

STOCK ASSESSMENT OF SOUTH PACIFIC ALBACORE TUNA

WCPFC-SCI4-2018/SA-WP-05 Tremblay-Boyer L, Hampton J, McKechnie S and Pilling G

> 14th Regular Session of the Scientific Committee Busan, Republic of Korea August 8th-16th

MFCL assessment cheatsheet

Inputs

Process

Catch*

Size composition* (length LL)

Tagging* (if available)

Age-length*

I. Stepwise development from last

assessment

Incl. new features and adjustments to obtain satisfactory model diagnostics

DIAGNOSTIC CASE

2. One-off sensitivities (biological and model)

Outputs

- Model diagnostics
- Key model predictions

(spawning potential; recruitment; depletion by region, etc.)

Data inputs described in SC14/SA-IP-07

MFCL assessment cheatsheet

Inputs

Catch*

Size composition* (length LL)

Tagging* (if available)

Age-length*

Process

I. Stepwise development from last assessment

Incl. new features and adjustments to obtain satisfactory model diagnostics

DIAGNOSTIC CASE

2. One-off sensitivities (biological and model)

3. STRUCTURAL UNCERTAINTY GRID

(based on key sensitivities)

Model diagnostics

 Key model predictions

(spawning potential; recruitment; depletion by region, etc.)

Reference points aggregated across grid model runs

OVERVIEW

- 2015 assessment
- Key changes from the 2015 assessment
- Data inputs
- Stepwise from 2015 to the diagnostic case
- Diagnostics
- Structural uncertainty grid
- Challenges in the current assessment

2015 ASSESSMENT

- Inclusion of age-length data (from CSIRO otoliths)
- Moved from a single region model (2012) to an 8 region model
- "Reference/base case" model was used to represent stock status
- Uncertainty grid of 18 models was used to characterise uncertainty.

DEVELOPMENT OF THE 2018 ASSESSMENT

- 3 more years of data full access to operational data (inc. JP) Time-span: 1960-2016 (i.e. high 2017 catches not included)
- Longline fisheries partially split by flag
- Addition of Index fisheries
- Move from "traditional" to "geostatistical" CPUE
- CPUE includes Japanese data + no filter on targeting clusters
- More realistic recruitment distributions ——> Southern regions
- Maturity at length updated with sex ratio + new MFCL feature

REGIONAL STRUCTURES

GEOSTATISTICAL VS. TRADITIONAL CPUE

Geostatistical CPUE vs. Traditional CPUE

Cell effect Geostatistical (or 'spatio-temporal') surface Vessels Not included

5x5 cells independent

Included as covariate

Targeting group Included as covariate

Included as covariate

Span All assessment region high-mixing

Region-specific low-mixing

INDEX FISHERIES

- Best use of the fully integrated, multi-fleet standardised CPUE analyses
 - Expands spatial and temporal coverage for the indices of relative abundance
 - Avoids assigning the multi-fleet standardised CPUE time series to only one fleet (dynamic and patchy effort of longline fleets in the South Pacific)
- Capture vs. Index fisheries:
 - -- Size data weighted by CPUE for the Index fisheries

(representing the albacore <u>population</u>)

-- Size data weighted by CATCH for the Capture fisheries (representing the albacore <u>catch</u>)

Downweighted catch data to account for index fisheries

MATURITY AT AGE

Age (guarters)

MFCL assessment cheatsheet

Process

Outputs

I. Stepwise development from last

assessment

Incl. new features and adjustments to obtain satisfactory model diagnostics

DIAGNOSTIC CASE

2. One-off sensitivities (biological and model)

3. STRUCTURAL UNCERTAINTY GRID

(based on key sensitivities)

- Model diagnostics
- Key model predictions

(spawning potential; recruitment; depletion by region, etc.)

Reference points aggregated across grid model runs

Size composition* (length LL)

CPUEs*

Inputs

Catch*

Tagging* (if available)

Year

FISHERIES DEFINITIONS

- 16 + 5 fisheries
- 1960-2016
- Quarterly time-steps
- I standardised CPUE in each region (5 Index LL fisheries)
- Length data only
- Few tags

Longline split into: DWFNs, PICTs, AU/NZ

Troll: All fleets

Driftnet: All fleets

CPUE INDICES – TRADITIONAL VS GEOSTATS

MFCL assessment cheatsheet

Inputs

Catch*

Size composition* (length LL)

CPUEs*

Tagging* (if available)

I. Stepwise development from last

Process

assessment

ncl. new features and adjustments to obtain satisfactory model diagnostics

DIAGNOSTIC CASE

2. One-off sensitivities (biological and model)

3. STRUCTURAL UNCERTAINTY GRID

(based on key sensitivities)

Model diagnostics Key model predictions

Outputs

(spawning biomass; recruitment; depletion by region, etc.)

Reference points aggregated across grid model runs

PROGRESSION FROM 2015 TO 2018

PROGRESSION FROM 2015 TO 2018

MFCL assessment cheatsheet

Inputs

Process

Catch*

Size composition* (length LL)

CPUEs*

Tagging* (if available)

I. Stepwise development from last

assessment

Incl. new features and adjustments to obtain satisfactory model diagnostics

DIAGNOSTIC CASE

2. One-off sensitivities (biological and model)

3. STRUCTURAL UNCERTAINTY GRID

(based on key sensitivities)

Model diagnostics

predictions

Key model

(spawning biomass; recruitment; depletion by region, etc.)

Reference points aggregated across grid model runs

FIT TO CPUE DATA

FIT TO LENGTH FREQUENCY DATA

Length (cm)

FIT TO TAGGING DATA

Black = estimated Red = 2015 growth

GROWTH: MIXED SIGNALS *Fit to annual troll modes?*

Black = estimated Green = Chen-Wells

Pacific Community

Communauté du Pacifique

Chen-Wells growth *cf*. Xu et al. (2014)

LIKELIHOOD PROFILE

MFCL ASSESSMENTS CHEATSHEET

Inputs

Process

Outputs

Catch*

Size composition* (length LL)

CPUEs*

Tagging* (if available)

I. Stepwise development from last

assessment

Incl. new features and adjustments to obtain satisfactory model diagnostics

DIAGNOSTIC CASE

2. One-off sensitivities (biological and model)

3. STRUCTURAL UNCERTAINTY GRID

(based on key sensitivities)

 Model diagnostics
Key model predictions
(spawning potential; recruitment; depletion by region, etc.)

Reference points aggregated across grid model runs

SELECTIVITY

Age-class (quarters)

STOCK-RECRUITMENT RELATIONSHIP

RECRUITMENT DYNAMICS

Key model predictions: Spawning potential and recruitment

MSY VS. CATCH

MAJURO/KOBE FOR DIAGNOSTIC CASE

SB/SB_{F=0}

SB/SB_{msy}

MFCL assessment cheatsheet

Inputs

Process

Catch*

Size composition* (length LL)

Tagging* (if available)

I. Stepwise development from last

assessment

Incl. new features and adjustments to obtain satisfactory model diagnostics

2. One-off sensitivities (biological and model)

(based on key sensitivities)

- Model diagnostics
- Key model predictions

(spawning biomass; recruitment; depletion by region, etc.)

Reference points aggregated across grid model runs

ONE-OFF SENSITIVITIES

MFCL assessment cheatsheet

Inputs

Process

Catch*

Size composition* (length LL)

CPUEs*

Tagging* (if available)

I. Stepwise development from last

assessment

Incl. new features and adjustments to obtain satisfactory model diagnostics

DIAGNOSTIC CASE

2. One-off sensitivities (biological and model)

S. STRUCTURAL UNCERTAINTY GRID

(based on key sensitivities)

Model diagnostics

 Key model predictions

(spawning biomass; recruitment; depletion by region, etc.)

Reference points aggregated across grid model runs

STRUCTURAL UNCERTAINTY GRID

- Natural mortality *m* (0.3, 0.4)
- Growth (estimated, fixed at Chen-Wells VB)
- CPUE (traditional, geostatistical)
- Divisor on the size weighting (20, 50, 80)
- Steepness (0.65, 0.8, 0.95)
- \rightarrow 72 model runs

+ note revised grid in Rev2 paper

DEPLETION IN SPAWNING POTENTIAL

Pacific Community

Influential axis I: Natural mortality High value implies more productive stock

Depletion by run over time

Majuro

Influential axis 2: Growth Fixed (Chen-Wells) vs. estimated

Pacific Community Communauté du Pacifique

GRID SUMMARIES BY AXIS

MAJURO PLOTS FOR THE GRID

SB=20%SBF0

SB=20%SBF0

	Mean	Median	Min	10%	90%	Max
C_{latest}	61719	61635	60669	60833	62704	63180
MSY	100074	98080	65040	70856	130220	162000
$YF_{current}$	71579	71780	56680	62480	80432	89000
fmult	6.2	4.96	1.89	2.44	12.05	17.18
$F_{\rm MSY}$	0.07	0.07	0.05	0.05	0.09	0.1
$F_{recent}/F_{\rm MSY}$	0.23	0.2	0.06	0.08	0.41	0.53
SB_{MSY}	71407	68650	26760	39872	100773	134000
SB_0	443794	439800	308800	353870	510530	696200
$SB_{\rm MSY}/SB_0$	0.16	0.17	0.07	0.1	0.21	0.23
$SB_{F=0}$	469004	462633	380092	407792	534040	620000
$SB_{\rm MSY}/SB_{F=0}$	0.15	0.15	0.06	0.09	0.2	0.22
SB_{latest}/SB_0	0.55	0.56	0.33	0.42	0.69	0.74
$SB_{latest}/SB_{F=0}$	0.53	0.52	0.3	0.37	0.69	0.77
SB_{latest}/SB_{MSY}	4	3.42	1.45	1.96	7.07	10.74
$SB_{recent}/SB_{F=0}$	0.51	0.52	0.32	0.37	0.63	0.72
$SB_{recent}/SB_{\rm MSY}$	3.88	3.3	1.58	1.96	6.56	9.67

CHALLENGES

Strong signal in the size data that there is no impact of fishing vs.

Strong signal in the CPUE data that abundance is declining

Pacific Community Communauté du Pacifique

REWEIGHTED SIZE DATA (LENGTH)

CPUE INDICES – TRADITIONAL VS GEOSTATS

CHALLENGES

Strong signal in the size data that there is no impact of fishing

VS.

Strong signal in the CPUE data that abundance is declining

╋

slow or fast growth?

GROWTH CURVES AND DATA

Green = Chen-Wells Black = estimated

Chen-Wells growth *cf*. Xu et al. (2014)

CHALLENGES

Strong signal in the size data that there is no impact of fishing

VS.

Strong signal in the CPUE data that abundance is declining

╋

slow or fast growth?

'slow' growth in troll modes vs. 'fast' growth in the rest of the region (conditional age-length & size data)

 \rightarrow growth as axis in the structural uncertainty grid

GENERAL DISCUSSION

- Difficult stock to assess as not really "observed" until older, except in surface fisheries
- No reduction in size of fish caught over time
- Uncertainty in growth otoliths/longline vs. troll data
- Declines in CPUE with large increases in catch not really observed

GENERAL DISCUSSION: GRID

- The grid spans key axes of uncertainty
- Grid predictions very variable but...

no models suggested overfishing or in an overfished state according to 20% LRP

 Reference points more optimistic than 2015 assessment, but wider range of uncertainty included + updated maturity-at-length increases spawning potential

2015 'base case' used for management advice

 $SB/SB_{F=0} = 0.40^{*}$

2018 grid subset with m = 0.3 (36 models)

```
SB/SB_{F=0} = 0.42^* (full grid: 0.52)
```


FUTURE WORK

• Growth:

- > Alternatives to Von Bertalanffy growth
- > Increase otolith sampling for smaller individuals in Southern regions
- Investigation into longline selectivity changes across the region accounting for oceanography and size-distribution
- Ongoing refinements to the geostatistical approach to standardizing CPUE (including vessel effects)
- Ongoing research into the weighing of data inputs, especially size data