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Abstract 

 

1. The DEB-IBM model (Individual Based Model (IBM) based on Dynamic Energy 

Budget (DEB) model) was applied to investigate the annual trend (2002-2010) in the 

migration rate of skipjack from their spawning grounds to off Japan. 

2. Model settings in the IBM part assuming the averaged vertical distribution of skipjack 

to be 50 m was used for the replication of the skipjack migration as the estimated body 

length composition obtained with the setting in the preliminary experiment explained 

the composition around off Japan well. 

3. In terms of spawning ability, the annual migration rate and its effect on the recent 

decline of skipjack catch around off Japan are discussed. 
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Introduction 

Understanding the basic biology of skipjack (Katsuwonus pelamis) is necessary for their 

stock assessments in the context of biological settings in the stock assessment model and 

interpretations of the model outputs. However, their complex migratory life-cycle makes 

biological assumptions for area definition and connectivity among the areas more difficult. 

One way to compromise this situation is simplification of their migration areas. The 

simplicity might well explain the overall stock trend but still lacks the local trend when it 

comes to the stock in the western north Pacific Ocean. In fact, the discrepancy between 

the overall stock trend of increase and the recent decline in the higher latitude area (around 

off Japan) has been reported with the possibility of range contraction (Kiyofuji et al. 2014). 

One problem in the current model assumption arises from little connections between 

tropical areas and off Japan. However, there are little ways to confirm the connections 

between conventional areas because of the lack of information on skipjack migration via 

the life cycle (Phillips et al., 2018).  

    Individual Based Model (IBM) shed a light on the reevaluation of the connections 

between the conventional areas (Aoki et al., 2017; Phillips et al., 2018). The connections 

based on the biological evidence would provide better explanations for the biological 

settings in the stock assessment model. In conjunction with the skipjack migration among 

areas, other biological settings such as growth and reproduction are expected to have 

different trends in each area. Dynamic Energy Budget (DEB) model is a useful framework 

in terms of environment-dependent estimates of individual’s growth and reproduction 

(Kooijman, 2010). The two models of IBM and DEB have a good affinity because the 

IBM can estimate temperature and food prey environments on the tracks, and the 

environments can be passed into the DEB as an input data for estimation of the fork length, 

body weight, batch fecundity through the times (Martin et al., 2012; Aoki et al., 2017). 

Aoki et al., (2017) devised a framework of combination of these models, which is called 

as DEB-IBM model for skipjack in the western north Pacific Ocean, and the models 

successfully reproduce their body size composition around off Japan. The framework can 

give us the environmentally driven estimates of the growth curve, and batch fecundity in 

each conventional region or newly proposed region (Kiyofuji et al., 2015a) while 

updating them.  

    In this document, we revisited the biological assumptions of the connections and 

reproduction through the years from 2002 to 2010 by using DEB-IBM model, and then 

compared reproductive traits among each latitude. Finally, we discussed these results to 

fill the gap between overall and local trends focusing on the recent catch decline around 

off Japan. 
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Materials and methods 

Model outline 

Because a comprehensive model setting is lengthy and has been already described in the 

literature (Aoki et al., 2017), the model descriptions are briefly mentioned here. This 

model constitutes the Individual Based Model (IBM) based on the Dynamic Energy 

Budget model (DEB). 

    The IBM part was employed with a condition assuming fish migrates by passive 

transport and active swimming which was set to start at the beginning of the juvenile 

stage. Swimming speed and depth was set to be one body length (BL) /sec, and 50 m, 

respectively, because the body length composition around off Japan was well explained 

with this setting (Aoki et al., 2017). Direction of the swimming was defined as the coolest 

direction among surrounding grids in daily temperature field. Oceanic environmental data 

of temperature, eastward and northward ocean currents at the depth of 50 m were used 

from the Hybrid coordinate ocean model (HYCOM) + Navy Coupled Ocean Data 

Assimilation (HYCOM + NCODA Global 1/12° Reanalysis; 

https://hycom.org/data/glbu0pt08/expt-19pt1). 

    The DEB part was applied to estimate the growth of skipjack tuna based on the 

trajectory environments obtained from the particle tracking of the IBM. As the DEB 

model derives metabolic process of an organism as a function of temperature (T) and food 

environment (f, 0<f<1) from the first principles (i.e., mass-energy conservation laws and 

homeostasis of organisms, etc., Kooijman, 2010), fork length and batch fecundity on each 

track can be estimated through the simulation periods. Detailed model descriptions for 

tuna DEB model have been previously reported (e.g. Jusup et al. 2011) and all the settings 

including the food environment follows the previous document (Aoki et al., 2017). 

 

Simulation setting 

In the particle tracking simulation, we located a particle in each grid ranging from 120°E 

- 180°E and 20°S - 20°N (1°×1°, 2400 particles in total). Position of each particle was 

calculated every 3 hours. Release of particles started from November 1st of study year and 

particles were added every month until February, which is based on the historical larvae 

sampling research (Kiyofuji et al., 2015b). In total, we simulated four releases per 

released year, and its annual trend in the migration was explored through years from 2002 

to 2010. In a case of landing on the shore, we terminated the simulation for the particle. 

    We selected the particles released in the northern hemisphere (0 to 20 °N) for 

analysis to focus on the migration in the north western Pacific. The changes in 

https://hycom.org/data/glbu0pt08/expt-19pt1


4 

 

 

environments of temperature and food, physiology of growth and reproduction were 

evaluated in each 5 degrees of latitude by averaging these values in released locations of 

0 to 5°N, 5 to 10°N, 10 to 15°N, and 15 to 20°N. 

 

Results and Discussion 

Annual trends in the migration rate from spawning grounds to off Japan 

Tracks of the particles can capture the potential migration routes from the spawning 

grounds to off Japan through the years from 2002 to 2010 (Fig 1). Overall, the higher the 

latitude of the original released locations, the more particles reached to off Japan. The 

annual trend drastically changes through the years (Fig. 1). For example, particles 

released from 0-5°N in 2002, 2003, 2004, 2009 moved to north-west directions and 

relatively large number of the particles reached to the areas over 20°N (Fig. 1a). On the 

other hand, it showed the west-direction movement in 2006, 2007, 2008, and 2010, which 

results in the small number of the particles reaching to the areas over 20 °N. 

    Aside from the qualitative understanding, we quantified the proportions of particle 

origins reaching to off Japan (Fig. 2). Almost 50% of the particles were from the closest 

area (15-20°N), and the proportions of particles decreased with the released latitude 

decrease. It should be mentioned that the particles released from the tropical areas (0-

10°N) can reach to off Japan through the study years, which is also consistent with the 

recently estimated connections by different models (Senina et al., 2017; Phillips et al., 

2018). These lead to the undoubted connections between the tropical areas and off Japan. 

    Turning attention to the annual proportions of the particles released from the tropical 

areas (0-10°N), the numbers gradually decreased from 2002 (20%) to 2010 (10%) with 

the lowest record (8%) in 2007. Given that it takes approximately 1.5 years to be a fishery 

target size (>40 cm) after hatching, the cohort of the lowest record hatched in Nov 2007 

to Feb 2008 can be seen in the fishery from April to July 2009. Incidentally, this is the 

period of the worst catch recorded in the coastal fishery in off Japan (Nihira 2012). The 

coincidence may suggest that the impacts from the tropical areas on the catch in Japan is 

not negligible, even though the proportion is low. 

 

Reproductive biology in each released region 

Reproduction is one of the key factors affecting population dynamics. Here, the impacts 

of released locations on the batch fecundity as a function of body length were investigated 

(Fig. 3). No remarkable difference was found between released locations until 55 cm FL 

(Fig. 3), and the batch fecundity in the lower latitude areas (0-10°N) slightly increased 

over 55 cm. It is worth noting that the lower the latitudinal locations, the larger the fork 
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length and batch fecundity in the same simulation time. These provide a first indication 

of the physiology having different trends in each released location. 

    We subsequently made more detailed comparisons between the released locations 

by looking at the fork length and batch fecundity as functions of time (Fig. 4). The higher 

the latitude in the released locations, the lower the fork length and batch fecundity 

expected. This was also confirmed by the time reaching to maturity at puberty (beginning 

of energy investment into the reproduction) in each released area showing the 239 days 

(0-5°N), 251 days (5-10°N), 269 days (10-15°N), 306 days (15-20°N) on median (Fig. 5). 

A key message here is that the reproductive traits would differ depending on the area as 

showing relatively low reproductive potentials in subtropical areas (10-20°N) compared 

to that in the tropical areas (0-10°N). However, we have little information to support the 

latitudinal difference in reproductive potential based on the comprehensive observed data 

of batch fecundity vs. age for now. Even though the large parts of the particles derive 

from the subtropical areas (Fig. 2), it needs reasonable and convincing explanations for 

how the low productivity of the subtropical areas can support the whole catch around off 

Japan. 

    To dig in the main factors affecting the difference in the biological traits among the 

released locations, experienced environments of temperature and food since hatching 

were investigated (Fig. 6). The temperature in the tropical areas (0-10°N) was constantly 

higher than that in the subtropical areas (10-20°N). As for the food availability, on the 

other hand, the particles released in the subtropical areas experienced richer food 

environment compared to those released in the tropical areas with the peak around 300 to 

600 days. Briefly, each area is characterized as high (low) temperatures and poor (rich) 

food environment in the tropical (subtropical) area. Given that the growth and the 

reproduction in the tropical area showed greater magnitude than that in the subtropical 

area, the effect of environment on the physiology is probably derived more from the 

temperature than the food availability. 

 

Conclusion 

We revisited the skipjack biology of migration and reproduction by using the DEB-IBM 

model and emphasized that the annual difference in the migration from the tropical area 

to off Japan, and the potential difference in reproductivity between tropical and 

subtropical areas. We demonstrated that: 
 

1) The annual trends of the particle proportions originally from the tropical areas reached 

to off Japan ranged from 8 to 20% with the lowest record in 2007. Taking into account 

the time (1.5 years) needed to grow as large as the target size of the coastal fisheries in 
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Japan, the lowest year coincides with the worst skipjack catch year (2009) around off 

Japan. This may suggest that the impact of the reproduction occurred in the tropical areas 

on the catch around off Japan is not trivial enough to be negligible. 

2) The reproductive potential in the tropical areas (0-10°N) was always higher than that 

in the subtropical areas (10-20°N) because of their accelerated metabolic activity due to 

the high ambient temperature. Thinking with the underlying low batch fecundity in the 

subtropical areas, the overall catch around off Japan may not be supported by only the 

local reproduction.  
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Figure 1. Estimated positions of particles released from latitudes of (a) 0 to 5°N, (b) 

5 to 10°N, (c) 10 to 15°N, and (d) 15 to 20°N from 2002 to 2010. The locations of the 

particles every calculated time period were counted as number of points in each 1°×1° 

grid. 
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(Continued) Figure 1. Estimated positions of particles released from latitudes of (a) 0 

to 5°N, (b) 5 to 10°N, (c) 10 to 15°N, and (d) 15 to 20°N from 2002 to 2010. The 

locations of the particles every calculated time period were counted as number of 

points in each 1°×1° grid.  
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Figure 2. Proportion of particles migrated from the released locations of 0-5°N, 5-10°N, 

10-15°N, and 15-20°N to off Japan area (>20°N) in the studied years from 2002 to 

2010.  
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Figure 3. Model estimates of batch fecundity as the functions of fork length from 2002 

to 2010. The colored lines represented the averages for the released locations of 0 to 

5°N, 5 to 10°N, 10 to 15°N, and 15 to 20°N. 
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Figure 4. Model estimates of batch fecundity (a) and fork length (b) as the functions of 

time since hatching. Colored lines represented the averages for the released locations of 

0 to 5°N, 5 to 10°N, 10 to 15°N, and 15 to 20°N. 
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Figure 5. Model estimates of the days of maturity at puberty in each released region. 

The colors of bars represented the released years from 2002 to 2010. 
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Figure 6. Annual environments of ambient temperature (a) and food environment (b) 

on the tracks from 2002 to 2010. The colored lines show the averages for the released 

locations of 0 to 5°N, 5 to 10°N, 10 to 15°N, and 15 to 20°N. 


