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Executive summary 

- The effects on the ocean pelagic ecosystem, especially tuna resources, of ocean acidification 

and climate change are poorly known. This research presents an update of the previous 

yellowfin tuna SEAPODYM model (the last reference SEAPODYM model for Pacific 

yellowfin tuna was presented in 2015).  

- SEAPODYM is a useful modelling framework to investigate the impact of climate changes on 

tuna populations. It integrates key relationships between fish population dynamics and the 

environmental conditions of their marine ecosystem in a spatially explicit representation, with 

a robust estimation approach of population dynamics and fisheries parameters.  

- Elements of the yellowfin model which have been improved include additional fisheries catch 

data, the incorporation of enhanced multi-climate model approaches to projecting climate 

impacts, and an approach to quantify the plausible impacts of ocean acidification on yellowfin 

tuna, based on laboratory experiments. Critically for managers this paper presents novel 

projections of potential impacts arising from a range of ocean warming scenarios, and the likely 

compounding effects of concurrent ocean acidification. 

- The new reference model provides a better fit to catch data. It is characterized by changes in 

the thermal habitats both for spawning and feeding yellowfin. The larval distribution is more 

strongly contrasted between areas than previously, with less dense concentrations in the central 

equatorial but higher densities in the eastern and western regions. There is increased 

convergence with MULTIFAN-CL biomass estimates, especially in the main fishing grounds 

in the tropical regions.  

- The fishing impact over the historical period is predicted to have reduced the spawning biomass 

by an average of 35% in 2010 in the whole Pacific with much higher impact (>50%) in the 

equatorial eastern and western Pacific.  

- This new reference solution, without fishing impact, provides initial population conditions and 

model parameterization for the climate change projections, under the IPCC RCP8.5 (“Business 

as usual”) scenario, and with atmospheric forcings from five different Earth Climate models. 

Three additional runs for each forcing simulate low, medium and high sensitivity of larval stage 

to ocean acidification. Thus, the ensemble simulation has 20 members in total. 

- The predicted impact of climate change on this yellowfin tuna population is mainly driven by 

the change in the spawning habitat (temperature and productivity) and subsequent larval 

recruitment with a decrease in the WCPO and increase in the EPO. 

- The additional impact of ocean acidification is minor. There is no discernible impact when 

considering the low sensitivity scenario, very small effects (>5%) by the end of the century in 

the eastern equatorial Pacific ocean with the intermediate scenario S1 and a stronger negative 

impact reaching locally -10% in 2050 and -15% in 2100 with the high sensitivity scenario. 

- The temporal trends in larval biomass predicted by all simulations are relatively stable in the 

WCPO until 2050 and start to decrease in the second half of the century, while the range of 

model responses widens after the 2060s. 
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- In the WCPO, three periods can be isolated. Until 2050, there is no detectable impact outside 

of natural variability. After a rapid shift around 2050, a second regime of lower productivity is 

maintained until 2080. Finally, the end of the time series is marked by one more decline in 

productivity with a wider range of uncertainty. 

- In 2050, the most obvious changes relative to the first decade of the century are a large increase 

of unfished biomass in the ETPO (+37% on average) and a moderate decrease in the WTPO (-

14% on average).  

- The new ensemble approach appears robust as there is not one single or couple of models 

dominating the average trends, nor are trends observed with any model changing in parallel 

with another over time.  

- This general framework can be now used to project the impact of fishing that remains the major 

external driver of the tuna population dynamics. While we used to apply a simple scenario 

relying on the mean fishing effort observed over recent years, it would be useful to develop 

alternative scenarios with sustainable long term objectives proposed by the WCPFC Scientific 

Committee.  
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Introduction  

Since the beginning of industrial era, human fossil fuel combustion has released large amounts of 

CO2 into the atmosphere, which with other greenhouse gases, lead to the Earth climate warming. 

The ocean is absorbing a large quantity of this additional atmospheric CO2 derived from 

anthropogenic activity, thus slowing down the warming (greenhouse) effect. The direct impact is 

that the oceans are warming. However, the increased CO2 absorption by the ocean is also shifting 

the oceans carbonate chemical equilibrium towards a lower pH, i.e. more acidic waters and lower 

calcium carbonate saturation states (e.g. Caldeira and Wickett 2003; Feely et al. 2004; Barnett et 

al. 2005). These chemical changes are going to impact many calcifying species, e.g., shell-forming 

marine organisms. Ocean acidification will also likely impact non-calcifying species, e.g. through 

physiology and respiration (Pörtner et al. 2014). The effects on organisms and populations, and the 

consequences at the ecosystem level are largely unknown. Our knowledge is particularly limited 

for the ocean pelagic ecosystem, and this represents a significant challenge to fishery resource 

managers and policy-makers, who need to account for climate change and ocean acidification in 

addition to the strong fishing pressure on fish stocks, including the valuable tuna species. 

The first studies investigating the impact of climate warming on Pacific tuna stocks have included 

changes in water temperature, currents, ocean productivity and dissolved oxygen (Lehodey et al. 

2010, 2011, 2013, 2015; Bell et al. 2013). They have shown various likely responses of tuna 

species, usually driven by the impact of changes on the favourability of present spawning grounds. 

The core habitat of most tropical tuna species such as skipjack and yellowfin are predicted to shift 

from western to central and eastern equatorial Pacific, while the more temperate albacore tuna 

would likely see their spawning grounds shift poleward from tropical to subtropical waters after a 

declining phase of the present spawning grounds until the warming of subtropical waters reaches 

the optimal spawning temperature for this species. With the recent information and findings on the 

potential impact that ocean acidification could have on fish, and especially on tuna larvae (Pörtner 

2014; Bromhead et al. 2015), it is necessary to assess its potential impact together with the other 

climate change effects. An international workshop was held in January 2016 to discuss these issues 

and define the best approach to assess the additional risk on tuna stocks due to ocean acidification 

(Nicol et al. 2016).  

The workshop reviewed the state of knowledge on the impacts of ocean acidification on marine 

fishes (Nicol et al. 2016). It highlighted the great variability of impacts from species to species with 

some support evidence of increasing mortality of eggs and larvae with very high levels of pCO2 

(Baumann et al. 2012; Chambers et al. 2014), behavioural changes and sub-lethal effects such as 

tissue damage (Frommel et al. 2016), and also mechanisms of acclimation (Miller et al. 2012; 

Murray et al. 2014). It was also noted that pCO2 levels in the central and eastern equatorial Pacific 

Ocean are projected to exceed 1000 μatm by 2080, which is a major concern for Pacific tuna 

fisheries as the core distributions for bigeye, skipjack, and yellowfin tuna are predicted to shift to 

this region between 2050 and 2100.   

There was a consensus on the need to focus on the egg and larval stage of tuna which are the life 

stages most sensitive to ocean acidification. One first pilot study (Bromhead et al. 2015) that 

examined the potential impacts of ocean acidification on the eggs and larvae of yellowfin tuna 

provided some inconsistency in results, though it was relatively clear that ocean acidification 

effects on larvae were not evident until pCO2 levels reached above 1500 μatm. A second study 

based on yellowfin larvae showed the detrimental effects of increased pCO2 through histological 

analyses of organs at levels at which significant effects on survival were not yet apparent (Frommel 

et al. 2016). Therefore, introducing an additional mechanism in the model SEAPODYM to test the 
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impact of additional mortality on tuna larvae due to ocean acidification was seen as a priority. This 

report provides the method developed to include ocean acidification impact in the future trends of 

Pacific yellowfin tuna population under climate change projections with SEAPODYM. The 

method uses results from the first laboratory studies on yellowfin tuna, the results of the 2016 

workshop, and also the ensemble simulation approach proposed to account for uncertainty in each 

single Earth Climate model projection (Nicol et al. 2014). 

Method 

SEAPODYM 

The modelling approach of SEAPODYM has been extensively described in previous working 

documents of the WCPFC and in the scientific literature (e.g., Lehodey 2003, 2004, 2008; Senina 

et al. 2008, 2016). Unlike standard assessment model like MULTIFAN-CL or Stock Synthesis, the 

SEAPODYM model equations describe fish population dynamic processes (spawning, recruitment, 

movement, mortality) based on environmental functional relationships with temperature, dissolved 

oxygen concentration and distributions of prey (micronektonic tuna forage). The model simulates 

tuna age-structured population dynamics with different life stages. At larvae and juvenile phases, 

fish drift with currents; later on they become autonomous, i.e., in addition to the currents velocities 

their movement has additional component linked to their size and the habitat quality, as well as 

oceanic currents. The model takes into account fishing and predicts total catch and size frequencies 

of catch by fishery. The spatial dynamics, relying on advection-diffusion-reaction equations is 

fully-explicit, meaning that density of fish cohorts and catch are computed in each cell of a grid 

defined for the model domain. The Maximum Likelihood Estimation approach developed for 

SEAPODYM (Senina et al 2008) takes advantage of this spatially explicit representation by using 

the numerous (>> 100,000) catch/effort and length frequencies of catch data available at these 

resolutions. 

The necessary input variables to run SEAPODYM are 3D (0~1000m depth) water temperature and 

currents, dissolved oxygen concentrations, total vertically-integrated primary production and 

euphotic depths. They are provided by the NEMO-PISCES coupled model (which requires 

environmental forcings for the historical period and the climate change projections, determined 

independently). The additional fields of pH needed for this study are also standard outputs of the 

PISCES model (Aumont et al. 2015).  

 

Environmental forcings 

Historical period 

Rebuilding the past history of the tuna population under the combined effects of fishing pressure 

and natural climate variability (e.g., ENSO) is the first step to provide the most realistic initial 

conditions to start the projections under climate change scenarios. Physical (temperature and 

currents) and biogeochemical (primary production, euphotic depth and dissolved oxygen 

concentration) forcing variables for this historical period are provided by the ocean model NEMO 

(www.nemo-ocean.eu/) coupled to the biogeochemical model PISCES (Pelagic Interaction Scheme 

for Carbon and Ecosystem Studies; Aumont et al. 2015). The ocean physical model is driven by 

the ERA40-INTERIM (1972- 2011) atmospheric reanalysis (atmospheric temperature, zonal and 

meridional wind speeds, radiative heat fluxes, relative humidity, and precipitation) which has been 

http://www.nemo-ocean.eu/
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corrected using satellite data (Dee et al. 2011). All forcing variables are interpolated on the same 

regular grid and same time step prior to use in SEAPODYM simulations. This physical-

biogeochemical forcing is used first to simulate the zooplankton and micronekton functional groups 

(Lehodey et al. 2010a; 2015). Then, optimization experiments are conducted with a historical 

fishing dataset from the Pacific Ocean to obtain optimal parameterization of the model using the 

Maximum Likelihood Estimation (MLE) approach implemented with SEAPODYM (Senina et al., 

2008; 2015; 2016).  

Climate change projections 

The previous studies modelling climate change impacts on tuna stocks with SEAPODYM have 

shown that Earth Climate models have their own biases and errors that can propagate critical biases 

in the projections of tuna populations (e.g., Lehodey et al. 2013). In the conclusion of these earlier 

SEAPODYM studies, it was proposed to run ensemble simulations to account for the uncertainty 

in model forcings, with an envelope of projections rather than a single projection. However, to 

avoid time consuming task of revising the model optimization over historical period of each Earth 

Climate model run, the approach considered was to achieve a single optimal solution derived from 

the best possible historical reanalysis (hindcast), and then to project this solution into the future, 

but using reconstructed forcings made of the sum of the historical mean state and the anomaly of 

the projection for each atmospheric variable (Nicol et al. 2014). The Nicol et al.(2014) approach 

has the advantage of searching for one single and best optimal solution over the historical period, 

and to have all future projections consistent with the historical period since they share the same 

mean state. 

Atmospheric variables (atmospheric temperature, zonal and meridionnal wind speeds, radiative 

heat fluxes, relative humidity, and precipitation) generated by climate change simulations from five 

different Earth Climate models were obtained from the Coupled Model Intercomparison Project 

Phase 5 (CMIP5). The models selected were those that captured cycles similar to El Niño Southern 

Oscillation (ENSO) in their simulations (Bellenger et al., 2013, Table 1). The scenario used is the 

RCP8.5 (business as usual) as defined by IPCC for the 5th assessment exercise. Anomalies have 

been constructed from each Earth Climate model variable by subtracting the monthly climatology 

computed over the historical period (1979-2010). Therefore, the mean state is constrained by the 

historical reanalysis, whereas the short to long-term variability is derived from the Earth Climate 

models and includes climate change projections. Once processed the atmospheric forcings are used 

to drive the same coupled NEMO-PISCES ocean-biogeochemical model used for the historical 

period.  

 

Table 1: Earth Climate models from which atmospheric variables have been used to run NEMO-PISCES 

coupled physical-biogeochemical model that provides input variables to SEAPODYM.  

CMIP5 model name Model / Modelling Centre  

IPSL-CM5A-MR IPSL (Institut Pierre Simon Laplace, France) 

MIROC-ESM MIROC (Model for Interdisciplinary Research on Climate, Japan) 

NorESM1-ME NorESM (Norwegian Climate Centre, Norway) 

MPI-ESM-MR MPI (Max Planck Institute for Meteorology, Germany) 

GFDL-ESM2G GFDL (Geophysical Fluid Dynamics Laboratory, USA) 
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Yellowfin tuna climate change projections with SEAPODYM 

Reference SEAPODYM application to yellowfin tuna 

The optimal solution of SEAPODYM for Pacific yellowfin tuna is numerically solved on a 2° 

regular grid at monthly time step. The age structure of yellowfin is discretized between 0 and agemax 

= 10 (yr) into monthly cohorts for the first five years and a latest cohort aggregating oldest 

individuals. Age-length and age-weight relationships were derived from the MULTIFAN-CL 

estimate (Langley et al 2011). The species is assumed to be opportunistic spawner with a spawning 

success proportional to the spawning habitat index and the larvae stock-recruitment (Beverton and 

Holt) function computed locally at the cell level. The initial conditions at the beginning of the 

simulation (1979) were obtained using the previous reference configuration (Senina et al. 2015). 

Introducing an ocean acidification effect on juvenile tuna in SEAPODYM 

The impact of acidification on the life history of tuna was incorporated by adding a 3rd dimension 

(an acidification effect) to the natural mortality curve. In this case, the mortality increases with 

increasing acidity (Figure 1). The parameterisation of the functional response to pH level is based 

on the experimental study described in Frommel et al. (2016). In the Frommel et al. study (2016), 

the decrease in pH level was found to significantly reduce larval survival by 64% and 70% at pH 

7.3 and 6.9 respectively during the first 7 days. For higher pH levels there are statistically 

insignificant results with a mean reduction of survival at pH = 7.6 by 27% (mean reduction of 27% 

with a range of 6% increase down to 49% decrease). It is therefore assumed that additional 

mortality due to pH is effectively null when pH is above this value. 

According to these findings, the monthly mortality rates of larvae in SEAPODYM were increased 

with decreasing pH as shown on Figure 1. It is assumed that the survival rates observed after 7 days 

in laboratory experiments under different pH conditions are constant over the 1st month of 

development, i.e., during the SEAPODYM larval stage. This seems a conservative assumption 

since the impact can be expected to decrease with size/age. Then, an additional monthly mortality 

coefficient (Figure 1) related to pH is derived from the observed reduction in survival rate due to 

pH conditions. For instance, a 70% decrease in larvae survival at pH 6.9 results in an additional 

monthly mortality coefficient of 1.2.  

Three scenarios are tested with different shapes of the functional relationship to take into account 

the uncertainty of acidification impact at higher pH levels. The scenarios are based on the mortality 

rates estimated at three different pH values by Frommel et al. (2016), taking into account that at 

pH 7.6 the result is statistically insignificant:  

- S1 (solid line in Fig. 1) – the mean scenario based on the three mean values of mortality 

observed in the experimental study;  

- S2 (dashed curve on Fig. 1) – a high sensitivity scenario to ocean acidification, also 

implying that pH could have already have an impact in the Eastern Pacific equatorial zone 

where pH values below 8.0 are regularly observed (Bromhead et al., 2015); and 

- S3 (dotted line on Fig. 3) – a low sensitivity scenario to ocean acidification with the lowest 

reduction at pH 7.6. 
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Figure 1: Change in additional monthly mortality rates of yellowfin larvae deduced from experimental results 

(Frommel et al., 2016) corresponding to 70%, 64% and 27% (red points) decrease in larvae survival during 

first 7 days of life at pH value of 6.9, 7.3, 7.6 respectively. The solid line shows the analytical function 

implemented in SEAPODYM to take into account the impact of acidification with these three mean values 

(scenario S1). Two other curves (dashed, S2 and dotted, S3) are high and low sensitivity scenarios to take into 

account uncertainty at higher levels of pH. The shaded area corresponds to the historical pH values in the ocean. 

Results 

Reference simulation from historical hindcast (1980-2010) 

The last reference SEAPODYM solution for Pacific yellowfin tuna was presented at the 11th 

Scientific Committee of the WCPFC (Senina et al. 2015) and revised in 2016 (Nicol et al. 2016). 

The first solution (NPI-1) was obtained with optimization of the model based on incomplete 

historical geo-referenced fishing data (1980-2010), representing between 60-75% of the total 

landings during the last two decades. The revised reference solution (NPI-2), reported for the first 

time in this paper, was achieved with the full catch-and-effort dataset being raised to the total 

nominal catch. Another major difference from NPI-1 was the implementation of a Holling-III prey 

function, and the implementation of a local response to predator (micronekton) density to replace 

the prey/predator ratio used in the previous definition of the spawning habitat (see Figure 2).  

The NPI-2 solution is characterized by changes in the thermal habitats both for spawning and 

feeding (Table 2, Figure 2). The result in larval distribution is a stronger contrast between areas 

with less dense concentrations in the central equatorial region, but higher densities in the eastern 

and western regions (Figure 3). Note that in the optimization with the updated fishing data the 

primary production series were replaced by satellite-derived variables (1998-2010) in order to fit 

the huge catches by purse-seine fleets following the strong 1997-1998 ENSO event. 

The new thermal habitat of immature and adult fish has a much wider range (32°C to 13.3°C) than 

in previous estimate (31.5°C - 20.6°C). This is consistent with observations from electronic tagging 

showing that yellowfin tuna regularly dive in waters below 18°C and in some cases in waters at 

12°C ambient temperature (Schaefer et al 2007). 
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Table 2: Parameter estimates from two model configurations. NPI-1: NEMO-PISCES-INTERIM forcing with 

incomplete fishing dataset in the likelihood (Senina et al., 2015); and, NPI-2: complete fishing dataset and same 

forcing as NPI-1 prior to 1998 but satellite PP and respective micronekton fields after. Parameter with [ or ] 

were estimated at their lower or upper boundary correspondingly. The dash indicates that the parameter is not 

effective and could not be estimated. 

 

 

The new reference solution NPI-2 provides a better fit to catch data (Appendix A1). The 

comparison with MULTIFAN-CL estimate by region (Appendix A2) shows major differences in 

region 2 where the previous biomass estimate is divided by a factor 10 and much smaller than the 

MULTIFAN-CL estimate. The biomass is divided by two in region 6 but still remains above the 

MULTIFAN-CL estimate and there is a smaller decrease in regions 7 and 4. In the main fishing 

ground areas 3 and 4 of the WCPO, the two models provide close solutions. In region 7, the two 
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models are quite close also if we omit the peak of biomass predicted in 2001 by MULTIFAN-CL. 

This discrepancy has been investigated and it appears that the biogeochemical model did not predict 

a strong enough increase in primary production during this period in the eastern-central equatorial 

Pacific. When replacing the primary production from the biogeochemical model by the satellite 

derived primary production the peak of biomass is much better reproduced (Appendix A3). 

The predicted impact of fishing is readily visible by comparison of simulations with and without 

fishing mortality (Fig. 3 and A4). The fishing impact is particularly strong on the adult population 

with a biomass reduced to 40% or less than 30% of the unfished biomass in the EPO and the western 

equatorial fishing grounds. 

This new reference solution NPI-2 provides the initial population conditions and model 

parameterization for the climate change projections. 

 

 

 

 
 

 
Figure 2: Estimated parameters in the optimization experiments NPI-1 and NPI-2. Evolution of main model 

parameters through population life history: top left – Spawning habitat and stock recruitment functions, bottom 

left: mortality function, top right: mean speed at age and diffusion rate at age, bottom right: change in optimal 

temperature with age (size) for feeding habitat.  
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Figure 3: Yellowfin average spatial distributions of (from top to bottom) young, adult and total biomass with 

(left) and without (right) fishing predicted with revised NPI-2 solution. 

 



11 

 

Projection of climate change effects under scenario RCP8.5 

The well-established approach to deal with uncertainty between models is to run a multi-model 

ensemble simulation, providing a mean trend with a quantified range of uncertainty. Projections 

based on the five selected Earth Climate models atmospheric forcings were computed using the 

same initial conditions and parameterization obtained from the reference historical solution, NPI-

2. In addition, for each Earth Climate model forcing three other simulations (S1, S2 and S3, as 

described in the methods) including a potential pH effect on larval mortality were produced. 

Therefore, a total of 20 different runs compose the ensemble simulation. As only the impact of 

climate change is investigated here, the simulations do not include any projection of fishing effort.  

The predicted impact of climate change on this yellowfin tuna population is mainly driven by the 

change in the spawning habitat and subsequent larval recruitment. The projections achieved with 

the five initial simulations, without including the ocean acidification effect, show average 

anomalies increasing with time over the century and with opposite direction between the EPO and 

the WCPO (Figure 4). Decreases in larval recruitment in the WCPO and increases in the EPO are 

driven by changes in temperature and productivity (prey of larvae).  

The additional impact of ocean acidification is minor. There is no discernible impact when 

considering the low sensitivity scenario (S3). Very small effects (>5%) appear by the end of the 

century in the eastern equatorial Pacific ocean with the intermediate scenario S1 (Figure 5). The 

high sensitivity scenario (S2) shows a stronger negative impact on larval recruitment in the same 

area, with anomalies reaching locally -10% in 2050 and -15% in 2100. Interestingly it shows also 

a visible but small impact currently for the end of the historical period.  

The temporal trends in larval biomass predicted by all simulations are relatively stable in the 

WCPO until 2050 (Figure 6), and start to decrease in the second half of the century, while the range 

of model responses widens after the 2060s. In the EPO, there is no clear temporal trend, but the 

range of cumulated variability from all models is about two times the range simulated over the 

historical period (Figure 6). 

The resulting change in total biomass is presented with the average and its envelope bounded by 

the 5% and 95% quantile values of the 20 runs of the ensemble simulation (Figure 7). In the WCPO, 

three periods can be isolated. Until 2050, there is no detectable impact outside of natural variability. 

After a rapid shift around 2050, a second regime of lower productivity is maintained until 2080. 

Finally, the end of the time series is marked by one more decline in productivity with a wider range 

of uncertainty. In the EPO, the higher variability simulated by the climate projections produce 

higher average total biomass than during the historical period (without fishing). There is a long 

term trend slightly increasing until the end of the 2070s before stabilization and possibly the 

beginning of a decreasing tendency (Figure 7). 

The variability of predicted changes in unfished biomass by large oceanic region and each model 

forcing are illustrated in Tables 3 and 4 for the middle and the end of the century. The minimum 

and maximum values of all simulations for a given model are provided for four oceanic regions, in 

the western (WTPO), central (CTPO) and eastern (ETPO) tropical Pacific, and the north 

subtropical Pacific (NPO). In 2050, the most obvious changes relative to the first decade of the 

century are a large increase of unfished biomass in the ETPO (+37% on average) and a moderate 

decrease in the WTPO (-14% on average). The main contributions to these changes are the MIROC, 

MPI and IPSL model forcings for EPO and IPSL, GFDL and NorESM for the WTPO. By the end 

of the century, the change in the EPO (average +30%) is mainly due to the MPI, NorESM and 

MIROC forcings, and in the WTPO (average -40%) it is due to the IPSL, MIROC and GFDL 

forcings. A substantial decrease in unfished biomass is also observed in the central region CTPO 
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(average -29%) driven by the models MIROC IPSL and GFDL. At least for the period selected 

over the time series and these regions, the mean trend depends on different combinations of model 

tendencies. There is not one single or couple of models dominating the average trends, nor are 

trends observed with any model changing in parallel with another over time.  

 

  

  

  
 

Figure 4: Maps of average distribution from the ensemble simulation of (top-left) yellowfin larvae in Nb/sq. km 

and (top-right) total virgin (without fishing) biomass (top-right) in mt/sq.km predicted by SEAPODYM in 2001-

10. The colour maps for 2050 (2046-55) and 2100 (2090-99) show the average biomass change since 2005 (in 

respective density units) projected to occur under the high emissions scenario RCP8.5. Isopleths gives the 

relative percentage change in biomass with respect to 2005, i.e. 100*(Byear – BREF)/BREF. Black rectangles show 

the oceanic regions used in Tables 3 and 4. 
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Figure 5: Change in yellowfin larval density due to ocean acidification effects included in SEAPODYM, in 2050 

(average 2046-2055) and 2100 (average 2090-2099) for intermediate scenario S1 and high sensitivity scenario 

S2. There is no change for scenario S3. The colour maps show the average biomass change since 2005 projected 

to occur under a high emissions scenario (RCP8.5) with 5 different atmospheric forcings generated by Earth 

Climate models. Isopleths gives the relative percentage change in biomass with respect to 2005, i.e. 100*(Byear – 

BREF)/BREF. 
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Figure 6: Envelope of predictions computed from 20 runs, including five runs without the impact of pH during 

the CC period, and, three runs per model corresponding to S1, S2 and S3 scenarios of ocean acidification impact. 

Top panel is WCPO, bottom panel is EPO. 
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Figure 7: Envelope of predictions computed from an ensemble simulation composed of 20 runs, including five 

runs without the impact of pH during CC period and three runs per model corresponding to S1, S2 and S3 

scenarios of ocean acidification impact. The dashed line is the mean of the ensemble and the envelope is 

defined by the 5% and 95% quantile values of the 20 runs. The ranges by model forcing for the last 10 years 

(2090-2100) are shown with the colour bars at the end of the time series.  

  



16 

 

 

Table 3: Projected changes (in percentages of reference unfished biomass) predicted for yellowfin tuna stock in 

2050 (average over January 2046 – December 2055) from the ensemble simulation (20 runs) for Pacific regions. 

The reference biomass average was computed over the period January 2001 – December 2010. Region 

boundaries:  NPO = 120°E-150°W and 40°N-20°N; WTPO = 120°E -  170°E and 20°N-20°S; CTPO = 120°E -  

170°E and 20°N-20°S; EPO = 150°W-70°W and 30°N-20°S. 

 

Region GFDL  IPSL  NorESM  MIROC  MPI All 

 𝛿𝐵 𝛿𝐵̅̅̅̅   𝛿𝐵 𝛿𝐵̅̅̅̅   𝛿𝐵 𝛿𝐵̅̅̅̅   𝛿𝐵 𝛿𝐵̅̅̅̅   𝛿𝐵 𝛿𝐵̅̅̅̅   

NPO -1 5  6 13  7 9  13 15  6 8 6 

WTPO -17 -12  -23 -18  -13 -12  -11 -9  -8 -7 -14 

CTPO -13 -6  -9 -2  -18 -16  3 6  1 4 -7 

EPO 17 29  30 45  21 26  68 75  48 54 37 

Pacific -18  -14  -19  -2  -7 -12 

 

 

 

Table 4: Projected changes (in percentages of reference unfished biomass) predicted for yellowfin tuna stock in 

2100 (average over January 2091 – December 2100) from the ensemble simulation (20 runs) for Pacific regions. 

The reference biomass average was computed over the period January 2001 – December 2010. Region 

boundaries:  NPO = 120°E-150°W and 40°N-20°N; WTPO = 120°E -  170°E and 20°N-20°S; CTPO = 120°E -  

170°E and 20°N-20°S; EPO = 150°W-70°W and 30°N-20°S. 

 

Region GFDL  IPSL  NorESM  MIROC  MPI All 

 𝛿𝐵 𝛿𝐵̅̅̅̅   𝛿𝐵 𝛿𝐵̅̅̅̅   𝛿𝐵 𝛿𝐵̅̅̅̅   𝛿𝐵 𝛿𝐵̅̅̅̅   𝛿𝐵 𝛿𝐵̅̅̅̅   

NPO -33 -13  -24 -2  19 21  -34 -32  3 5 -14 

WPO -48 -34  -61 -50  -19 -17  -54 -53  -18 -16 -40 

CPO -40 -21  -46 -29  -11 -9  -50 -49  3 6 -29 

EPO 6 45  1 38  45 51  34 40  65 72 30 

Pacific -28  -35  -12  -37  -5 -23 
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Discussion 

While the ocean is warming, it is also absorbing about a quarter of the anthropogenic CO2 released 

into the atmosphere, changing the chemistry of the sea water to more acidic conditions. These 

changes start to have consequences on organisms and ecosystems (Hoegh-Guldberg et al., 2014; 

Pörtner et al., 2014) in terms of habitats and species distributions, trophic network reorganization, 

and biodiversity (invasive species and species extinction). Together with intensive fishing, these 

changes will challenge the global tuna industry and the existing international agreements needed 

to manage highly migratory pelagic species such as tuna, as well as the economy and food security 

of many small Pacific Island Countries (Bell et al. 2013; 2017; Gilman et al 2016). Therefore, 

despite large uncertainties about the future state of the oceans, it is crucial to explore the potential 

impact that climate warming and ocean acidification may have on tuna populations, and then, to 

integrate these results into a precautionary approach for the sustainable exploitation of these stocks. 

SEAPODYM is a useful modelling framework to investigate the impact of climate changes on tuna 

populations. It integrates key relationships between fish population dynamics and the 

environmental conditions of their marine ecosystem in a spatially explicit representation, with a 

robust estimation approach of population dynamics and fisheries parameters. In previous modelling 

studies, the IPCC climate change AR4-A2 scenario (“business as usual”) was used with this model 

to project the future of different Pacific tuna populations (Lehodey et al 2010, 2013, 2015; Bell et 

al. 2013). However, the potential for ocean acidification impact was not included as very little 

knowledge was available to model the effect on tuna biology and thus population dynamics. Recent 

experimental studies on yellowfin tuna (Bromhead et al. 2015; Frommel et al. 2016) have provided 

the first information making this tractable. The information from those studies have been used in 

this research to introduce potential impacts of ocean acidification on the most critical stage (larvae) 

of the fish life cycle.  

The simulation results suggest a weak impact, even with the highest sensitivity scenario. This could 

be expected however, from the relationship to the pH deduced from the laboratory experiments and 

the projected change in pH. By the end of the century, pH at the surface ocean in the tropics is 

projected to decrease from preindustrial levels of 8.17 to 7.77. At this lower level, the detected 

impact on yellowfin tuna larvae reared in laboratory is still weak and only the high sensitivity 

scenario in the model starts to introduce additional mortality on larvae due to pH. With longer time 

scale projections, and predicted lower pH values, e.g. a decrease to 7.5 or lower in 2300 (Hartin et 

al 2016; Frommel et al. 2016), a much more critical impact on larval mortality would be expected. 

An interesting result from this study is the possibility that there could be already a small pH effect 

on larval mortality in the eastern equatorial Pacific with the high sensitivity scenario. If it is the 

case, it could be estimated directly through optimisation experiments. However in absence of a 

large dataset to inform the model on the variability of larvae and small juvenile stages, the model 

will be likely be insufficiently sensitive to estimate the parameters of the functional relationship 

with pH.   

On long-term scales it would be necessary to explore also some genetic capacity to adapt (Munday 

et al 2013). The speed at which adaptation is likely to occur in tuna is not known. There might exist 

already part of the population already more acclimated to lower pH, as in the EPO where there is 

a greater natural variation in pCO2 and acidity levels than in the WCPO. Such plasticity has been 

observed in arctic zooplankton where the sensitivity to acidification is correlated with natural 

exposures to different pCO2 ranges (Lewis et al. 2013). Adaptation due to epigenetic mechanisms 

under environmental influence could also be expected and in that case, change at a much faster rate 

(Feil and Fraga 2012). While laboratory and genetic studies can help to determine the rate and 
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scope of adaptation, it is already possible to test sensitivity analyses, with simulations allowing 

parameters to shift through time (e.g. Lehodey et al. 2015), e.g. toward a higher tolerance to lower 

pH. Further developments combining both laboratory experiments and modelling should explore 

the potential of synergistic effects of temperature and pH changes, with a range of plausible 

scenarios, including the possibility that sensitivity of metabolism to pH disturbance could induce 

a narrowing of thermal tolerance windows (Pörtner 2008). 

We suggest that simulations testing genetic adaptation and synergistic effects should become new 

runs in the ensemble simulation. The ensemble could be also enlarged with projections achieved 

with other coupled physical biogeochemical models, to account for uncertainties associated to these 

models in addition to those generated by the atmospheric forcing. Given the exponential increase 

in computational time that this type of exercise represents, it is extremely helpful to use a reference 

set of atmospheric forcings as those produced for this analysis with bias corrections based on 

historical atmospheric reanalysis. This approach should be proposed as a standard to facilitate the 

use of IPCC model projections outputs.  

The approach developed in this study provides a general framework to investigate the future of 

tuna populations under the impact of climate change. However, it remains to apply fishing impact. 

The major external driver of the tuna population dynamics since the 20th century remains the 

industrial exploitation by fisheries. This impact has been included and estimated in the reference 

model and future projections based on IPCC scenarios should also include a range of fishing 

scenarios. Some simple scenarios can be proposed as the mean fishing effort observed over recent 

years, but the result would likely be biased due to the change in distribution of the resource that 

will likely also drive changes in fishing effort distribution. A more robust option is to assume that 

catch will be removed proportionally to the fish biomass density; however this assumes constant 

catchability over time and space. Another option is to define a maximum allowed catch, at either 

basin scale or for sub-regions that could be dynamically linked to some simple rules (e.g., 

maintaining 40% of spawning biomass). Alternative scenarios could be proposed and the Scientific 

Committee of the WCPFC is an ideal place for starting such a discussion. 
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Supplementary Material 

 

 

Appendix A1 

 

Figure A1: Comparison of spatial maps of validation metrics between two optimization 

experiments for yellowfin: (left) R-squared goodness of fit and (right) squared Pearson correlation 

coefficient 
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Appendix A2 

 

Figure A2: Regional comparison between SEAPODYM and Multifan-CL model predictions for 

total (immature and mature) biomass with the revised INTERIM optimization 
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Appendix A3 

 

 

Figure A3: Variability of tropical (average over 10°S-10°N) total biomass of yellowfin tuna with 

PS catches (proportional to circles) and Southern Oscillation Index. The result from the revised 

INTERIM optimization (left) is compared to the result (right) with a simulation using satellite 

derived primary production. Note the peak in biomass predicted in the EPO with satellite primary 

production in 2001-2004. 
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Appendix A4 

 

 

 

Figure A4: Quantification of the fishing impact of Pacific yellowfin tuna. Spatial fishing impact 

on young and adult population stages is shown with contour lines of the index (BF0-BRef) / BF0 and 

color background indicating the average biomass reduction due to fishing (kg /km2). 

 

 


