

NORTHERN COMMITTEE THIRTEENTH REGULAR SESSION

Busan, Republic of Korea
28 August - 1 September 2017
ISC17 - Annex 11
SUMMARY OF ADDITIONAL PBF PROJECTIONS
WCPFC-NC13-2017/IP-04

ISC 1

[^0]
Annex 11
 SUMMARY OF ADDITIONAL PBF PROJECTIONS

International Scientific Committee for Tuna and Tuna-like Species
In the North Pacific Ocean
INTERNATIONAL PBF STAKEHOLDERS MEETING
25-27 April 2017
Mita Kaigisho, Japan

1. BACKGROUND

At the first meeting of the IATTC-WCPFC-NC Joint Working Group on Pacific Bluefin Tuna in September 2016 the International Scientific Committee for Tuna and Tuna-like Species in the North Pacific Ocean (ISC) was requested to evaluate the expected performance of various harvest scenarios under a range of assumptions regarding future recruitment, and to present the results at the ISC Pacific Bluefin Tuna Stakeholders Meeting in April 2017 (Table 1, Scenarios 1-10; Appendix A). ISC was further requested to conduct additional harvest scenarios at the $13^{\text {th }}$ Meeting of the WCPFC (WCPFC13) in December 2016 (Table 1, Scenarios 11-12; Appendix B), and to ensure a robust suite of harvest scenarios useful for stakeholders, the ISC added additional harvest scenarios (Table 1, Scenarios 13-15; Appendix C). The scenarios are intended to provide requisite information for developing future effective conservation and management measures (CMMs).

2. METHOD

Stochastic harvest scenarios were evaluated using the same projection methodology utilized in the 2016 ISC Pacific Bluefin tuna stock assessment (ISC/16/PBFWG-1/05). Using the terminal year of the 2016 benchmark stock assessment as the starting point (2014), trajectories of spawning stock biomass and total yield were projected forward annually from 2015 to 2034 by accounting for removals (catch and natural mortality) and additions depending on the assumed recruitment condition (e.g., low recruitment). For scenarios assuming a catch limit, once the limit was reached future catches did not increase. Projections assuming historical average recruitment conditions were conducted by resampling recruitment annually from the entire series of estimated recruitment in the 2016 stock assessment (1952-2014). Projections assuming low recruitment conditions were conducted by resampling estimated annually from the low recruitment period (1980-1989). A detailed explanation of the projection methodology can be found in Akita et al. (2017)
(ISC/17/PBFWG-1/06).
The expected performance of each harvest scenario was assessed as the probability of achieving a suite of candidate rebuilding targets including (a) the initial rebuilding target of SSB $_{\text {MED } 1952-2014}$ equal to $41,000 \mathrm{t}$ by 2024 , (b) 150% of $\mathrm{SSB}_{\text {MED } 1952-2014, ~ o r ~} 61,500 \mathrm{mt}$ by 2030 , (c) 200% of $\mathrm{SSB}_{\text {MED }} 1952-2014$, or $82,000 \mathrm{mt}$ by 2030 , (d) 20% of the current SSB without fishing (SSB CURRENT, $\mathrm{F}=0$), equal to $141,454 \mathrm{mt}$, by 2030 , (e) 20% of the unfished SSB ($20 \% \mathrm{SSB}_{0}$), equal to $128,893 \mathrm{t}$, by 2034 , and (f) $20 \% \mathrm{SSB}_{0}$, LOW RECRUITMENT equal to $77,247 \mathrm{t}$ by 2034 (Table 2) ${ }^{1}$. Scenarios were considered successful if there was at least a 60% probability of achieving the candidate rebuilding targets. For illustrative purposes the influence of recruitment condition on SSB trajectories is depicted in Figures 1 and 2.

Scenarios 11 and 12 assess the impact of transferring quota of small fish ($<30 \mathrm{~kg}$) to quota for large fish (> 30 kg) on SSB and catch trajectories. It should be noted that these scenarios do not fully account for expected removals of fish by Korean fleets. Historically, Korean fleets did not catch large fish and developing representative fishing mortality estimates could not be accurately determined. This information will be available in the 2018 PBF update stock assessment, at which point these scenarios can be re-evaluated. For illustrative purposes the influence of transfers on SSB trajectories is depicted in Figure 3.

Additional performance measures provided for each harvest scenario included the expected annual yield during the projection period by fishery, the probability of SSB falling below the historical lowest at any time during the projection period, and the probability of catch falling below the historical lowest at any time during the projection period, as well as the stock falling below the median SSB in 2024.

3. RESULTS

Projection results are presented in Table 3 and Figures $4-7$, and can be summarized as follows:

- Different recruitment scenarios forecast entirely different levels of SSB in the future.
- Under average recruitment conditions, all harvest scenarios achieve the initial rebuilding target of SSB ${ }_{\text {MED 1952-2014 }}$ by 2024.
- Under all recruitment conditions with zero removals (no fishing), SSB trajectories achieved all rebuilding targets by approximately 2020 and the initial rebuilding target,

[^1]SSBMED1952-2014, within 2-3 years. These scenarios point to the potential productivity of the current population under varying recruitment conditions (scenario 13).

- Achieving $20 \% \mathrm{SSB}_{0}$ during the projection period is difficult in most of the low recruitment scenarios.
- The probability of SSB falling below the historical lowest at any time during the projection period is low ($<2 \%$) in all projections.
- Scenarios that do not have catch limits for large fish in the EPO and WPO (scenarios 4 and 7), or has a higher catch limit for large fish in WPO (scenario 11), do not achieve the initial rebuilding target, SSB $_{\text {MED1952-2014, }}$ by 2024 under low recruitment conditions.
- Reducing the catch of small fish results in positive impacts on SSB trajectories, even with increases in the catch of large fish in WPO (scenarios 5, 8 , and 12). It was reported that Japan was considering to transfer 200-300 tons of catch limit of small fish to large fish. For example, if 250 t of small fish caught by purse seines targeting small fish in the WPO is transferred to purse seines targeting large fish, the probability of achieving the initial rebuilding target (SSB ${ }_{\text {MED1952-2014 }}$) would improve from 62% to 73%.

4. DISCUSSION

Achieving the initial rebuilding target of SSB MED1952-2014 by 2024 increases the current SSB to 7\%, and efforts should be made to increase SSB as fast as practical. Fastest recovery of the stock occurs when there is no fishing and by 2020 the stock would exceed all SSB targets. While this scenario may be implausible, it points to the resiliency of the stock, and what could be achieved. All other scenarios modulate the potential productivity of the stock, extending the number of years to achieve the SSB target based on size-specific removals and recruitment condition. Given that the recruitment time series exhibits high variability with no apparent trend and current recruitment is at historically low levels, choosing future rebuilding targets based on scenarios assuming low recruitment conditions would be more precautionary; in the short term this could lead to faster rebuilding of the population. If rebuilding to 20% SSB levels is the goal (Targets d-f), scenarios 2 , 10d, and 12 have a greater chance of achieving that goal under low recruitment conditions by 2034. Likewise, if rebuilding to a specified proportion above the initial rebuilding target is the goal, then scenarios $2,6,8,9,10 \mathrm{~b}-\mathrm{e}$, and 12 have a greater chance of achieving the goal under low recruitment conditions by 2034. Regardless of which harvest scenario is chosen, the identification of future rebuilding targets is a longer term objective and should be evaluated assuming plausible recruitment conditions.

While the choice of a rebuilding target involves biological, social, and economic factors, and is clearly a management decision, results suggest that the tested rebuilding targets fall into three
categories based on future gains relative to the initial target of $41,000 \mathrm{mt}$ or 7% SSB. Target-b represents the lowest gain in SSB by 2034, at most a 50% increase. Targets-c and -f represent modest gains, at most a doubling of SSB by 2034. While targets-d and -e represent substantial gains in SSB by 2034 .

5. REFERENCES

Akita, Tetsuya, H. Fukuda, and S. Nakatsuka. 2017. Preliminary analysis of additional future projections for Pacific bluefin tuna requested by WCPFC NC and IATTC. ISC/17/PBFWG-1/06. 17p.

ISC. 2016. Stock Assessment of Bluefin Tuna in the Pacific Ocean in 2016.

Figure 1. Trajectories of SSB under three recruitment scenarios. Solid lines are the median, shaded areas 90% confidence intervals. Target refers to the rebuilding target.

Figure 2. Trajectories of SSB under the current measures with low and average recruitment, illustrated for the explanatory purpose of SSB targets. The bold line refers to the median; and the gray shaded area refers to 90% confidence interval. Horizontal lines show the level of SSB targets, as noted in Table 2.

Figure 3. Trajectories of SSB for three harvest scenarios with varying size-at-catch and transfer characteristics relative to the current management measure trajectory. All projections assume a low recruitment conditions. Solid lines are the median values and target refers to the rebuilding target.

Figure 4. Trajectories of SSB under low recruitment scenarios, including average recruitment ten years after (scenario 15). The dotted line refers to the median; and the gray shaded area refers to 90% confidence interval. Horizontal lines in (a) show the level of SSB targets (red: $41,000 \mathrm{t}$; orange: 61,500 ; purple: $77,247 \mathrm{t}$; yellow: $82,000 \mathrm{t}$; green: $128,893 \mathrm{t}$; blue: $141,454 \mathrm{t}$).

Figure 5. Trajectories of SSB under average recruitment scenarios. The details are the same in Figure 4, except that the scale of y-axis is changed.

Figure 6. Trajectories of total yield under low recruitment scenarios, including average recruitment ten years after (scenario 15). The dotted line refers to the median; and the gray shaded area refers to 90% confidence interval.

Figure 7. Trajectories of total yield under average recruitment scenarios. The details are the same in Figure 3, except that the scale of y-axis is changed.

Table 1. Fishing mortality and catch limit for each scenario.

Harvesting Scenario \#	Fishing mortality in WPO	Catch limit in WPO		Fishing mortality in EPO	Catch limit in EPO	Threshold of small/large fish	Catch limit by country (mt)								
				Japan			Korea		Taiwan		$\underset{\text { EPO }}{\text { EPmercial }}$	$\begin{array}{\|c} \text { EPO } \\ \text { sports } \end{array}$			
		Small	Large				Small	Large	Small	Large			Small	Large	
1	F2002-2004	50\% 2002-2004	Average 2002-04		F2002-2004	$3,300 \mathrm{mt} \mathrm{comm}$.	30 kg	4,007	4,882	718		0	1,700	3,300	-
2	Enough high value to fullfill its catch limit (multiply F2010-2012 by two)	50\% 2010-2012	50\% 2010-12	F2002-2004	50\% 2010-12	3,192		1,393	553		0	155	2,884	-	
3	F2002-2004	50\% 2002-2004	Average 2002-04	F2002-2004	50\% 2002-04	4,007		4,882	718		0	1,700	2,329	-	
4	F2002-2004	45\% 2002-2004	No catch limit	F2010-2012 (multiply F2002- 2004 by 1.3451)	No catch limit	3,606		-	646	-	0	-	-	-	
5	F2002-2004	45\% 2002-2004	No catch limit	F2002-2004	$3,300 \mathrm{mt} \mathrm{comm}$.	3,606		-	646	-	0	-	3,300	-	
6	F2002-2004	45\% 2002-2004	Average 2002-04	F2002-2004	$3,300 \mathrm{mt} \mathrm{comm}$.	3,606		4,882	646		0	1,700	3,300	-	
7	F2002-2004	35\% 2002-2004	No catch limit	F2010-2012 (multiply F2002- 2004 by 1.3451)	No catch limit	2,805		-	503	-	0	-	-	-	
8	F2002-2004	35\% 2002-2004	No catch limit	F2002-2004	$3,300 \mathrm{mt}$ comm.	2,805		-	503	-	0	-	3,300	-	
9	F2002-2004	35\% 2002-2004	Average 2002-04	F2002-2004	$3,300 \mathrm{mt} \mathrm{comm}$.	2,805		4,882	503		0	1,700	3,300	-	
10	Fullfill a target with 60%	No catch limit		Fullfill a target with 60%	No catch limit	-		-	-	-	0	-	-	-	
11	F2002-2004	50\% 2002-2004	"Average 2002-04 catches in WPO (all sizes)" minus "50\% 2002-04 catches in WPO $(<30 \mathrm{~kg}) "$	F2002-2004	3,300 mt comm.	4,007		8,889	718	718	0	1,700	3,300	-	
12	F2002-2004	25\% 2002-2004	"Average 2002-04 catches in WPO (all sizes)" minus "25\% 2002-04 catches in WPO $(<30 \mathrm{~kg}) "$	F2002-2004	3,300 mt comm.	2,003		10,893	359	1,077	0	1,700	3,300	-	
13	No fishing						0	0	0	0	0	0	0	0	
14	F2002-2004	50\% 2002-2004	Average 2002-04	F2002-2004	3,300 mt comm.	85 kg	4590*	3718*	718		0	1,700	3,300	-	
15	F2002-2004	50\% 2002-2004	Average 2002-04	F2002-2004	$3,300 \mathrm{mt}$ comm.	30 kg	4,007	4,882	718		0	1,700	3,300	-	

*These catch limits are provisional and should be revised if this measure to be implemented.

Table 2. List of performance indices

Target-a: $\quad 41,000 \mathrm{t}$, Initial rebuilding target (SSBMED1952-2014) by 2024;
Target-b: $\quad 61,500 \mathrm{t}, \quad 150 \%$ of initial rebuilding target by 2030 ;
Target-c: $\quad 82,000 \mathrm{t}, \quad 200 \%$ of initial rebuilding target by 2030 ;
Target-d: $\quad 141,454 \mathrm{t}, \quad 20 \%$ SSB $_{\text {Current }, \mathrm{F}=0}$ by 2030;
Target-e: $\quad 128,893 \mathrm{t}, \quad 20 \% \mathrm{SSB}_{0}$ by 2034.
Target-f: $\quad 77,247 \mathrm{t}, \quad 20 \%$ SSB $_{0}$, Low recruitment by 2034

Table 3: Performance measures for each scenario. Cells under rebuilding targets a-f are color-coded relative to whether the scenario has at least a 60% probability of achieving the candidate rebuilding target. In scenarios 11 and 12 , Korean vessels cannot realize its allocated catch limit for large fish under the current scenario setting because the fleet does not have historical fishing mortality in the specified period.

Appendix A: NC12 Summary Report Attachment D, Annex 2

Attachment D, Annex 2

Formulation of a Pacific Bluefin Tuna Rebuilding Strategy

1. The ISC is requested to evaluate the expected performance of each of the following harvest scenarios, and to make the results available to the Northern Committee and IATTC by April 2017.

Harvest scenarios (see summary table attached): The following scenarios should be evaluated under an appropriate range of assumptions regarding future recruitment (e.g., the "low" and "average" recruitment assumptions used in the ISC's previous set of projections). ${ }^{2}$

1. 2002-04 fishing effort in all WCPO PBF-directed fisheries; 50% of 2002-04 catches of <30kg PBF in all WCPO fisheries; 2002-04 catches of $\geq 30 \mathrm{~kg}$ PBF in all WCPO fisheries; and 3,300 $\mathrm{mt} / \mathrm{yr}$ in EPO commercial PBF fisheries (i.e., current management measures in WCPO and EPO).
2. 50% of 2010-2012 catches (all fish sizes) in all EPO and WCPO fisheries.
3. 2002-04 fishing effort in all WCPO PBF-directed fisheries; 50% of 2002-2004 catches of $<30 \mathrm{~kg}$ PBF in all WCPO fisheries; 2002-04 catches of $\geq 30 \mathrm{~kg}$ PBF in all WCPO fisheries; and 50% of 2002-04 catches in all EPO fisheries.
4. 2002-04 fishing effort in all WCPO PBF-directed fisheries; 45% of 2002-04 catches of $<30 \mathrm{~kg}$ PBF in all WCPO fisheries; F of $\geq 30 \mathrm{~kg}$ PBF at 2002-04 average level in all WCPO fisheries; and F of PBF in EPO PBF fisheries at 2010-12 average level.
5. 2002-04 fishing effort in all WCPO PBF-directed fisheries; 45% of 2002-04 catches of $<30 \mathrm{~kg}$ PBF in all WCPO fisheries; F of $\geq 30 \mathrm{~kg}$ PBF at 2002-04 average level in all WCPO fisheries; and $3,300 \mathrm{mt} / \mathrm{yr}$ in EPO commercial fisheries.
6. 2002-04 fishing effort in all WCPO PBF-directed fisheries; 45% of 2002-04 catches of $<30 \mathrm{~kg}$ PBF in all WCPO fisheries; 2002-04 catches of $\geq 30 \mathrm{~kg}$ PBF in all WCPO fisheries; and 3,300 $\mathrm{mt} / \mathrm{yr}$ in EPO commercial fisheries.
7. 2002-04 fishing effort in all WCPO PBF-directed fisheries; 35% of 2002-04 catches of $<30 \mathrm{~kg}$ PBF in all WCPO fisheries; F of $\geq 30 \mathrm{~kg}$ PBF at 2002-04 average level in all WCPO fisheries; and F of PBF in EPO PBF fisheries at 2010-12 average level.
8. 2002-04 fishing effort in all WCPO PBF-directed fisheries; 35% of 2002-04 catches of <30kg PBF in all WCPO fisheries; F of $\geq 30 \mathrm{~kg}$ PBF at 2002-04 average level in all WCPO fisheries; and $3,300 \mathrm{mt} / \mathrm{yr}$ in EPO commercial fisheries.
9. 2002-04 fishing effort in all WCPO PBF-directed fisheries; 35% of 2002-04 catches of <30kg PBF in all WCPO fisheries; 2002-04 catches of $\geq 30 \mathrm{~kg}$ PBF in all WCPO fisheries; and 3,300 $\mathrm{mt} / \mathrm{yr}$ in EPO commercial fisheries.
10. Constant F in all PBF fisheries, set at the level at which, for a given candidate rebuilding target, the target is achieved at the end of the rebuilding period with 60% probability (relative F among fisheries assumed to be unchanged from the most recent 3-year average).
[^2]
Performance measures:

1. Probability of achieving each of the following candidate rebuilding targets:
a. initial rebuilding target (SSB ${ }_{\text {MED1952-2014 }}$) by 2024
b. 150% of initial rebuilding target by 2030
c. 200% of initial rebuilding target by 2030
d. $20 \% \mathrm{SSB}_{\text {current }, \mathrm{F}=0}{ }^{3}$ by 2030
2. For all scenarios except 6, the time expected to achieve each of the SSB levels listed above, with 60% probability.
3. Expected annual yield during projection period, by fishery (defined in terms of flag, gear, and area).
4. Probability of SSB falling below the historical lowest at any time during the projection period.
5. Probability of catch falling below the historical lowest at any time during the projection period.
6. Taking into account the objectives of the two Conventions, the results of the evaluations described above, any advice from the IATTC scientific staff and/or Scientific Advisory Committee, and the desire to maintain or enhance fishing opportunities in, and benefits from, PBF-directed fisheries to the extent compatible with the need to rebuild the stock, the WCPFC and IATTC will:
7. In 2017, agree on a second rebuilding target to be reached by 2030 (not necessarily the ultimate rebuilding target).
8. Revise their respective management measures as needed to achieve the initial WCPFC rebuilding target by 2024, as appropriate given progress of rebuilding the stock.
9. Revise or adopt conservation and management measures to achieve the second rebuilding target that would become effective after the initial target is met.

Summary of harvest scenarios

	WCPO			EPO	
	F	Catch		F	Catch
		<30kg	$\geq 30 \mathrm{~kg}$		
1	2002-04	50\% 2002-04	2002-04	unlimited	3,300 mt comm.
2	unlimited	50\% 2010-12		unlimited	50\% 2010-12
3	2002-04	50\% 2002-04	2002-04	unlimited	50\% 2002-04
4	2002-04	45\% 2002-04	unlimited	2010-12	unlimited
5	2002-04	45\% 2002-04	unlimited	unlimited	$3,300 \mathrm{mt} \mathrm{comm}$.
6	2002-04	45\% 2002-04	2002-04	unlimited	$3,300 \mathrm{mt} \mathrm{comm}$.
7	2002-04	35\% 2002-04	unlimited	2010-12	unlimited
8	2002-04	35\% 2002-04	unlimited	unlimited	3,300 mt comm.
9	2002-04	35\% 2002-04	2002-04	unlimited	3,300 mt comm.
10	constant depend on	unlimited		constant depend on	unlimited

[^3]| | target | | target | |
| :--- | :--- | :--- | :--- | :--- |

Appendix B: WCPFC13 draft Summary Report Attachment P

WCPFC13 draft Summary Report Attachment P

Outcomes of extraordinary meeting of NC

1. At its 2017 meeting, NC will develop additional measures to further expedite the recovery of PBF stock.
2. In 2017, NC members will take the following voluntary measures to expedite the recovery of the Pacific Bluefin Tuna Stock in 2017.
(1) Japan

Japan will transfer a part of its catch limit for Pacific Bluefin tuna (PBF) smaller than 30 kg (4,007 metric tons) to its catch limit of PBF 30 kg or larger in accordance with a new measure stipulated in paragraph 4 of the draft CMM (Attachment E of the NC Summary Report) if the recommendation from the Northern Committee is endorsed by the Commission. The amount to be used is currently under consideration.

(2) Korea

Korea will make a voluntary payback for its overharvest of PBF 30 kg or larger in accordance with its multi-year plan (see the attached Circular No. 2016/71 dated on December 2, 2016) from its annual catch limit of 718 tons of PBF smaller than 30 kg .
3. NC will strengthen cooperation with IATTC to bear shared responsibilities to expedite the recovery of PBF stock.
4. NC requests that the ISC evaluate the following scenarios-in addition to the other ten scenarios already requested-prior to the anticipated ISC sponsored stakeholder meeting in 2017:

Scenario 11: 2002-04 fishing effort in all WCPO PBF-directed fisheries; 2002-04 catches of PBF (of all sizes) in all WCPO fisheries, within which catches of $<30 \mathrm{~kg}$ PBF are 50% of 2002-04 level; and 3,300 mt/yr in EPO commercial fisheries.

Scenario 12: 2002-04 fishing effort in all WCPO PBF-directed fisheries; 2002-04 catches of PBF (of all sizes) in all WCPO fisheries, within which catches of $<30 \mathrm{~kg}$ PBF are 25% of 2002-04 level; and 3,300 mt/yr in EPO commercial fisheries.

Appendix C: Summary of ISC Scenario Requests

(i) Runs with zero catch for both recruitment scenarios. (Scenario 13)
(ii) Change the threshold of small/large fish to 85 kg in Scenario 1. (Scenario 14)
(iii) Scenario 1 using a recruitment scenario of 10 years of low recruitment and average recruitment thereafter. (Scenario 15).

[^0]: ${ }^{1}$ International Scientific Committee for Tuna and Tuna-like Species in the North Pacific Ocean

[^1]: ${ }^{1}$ There are several definitions of SSB0 in the projection results (Table 2), so the reader might want to be careful. (1)
 SSBcurrent $\mathrm{F}=0$ as requested by the Joint Meeting which uses recruitment information 2004-2013. It is used for target-d.
 (2) $\operatorname{SSB} 0$ as currently used by ISC which uses the historical recruitment information (1952-2014). It is used for target-e.
 (3) SSB0 based on low recruitment scenario (1980-1989). It is used for target-f.

[^2]: ${ }^{2}$ For the fisheries in which F is not explicitly limited under a given scenario, the projections should be run such that F in the fishery is not allowed to exceed ten times the 2010-2012 average level in that fishery.

[^3]: ${ }^{3}$ The time period to be used for 20% SSBcurrent, $\mathrm{F}=0$ shall have a length of 10 years and be based on the years $\mathrm{t} 1=\mathrm{ylast}-10$ to $\mathrm{t} 2=\mathrm{ylast}-1$ where ylast is the last year used in the assessment; and the approach used for calculating the unfished biomass levels shall be based on scaled estimates of recruitment according to the stock recruitment relationship.

