

## MINIMUM TRPS FOR WCPFC YELLOWFIN CONSISTENT WITH ALTERNATIVE LRP RISK LEVELS

WCPFC2018/SC14/MI01

TAKEUCHI,Y, G, PILLING AND J., HAMPTON

**SPC-OFP** 

### INTRODUCTION

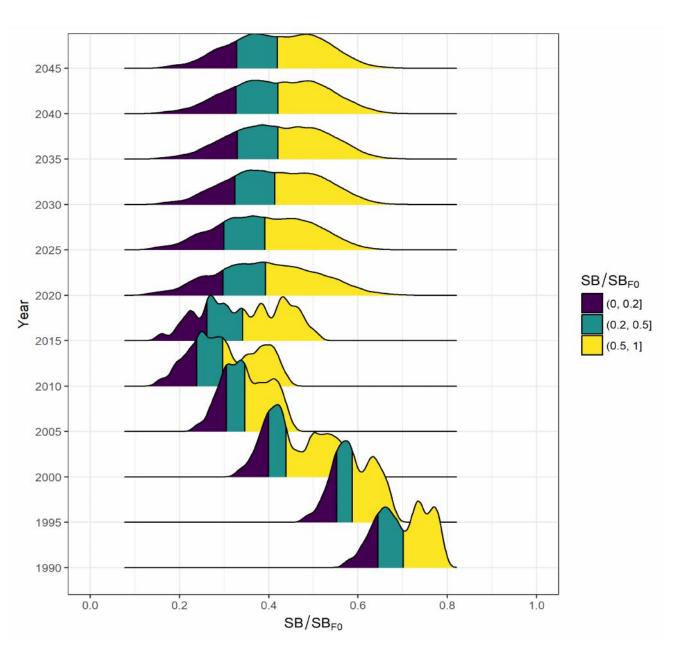


- With reference to Paragraph 188 and Attachment L (Work plan for the adoption of harvest strategies under CMM 2014-06) in the WCPFC14 Summary Report, SC14 shall dedicate sufficient time to develop advice for WCPFC15 on candidate target reference points for bigeye and yellowfin tuna.
- This working paper computes median levels of spawning biomass depletion (SB/SB<sub>F=0</sub>) and fishing mortality relative to the fishing mortality at maximum sustainable yield (F/F<sub>MSY</sub>) that are consistent with specified risk levels of breaching the limit reference point (LRP) of  $0.2SB_{F=0}$ .
- Equivalent to a TRP based on a sole objective of 'stock sustainability'

### **INPUTS**

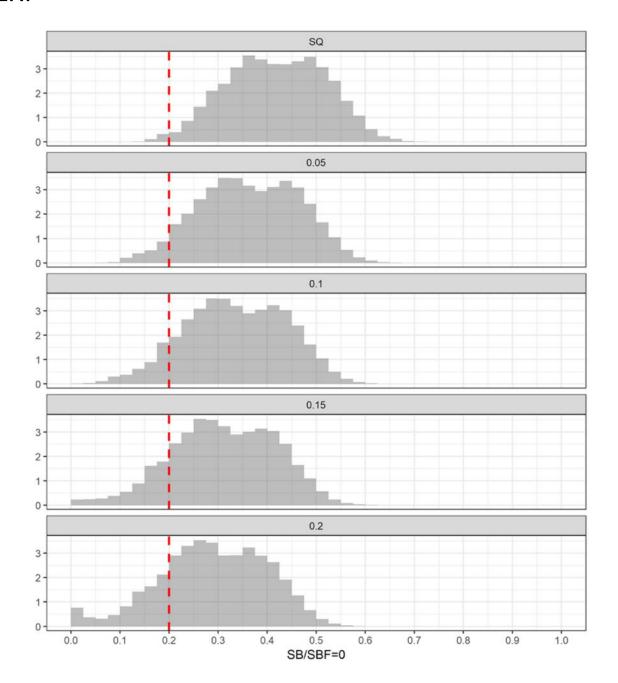


- 2017 YFT assessment (Tremblay-Boyer et al. 2017)
  - A grid of 48 model runs
  - five axes regional structures (2), steepness (3), tag overdispersion (2), tag mixing (2) and size composition weighting
    (2)


#### **ALGORITHM**



- Run 200 projections for 30 years (2016-2045) for each model in the grid
- Future rec= mean rec from SRR + rec devs randomly sampled from the last 10 years of the assessment (2005-2014)
  - Distributed to seasons and regions according to the historical average distribution
- Combine the results across model runs and calculate
  - the % of projections that had a terminal (final year) biomass that was below the agreed LRP ( $20\%SB_{F=0}$  of 2035-2044).
  - the median SB<sub>2045</sub>/SB<sub>F=0</sub>
  - the median  $F_{2042-2045}/F_{MSY}$
- Repeat the above step with different scalars of effort/catch until the future fishing levels that resulted in risk levels of 5, 10, 15, and 20% were identified
- Note scalars applied equally across all fisheries


# TIME EVOLUTIONS OF DISTRIBUTION OF $SB/SB_{F=0}$ FROM SQ PROJECTION





# DISTRIBUTIONS OF SB/SB $_{F=0}$ FOR NOMINATED RISK LEVELS BREACHING LRP







| Risk level | Scalar<br>relative to<br>2013-2015 | SB <sub>2045</sub> /SB <sub>F=0</sub> | F <sub>2042-2045</sub> /F <sub>MSY</sub> |
|------------|------------------------------------|---------------------------------------|------------------------------------------|
| 5%         | 1.180                              | 0.36                                  | 0.58                                     |
| 10%        | 1.285                              | 0.34                                  | 0.63                                     |
| 15%        | 1.380                              | 0.31                                  | 0.67                                     |
| 20%        | 1.465                              | 0.29                                  | 0.70                                     |



### **CONCLUSIONS**

- The method used here to estimate 'limiting' TRPs is consistent with that used in the past (MOW3-WP-02) and seems to be generally accepted by WCPFC.
- However, the results are conditioned on the uncertainty framework used.
  - This analysis -> 2017 YFT assessment + future recruitment
  - Generally speaking, more uncertainty =more risk

### Conclusion



- The median values of  $SB_{2045}/SB_{F=0}$  and  $F_{2042-2045}/F_{MSY}$  estimated here can be interpreted as 'limiting' TRP's for yellowfin tuna, consistent with the nominated levels of risk of breaching the LRP. In order to recommend a specific level of  $SB/SB_{F=0}$  (or  $F/F_{MSY}$ ) as a TRP for yellowfin tuna, it is therefore necessary to:
  - Agree on an acceptable level of risk of breaching the LRP in order to define the minimum TRP in terms of SB/SB<sub>F=0</sub>, (or maximum TRP in terms of  $F/F_{MSY}$ ).
  - Consider other ecological and socio-economic factors that might be relevant in recommending specific TRPs that may be more conservative than the risk-based 'limiting' levels described in this paper.

### CONCLUSION



SC14 is therefore invited to:

- 1.Note the results of the analysis conducted and consider providing advice to WCPFC on minimum levels of SB/SB<sub>F=0</sub> (or maximum levels of F/F<sub>MSY</sub>) that would be consistent with specific levels of risk of breaching the LRP;
- 2.Encourage WCPFC to further consider the matter of acceptable level of risk of breaching the LRP; and
- 3. Consider if there are relevant ecological and/or socio-economic factors that WCPFC should consider in choosing a specific TRP for yellowfin tuna.



### SC14 IS INVITED TO:

- Note the results of the analysis conducted and consider providing advice to WCPFC on minimum levels of SB/SBF=0 (or maximum levels of F/FMSY) that would be consistent with specific levels of risk of breaching the LRP;
- 2. Encourage WCPFC to further consider the matter of acceptable level of risk of breaching the LRP; and
- 3. Consider if there are relevant ecological and/or socio-economic factors that WCPFC should consider in choosing a specific TRP for yellowfin tuna.