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Executive summary

A key feature of CPUE data is that catch rates tend to be uneven in space. This could be due to
actual trends in abundance, which could relate to local environmental conditions, fishing fleets in
specific locales using gear that increases catchability, low fishing effort in areas which give inaccurate
average catch rates, oceanography conditions that increase catchability by, for instance, making fish
more vulnerable to fishing gear (thermocline), or simply chance.

Geostatistical approaches to CPUE standardization have become more prevalent in recent years,
due in part to improvements in algorithms which has made them more computationally efficient
and the increased exposure in the fisheries literature. Geostatistics explicitly models the spatial
structure in the response variable, that is, the fact that observations that occur closer in space are
more likely to be similar.

The current paper presents an exploration of the potential of applying this method to WCPO
longline operational data, and highlights both the benefits and some of the challenges. These
analyses generated time series of standardised CPUE used as one-off CPUE sensitivities for the
yellowfin and bigeye assessments, and also the regional weights used in other model runs of those
assessments.

Basin-scale oceanographic information can be easily included within these models. When oceanogra-
phy was included as part of the standardized indices, there was little difference in the index over time
by region, though the regional weights did vary slightly by shifting some of the abundance towards
region 1 where there is a clear thermocline feature. Comparison of the influence of oceanography
variables on bigeye vs. yellowfin catch rates also underscores the challenges of disentangling the
impacts of oceanography on catchability vs. abundance that emerge with the inclusion of this type
of covariates in CPUE standardization.

There are a number of logistical advantages to the development of geostatistical approaches to
standardize CPUE data in the WCPO. The Pacific-wide scale of the analysis makes it straight-
forward to generate standardized indices and measures of variations for different region configurations,
unlike current standardization approaches which run on a discrete and isolated regional subset of the
data and need to be relaunched when new regional structures are explored. The previously required
extra step of calculating regional weights in a separate analysis can also be avoided since the model
implicitly scales relative abundance among regions over time. The work presented here is an overview
of ongoing research on this topic, which will be pursued collaboratively in the inter-sessional season.
Moving forward, we identify four priority areas for development:

1. Modelling of the relationship between oceanography covariates and catch rates needs to
be refined to ensure the model properly captures the spatio-temporal effect implied by
oceanography cycles impacting the distribution of thermal layers differently across stock
assessment regions.

2. Current diagnostics for this algorithm are limited and challenging to interpret at finer resolu-
tions. The development of improved diagnostics which summarize model performance over
covariate combinations should be prioritized, with a special attention to optimizing mesh
configuration.

3. The indices required for WCPO assessments must be at the year-quarter scale, and the
algorithm is currently configured such that the spatio-temporal interaction on the geostatistical
surface matches that of the overall time effect used in the analysis. This might yield a
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geostatistical surface that captures too much of the variation in the data, and dampens the
abundance signal instead of clarifying it. Alternative approaches to parameterize the time
interaction should be explored, for instance by constraining the knot × effect via an AR1 at
the annual scale.

4. Continued exploration of alternative mesh configuration should be considered a priority,
especially given edge effects in the WCPO for both the modelled variable and sampling
intensity. Approaches to account for biased sampling intensity across the range of the response
variable should also be considered.

We invite SC13 to:

• discuss the approach used here and the areas of potential development;

• discuss collaborative future work to enhance the analyses.

1 Introduction

Standardized indices of abundance from catch-per-unit-effort are an influential input in stock
assessments as they provide the model with information on temporal trends in relative abundance.
A key feature of CPUE data is that catch rates tend to be uneven in space. This could be due to
actual trends in abundance, which could relate to local environmental conditions, fishing fleets in
specific locales using gear that increases catchability, low fishing effort in areas which give inaccurate
average catch rates, oceanography conditions that increase catchability by, for instance, making
fish more vulnerable to fishing gear (thermocline), or simply chance. In addition, observations that
occur closer in space are more likely to be similar (spatial autocorrelation), which makes it harder
to distinguish the real signal of a spatial effect by an explanatory variable.

The simplest way to standardize against these spatial effects is to include a categorical cell effect in the
GLM model, and indeed that is done in most WCPO CPUE standardizations (e.g. Campbell, 2004;
McKechnie et al., 2017) and commonly in fisheries elswhere. However this approach incorporates a
number of different influences within that effect and also assumes that nearby cells are independent
from each other. There are some spatial effects that impact catchability, others that impact
abundance. Ideally CPUE standardization would remove impacts of catchability but retain the
abundance signal.

Geostatistical approaches to CPUE standardization have become more prevalent in recent years,
due in part to improvements in algorithms which have made them more computationally efficient,
and increased exposure in the fisheries literature (Thorson et al., 2015; Cao et al., 0; Shelton et al.,
2014, see also Petitgas, 2001 for an earlier discussion). Geostatistics explicitly models the spatial
structure in the response variable, that is, the fact that observations that occur closer in space are
more likely to be similar. This allows the spatial autocorrelation to be removed, which increases the
precision in estimates and makes it easier to identify a relationship between response and candidate
explanatory variables.

The current paper presents an exploration of the potential of applying this method to WCPO
longline operational data and highlights some of the challenges. These analyses generated one-off
CPUE sensitivities for the yellowfin and bigeye assessments, and also the regional weights used in
the diagnostic case.
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The two main outputs of interest from this analysis are (1) standardized indices of abundance
by region and (2) regional weights, so the results presented here focus on this. We note however
that there are other potentially useful components produced by these models that are not directly
covered in this paper.

2 Methods

Longline catch-per-unit-effort for bigeye and yellowfin was modelled using a delta-lognormal spatio-
temporal GLM over the Pacific from 1960 to 2015. Standardized indices of abundance by stock
assessment regions (cf. McKechnie et al., 2017) were extracted. The approach accounted for
non-linear effects of temperature layers on catchability. The spatial effect was modelled using a
geostatistical model, following the approach developed by Thorson et al. (2015) but with code
adapted to include non-linear effects for oceanographical covariates, alternative mesh configurations,
and Pacific transformation (see below). We give a brief overview of the approach here but direct
readers to Thorson et al. (2015) and the R package (see below) for a fuller description of the
approach.

2.1 Datasets

1. Pacific-wide longline operational dataset: The operational-level longline data set used
in this analysis contains individual records of fishing activity, whereby on a given day and
time a longline was set by a vessel in a particular location at the one degree resolution,
and the numbers of fish caught of various species reported. The longline set itself would
be characterized by a total number of hooks set and by the number of hooks that were set
between each intermediate float deployed along the length of the line (hooks-between-floats or
HBF). These intermediate floats are used to maintain the fishing gear at a particular depth
in the water column. Catch by species in individuals were modelled for yellowfin and bigeye
tuna. This dataset is further described in McKechnie et al. (2015). The data set, covering
the entire breadth of the Pacific Ocean from around 45◦ N to 40◦ S and over sixty years of
fishing (1952-2015) and both domestic and distant-water fishing fleets, comprised more than
10.5 million sets.

2. Oceanography: Sea temperature at depth profiles were obtained from the ECMWF ocean
reanalysis system ORAS4 (Balmaseda et al., 2013 and see www.ecmwf.int/en/research/
climate-reanalysis/ocean-reanalysis), which was the oceanography database extending
the furthest back in time (1958) that was available at the time of the analysis. Values were
mean-aggregated at the monthly x 1by1 cell resolution to match that of the operational
dataset and further interpolated to convert from temperature at specific depths to depths for
specific temperatures (see Figure 1). Based on existing knowledge of temperature preferences
for bigeye and yellowfin tuna, the depth for temperature layers 12, 15, 18 and 20◦ C were
computed, and an intermediate variable for the extent of the vertical habitat was defined as
the depth difference (in meters) between the 12 and 18◦ C temperature layers. The general
relationship between temperature layer depths and catch rates is shown in Figures 2 and 3.
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2.2 Summary of geostatistical model

We used as a basis the R package SpatialDeltaGLMM developed by James Thorson (Thorson et al.,
2015), available here: github.com/nwfsc-assess/geostatistical_delta-GLMM. We give a brief
description of the model here but focus on describing features added or modified from the original
algorithm.

The geostatistical surface ωs was fitted assuming a Matern covariance matrix which is used to
model the spatial autocorrelation, i.e. how the correlation between observations changes as distance
between them increase, with anisotropy (which entails the relationship does not have to change
in the same rate in all directions) and with a temporal interaction fitted as a random effect, εs,t.
The surface also requires the definition of knots s which are points where the effects are estimated
(shape of the correlation surface between knots assumed to be piecewise linear). Each observation in
the dataset then gets assigned to the knot which is the closest to them (see Figure 4). The ensemble
of these knots are referred to as a mesh and can be configured to have different features, notably in
how densely knots are distributed in edge areas (e.g. Figures 5 and 6).

Inclusion of oceanography splines: Data exploration highlighted the need to model oceanography
covariates with a non-linear relationship. An additional investigation was the examination of
incorporating oeanographic data. We used a zero-mean-constrained spline following the approach
developed by Wood in the package mgcv (Wood, 2006), whereby the estimated spline is centered
at zero for the model, which means it has no effect on the model intercept. This last feature was
desirable as we aim to compare relative abundances across different model structures and these
comparisons might be biased if intercept values are not kept constant across models. The design
matrix for a zero-centered spline was defined here with three knots and using a b-spline as returned
by the s() function in the mgcv package.

A delta-lognormal GLM was then fitted to the occurrence and catch rates observed for each set.
The prediction for the response variable in their respective link space (binomial: logistic; positive:
log), corresponding to observed set i, is:

Pi = βt + ωs + εs,t + f1(i) + f2(i)
whereby β is the year-quarter coefficient at t, ω is the coefficient estimated by the geostatistical
surface for knot s (i.e. the knot to which observation i is the closest), ε is the time-interation effect
for the geostatistical surface at time t, and f1 and f2 are the values for splines of two oceanographical
covariates at observation i. Predictions of standardized abundance for i then excludes the value
for the covariates linked to catchability, here the spline functions for oceanography variables, but
otherwise retains the other predictors of density in space and time:
Pk,t = βt + ωs + εs,t

Density at knot k is then the product of back-transformed (R) binomial and positive effects:
Dk,t = Rbino|k,t ×Rpos|k,t

The overall year-quarter index is the sum of all densities at t weighted by the knot area:

It =
Nk∑
k=1

Ak ×Dk,t

All analyses were performed in R and GLMs were run with TMB (Kristensen et al., 2016) using
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Parameter Explanation

βt year effect
ωs static effect for the geostatistical surface
εs,t temporal effect for the geostatistical surface
f1 continuous effect for first oceanography covariate
f2 continuous effect for second oceanography covariate

algorithms developed in the libraries SpatialDeltaGLMM and INLA (Lindgren and Rue, 2015).

2.3 Definition of Pacific-wide coordinates

The construction of the geostatistical surface requires input data quantifying the distance between
points. We used a two-point equidistant projection (tpeqd) to convert the longitude-latitude into
coordinates where distance was represented correctly across all latitudes. This projection returns a
coordinate system where distances are accurate from all points to two anchor points (Figure 7). We
defined those two anchor points to be at the equator, and occur at longitudes located at the 33%
and 66% quantile of the longitudes present in the dataset.

2.4 Subsampling

The large size of the longline datataset made it impractical to use it in its entirety for the algorithm
to run in a reasonable time. The density of observations was much higher in the 20S to 20N
region, and conversely reduced moving towards the poles. Since geostatistical approaches make the
assumption that the value of the response variable is independent from the intensity of sampling,
we elected to distribute evenly-spaced NK knots in the dataset using a k-means algorithm on the
extent of the surface covered by observations (see example for 100 and 200 knots under two mesh
configurations in Figures 5, 8). An alternative would have been to distribute knots so that they
represent effort densities (i.e. knots around the equator would have been closer together than in
temperate areas) (see discussion at Pilling and Brouwer, 2017).

For exploration purposes to allow the model to run in under 1 hour, we used a very low subsampling
rate where only 10,000 records were retained, but, unless otherwise mentioned, all models presented
here had 500,000 records in the dataset (i.e. ∼ 0.05% sampling) with 200 knots under mesh
configuration B (Figure 6). To select those sets out of the 10million sets + available, two subsampling
schemes were explored: subsampling by flag, whereby the sampling rate was applied to retain even
sampling across flags, and subsampling by knot, whereby the retained N records were distributed
evenly across knots. This effectively resulted in a lower sampling rate for knots in highly fished areas,
but allowed more observations to be retained at the edges of the distribution. It was also a way to
reduce the violation of the model assumption that sampling rates are independent from the response
variable (see above). All results presented here used the knot-subsampling approach, but preliminary
results with the flag-subsampling approach were also presented to the SPC Pre-assessment workshop.
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2.5 Standardized indices of abundance and regional weights

Following the equations described in Section 2.2, standardized indices of abundance used for the one-
off sensitivities in the bigeye and yellowfin assessments were obtained by extracting all fitted effects
for an observation except those that impacted catchability (i.e. the oceanography effects), back-
transforming them and using their product following a standard delta-lognormal standardization
approach. The index for a year-quarter for a region were the area-weighted sum of the standardized
prediction for all cells in the region, and the standard error was extracted directly for year-quarter
effects but otherwise left unadjusted between regions.

The area for each 1 degree cell was calculated via the PBSmapping package (Schnute et al., 2015)
which calculates area by first converting coordinates into northings-eastings. These calculations
tend to be accurate as long as the longitudinal span of observations is small, so we calculated area
individually for each cell.

The regional weights for a species were calculating by aggregating area-weighted indices over a region
for the period defined in the stock assessments as the scaling period (1980-1990), and standardizing
so that the sum over all regions was equal to 1.

3 Results and discussion

Applying geostatistical methods on a dataset with the spatio-temporal span and size of that of the
operational longline dataset used here is a non-trivial exercise with considerable methodological and
computational challenges. To our knowledge none of the other recent applications of geostatistical
models in fisheries science use a dataset matching this scale. The results presented here should
thus be considered an initial overview, and will evolve as we further refine the methods used to
apply this class of models to standardize WCPO catch rates. There are two parallel developments
in the approach presented in this paper: 1) geostatistical methods and the exploration of algorithm
settings on predictions (e.g. mesh configuration, subsampling, etc.); 2) the inclusion of oceanography
covariates in the calculation of relative indices of abundance.

Starting with oceanography, there are pronounced temperature features across the WCPO which are
likely to impact both tuna habitat and their vulnerability to fishing gear (Figure 1). For instance,
the depth of the 15 degree layer is much shallower around the equator than in temperate assessment
regions (see middle panel in Figure 1), which should increase the catchability of fish given sets
performed at the same depth. A gradient in the depth of this temperature layer also occurs from
east to west, which is thought to explain some of the higher catch rates for species like bigeye
tuna in the EPO, and is also impacted by oceanography cycles such as El Niño (not shown here).
All temperature layers clearly appear to relate to catch rates for both bigeye and yellowfin tuna
(Figures 2 and 3). Here we picked 15 ◦ C as a compromise temperature that relates to both bigeye
and yellowfin tuna preferences (Schaefer et al., 2007; Schaefer and Fuller, 2010), to explore the
inclusion of oceanographic covariates in the model. We also included as a trial a measure of vertical
temperature gradient based on the advice of the PAW (see bottom panel Figure 1). The shape of
the relationship between catch rates and the binomial and lognormal component of the model as
estimated as part of the geostatistical model is shown in Figure 9 (note the link-transformed axis).
As expected from the observation of catch rates against this variable, it predicts maximum catch
rates around a 15◦ thermal layer depth of just shallower than 200m for bigeye tuna and around
300m depth for yellowfin tuna. This might be due to the fact that a deeper 15◦ thermal layer
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tends to be indicative of warmer sea surface temperatures, which also relates to higher yellowfin
abundance. Since yellowfin tuna tend to occur at shallower depths than bigeye, it could be that
their catchability is less influenced by the depth of the thermocline, and that the signal picked up
by the model is instead caused by a correlation between the oceanography covariates used and
other variables that impact yellowfin abundance. Disentangling the impacts of oceanography on
catchability vs. abundance is probably the key challenge of accounting for oceanography covariates
in CPUE standardization. In parallel, the shape also differs for the occurrence component of the
model (i.e. binomial) with bigeye occurence in the catch becoming more common again at the
higher thermocline depths. These contrasts between the yellowfin and the bigeye effects needs to be
explored further. When oceanography was included as part of the standardized indices, there was
little difference in the index over time by region (Figure 10 and 11), though the regional weights did
vary slightly by shifting some of the abundance towards region 1 where there is a clear thermocline
feature (see Figure 12 and 13, and also Figure 1).

Increasing the number of knots and observations led to little difference although, pending improved
computer resources, we aim to further explore this axis (Figure 14 and 15). The one component
that appeared to make a difference was the mesh configuration (Figure 16 and 17), possibly because
it changed the distribution of knots in the region boundary areas. This area of the algorithm is a
high priority for further exploration.

While there was a clear relationship predicted between vertical habitat and catch rates (Figure 9, it
is unclear whether the effect is via catchability, abundance or purely correlational. The impact of
including this variable in the standardization was more visible on the distribution of biomass over
space than relative trends of abundance. Given that a temporal switch should be driven by changes
in depth over time due to cyclical events like El Niño, a next step could be to split the model into
subsets delineating regions where the distribution of the thermal layers varies over time (e.g. at the
inter-annual scale) compared to ignoring this, to verify that the algorithm is properly parameterized
to capture this effect.

Despite the methodological challenges, there are a number of logistical advantages to the development
of geostatistical approaches to standardize CPUE data in the WCPO. The Pacific-wide scale of the
analysis makes it straight-forward to generate standardized indices and measures of variations for
different region configurations, unlike current standardization approaches which run on a discrete
and isolated regional subset of the data and need to be relaunched when new regional structures are
explored. The previously necessary extra step of calculating regional weights in a separate analysis
can also be avoided since the model implicitly scales relative abundance between regions over time.
The work presented here is an overview of ongoing research on this topic, which will be pursued
collaboratively in the inter-sessional season. Moving forward, we identify four priority areas for
development:

1. The modelling of the relationship between oceanography covariates and catch rates needs
to be refined to ensure the model properly captures the spatio-temporal effect implied by
oceanography cycles impcating the distribution of thermal layers differently across stock
assessment regions.

2. Current diagnostics for this algorithm are limited and challenging to interpret at finer resolu-
tions. The development of improved diagnostics which summarize model performance over
covariate combinations should be prioritized, with a special attention to optimizing mesh
configuration.

3. The indices required for WCPO assessments must be at the year-quarter scale, and the
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algorithm is currently configured such that the spatio-temporal interaction on the geostatistical
surface matches that of the overall time effect used in the analysis. This might yield a
geostatistical surface that captures too much of the variation in the data, and dampens the
abundance signal instead of clarifying it. Alternative approaches to parameterize the time
interaction should be explored, for instance by constraining the knot × effect via an AR1 at
the annual scale.

4. Continued exploration of alternative mesh configuration should be considered a priority,
especially given edge effects in the WCPO for both the modelled variable and sampling
intensity. Approaches to account for biased sampling intensity across the range of the response
variable should also be considered (e.g. Diggle et al., 2010).

We also note that the availability of computing resources is a challenge especially given the size of
the data set and limitations for analysing this dataset which by agreement requires it to be held on
a single SPC server.

Finally, the PAW made a few suggestions for additional analyses we were not able to perform at
this stage but should be prioritized in the inter-sessional period, notably the filtering of the dataset
to only retain sets after 1980 where the oceanography model is of improved quality (this would
also match the period where vessel identifiers are available throughout the dataset, thus allowing
the inclusion of vessel effects in the standardization); and a formal comparison with ‘conventional’
GLMs where area × time interactions are modelled as discrete variables, to see how (whether) the
shift to geostatistical approaches impacts indices obtained through this first, easier to apply method.

4 Acknowledgements

We thank James Thorson for making his code publicly available and creating a number of resources
to facilitate the application of geostatistical approaches to fisheries dataset. We thank all CCMs for
the provision of the operational data used in this analysis.

References
Balmaseda, M. A., Mogensen, K., and Weaver, A. T. (2013). Evaluation of the ecmwf ocean reanalysis
system oras4. Quarterly Journal of the Royal Meteorological Society, 139(674):1132–1161.

Campbell, R. A. (2004). CPUE standardisation and the construction of indices of stock abundance
in a spatially varying fishery using general linear models. Fisheries Research, 70:209–227.

Cao, J., Thorson, J. T., Richards, R. A., and Chen, Y. (0). Spatio-temporal index standardization
improves the stock assessment of northern shrimp in the gulf of maine. Canadian Journal of
Fisheries and Aquatic Sciences, 0(ja):null.

Diggle, P. J., Menezes, R., and Su, T.-l. (2010). Geostatistical inference under preferential sampling.
Journal of the Royal Statistical Society: Series C (Applied Statistics), 59(2):191–232.

Kristensen, K., Nielsen, A., Berg, C. W., Skaug, H., and Bell, B. M. (2016). TMB: Automatic
differentiation and Laplace approximation. Journal of Statistical Software, 70(5):1–21.

10



Lindgren, F. and Rue, H. (2015). Bayesian spatial modelling with r-inla. Journal of Statistical
Software, 63(19):1–25.

McKechnie, S., Tremblay-Boyer, L., and Harley, S. J. (2015). Analysis of Pacific-wide operational
longline CPUE data for bigeye tuna. WCPFC-SC11-2015/SA-WP-03, Pohnpei, Federated States
of Micronesia, 5–13 August 2015.

McKechnie, S., Tremblay-Boyer, L., and Pilling, P. (2017). Background analyses for the 2017 stock
assessments of bigeye and yellowfin tuna in the western and central Pacific Ocean. WCPFC-
SC13-2017/SA-IP-06, Rarotonga, Cook Islands, 9–17 August 2017.

Petitgas, P. (2001). Geostatistics in fisheries survey design and stock assessment: models, variances
and applications. Fish and Fisheries, 2(3):231–249.

Pilling, G. and Brouwer, S. (2017). Report from the spc pre-assessment workshop, noumea, april
2017. Technical Report WCPFC-SC13-2017/SA-IP-02, Rarotonga, Cook Islands, 9–17 August
2017.

Schaefer, K. M. and Fuller, D. W. (2010). Vertical movements, behavior, and habitat of bigeye
tuna (thunnus obesus) in the equatorial eastern pacific ocean, ascertained from archival tag data.
Marine Biology, 157(12):2625–2642.

Schaefer, K. M., Fuller, D. W., and Block, B. A. (2007). Movements, behavior, and habitat utilization
of yellowfin tuna (thunnus albacares) in the northeastern pacific ocean, ascertained through
archival tag data. Marine Biology, 152(3):503–525.

Schnute, J. T., Boers, N., and Haigh, R. (2015). PBSmapping: Mapping Fisheries Data and Spatial
Analysis Tools. R package version 2.69.76.

Shelton, A., Thorson, J., Ward, E., and Feist, B. (2014). Spatial semiparametric models improve
estimates of species abundance and distribution. Canadian Journal of Fisheries and Aquatic
Science, 71():1655–1666.

Thorson, J., Shelton, A., Ward, E., and Skaug, H. (2015). Geostatistical delta-generalized linear
mixed models improve precision for estimated abundance indices for West Coast groundfishes.
ICES Journal of Marine Science, 72(5):1297–1310.

Wood, S. N. (2006). Generalize Additive Models: An introduction with R. Chapman and Hall/CRC.

11



5 Figures
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Figure 1: Key oceanography variables with 2017 updated region structure for the bigeye and
yellowfin assessments.
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Figure 2: Relationship between bigeye tuna catch rates and various temperature layer depths.
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Figure 3: Relationship between yellowfin tuna catch rates and various temperature layer depths.
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Figure 4: Diagram of knot assignment by point: the geostatistical surface gets estimated at each
knot value, and each 1 × 1 cell in the dataset gets assigned the value estimate for the knot closest to
it. Here points assigned to a specific knot share the same colour.
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Figure 5: Mesh configuration A: 200 knots for the observed area, low knot density at the edges.
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Figure 6: Mesh configuration B: 200 knots over the observed area, higher knot density in the edges.
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Figure 7: 5 × 5 Pacific coordinates back-transformed from tpeqd projection with the 2017 bigeye
and yellowfin assessment regional structure highlighted.
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Figure 8: Mesh configuration used for exploratory models: 100 knots, low knot density at the edges.
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Figure 9: Fitted effect of the 15th degree layer on BET and YFT catch rates, with and without the
inclusion of the additional delta 12-18 ◦ C layer, and for the binomial and lognormal components of
the model.
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Figure 10: Comparison of BET mean-centered standardized abundance indices when one or two
oceanography covariates are added to the standardization.
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Figure 11: Comparison of YFT mean-centered standardized abundance indices when one or two
oceanography covariates are added to the standardization.
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Figure 12: BET comparison for regional weights

Figure 13: YFT comparison for regional weights
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Figure 14: Comparison of BET mean-centered standardized abundance indices under different knot
configurations.
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Figure 15: Comparison of YFT mean-centered standardized abundance indices under different knot
configurations.
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Figure 16: Comparison of BET mean-centered standardized abundance indices under different mesh
configurations.
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Figure 17: Comparison of YFT mean-centered standardized abundance indices under different mesh
configurations.
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