead we rely on a collection of indicators
based on diagnostics of the fit of the model to data and consideration of whether the quantities
estimated from it are reasonable.

Axis parameter Label Settings
0 1 2

Steepness h A 0.8 0.95 0.65
Tag mixing (qtrs) B 1 2
Tag overdispersion τ C 4 2.5 8
Hyperstability k D 0 -0.5
Recruitment autocorrelation ρ E 0 est

Table 6: Settings and labels for the models considered for inclusion in the reference and robustness
sets. Note that recruitment autocorrelation has been included in these investigations but may not
be included in the final selection of models.

The maximum gradient is a measure of how well the model has converged to a solution. The
lower the maximum gradient the better the model fit is considered to be. Maximum gradients for
the initial fits of the OM model grid (Figure 11) are consistently below 0.01, indicating that all
of the models have achieved a satisfactory level of convergence. Other model diagnostics include

27



likelihood profiles of key model parameters and retrospective analyses that indicate how sensitive
the model is to the addition of new data. Due to time constraints we have not been able to include
these diagnostic checks in this paper but will complete these as part of the ongoing work.

Temporal trends in the estimates of adult biomass are relatively consistent across the grid of models.
The absolute levels of adult biomass vary between runs but are comparable to that of the 2016
reference case assessment (Figure 12). Model settings for the tag data account for the greatest
variability. Higher estimates of biomass are associated with longer tag mixing periods (2 qts) and
low values of overdispersion (τ 2.5), whilst the lowest estimates of adult biomass are associated
with short tag mixing periods (1 qtr) and high values of overdispersion (τ 8). Different values of
steepness for the SRR introduced very little variation into the historical estimates of adult biomass
but are retained within the reference set of models as steepness will be an important source of
uncertainty when conducting projections.

Model Run
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Figure 11: Maximum gradient across the grid of models. (All models were run for an additional
18000 function evaluations after the final fitting phase)

4 Future Work Areas

We note again that this document represents the first round of conditioning the OMs for the stock
of skipjack tuna in the WCPO and its associated fisheries. The selection of OMs that constitute the
reference and robustness sets will need to be periodically reviewed to allow for new data or updated
information to be incorporated and to ensure that all aspects of our uncertainty are adequately
accounted for. The next assessment of WCPO skipjack tuna is anticipated to be in 2019 and will
provide a good opportunity to reconsider some of the outstanding issues.
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Figure 12: Estimated adult biomass across the grid of OM models. Red line shows the estimated
adult biomass from the 2016 reference case skipjack assessment model

Throughout this document we have made a number of recommendations for future work to address
some unresolved issues, either in cases where the necessary data are not currently available or
the necessary analyses have not yet been undertaken, or because our modelling tools and software
require further development.

Estimates of growth rates and maturity that are representative of the skipjack population across
the whole assessment area as well as information on how growth varies between the different regions
will be required before appropriate bounds on parameter estimates can be determined and, as has
been noted in previous studies, additional information on growth, such as length-increment data
from tagging studies, should be given high priority for future investigation.

The MULTIFAN-CL software is subject to ongoing development and a number of potential modifi-
cations have been identified both with regard to the model fitting process (region specific stock and
recruit relationships) and approaches for including additional uncertainty (e.g. effort deviations) in
stochastic projections. In addition it is recommended that future analyses further investigate the
most appropriate model settings for overdispersion and reporting rates when modelling tag release
and recapture data.

4.1 Plausibility Weightings

Numerous analyses for WCPFC fisheries have previously been conducted in which simulations have
been run across a grid of models. In some cases the models have been weighted according to their
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perceived plausibility. Examples are analyses to determine acceptable levels of risk of exceeding the
LRP (OFP, 2014) or the evaluation of management options for the tropical tuna CMM bridging
measure (OFP, 2017). However, some fora recommend not to apply weightings to the scenarios on
the basis that the weightings are almost always subjective and there is often little or no data to
inform on the plausibility of one scenario relative to another. Instead it is recommended that each
scenario receive equal weighting unless there is a compelling reason to do otherwise.

Alternative approaches to a fixed grid of models are available. The approach adopted by CCSBT for
the evaluation of southern bluefin tuna was based on a suite of OMs that were randomly sampled
until a specified number of evaluations had been completed. Through this approach all of the
OMs were given equal weighting with their relative occurrence in the evaluation depending on the
random sample. A sufficiently high number of evaluations will be required in order to ensure that
a sufficiently representative sample is drawn from the suite of OMs, although depending on the
number of OMs the necessary number of evaluations may be smaller than in the case of a fixed
grid.

4.2 Exceptional Circumstances

Throughout the evaluation and testing process it must be borne in mind that the identification of a
’best performing’ management procedure will be dependent on the range of assumptions over which
it has been tested and the extent to which those assumptions reflect the true underlying dynamics
of the stock and fishery. The scenarios we have selected are expected to cover the most likely
eventualities, but we cannot assume that they cover all eventualities. It is therefore necessary to
identify those situations, termed "exceptional circumstances", in which one might abandon either
the HCR or the management procedure all together and take some other form of management
action.

In general terms, exceptional circumstances include any event that falls outside the range of as-
sumptions over which the management procedure has been tested, but may also include situations
where the trajectory of the stock does not respond as expected to management action. For example
if biomass falls below the limit reference point, or catches continually exceed some upper threshold.

We do not identify any exceptional circumstances here, but note that the range of OMs chosen for
the evaluation will be a key consideration when the time comes to identify them.

5 Conclusions

Throughout this paper we have outlined the important sources of uncertainty that should be con-
sidered when conditioning OMs along with the outcomes of analyses to address key uncertainty
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issues. In Section 3.2 we make recommendations for the scenarios to include in the reference and ro-
bustness sets of OMs and propose a reference set comprising 18 models and 72 scenarios, assuming
a factorial design.

Our considerations of OM scenarios that should be carried forward to the MSE evaluations can be
broadly categorised into the following five groups:

1. Changes to the model that apply to all scenarios: Natural mortality is modelled as
a spline function (with 4 nodes) and the weighting of length composition data is fixed at 20
(the value used for the 2016 reference case assessment).

2. Uncertainties from the stock assessment grid that have been retained for the
MSE grid: Values for steepness, tag mixing rate and effort creep are carried over from
previous studies without change. In addition the currently defined year ranges for recruitment
variability are retained.

3. New settings for the MSE grid: Additional sources of uncertainty include observation
error in catch, effort and size composition data; density dependent catchability and revised
values for tag overdispersion.

4. Lower priority elements: Variability in the age at maturity, the regional distribution of
recruitment and autocorrelation in recruitment have little impact on model quantities and
are not included in either the reference or robustness sets.

5. Areas for future work: Uncertainty in tag reporting rates and regional variation in growth
and maturity have been highlighted for further investigation. Similarly procedures for apply-
ing alternative movement hypotheses and for including additional process error in projections
through the effort deviations should be investigated.

We note that a number of important areas of uncertainty have been identified that have yet to be
fully incorporated into either the reference or robustness sets. It is important that future work be
undertaken to address these unresolved issues. In this respect, this paper presents the first round
of conditioning the OM and should be periodically reviewed to ensure that the range of OMs used
in the analysis remains appropriate.
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A Appendix

A.1 Overdispersion

Dave’s notes on overdispersion

The probability mass function (pmf) for the negative binomial can be written as

Pr(X = k) =
(

a

a+ µ

)a Γ(a+ k)
k!Γ(a)

(
µ

a+ µ

)k

for k = 0, 1, 2, . . . (3)

where µ is the mean and the variance is µ(1 + µ/a). Note that for the Poisson with mean µ the
variance is µ so that (1+µ/a) is the amount by which the variance of the negative binomial exceeds
that for the Poisson. So (1 + µ/a) measures the overdispersion. This can be parameterised by τ ,
so τ = (1 + µ/a). Since the pmf is often given in terms of a it is convenient to solve for a in terms
of τ namely

a = µ

τ − 1 (4)

Note that τ must always be greater than 1 which follows from the fact that the negative binomial
always has a variance greater than the mean.

The code in tagfit.cpp ensures that τ is greater than 1.

dvariable tau=1.0+exp(fish_pars(4,gp_fish32(ig)));

a=rtc/(1.e-20+(tau-1.0));

So if τ → 1, the distribution approaches a Poisson. For τ = 4 the variance is 4 times the mean,
that is 4 times greater than it would be for the Poisson.

Parameterisation of overdispersion in MFCL

If fish flag 43 = 1 and parest flag 305 = 1 then MFCL estimates overdispersion using the new
parameterisation and stores the estimated values in fish pars (i,4).

If fish flag 43 = 0 and parest flag 305 = 0 then it uses the default value for overdispersion (about
1,02) which is very close to Poisson and fish pars(i,4) will be set to 0.

If fish flag 43 = 0 and parest flag 305 = 1 it will use the values given in fish pars(i,4) but does not
estimate the overdispersion.
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A.2 Growth

Skipjack mean length at age is fixed within the current assessment and is assumed to follow the
same von Bertalanffy growth curve estimated from previous assessments. During the preparation of
the 2016 assessment a one-off analysis was conducted in which growth was allowed to be estimated
by the model. The estimates of growth from this model differ very slightly from the fixed values
that were assumed in the final assessment runs (Figure 13).

To investigate the potential variability in growth parameters we generated 1000 sets of log trans-
formed von Bertalanffy parameter values from a multivariate normal distribution with variance
covariance matrix determined from the inverse of the hessian matrix. The multivariate normal
assumption provided parameter distributions with appropriate median values but with extremely
long right hand tails that contained unreasonable values. To reduce the occurrence of excessively
wide distributions we determined variability in the growth parameters using a t-copula with triangle
marginal distributions (Scott et al., 2015a). Copulas allow for flexibility in multivariate distribu-
tion models, allowing more robust distributions than the common multivariate gaussian. Triangle
distributions make few assumptions about the parameters and simplify the definition of bounds.
We used the median and 10th and 90th percentiles to specify the marginal distribution of each
parameter.

Figure 13: Von Bertalanffy growth models as used for the 2016 stock assessment (blue) and from a
comparative model in which growth parameters were estimated (red). Boxes show the distribution
of length at age determined from a t-copula with triangle marginal distributions

The resulting distributions of length at age (Figure 13) show wider ranges than those specified by the
inputs to the 2016 assessment and a much wider range than the growth sensitivity runs described
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in Section 3. This would suggest that estimation error associated with the growth parameters
is potentially large and may not provide useful information on the variability in growth to be
assumed in the OM. However, we consider these analyses to be preliminary and recommend further
work in this area. McKechnie et al. (2016b) note the difficulty in reliably estimating growth for
skipjack within the assessment model and recommend that additional information on growth, such
as length-increment data from tagging studies, be given high priority for future investigation.
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