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1 Executive summary

A simulation of the Japanese pole-and-line fishery for skipjack tuna was used as a case study to
evaluate the effectiveness of CPUE standardization model performance in the case where spatial
sampling coverage decreases over time. Key findings include:

— Geostatistical delta-GLMMSs improve upon the performance of conventional delta-GLMs in
simulations where shifts in spatiotemporal sampling occurred.

— Geostatistical delta-GLMMs have the flexibility to correctly estimate divergent regional trends,
if present.

— The ability to estimate changes in catchability over time using the geostatistical delta-GLMM
was influenced by the spatial distribution of the data. Shifts in spatial sampling were con-
founded with changes in catchability.

— Conventional delta-GLMs with additive spatial and temporal effects perform just as well as
geostatistical delta-GLMMs models provided spatiotemporal shifts in sampling are not too
extreme.

— Interpolating into unsampled areas is only valid if the assumption that biomass still exists
there and that those areas are unsampled due to external barriers is met. Otherwise the
model can be modified to not predict into unsampled areas.

We invite SC15 to:
— Discuss the findings in relation to the 2019 skipjack tuna stock assessment.

— Support further work done in this area, including simulation analysis of longline fisheries in
preparation for the 2020 bigeye tuna and 2020 yellowfin tuna stock assessments.

2 Introduction

Skipjack tuna (Katsuwonus pelamis) represent the largest fishery by catch volume in the Western
and Central Pacific Fisheries Commission (WCPFC) convention area (Williams and FFA, 2019).
Standardized, fisheries-dependent catch-per-unit-of-effort (CPUE) indices remain an important in-
put for the stock assessment process (McKechnie et al., 2016). In the case of skipjack tuna in the
WCPFC convention area, catches are dominated by the purse seine sector of the fishery. Standard-
ized CPUE indices for the purse seine sector are challenging to create due to potential changes in
catchability over time (Vidal et al., 2019a). In the few cases where indices exist for the purse seine,
they are limited in geographical scope (Vidal et al., 2019b). Given the historical distribution of the
Japanese Pole-and-Line (JPPL) fishery (Ogura and Shono, 1999a), the standardized CPUE index
from this fishery has been used to provide relative abundance inputs for the assessment across a
broad geographic area (Ogura and Shono, 1999b; Langley et al., 2010; Kiyofuji et al., 2011; Kiyofuji,
2016). However, in recent decades, the JPPL fishery has shifted westwards across the Pacific and
no longer samples skipjack tuna across the entire model region (Kiyofuji and Okamoto, 2013).

Traditionally, skipjack CPUE indices were created by using conventional delta-generalized lin-
ear models (delta-GLMs) fit to data within each assessment model region. Delta-GLMs are the
combination of two underlying GLMs: a logistic model predicting the probability of a positive
catch occurring and a second model predicting the magnitude of the positive catch rate (Lo et al.,



1992; Stefansson, 1996). More recently, geostatistical delta-generalized linear mixed models (delta-
GLMMs) have been used for WCPFC stock assessments of bigeye tuna, yellowfin tuna, and South
Pacifc albacore tuna (McKechnie et al., 2017; Tremblay-Boyer et al., 2017b,a, 2018).

The primary difference between these two approaches is how space and time are modeled. In
a conventional delta-GLM this is usually done by specifying separate additive effects for spatial
cell and year-quarter. This allows for the estimation of differential abundance in each spatial
cell, however there is no interaction with time so the abundance in each spatial cell is assumed
to have the same relative trend. This may not be a realistic assumption given that fish are not
distributed homogeneously across ocean basins and could likely have different relative trends in
non-adjacent portions of their range. An improvement to the additive model can be made by
assuming an interactive effect between the spatial and temporal effects. This allows for independent
temporal trends to be estimated in each spatial cell. However, models with interactive effects
require observations in each combination of spatiotemporal strata which limits their application
unless the observations from missing spatiotemporal strata are imputed or interpolated (Campbell,
2015). In a geostatistical delta-GLMM, the delta-GLM with interactive effects of space and time is
extended in a mixed-effects framework to formally define the spatial and/or temporal correlation
of observations, commonly defined using a Gaussian random field governed by a Matern covariance
function (Thorson et al., 2016a; Macdonald et al., 2018). Using the estimated correlation structure
of the data, geostatistical delta-GLMMs can simultaneously interpolate abundance of unobserved
strata.

From an assessment standpoint, use of geostatistical models for CPUE standardization are ap-
pealing for a few different reasons. The explicit spatiotemporal correlation structure of the model
allows for prediction into areas that are no longer fished. Additionally, the spatially explicit nature
of the models allows for the simultaneous estimation of abundance indices across model regions
using a single model and eliminates the need for post-hoc scaling of regional indices. Despite being
shown to perform well with fisheries-independent data, even in cases where the underlying species
distribution has shifted (Thorson et al., 2015, 2016b; Thorson and Barnett, 2017), these methods
have had limited testing in their application to fisheries dependent catch rate data (Thorson, 2019).

While fisheries independent data come from statistically designed surveys that ensure the random
distribution of samples across the spatial domain and temporal strata, the same assumption of
appropriate spatiotemporal coverage cannot be made for fisheries dependent data. Holes in the
spatiotemporal coverage from fisheries dependent data can arise from sampling preferentially with
respect to abundance, changes in spatial targeting due to economic or management factors, as well
as restricted access to fishing grounds due to regulatory or competitive forces. These anomalies
in spatiotemporal sampling could lead to a disconnect between the underlying species abundance
trend and the trend estimated from catch rate data. Beyond the fisheries dependent simulation
testing already conducted (Griiss et al., 2019; Zhou et al., 2019), there exists a need to test these
geostatistical methods in the case where fisheries spatial sampling coverage changes over time.

Given the apparent gap in the scientific literature, the spatial decrease in JPPL fishing effort and
the importance of the JPPL index to the WCPFC skipjack tuna stock assessment; we evaluate the
effectiveness of both the conventional and geostatistical modeling approaches in a case where spatial
sampling coverage decreases over time. To do so, we developed a simulation model replicating the
dynamics of the JPPL skipjack tuna fishery in the western and central Pacific Ocean (WCPO).
This simulation study will allow us to identify issues in the estimated abundance indices that arise
from 1) differences in the spatiotemporal sampling pattern and 2) differences in how space and/or
time are handled in the model.



3 Methods

In order to explore these two different objectives, a simulation model was created using R v3.5.1
(R Core Team, 2018). This simulation model was broken up into 3 separate compartments: an
operating model responsible for creating the abundance field of skipjack tuna in the WCPO, an
observation model responsible for generating spatio-temporally referenced fisheries loghook obser-
vations of the simulated skipjack tuna abundance, and an estimation model component to create
indices of abundance from the simulated logbook observations within the WCPFC assessment model
regions.

Briefly, SEAPODYM output of adult skipjack biomass at a quarterly time step over a 32 year
period (1979 - 2010) was used as the underlying operating model (Senina et al., 2016). Adult
skipjack biomass was provided at a 1° x 1° spatial resolution. All 1° x 1° cells within the WCPO
formed the spatial domain of the simulation (Figure 1). To set-up the observation models, a fleet
of unique vessels were simulated to match the characteristics of the JPPL fleet. Next, for each
vessel; the years active in the fishery, number of trips taken per year, and the gear configuration
were simulated based on the JPPL fleet characteristics. Logbook records were simulated at the trip
level according to agent based movement of individual vessels adapted from Ducharme-Barth et al.
(2018). Having subdivided the model region into 1° x 1° spatial cells, vessel movements among
adjacent valid fishing cells within a trip were defined according to a simple “rook’s case” random
walk (diagonal movements were not permitted). Valid fishing cells were identified as those cells
within the WCPO that were not on land.

Two different scenarios were used to determine the starting point and movement conditions for the
random walk, resulting in two spatial sampling observation models (Figure 2): fisheries independent
(random) and fisheries dependent (JPPL). In the random effort distribution scenario each cell had
an equal probability across space and time of serving as the starting point for a non-directed
random walk representing a vessel’s fishing trip. The JPPL effort distribution scenario mimicked
the preferential spatial sampling process of the JPPL fishing fleet. The starting cell was allocated
preferentially with respect to skipjack biomass, and the probability of selecting a starting location
closer to Japan increased over time. Within a trip, the probability of jumping to adjacent cells was
also proportional to the underlying skipjack biomass. Additionally, in the case of the JPPL effort
distribution, the number of vessels active in the fishery declined over time to match the pattern
seen in reality. Once fishing locations were allocated to each vessel, catch was determined to be
proportional to the biomass at each location.

Annual indices of relative abundance were estimated from the simulated fisheries loghbook data using
two estimation model structures: 1) a conventional delta-GLM and 2) a geostatistical delta-GLMM.
More specifically, the delta-GLM was formulated with either additive or interactive spatiotemporal
effects. The delta-GLMM structure was implemented using the R package VAST (Thorson et al.,
2015; Thorson and Barnett, 2017; Thorson, 2019). Sensitivity to how this model was specified in
terms of the configuration of the spatial random field, spatiotemporal correlation structure, and
inclusion of an environmental covariate was also investigated. Indices were created for each of
the 5 regions used in the 2016 skipjack tuna assessment and in each of the 8 regions proposed
for use in the 2019 skipjack tuna assessment. In the case of the delta-GLM this meant fitting a
separate model to the simulated data coming from each model region. Additionally, a nominal
index was calculated in each region by taking the average of logbook catches (catch per sample)
in each region within each year. Since the trend of the index and not the magnitude of the index
was the quantity of interest, all indices were rescaled to a mean of 0 and a standard deviation



of 1 prior to comparing model performance. Model performance was assessed by calculating the
root-mean-squared-deviance (RMSD) between the rescaled true, simulated abundance trend and
the rescaled estimated index for each model region. Additional details of the simulation framework
just described can be found in the subsequent Technical Annex.

This framework was developed in a nested structure in terms of the scope and uncertainty included
in the simulation. To begin with, a proof-of-concept model was developed to test the effects of
observation and estimation model type on the accuracy of the estimated index before moving on to
a more detailed, and complex case-study model simulation of the JPPL skipjack tuna fishery. The
case-study model simulated 32 years worth of data at a quarterly time-step, resulting in ~750,000
observations. Movement in the case-study was defined according to the random walk patterns
described above. In contrast, the proof-of-concept model simulated 15,000 observations over a
ten year period and at an annual time scale. Additionally, the movement driving the observation
patterns was simplified to the aggregate fleet level for the proof-of-concept simulation.

Within each of the proof-of-concept and case-study models, data uncertainty increased progres-
sively from a basic case with zero error. Gradually uncertainty was introduced in the form of
process error (patchy case) where 10% of the cells in the abundance field were replaced with zero
skipjack abundance. The probability of each cell being replaced with zero abundance was inversely
proportional to the skipjack abundance it initially contained. This had the effect of creating a
patchier abundance field towards the periphery of the skipjack distribution. Building onto the
patchy case, 10% lognormal observation error was introduced (e10) to vessel catches at each fish-
ing location. Finally, catchability effects were added to vessel catches at each location on top of
the lognormal observation error (q10 case). The catchability effects were based on the vessel’s gear
configuration of class, number of poles fished, bird radar, bait tank, sonar, NOAA receiver, and a
normally-distributed random vessel effect. Number of poles fished on a trip were determined by
vessel class, as distant-water (PLDW) vessels are larger and typically fish more poles than offshore
(PLOS) vessels. The remaining gear categories (bird radar, bait tank, sonar, and NOAA receiver)
were allowed to be upgraded over time according to the empirical probabilities of having a specific
gear configuration as seen in the JPPL fishery (Kiyofuji, 2013). This resulted in an increase in
catchability over time for the two different vessel groups (Figure 3).

Using the above simulation framework, a full factorial experimental design of 50 simulated repli-
cates from the proof-of-concept model was used to test for the effects of observation model type,
estimation model type, and simulated uncertainty on the accuracy of the estimated abundance
index. A single replicate of the case-study model was used to investigate the effects of including
temporally changing catchability to the performance of the geostatistical model.

4 Results

Though indices were calculated for each model region used in the 2016 and 2019 WCPFC skipjack
tuna assessment structures, we chose to focus our presentation of the results on a representative
subset of the 8 region structure considered in the 2019 assessment: the entire WCPFC skipjack
tuna assessment area, region 2, region 3, region 7 and region 8. As seen from (Figure 1) regions 7
and 8 are within the core of the distribution of skipjack biomass, while regions 2 and 3 are more to
the periphery of the distribution. In terms of spatial sampling under the JPPL observation model
(Figure 2), region 3 is the only region consistently sampled in all time periods. Since region 2 is
on the periphery of skipjack abundance, sampling is patchy to begin with and coverage decreases
spatially with time. Region 7 and half of region 8 are well sampled initially as they are in the core



of the skipjack distribution. However, by the end of the simulation region 8 is not sampled at all
and only a portion of region 7 is still sampled.

Beginning with the simplest case of the proof-of-concept model, random effort distribution and no
uncertainty (basic_rand), all estimation models are able to correctly estimate the true simulated
trend in abundance across all 50 simulated replicates (Figure 4). Though an expected result, it
serves as a baseline for comparison with other uncertainty and effort distribution scenarios. It is
also worth noting that the inherent intraannual variation at the northern limit of skipjack tuna
range (region 2) manifests itself as higher levels of variability across the 50 replicates for each index
type. This variability would decrease with an increase in sampling intensity.

Moving to a more complex and realistic case with process error and JPPL effort distribution
(basic_jppl_patchy), differences in model performance begin to occur (Figure 5). The most extreme
example of this is in region 8 where the nominal and both delta-GLM indices exhibit large departures
from the true trend as spatial sampling coverage decreases ultimately to zero by the end of the
model period. The geostatistical indices, given their ability to interpolate abundance into un-
sampled areas, perform much better though it is interesting that none of the different formulations
appear to make much of a difference in this scenario.

Summarizing the results from the proof-of-concept model simulation in terms of RMSD across all
combinations of observation models, estimation models, and levels of data uncertainty (Figure 6);
the ability to estimate the true trend is dependent on the observation model that generated the
data. Holding the observation model constant, and looking across the scale of uncertainty (ba-
sic, patchy, and elO_patchy) model performance does not change very much. Conversely, if data
uncertainty is held constant, model performance greatly changes depending on the observation
model type that generated the data. As mentioned above, in model regions where a large shift in
spatial sampling occured, the geostatistical models outperformed the conventional delta-GLM in-
dices. Additionally, in this simulation, the formulation of the geostatistical model (knot structure,
environmental covariate, or temporal correlation) did not appear to alter the estimated index.

The pattern in relative performance based on the observation models and levels of data uncertainty
held true for the case-study. The inclusion of catchability effects into the data uncertainty (on
top of the process and observation error) provided an interesting wrinkle to the case-study model.
Looking specifically at region 8 (Figure 7), which exhibited the greatest shift in spatial sampling,
the ability to estimate and correct for an increasing catchability trend over time appeared to be
confounded with the perceived change in abundance caused by the shift in spatial sampling. This
can be contrasted with the case where spatial cells were consistently sampled across time (rand.q10).
In that scenario, the geostatistical model was able to properly estimate the catchability covariates
and correct for the bias seen in the nominal index. However, the previous finding that consistent,
random sampling could result in correct estimates of catchability covariates did not hold up across
all regions. In region 2 (Figure 8), both types of observation model, random and JPPL, failed to
estimate and account for the change in catchability. In fact, attempting to estimate the catchability
covariates resulted in a worse index than the nominal. This is likely due to temporal confounding
between the increasing trends in both catchability and abundance. There did not appear to be
enough contrast in the data to resolve the relative difference in these two trends. When the
catchability covariates were standardized out it resulted in an erroneous, decreasing trend.



5 Discussion

Spatial sampling pattern played a large role in the ability to correctly estimate the underlying
trend. Both estimation model types were able to correctly estimate the trend under a random
effort observation model. However, under the JPPL effort observation model, in regions where
sampling coverage decreased, substantial differences emerged between the two estimation model
types. In these cases geostatistical indices were able to achieve a much closer fit than delta-GLM
indices in the proof of concept simulation. This simulation reinforces the importance of knowing
what sampling framework was used when generating observations for standardizing fisheries catch
rate information since the estimation models did not perform equally well for both sampling types.
Ideally, a fisheries independent monitoring program would be used to collect samples. Then the
choice of estimation model is less important. However, given the large spatial domain that tuna
and tuna-like species occupy and the prohibitive cost associated with appropriately sampling across
spatiotemporal strata, such a survey program is unrealistic. This limits the analysis to fisheries
dependent catch rate data and thus care must be taken to select an appropriate estimation model.

The spatial shift observation model used in both the proof-of-concept and the case-study simulations
where region 8 is completely unfished by JPPL vessels by the end of the simulation is an exaggeration
of the spatial shift seen in the actual JPPL fishery. However, it serves to illustrate the point that the
decision on how a model implicitly or explicitly interpolates the unfished cells in an important one
(Walters, 2003; Carruthers et al., 2011). A conventional delta-GLM fit to data without interpolation
into unfished cells makes the implicit assumption that they have the same abundance as the mean
of the sampled cells. This can be an appropriate assumption to make if fishing effort does not shift
relative to the underlying abundance distribution. However, as shown in region 8 of the simulation,
if a persistent shift in spatial sampling effort exists and the cells being sampled are no longer
representative of the abundance for the entire model region, the estimated index can depart from
the true underlying trend.

Relatedly, one of the assumptions made with the geostatistical model is that abundance is interpo-
lated into unfished areas based on the spatial correlation structure of the observations. Interpolating
into unsampled areas is only valid if the assumption that biomass still exists there and that those ar-
eas are unsampled due to external barriers is met. In the case of skipjack, continued catches by the
purse seine fishery in areas no longer fished by the JPPL fishery support the assumption of model
interpolation into those areas. For a tropical species such as skipjack, it is important to ensure that
biomass is not extrapolated outside of the biological and/or physiological range of the species. In
these cases the geostatistical model should be modified to not interpolate biomass into these areas.
For instance, the albacore assessment in 2018 used a modified geostatistical model to only predict
biomass into cells that met a biologically realistic temperature threshold (Tremblay-Boyer et al.,
2018).

Previous comparisons of conventional delta-GLMs and geostatistical models (Tremblay-Boyer et al.,
2018) noted that the regional indices produced by a single geostatistical model, modeling the data
together, were much more similar to each other than the regional indices estimated from conven-
tional delta-GLMs, modeling each region independently. It was hypothesized that geostatistical
models may not have sufficient flexibility to estimate divergent trends in model regions, and that
modeling all of the data together would artificially minimize differences in abundance trends be-
tween regions. The simulation work presented here suggests that the geostatistical model does have
sufficient flexibility to estimate divergent trends using a single model, if those divergent trends exist.

Another interesting result was the effect of allowing catchability to increase over time in the case-



study. When the effort distribution was random and catchability was accounted for, the geostatis-
tical model was usually able to correctly estimate the index. However, when the effort distribution
was generated by the JPPL observation model, confounding between the shift in spatial sampling
and the change in catchability prevented the model from correctly estimating the underlying index.
Furthermore, there was a notable exception to the above results. Even with a random effort distri-
bution, the geostatistical model was unable, due to temporal confounding, to disentangle changes
in catchability from changes in abundance if both changed in the same direction. In this case the
estimated index was substantially worse than the nominal index.

This simulation is the first step in a larger analysis looking into the effects of different spatial sam-
pling patterns and interpolation assumptions on the effects of estimated indices. One of the initial
hypotheses prior to the study was that the different configurations of the geostatistical model (knot
configuration, temporal covariance structure, and inclusion of an environmental covariate) would
have an effect on the interpolated biomasses and thus on the estimated indices. This did not turn
out to be the case, so future work will explore additional scenarios to try to identify where different
configurations make more of a difference. Additionally, the case-study model only considered a
single simulation replicate and did not compare the performance of the geostatistical model to the
conventional delta-GLM. Future work will fully compare the two estimation model types across a
larger number of replicates of the case-study similar to the proof-of-concept simulation.

In conclusion, the proof-of-concept simulation showed that geostatistical models appear to be an
improvement to the conventional delta-GLM in this particular case where effort has shifted spatially
over time. However, it is important to consider the factors that may have led to the effort shift and
evaluate if the interpolation assumptions made in the geostatistical model remain appropriate. It
was also shown that despite modeling all data and regions together, geostatistical models maintain
the flexibility to correctly estimate divergent regional indices if they exist. This research can serve
as a building block for additional analyses exploring the effects of spatial sampling patterns on
estimated abundance indices, and can help guide decisions made in estimating abundance indices
for use in WCPFC stock assessments.

We invite SC15 to discuss the findings in relation to the 2019 skipjack tuna stock assessment.
We also invite the SC to support further work done in this area, including simulation analysis of
longline fisheries in preparation for the 2020 bigeye tuna and 2020 yellowfin tuna stock assessments.
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7 Figures

111
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Figure 1: Average spatial distribution of adult skipjack tuna biomass from SEAPODYM used as
the operating model in the simulation. Lighter colors indicate areas of higher abundance, and

darker colors indicate areas of lower skipjack abundance. The numbers correspond to the 8 regions
proposed for use in the 2019 skipjack tuna assessment.
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Figure 2: The effort distribution patterns for the two different observation models (random and
JPPL) at the start and end of the simulation. Lighter colors indicate a greater density of effort,
and darker colors indicate lower levels of effort. Areas in white are unsampled in that time period.
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Figure 3: Cumulative increase of catchability over time for the simulated DW and OS fleets in the
case-study. Fach line represents an individual vessel. The thicker line denotes the median across
all vessels.
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Figure 4: Summary of the results of the proof-of-concept model run without uncertainty and a
random effort distribution. The true simulated trend is shown in black and the colored lines show
the estimated trends across the 50 simulated replicates. Moving across the columns the results
are shown for the nominal indices (nom), delta-GLM with additive spatiotemporal effects (dgim),
delta-GLM with interactive spatiotemporal effects (dglm.st), geostatistical model with preferential
knots (geo.p), geostatistical model with uniform knots (geo.u), geostatistical model with preferential
knots and sea-surface temperature covariate (geo.p.sst), and geostatistical model with first order
temporal autocorrelation (geo.p.arl). The rows correspond to a subset of the 8 regions proposed
for use in the 2019 skipjack tuna assessment. The WCPFC row is the index estimated across
regions 1-8 combined.
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Figure 5: Summary of the results of the proof-of-concept model run with process error and JPPL
effort distribution. The true simulated trend is shown in black and the colored lines show the
estimated trends across the 50 simulated replicates. Moving across the columns the results are
shown for the nominal indices (nom), delta-GLM with additive spatiotemporal effects (dgim),
delta-GLM with interactive spatiotemporal effects (dglm.st), geostatistical model with preferential
knots (geo.p), geostatistical model with uniform knots (geo.u), geostatistical model with preferential
knots and sea-surface temperature covariate (geo.p.sst), and geostatistical model with first order
temporal autocorrelation (geo.p.arl). The rows correspond to a subset of the 8 regions proposed
for use in the 2019 skipjack tuna assessment. The WCPFC row is the index estimated across
regions 1-8 combined.
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Figure 6: Summary of the root-mean-square-deviance (RMSD) across all proof-of-concept simula-
tion runs. Each violin represents the distribution of RMSD across all 50 simulations. The closer the
violin is to the x-axis in each panel, the greater accuracy of the estimation model used. The more
vertically compressed the violin is, the greater precision in the estimate. Within each panel the
results are shown for the nominal indices (nom), delta-GLM with additive spatiotemporal effects
(dglm), delta-GLM with interactive spatiotemporal effects (dglm.st), geostatistical model with pref-
erential knots (geo.p), geostatistical model with uniform knots (geo.u), geostatistical model with
preferential knots and sea-surface temperature covariate (geo.p.sst), and geostatistical model with
first order temporal autocorrelation (geo.p.ar1). The rows correspond to a subset of the 8 regions
proposed for use in the 2019 skipjack tuna assessment. The WCPFC row is the index estimated
across regions 1-8 combined.
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Figure 7: Effect of incorporating catchability effects into the observation models on the estimated
indices. The left two panels show the nominal index under the rand.q10 and jppl.q10 estimation
models, and the right two panels show the estimated index from a geostatistical model including
terms for the catchability effects.
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Figure 8: Effect of incorporating catchability effects into the observation models on the estimated
indices. The left two panels show the nominal index under the rand.q10 and jppl.q10 estimation
models, and the right two panels show the estimated index from a geostatistical model including
terms for the catchability effects.
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8 Technical Annex

The structures of the proof-of-concept and case-study simulations are very similar, although the
case-study has some added complexity in order to simulate observations at the individual vessel
level to more closely replicate the dynamics of the JPPL fishery.

8.1 Proof-of-concept simulation
8.1.1 Effort distributions

The samples generated in each year of the simulation were defined as a random draw from a
Multinomial(ns; p1, ..., i, ..., pr) where ng is the total number of samples across all years and
p1,pi, and pr are the event probabilities for the first year, i*?, and terminal years of the simulation.
Under a random effort distribution all p; were equal but under the JPPL effort distribution the p;
followed a temporal trend matching the pattern of unique vessels active in the fishery described in

Kiyofuji and Okamoto (2013).

Next, for each sample in each year, cells were selected to be sampled from a pool of valid fishing
cells. At a minimum, fishing cells were defined as those cells not on land and that were within
the WCPO. Under the random effort distribution, all valid fishing cells had an equal probability of
being selected across space and time. Under the JPPL effort distribution scenario, the pool of valid
fishing cells diminished each year as cells further from Japan were sequentially removed. Within
the pool of valid fishing cells for a given year, the probability of selecting a given cell 7 was defined
as p; = =t " where a; is the abundance in cell 7. Using these probabilities, the fishing cells were

=1
drawn from a Multinomial distribution.

8.1.2 Data uncertainty

In the basic uncertainty case, there is no uncertainty so the simulated logbook catch record for
a fished cell i was defined as ¢; = A, X a; where A, is a constant applied to prevent numerical
overflow.

In the patchy uncertainty case, the simulated logbook catch was defined as above. As mentioned
in the Methods section above, process error was introduced by replacing 10% of a; with 0 where

N .
the probability of replacing a cell i’s abundance was defined as p; Z%:az A Multinomial
distribution was then used to select the cells for replacement using these probabilities. In this way,
zero catches were introduced into the simulated logbook.

In the e10 uncertainty case, 10% lognormal observation error was introduced on top of the existing
patchy uncertainty. The simulated logbook catch record for a fished cell was defined as

In(c;) ~ Normal(p = Aya;,0 = 0.1A,a;)

8.2 Case-study simulation
8.2.1 Effort distributions

In order to simulate logbook records at the trip level, individual vessels and their trips had to be
generated. For the JPPL effort distribution case, the number of unique vessels (per vessel class:
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PLDW or PLOS) fishing in a given year was determined using the numbers reported in Kiyofuji
and Okamoto (2013). In the random effort distribution case, the number of unique vessels fishing
in each year for each class was not assumed to decline but was held fixed at the mean value from
Kiyofuji and Okamoto (2013).

Based on the numbers of unique vessels active in a given year per class, the entry and exit dates into
and out of the fishery were simulated in an iterative process beginning in the first year. In year 1,
all vessels active in that year were assumed to have entered in that year. Each of these vessels were
then assigned a longevity based on a random draw from a Negative Binomial distribution with
u=11.78 and size = 3.31. These parameters were estimated from the time distribution of unique
vessels in Kiyofuji and Ochi (2016). In each subsequent year, vessels were allowed to either retire
or enter the fishery. Retirements were handled first and occurred if the vessel reached the longevity
assigned to it or if there were too many unique vessels of that class in the fishery as determined
by the Kiyofuji and Okamoto (2013) data. If there were too many active vessels, vessels of the
appropriate class were randomly selected (with equal probability of selection) for retirement until
the number of unique vessels matched the numbers from Kiyofuji and Okamoto (2013). If after
accounting for vessel retirements there were too few unique vessels in the fishery in a given year for
a given class, vessels were allowed to enter as described for year 1 of the simulation.

Fishing trips per vessel were simulated at an annual level, so for each vessel the number of trips it
took in a given year was simulated based on vessel class. The number of trips per year taken by
a PLDW vessel was drawn from a Conway — Mazwell — Poisson (CMP) distribution with y =5
and v = 10, and the number of trips per year by an PLOS vessel given by CM P(u = 20,v = 10)
where the p’s were informed by Kiyofuji (2019, pers. comm.). Trips were then assigned to take
place within a quarter with equal probability. Now at the trip level, length of trip was randomly
drawn from a CMP distribution with 1 = 40 for the PLDW vessels and p = 10 for the PLOS vessels
(Kiyofuji and Okamoto, 2013). In both cases, v was assumed to be 5. Within a trip, movement
across valid fishing cells for each observation model is described by the two random walk scenarios
in the Methods section above and depicted for a trip length of 6 in Figure 9. Logbook catch records
were simulated for each cell visited on a trip, where the number of cells visited is equal to the length
of the trip.

8.2.2 Data uncertainty

Data uncertainty for the basic, patchy, and €10 levels were simulated in the same way as the proof-
of-concept simulation. For the case-study, the g10 data uncertainty level built off of e10. When each
vessel entered the fishery, the starting gear configuration of bird radar (BR), bait tank (BT), NOAA
receiver (NR), and sonar (S) were defined by the empirical probability of having that configuration
as defined in Kiyofuji (2013) and shown in Figure (10). A normally-distributed vessel random
effect (VRE) was also assigned upon entering the fishery, however the random effects were pre-
drawn and sorted so that vessels entering later in the fishery received a higher vessel random effect.
Additionally, in each subsequent year, the gear configuration could be upgraded to a higher level
(e.g. BR1 to BR2) based on the empirical probabilities from Kiyofuji (2013). Gear configurations
were assumed to never downgrade, and higher levels of a gear configuration were always assumed
to be better. Lastly, at the trip level, the number of poles fished by a vessel was determined by a
draw from a CMP distribution parameterized for each class(Polesprpw ~ CMP(u = 22,v = 10)
and Polespros ~ CMP(u = 14,v = 10)). Therefore the catchability effect for vessel v on trip ¢
in year y is given by:
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Quy,t = Class, + BR,, , + BT,y + NR, y + Sy + Poles,; + VRE,

Under the ¢10 uncertainty level the simulated logbook catch record was defined as
In(c;) ~ Normal(p = qAsa;, 0 = 0.1qAa;)

given the appropriate ¢ for that vessel and trip.

8.3 Estimation models
8.3.1 Conventional delta-GLM

The convetional delta-GLM model was based off the structure described in Campbell (2015), and
implemented using the speedglm package in R (Enea, 2017). Additive effect of time and space
where f; is the temporal effect at time ¢ and &, is the spatial effect of area r:

e Binomial component: logit(p;) ~ a + B¢ + 0, + ... + €; € ~ Binomial

e Positive component (¢; > 0): In(c¢;) ~ a+ Bt + 0r + ... + €;€ ~ Normal
In the case of this simulation f3; is the year effect, and ¢, is the effect for each spatial cell r.
Interactive effect of time and space:

e Binomial component: logit(p;) ~ a + B¢ X V4 + 0r + ... + €; € ~ Binomial

e Positive component (¢; > 0): In(¢;) ~ a+ By X g + 0r + ... + €;€ ~ Normal

For the interactive effect model, a sub-region term was added v,. Model regions were sub-divided
into 4 roughly equal area sub-regions. With the interactive effect, this allowed 4 separate trends
to be estimated in each model region. Spatial cells were assigned to each sub-region based on a
k-means clustering of their spatial coordinates. This is the same process that is used within the
VAST package (Thorson, 2019) to allocate observations to spatial knots.

8.3.2 Geostatistical delta-GLMM

The geostatistical model implemented by the VAST package v5.4.0 (Thorson et al., 2015; Thorson,
2019) is a generalized extension of a conventional delta-GLM with interactive spatiotemporal effects.
The basic form is described in the following equations:

e Binomial component: p; ~ B1(t;) + w1 (i) + ¢1(xi, ti) + ... + €

e Positive component (¢; > 0): ¢; ~ Bao(t;) + wa(x;) + da(wi t;) + ... + €
B(t;): intercept at time ¢
w(z;): spatial random effect at location or knot z
o(x;,t;): spatiotemporal random effect at time ¢ and location x

w~ MVN(0,R) where R is a Matern correlation function

MVN(0, R) if t=1
MV N (ppi—1, R) if t>1, defaultp =0
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Given this framework, the user has considerable flexibility to specify the error structures of the two
model components, the number of z;, how the z; are distributed spatially, whether to allow for the
estimation of p, or the inclusion of an environmental covariate to aide in the spatial prediction and
interpolation of abundance.

This simulation did not specifically evaluate the effect of choice for number of z;. However, Thorson
(2019) suggests using the most knots that is computationally feasible. This study used 100 knots
in the proof-of-concept simulation and 200 knots in the case-study simulation.

The baseline assumption in VAST is to spatially distribute the x; in proportion to the location
of the observations via k-means clustering of their spatial coordinates. Other research has noted
that this assumption of preferential knot distribution should be evaluated when modeling fisheries-
dependent data (Tremblay-Boyer et al., 2018; Thorson, 2019). Two separate methods were used to
distribute knots spatially for the simulations: the VAST default of preferential knots (geo.p) and
uniform knots (geo.u). In contrast to the geo.p, the geo.u spatially distributes the x; in proportion
to the unique 1° x 1° cells that are sampled. The difference between these can be seen in Figure
11 and Figure 12.

Another baseline assumption made in the VAST package is that the spatiotemporal random effects
(¢) are independent across time (p = 0). However, if a strong temporal correlation exists in the
spatial observations, allowing for a non-zero p could improve the models’ ability to predict biomass
into unfished temporal strata and thus potentially improve the estimated indices. Allowing for the
estimation of a non-zero p was used to evaluate this effect.

An additional functionality of VAST is the ability to include environmental covariates in the model
to aide in the prediction of abundance, i.e. their effect is not standardized out along with vessel or
catchability effects. This is done by adding in the following term, & x ¢(z;, t;), into both components
of the model where 1 (z;,t;) is the value of the covariate defined at each spatial knot and each time
step, and & is the linear effect of that covariate. The environmental covariate used in the simulation
is the monthly NOAA Smith & Reynolds Extended Reconstructed Sea Surface Temperature (Smith
and Reynolds, 1981) corresponding to the dates of the SEAPODYM biomass extract (Figure 13).
This data is available at a 2° x 2° spatial resolution and was disaggregated to match the 1° x 1°
spatial resolution of the SEAPODYM output. Only a single linear effect was considered in these
simulations but this can be modified to allow for more complex relationships; the inclusion of spline
functions for example. It is worth noting that very recent versions of VAST have the functionality
to include a temporal index as a covariate, and allow for the environmental covariates to be defined
at the observation rather than the knot level.

To model catchability in the case-study simulation covariate effects were added as additive cate-
gorical effects (vessel class, bird radar, bait tank, and NOAA receiver) or additive linear effects
(number of poles fished). The vessel effect was modeled as a normally distributed random effect.
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Figure 9: Depiction of the cells visited along a random walk defining the movement of the two
observation models (random and JPPL) for a trip length of 6.
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Figure 10: Depiction of the empirical probabilities of having a particular gear configuration in a
given year of the simulation for bird radar (BR), bait tank (BT), NOAA receiver (NR) and sonar
(S) as reported in Kiyofuji (Kiyofuji, 2013).
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Figure 11: Preferential placement of 100 knots given the observations generated by the JPPL
observation model. The knots are shown by the large colored dots, the corresponding dots of
matching color are the 1° x 1° grid cells with observations that are associated with each knot. Note
that knots are clustered closer together adjacent to Japan where effort density is highest in the
simulation.
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Figure 12: Uniform placement of 100 knots given the observations generated by the JPPL obser-
vation model. The knots are shown by the large colored dots, the corresponding dots of matching
color are the 1° x 1° grid cells with observations that are associated with each knot. Note that
knots are evenly spaced across the 1° x 1° grid cells with observations.
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Figure 13: Average sea surface temperature (SST) distribution from the NOAA Smith & Reynolds
model. Lighter colors indicate warmer temperature, and darker colors indicate cooler temperatures.
The numbers correspond to the 8 regions proposed for use in the 2019 skipjack tuna assessment.
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