WCPFC NC 14

Pacific Bluefin Tuna Assessment;
2018 Update Stock Assessment and Projections

2018/9/4

Shuya Nakatsuka, Ph.D.
ISC PBFWG

2018 PBF stock assessment

* Meeting logistics
- March 5th to 12th at La Jolla, CA, USA.
- Participants: 26 scientists from
U.S.A., Japan, Korea, Mexico, Taiwan, IATTC, and SPC
* Update assessment
- Up-to-date data until June 2017.
- Basically the same demographic assumption (same model construction).
* Projection
- A projection for the current measures.
- Some projections under new HCR.

Report

- ISC 2018 Annex 14

Overview of 2018 assessment model

* A fully integrated model (Stock Synthesis-Version 3)
- Length-based, age-structured ($0-20+$) model
- From 1952 to 2016
* Pan-Pacific Assessment
- No-spatially defined model (Area as Fleet approach)
** Fishery definitions
- 19 Fisheries (Catch \& Size comp (if available))
- 3 CPUEs (TWN \& JPN Longlines, JPN Troll)
* Given biological traits (Growth, Maturity, Natural mortality) Estimate initial conditions, population scale, recruitments, and fishery selectivity

What are updated?

* Input data were updated.
- Catch (2015-2016)
- CPUE (Whole time series, -2016)
\checkmark TWN \& JPN Longlines, JPN Troll.
- The same standardization methods with previous assessment.
- Size composition
$\checkmark 6$ purse seines, 3 longlines, 3 set-nets, 2 trolls. \checkmark updated from 2014 (KOR PS, TWN LL, MEX PS) or 2015 (the rest of the fleets).
* Basically the same demographic assumptions.
- Extend the last year of time varying selectivity.

Catch by country

Catch by country

Catch by gear

Catch by gear

Catch per Unit of Effort based abundance index

Size Composition data

Fleet 1

Fleet 6

Fleet 12

Fleet 18

Fleet 2

Fleet 8

Fleet 13

Fleet 19

Fleet 4

Fleet 9

Fleet 14

Results

* Goodness of fit to
- CPUE based abundance indices
- Size composition
* Likelihood profile over population scale
* Retrospective diagnostics
* Assessment results
- SSB and Recruitment
- F at Age
- Kobe plot
- Impact plot

Goodness of fit to CPUEs

S2: Jpn Longline (1952-1973)
S3: Jpn Longline (1974-1992)

S9: Twn Longline (2000-2016)

Average fits to Size Compositions

Likelihood profiles over fixed scaling parameter

* Each component marked the lowest likelihood around at maximum likelihood estimate (MLE) of $\log \left(R_{0}\right)$.
- CPUE (9.5), Size comp. (9.5), Recruitment Penalty (9.6)
- Consistency regarding the population scale estimates.

Retrospective Analysis

* No substantial pattern in recent 3-4 terminal years in the SSB estimates although those of 5 year and above might be slightly underestimated.
* Recruitment estimates are basically consistent.

Assessment results

* Base case model derived consistent results with the previous assessment.
- SSB fluctuated over time; declined during 1996-2010, and increased since 2011.
- Recruitments in 2015 and 2016 are lower and higher than the historical average.

Age specific fishing mortality

- Substantial decrease of F is observed in ages 0-2 in 2015-2016.
- Note that stricter management measures in IATTC and WCPFC have been in place since 2015.

Stock Trajectory

	Initial rebuilding target	Second rebuilding target	1995 (recent high)	$2002-2004$ (reference year)	$\overline{\bar{y}}$2011 (5 years ago)(latest)	
Biomass $\left(\% \mathrm{SSB}_{\mathrm{F}=0}\right)$	$\mathrm{SSB}_{\text {med } 1952-2014}$ $=6.7 \%$	20%	10.4%	7.1%	2.1%	3.3%
fishing intensity (SPR)	6.7%	20%	5.1%	3.4%	4.9%	6.7%

2018/9/،

WCPFC NC 14

Only recent 30 years

Fishery impact plot

- Historically, the WPO coastal fisheries has had the greatest impact.
- Since about the mid-2000s, the WPO purse seine fleets targeting small PBF (age 0-1), have had the greatest impact.
- The impact of the EPO fishery was large before the mid-1980s, decreasing significantly thereafter.

Projection

Projection model overview

* Age-structured forward projection model (ssfuturePBF)
- Identical model structure with the stock assessment of PBF
- Given growth, maturity and Natural mortality which are identical with those used in the stock assessment
- Age-specific quarterly Fishing mortality of each fleet were assumed to be past particular year in the assessment (e.g. 2002-04).
- Catch upper limit could be set to depict a management measure.
- Two recruitment scenarios (low (1980-1989) and average (1952-2016))
*Projection time period
- From 2016 to 2034
- Initial condition (2016) was based on the stock assessment result.
* Uncertainty
- 300 bootstrap replicates followed by 20 recruitments resampling.

Recruitment Scenario for Projection

- Specified by WCPFC HS-02.
- Low recruitment scenario until the initial rebuilding target being achieved and average recruitment thereafter.
- Recent 10-year recruitment is more optimistic than low recruitment scenario.

Projection with the current CMMs

- The projection of Status Quo (Scenario 0) resulted in an 98\% probability of achieving the initial rebuilding target.
- More optimistic result than the 2016 projection is mainly due to the relatively good recruitment of 2016 year class.

Scenario 2016 (2016 assessment) Scenario 0 (low R)
— Scenario 1 (R_switch_at SSBmed)

Second rebuilding target (20\%SSBO)
Initial rebuilding target $\left(\mathrm{SSB}_{\text {med 1952-2014 }}\right)$

Kobe plot for the future periods ("La Jolla Plot")

Stock Status

- No biomass-based limit or target reference points have been adopted to evaluate the overfished status for PBF. However, the PBF stock is overfished relative to the potential biomass-based reference points evaluated $\left(S S B_{M E D}\right.$ and $\left.20 \% S B B_{F=0}\right)$.
- No fishing intensity-based limit or target reference points have been adopted to evaluate overfishing for PBF. However, the PBF stock is subject to overfishing relative to most of potential fishing intensity-based reference points.

Conservation Information

- The projection based on the current management measures by the WCPFC and IATTC under the low recruitment scenario resulted in an estimated 98% probability of achieving the initial rebuilding target ($6.7 \% \mathrm{SSB}_{\mathrm{F}=0}$) by 2024. This is above the threshold (75% or above in 2024) prescribed by the WCPFC Harvest Strategy. The low recruitment scenario is more precautionary than the recent 10 years recruitment scenario.
- The estimated probability of achieving the second rebuilding target $\left(20 \% S S B_{F=0}\right) 10$ years after the achievement of the initial rebuilding target or by 2034, whichever is earlier, is 96% under the recruitment scenario prescribed by WCPFC Harvest Strategy. This is above the threshold (60% or above in 2034) prescribed by the WCPFC Harvest Strategy.

Conservation Information

- It should be recognized that these projection results are strongly influenced by the inclusion of the relatively high, but uncertain recruitment estimate for 2016.

Additional projections in response to the WCPFC Harvest Strategy 2017-02

What's described in the WCPFC HS-2017-02?

WCPFC Harvest Strategy (HS-2017-02)

- Prepared by the WCPFC NC \& IATTC joint WG.
- Provides two rebuilding targets, a HCR, and an assumption for future recruitment.
- Requested to conduct projections based on the new HCR.

Request for Projections under new HCR

If the projection indicates that the probability of achieving the initial rebuilding target is at 75% or larger, ISC will be requested to provide relevant information on potential catch limit increases.

- as long as the probability of reaching the initial rebuilding target is maintained at 70% or larger, and the probability of reaching the $2^{\text {nd }}$ rebuilding target by the agreed deadline remains at least 60\%.

Recruitment assumptions for projection

- The Initial rebuilding period (until the stock meets $\mathrm{SSB}_{\text {med1952-2014 }}$); Resampling from the relatively low recruitment period (1980-1989).

The $2^{\text {nd }}$ rebuilding period (from next year of initial rebuilding period); Resampling from the entire assessment period.

Scenarios with potential catch limit increase

Scenario 1: Approximation of the CMMs in force by the IATTC \& WCPFC. (Scenario 0): Same with the scenario 1, but low recruitment continues. Scenario 2: Same catch limit with HS1, but no effort control (Constant Catch). Scenario 3: 5\% increase of catch limit for all fleets from scenario 2.
Scenario 4: 10\% increase of catch limit for all fleets from scenario 2. Scenario 5: 15\% increase of catch limit for all fleets from scenario 2.

Scenario \#	WPO						EPO*3			Catch limit Incre ase			
	Fishing mortality*1	Catch limit					Catch limit						
		Japan*2		Korea		Taiwan	Commercial		Sports	WPO		EPO	
		Small	Large	Small	Large	Large	Small	Large		Small	Large	Small	Large
$0^{* 4}$	F	4,007	4,882		18	1,700		,300	-		\%		\%
1	F	4,007	4,882		18	1,700		,300	-		\%		\%
2	F x 2.0	4,007	4,882	7	18	1,700		,300	-		\%		\%
3	F $\times 2.0$	4,207	5,126		54	1,785		,465	-		\%		
4	F $\times 2.0$	4,408	5,370		0	1,870		,630	-		\%		\%
5	F $\times 2.0$	4,608	5,614		26	1,955		,795	-		\%		\%

Results of the projections

Scenarios	Catch limit increase	Probability of achieving	
		Initial rebuilding target	$2^{\text {nd }}$ rebuilding target
Scenario 0	-	98\%	3\%
Scenario 1	-	99\%	96\%
Scenario 2	-	96\%	96\%
Scenario 3	5\%	91\%	93\%
Scenario 4	10\%	83\%	90\%
Scenario 5	15\%	74\%	85\%

Scenario \#	Catch limit Increase		Initial rebuilding target			Second rebuilding target		$\begin{gathered} \text { Median SSB } \\ (\mathrm{mt}) \\ \text { at } 2034 \end{gathered}$
			The year expected to achieve the target with $>60 \%$ probability	Probability of achiving the target at2024	Probability of SSB is below the target at 2024 under the low recruitment	The year expected to achieve the target with $>60 \%$ probability	Probability of achiving the target at 2034	
	WPO	EPO						
	Small Large	Small Large						
$0^{* 1}$	0\%	0\%	2020	98\%	2\%	N/A	3\%	74,789
1	0\%	0\%	2020	99\%	2\%	2028	96\%	263,465
2	0\%	0\%	2021	96\%	4\%	2028	96\%	264,118
3	5\%	5\%	2021	91\%	8\%	2029	93\%	248,295
4	10\%	10\%	2021	83\%	15\%	2029	90\%	231,466
5	15\%	15\%	2021	74\%	24%	2030	85\%	255,085

Results of the projections for catch limit increase

- All of the scenarios provided were confirmed to achieve the rebuilding targets with the probability prescribed in the WCPFC Harvest Strategy.

What did we do further?

- Investigating the possible effect if the increase of catch limit was differentiated between small and large fish.

Scenario \#		Catch limit			Catch limit			Catch limit Increase			
	Japan	Kor	rea	Taiwan	Comm	nercial		WPO		EPO	
	Small Large	Small	Large	Large	Small	Large	Sports	Small	Large	Small	Large
6	4,207 5,858	528	258	2,040	1,733	1,980	-	5\%	20\%	5\%	20\%
7	4,207 5,858	528	258	2,040	1,815	1,815	-	5\%	20\%	10\%	10\%
8	4,408 5,370	553	237	1,870	1,733	1,980	-	10\%	10\%	5\%	20\%
9	4,207 6,591	528	291	2,295	1,733	2,228	-	5\%	35\%	5\%	35\%
10	4,207 6,591	528	291	2,295	1,898	1,898	-	5\%	35\%	15\%	15\%
11	4,608 5,614	578	248	1,955	1,733	2,228	-	15\%	15\%	5\%	35\%
12	4,408 5,858	553	258	2,040	1,815	1,980	-	10\%	20\%	10\%	20\%
13	4,408 5,858	553	258	2,040	1,898	1,898	-	10\%	20\%	15\%	15\%
14	4,608 5,614	578	248	1,955	1,815	1,980	-	15\%	15\%	10\%	20\%
15	4,408 6,347	553	280	2,210	1,815	2,145	-	10\%	30\%	10\%	30\%
16	4,408 6,347	553	280	2,210	1,898	1,898	-	10\%	30\%	15\%	15\%
17	4,608 5,614	578	248	1,955	1,815	2,145	-	15\%	15\%	10\%	30\%

Why did we do that?

- The most of catch in number were occupied by ages 0-1 fish.

Difference of the Impact of fishery by catch at age

* Same weight of catch has different impact on the stock by age.
- 1 ton of catch $\fallingdotseq 500$ of age -0 (2 kg of body weight) $\fallingdotseq 20$ of age -3 (49 kg).
- Catching a high number of small fish can have a greater impact on future spawning stock biomass than catching the same weight of large fish.

Fish age

| Age | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Body weight | 2 | 11 | 27 | 49 | 75 | 102 | 130 | 156 |
| Fish/ton | 502 | 92 | 37 | 20 | 13 | 10 | 8 | 6 |
| WCPFC NC 14 | | | | | | | | |

Results of the different increment fraction scenarios

- All of the examined scenarios were confirmed to achieve the initial and second rebuilding targets given the recruitment assumption.

Scenario \#	Catch limit Increase				Initial rebuilding target			Second rebuilding target		$\begin{gathered} \text { Median } \\ \text { SSB } \\ (\mathbf{m t}) \\ \text { at } 2034 \end{gathered}$
					The year expected to achieve the target with $>60 \%$ probability	Probability of achiving the target at 2024	Probability of SSB is below the target at 2024 under the low recruitment	The year expected to achieve the target with $>60 \%$ probability	Probability of achiving the target at 2034	
	WP	PO	EPO							
	Small	Large	Small	Large						
6	5\%	20\%	5\%	20\%	2021	94\%	6\%	2028	95\%	255,672
7	5\%	20\%	10\%	10\%	2021	94\%	6\%	2028	95\%	248,911
8	10\%	10\%	5\%	20\%	2021	92\%	9\%	2029	94\%	214,278
9	5\%	35\%	5\%	35\%	2021	93\%	9\%	2029	94\%	246,153
10	5\%	35\%	15\%	15\%	2021	93\%	9\%	2029	94\%	247,409
11	15\%	15\%	5\%	35\%	2021	84\%	16\%	2029	91\%	233,055
12	10\%	20\%	10\%	20\%	2021	89\%	11\%	2029	93\%	243,491
13	10\%	20\%	15\%	15\%	2021	89\%	11\%	2029	93\%	243,223
14	15\%	15\%	10\%	20\%	2021	85\%	16\%	2029	91\%	234,203
15	10\%	30\%	10\%	30\%	2021	87\%	14\%	2029	92\%	237,742
16	10\%	30\%	15\%	15\%	2021	88\%	13\%	2029	92\%	238,957
17	15\%	15\%	10\%	30\%	2021	84\%	17\%	2029	90\%	232,769

Results

- All of the examined scenarios were confirmed to achieve the initial and second rebuilding targets given the recruitment assumption.
- The results showed that the measures protecting small fish are more effective than those protecting large fish for rebuilding.

Scenario \#	Catch limit Increase		Probability of achieving		Probability of SSB is below the initial target at 2024 under the low recruitment	Expected annual catch in 2024 (ton)
	WPO	EPO	initial	second		
	Small Large	Small Large	rebuilding target	rebuilding target		
5	15\% 15\%	15\%	74\%	85\%	24\%	16,641
12	10\% 20\%	10\% 20\%	89\%	93\%	11\%	16,841

Summary for the projections under new HCR

- In accordance with WCPFC HS 02, ISC conducted additional projections with various combination of the increase of catch limit.
- All of the examined scenarios were confirmed to achieve the initial and second rebuilding targets given the recruitment assumption.
- The projection results also show that the measures protecting small fish are more effective than those protecting large fish to rebuild the stock.

ISC PBFWG Workplan

- Next assessment (benchmark assessment) is scheduled in 2020.
- In 2019, indices will be monitored and plan for 2020 assessment will be discussed.
- No assessment is scheduled in 2019 as no "drastic drop of recruitment" (WCPFC HS 02) is detected.

$1^{\text {st }}$ ISC Pacific Bluefin tuna MSE Workshop

30-31 May 2018
Yokohama, Japan

- 72 participants: fishery managers, stakeholders, NGOs, and scientists
- Talks and discussions:

To learn about and understand the MSE process (Dinardo);
Requirements to implement an MSE (Nakatsuka);
Recent progress by ALBWG and other RFMOs (Holmes);

- First step for PBF MSE
- Results will be presented for NC-IATTC Joint Meeting in Sept .

Thank you

