2017 North Pacific Albacore Stock Assessment

13th Regular Session of the Northern Committee

August 28-September 1, 2017

Busan, Republic of Korea

ISC-Albacore Working Group

Purpose

- * Provide an overview of the 2017 stock assessment
 - * Highlight important differences relative to 2014
- * Provide stock status and conservation information
- * Identify key uncertainties and challenges

Similarities to 2014

- Integrated statistical catch-at-age model (Stock Synthesis 3.24AB)
 - Integrates catch, abundance index, & size composition data in maximum likelihood framework
- One well mixed stock on quarterly basis
- * Two-sex model
- * Growth parameters fixed and estimated externally for each sex (Xu et al. 2014: ISC/14/ALBWG/04)
- * One spawning & recruitment period in Quarter 2 (April-June)
- * Maturity: 50% age 5, 100% ≥ age 6 (Ueyanagi 1957)
- * Maximum age: 15 years (Wells et al. 2013: Fish. Res. 147: 55–62)
- Quarterly W-L relationships applicable to both males & females (Watanabe et al. 2006: ISC/06/ALBWG/14)
- Beverton and Holt stock-recruit relationship; steepness (h) = 0.9; median of two independent estimates (Brodziak et al. 2011; Iwata et al. 2011)

Differences Relative to 2014

- * Model time frame: 1993-2015 [1966-2012]
- Natural mortality age-specific for ages 0-2 (Lorenzen (1996) scaling), sex specific age 3+ (0.38 yr⁻¹ males, 0.48 yr⁻¹ females; based on meta-analysis; Teo 2017: ISC/17/ALBWG/07) [fixed at 0.3 yr⁻¹ all ages and sexes];
- Model fit to one index (Japan LL, 1996-2015, Area 2) [four JPN LL and JPN PL indices];
- * Age-based selectivity on juvenile fisheries N of 30°N (Areas 3 & 5) to model changes in availability due to movement [fleets as areas, try to capture availability through changes in selectivity];
- Dome-shaped selectivity on all fisheries (sensitivity run with asymptotic selectivity on US LL fishery – no difference); and
- Stock status evaluated relative to LRP 20%SSB_{current F=0} adopted by NC-WCPFC [suite of potential limit reference points]

Movements

Conceptual model of age-based movements of juveniles; consistent with tagging data from 1960s & 1970s; basis for age-based selectivity on juvenile fisheries N of 30°N

Fishing Areas

- Areas based on cluster analysis of size composition data
- 29 fisheries used in base case model – country-gearseason, area combo – homogenous size comp (& selectivity)

Data

- * Catch data for 29 fisheries, 1993-2015
- * 13 abundance indices developed; model fitted to adult index (JPN LL, 1996-2015); JPN PL index (F17 1993-2015) fitted as a sensitivity run (not shown)
- Size composition 18 fisheries, only 15 were fitted in base case
- Sex ratio JPN research & training vessel catches; not fitted in model; no other sex data available (genetic markers in development)

Data – Temporal Summary

- Model time frame: 1993 to 2015
- Used catch, size composition, and CPUE data available as of 1 Jan 2016
- Most catch time series are continuous over this period; some begin well before this period
- Abundance indices are continuous through this period
- Size composition time series
 beginning in 1966 for 8 of 15
 fisheries

Data Weighting

- Prioritized fit to abundance index
- Size compositions for several longline fisheries (F9, F10, F13, F19 and F20) downweighted (λ = 0.1) because degrade fit to JPN LL index
- Down-weighting resulted in model fits to the JPN LL index roughly similar to the ASPM diagnostic fit
- Effect of downweighting on model results investigated with sensitivity runs (not shown in presentation but in assessment report)

Results – Model Convergence

Red closed circle 2017 base case model - lowest total negative loglikelihood (-372.919) of all 50 model runs (different phasings & jitter)

Results - Primary Index Fit

- Observed (open circles) and predicted (blue line) relative abundance.
- Error bars are the 95% confidence intervals.

Results - Size Composition Fits

Results - Biomass

Total Biomass – 1+

Female Spawning Biomass

Results - Recruitment

- Average recruitment (1993 – 2015) = 201.5M fish
- Slightly below R_o = 226.2M fish
- High uncertainty driven by high uncertainty in estimate of R_o, which largely determines the population scale.

Results - Fishing Mortality

F-at-age averaged over 2012-2014

Age-structured Production Model (ASPM) Diagnostic

Estimated Female Spawning Biomass

Trends in JPN LL index explained by catch & productivity parameters (growth, M, SR) – no process error (recruitment deviates)

Conclusion: (1) JPN LL index is a reasonable proxy of stock trends; and

(2) Base-case model estimates the stock production function & the effect of fishing on NPALB.

2017 North Pacific Albacore Stock Assessment

Provides confidence to the data used, and is a major improvement from 2014.

Likelihood Profile on R_o Diagnostic

- JPN LL index informative on lower limit of population scale, i.e., whether the stock is lower than LRP
- Less informative on the upper limit to the population scale
- R_o profile of the JPN LL index shows relatively small changes in log-likelihood over the range of R_o, which means that the estimated population scale is relatively uncertain.
- Probably due to the moderate exploitation levels of this stock

Sensitivity Analyses

	Biological assumptions			
Natural mortality	Constant M of 0.3 y ⁻¹ for both sexes and all ages (same as 2014 assessment);			
	Constant M of 0.48 and 0.39 y ⁻¹ for female and male albacore of all ages, respectively			
SR steepness	h = 0.75; 0.80; and 0.85			
Growth	CV of L _{inf} is fixed at higher (0.06 & 0.08) levels.			
	Data inputs			
Start year	1966 (same as 2014 assessment). Only the adult index from the Japanese LL Area 2, Q1 (F9) fit. Size composition data from 1966 – 1992 are not fit. Selectivity for all fisheries prior to 1993 are assumed to be the same as in 1993.			
Juvenile index	Fit to the Japan pole-and-line index for F17			
Size composition weighting	Down-weight size composition data of all fisheries ($\lambda = 0.1$) Natural weight all size composition data ($\lambda = 1.0$)			
	Structural Assumptions			
US longline asymptotic selectivity	Assume asymptotic selectivity for USA LL, Areas 2 & 4 (F20)			
Equilibrium catch	Equilibrium catch of each fishery estimated as the average of 10 years during 1983 – 1992.			
Bridging Analysis	Model structure follows the 2014 assessment as close as possible (start year=1966; M=0.3 y ⁻¹ for both sexes; downweight all size composition data; fit to Japan pole-and-line indices)			

- All runs conducted & results are in assessment report;
- In most cases, no difference in trends of SSB, depletion or fishing intensity;
- Some differences in scale, but not large differences

Fishery Impact Analysis

- Two-thirds of catch & impact related to surface fisheries, primarily poleand-line and troll
- On average 70% of annual catch consists of juveniles.

Stock Status Information

Quantity	Base Case	M = 0.3 y ⁻¹	Growth
Quantity			CV = 0.06 for L _{inf}
MSY (t) ^A	132,072	92,027	118,836
SSB _{MSY} (t) ^B	24,770	42,098	22,351
SSB _o (t) ^B	171,869	270,879	156,336
SSB ₂₀₁₅ (t) ^B	80,618	68,169	63,719
SSB ₂₀₁₅ /20%SSB _{current, F=0} ^B	2.47	1.31	2.15
F ₂₀₁₂₋₂₀₁₄ /F _{MSY}	0.61	0.89	0.68
F ₂₀₁₂₋₂₀₁₄ /F _{0.1}	0.58	0.90	0.65
F ₂₀₁₂₋₂₀₁₄ /F _{10%}	0.56	0.81	0.63
$F_{2012-2014}/F_{20\%}$	0.63	0.91	0.71
F ₂₀₁₂₋₂₀₁₄ /F _{30%}	0.72	1.04	0.81
F ₂₀₁₂₋₂₀₁₄ /F _{40%}	0.85	1.21	0.96
F ₂₀₁₂₋₂₀₁₄ /F _{50%}	1.01	1.47	1.16

A – MSY includes male and female juvenile and adult fish

B – Spawning stock biomass (SSB) in this assessment refers to mature female biomass only.

Fishing Mortality

- * Stock status is depicted in relation to the WCPFC-LRP; 20%SSB_{current F=0}) for the stock & the equivalent fishing intensity $(F_{20\%})$
- * Fishing intensity is calculated as 1-SPR $_{xx}$.
- Fishing intensity is a measure of fishing mortality expressed as the decline in the proportion of the spawning biomass produced by each recruit relative to the unfished state. For example, a fishing intensity of 0.8 will result in a SSB of approximately 20% of SSB₀ over the long run.
- Fishing intensity is a proxy of instantaneous fishing mortality (F) & was used because there is no single representative value of F that can be calculated (recall the F-at-age plot)

Stock Status Information - 1

White – CV on L_{inf} Blue – M Black – 2017 base

- * Stock status is depicted relative to LRP; 20%SSB_{current, F=0}) adopted by NC & equivalent fishing intensity ($F_{20\%}$; calculated as 1-SPR_{20\%})
- Estimated female SSB never falls below the LRP during the model time-frame (1993-2015) & does not fall below the LRP when alternative assumptions on M and growth (considered key uncertainties) are evaluated, although risk may be greater

Stock Status Information - 2

- Based on these findings, the following information on the status of the north Pacific albacore stock is provided:
 - 1. The stock is likely not overfished relative to the WCPFC-LRP $(20\%SSB_{current F=0})$, and
 - 2. No F-based reference points have been adopted to evaluate overfishing. Stock status was evaluated against seven potential reference points. Current fishing intensity $(F_{2012-2014})$ is below six of the seven reference points (see ratios in Table), except $F_{50\%}$

Future Projections - Constant F₂₀₁₂₋₂₀₁₄ Intensity Scenario

- Top female SSB trajectory
- Bottom Expected annual catch. Red line is current average catch (2010-2014 = 82,432 t).
- P(SSB_{current}<LRP) is 0.2% in 2020 & <0.01% in 2025
- P(SSB_{current}<LRP) may be higher due to reduced uncertainty in projections.

Future Projections - Constant Catch Scenario

- Top Female SSB under a constant (average catch₂₀₁₀₋₂₀₁₄ = 82,432 t).
- Bottom Projected fishing intensity relative to the current fishing intensity (2012-2014) (red line)
- P(SSBcurrent<LRP) is
 3.5% in 2020 & 30% in
 2025
- P(SSBcurrent<LRP) may be higher due to reduced uncertainty in projections.

Conservation Information

- * Based on these findings, the following information is provided:
 - If a constant fishing intensity (F₂₀₁₂₋₂₀₁₄) is applied to the stock, then median female spawning biomass is expected to decline 63,438 t & there is a < 0.01% probability of falling below the WCPFC-LRP by 2025. However, expected catches will be below the recent average catch level for this stock.
 - * If a constant average catch ($C_{2010-2014} = 82,432 t$) is removed from the stock in the future, then the decline in median female spawning biomass will be greater (to 47,491 t by 2025) than in the constant F scenario & the probability that SSB falls below the WCPFC-LRP is greater by 2025 (30%). Additionally, the estimated fishing intensity will double relative to the current level ($F_{2012-2014}$) by 2025 as spawning biomass declines.

Key Uncertainties

- Addressing the following uncertainties will improve future stock assessments:
 - 1. lack of sex-specific size data,
 - 2. uncertainty in growth and natural mortality, and
 - 3. the simplified treatment of the spatial structure of north Pacific albacore population dynamics
- Including earlier time series (1966-1992) in the model is desirable

Acknowledgements

- The 2017 North Pacific Albacore Stock Assessment was a team effort by the following members of the ALBWG:
 - Steve Teo –USA
 - Kevin Piner USA
 - * Hirotaka Ijima Japan
 - * Hidetada Kiyofuji Japan
 - * Daisuke Ochi Japan
 - * Osamu Sakai Japan
 - Carolina Minte-Vera IATTC
 - Chiee-Young Chen TWN
 - * Zane Zhang Canada
 - * Hui-hua Lee
 - David Itano– USA
 - * Desiree Tommasi USA
 - * Zhe Geng China
- Special thanks to:
 - * Mark Maunder IATTC
 - Allan Hicks– International Pacific Halibut Commission

New ALBWG Chair and Vice-Chair

Dr. Hidetada Kiyofuji - Chair

Dr. Steve Teo – Vice-Chair

2nd ISC - North Pacific Albacore Management Strategy Evaluation Meeting

- * WHEN: October 17-19, 2017
- * WHERE: Vancouver, Canada

* **OBJECTIVES**:

- 1) Review management objectives and performance metrics previously proposed (Yokohama, May 2016),
- 2) Identification of acceptable level of risk for each objective,
- 3) Develop preliminary set of candidate reference points and harvest control rules for testing, and
- 4) Review the work plan and timeline for conducting management strategy evaluation

Questions?

