
 

 

SCIENTIFIC COMMITTEE 

THIRTEENTH REGULAR SESSION 

 

Rarotonga, Cook Islands 

9-17 August 2017 

 

DEVELOPMENTS IN THE MULTIFAN-CL SOFTWARE 2016-17 

WCPFC-SC13-2017/SA-IP-05 

 

 

 

 

 

 

 

 

 

 

Nick Davies3, Dave Fournier2, Yukio Takeuchi1, Fabrice Bouyé1, and John Hampton1 

 

 

Oceanic Fisheries Programme 

The Pacific Community, Noumea, New Caledonia 

 
 
 
 
 
 
 
 

1 Oceanic Fisheries Programme, The Pacific Community, Noumea, New Caledonia 

2 Otter Research Ltd, North Saanich, British Columbia, Canada 

3 Te Takina Ltd, Whangarei, New Zealand  



 ii 

Table of Contents 

Executive summary ........................................................................................................................................... 4 

1 Introduction ........................................................................................................................................... 5 

2 Development overview ......................................................................................................................... 5 

2.1 Team ...................................................................................................................................... 5 

2.2 Calendar ................................................................................................................................. 6 

2.3 Collaboration and versioning ................................................................................................ 6 

2.4 Compilation framework and Source code repository ........................................................... 6 

2.4.1 Compilation framework ................................................................................................... 6 

2.4.2 Visual Studio 2017 compilation of Windows executable ................................................. 6 

2.4.3 Upgrade to gcc-5.4.0 compiler ......................................................................................... 7 

2.4.4 Source code repository .................................................................................................... 7 

2.5 Developer’s workshops ......................................................................................................... 8 

2.6 Benchmark testing 2016-17 .................................................................................................. 8 

2.6.1 Preceding the Sep.2016 developer’s workshop ............................................................... 8 

2.6.2 Version 2.0.2.1.................................................................................................................. 8 

2.6.3 Version 2.0.2.2.................................................................................................................. 9 

2.6.4 Visual Studio compilation of Windows executable .......................................................... 9 

2.6.5 Test of the improved feature for stochastic recruitments ............................................... 9 

2.7 Postings to website .............................................................................................................. 10 

2.7.1 24 February 2017 – version 2.0.2.1 ................................................................................ 10 

2.7.2 6 April 2017 – version 2.0.2.2 ......................................................................................... 10 

2.8 Independent Peer Review of the 2011 bigeye tuna stock assessment ............................... 10 

2.9 Tool development ............................................................................................................... 11 

2.9.1 R4MFCL ........................................................................................................................... 11 

2.9.2 Testing framework ......................................................................................................... 11 

2.9.3 Viewer ............................................................................................................................ 12 

2.9.4 Condor parallel processing facility ................................................................................. 12 

2.10 User’s guide ..................................................................................................................... 13 

3 Training workshop ............................................................................................................................... 13 

4 New features ....................................................................................................................................... 13 

4.1 Self-scaling Multinomial plus random effects (SSMULT_RE) .............................................. 14 

4.1.1 Rationale ........................................................................................................................ 14 

4.1.2 Methods and Testing ...................................................................................................... 14 

4.2 Dirichlet-Multinomial Likelihood ......................................................................................... 15 

4.2.1 Methods and Testing ...................................................................................................... 16 

4.3 Tail Compression ................................................................................................................. 16 



 iii 

4.4 Simulation mode ................................................................................................................. 17 

4.4.1 Size compositions ........................................................................................................... 17 

4.4.2 Relative abundance indices ............................................................................................ 17 

4.4.3 Tagging data ................................................................................................................... 18 

4.4.4 Status and future work ................................................................................................... 19 

4.5 Autocorrelation in recruitments .......................................................................................... 19 

4.6 Functional forms for age-specific natural mortality ............................................................ 20 

4.7 Likelihood profiling .............................................................................................................. 20 

5 Other enhancements and bug fixes .................................................................................................... 21 

5.1 Extension of multi-sex model feature ................................................................................. 21 

5.1.1 Length-specific selectivity shared among sexes ............................................................. 21 

5.1.2 Various combinations of aggregated/disaggregated fisheries data .............................. 22 

5.1.3 Sex ratio of predicted catch compositions ..................................................................... 22 

5.1.4 Identifiers for sex in output reports ............................................................................... 22 

5.2 Improved standard deviation calculation ............................................................................ 22 

5.3 Improved formulation for logistic selectivity ...................................................................... 22 

5.4 Bug fixes ............................................................................................................................... 23 

5.4.1 Fix to option for increasing the number of spline nodes ............................................... 23 

5.4.2 Fix to the age of common selectivity ............................................................................. 23 

5.4.3 Fix to equilibrium yield curve calculation for multi-sex model ...................................... 23 

5.4.4 Fix to initial population numbers in maximum age class for multi-species/sex models 23 

5.4.5 Fix to the input of size composition data ....................................................................... 23 

5.4.6 Fix to the long int definition for the Windows compilation ........................................... 24 

5.4.7 Fix to the catch calculation for tagged fish .................................................................... 24 

5.4.8 Fix to fish_flags used for DM likelihood ......................................................................... 24 

5.4.9 Fix to parameter labels in xinit.rpt ................................................................................. 24 

5.4.10 Fix to missing components in report “test_plot_output” ............................................ 24 

6 Application of new features ................................................................................................................ 24 

7 Future work ......................................................................................................................................... 25 

8 Discussion ............................................................................................................................................ 25 

9 References ........................................................................................................................................... 26 

10 Tables ................................................................................................................................................... 28 

11 Figures ................................................................................................................................................. 32 

12 Annex ................................................................................................................................................... 37 

12.1 Benchmark testing ........................................................................................................... 37 

12.2 Agenda for Training Workshop, March 2017 .................................................................. 40 



 4 

EXECUTIVE SUMMARY 

 

This paper summarises the developments made within the MULTIFAN-CL software project as carried 
out by the team at the Oceanic Fisheries Programme (OFP, The Pacific Community) from August 2016 to July 
2017 and updates the report of Davies et al. (2016).  

The progress made on implementing new features included: 

• Refining and testing the implementation of an innovative approach for fitting to size 
composition data, using the self-scaling Multinomial with random effects (SSMULT_RE), and the 
development of an alternative approach, the Dirichlet-Multinomial likelihood (DM). 

• Autocorrelation may be estimated in either the independent log-normal recruitments (relative 
to the mean), or the BH-SRR estimated deviates (relative to the BH-SRR prediction). 

• Estimating functional forms for age-specific natural mortality using either a spline function, or 
a function consistent with that described by Lorenzen (1996). 

• A likelihood profile calculation in respect of the derived model quantities for average absolute 
biomass or a level of biomass depletion. 

• A simulation mode for running MULTIFAN-CL as an operating model for generating pseudo-
observations from stochastic projections of size composition data, relative abundance indices, 
and a working algorithm has been developed for generating tagging data. 

Refinements were made to the feature added in 2015-16 for tail compression of size composition data, 
and a number of improvements and corrections were made to the multi-sex feature. Improvements were also 
made to the standard deviation calculations and the formulation of the logistic selectivity function.  

The new features added, and the improvements made to existing features, were of immediate benefit 
for the 2017 assessments. The first four features listed above were applied for investigative model runs, 
sensitivity analysis, or in the final grid of models used to formulate advice for bigeye, yellowfin, or swordfish 
(McKechnie et al. 2017, Tremblay-Boyer et al. 2017, Takeuchi et al. 2017). The improvements made to the multi-
sex feature were pivotal to investigating this model structure as an option for the swordfish assessment 
(Takeuchi et al. 2017). The fifth feature listed above was used to illustrate its potential for using MULTIFAN-CL 
within the management strategy evaluation (MSE) framework being developed at OFP (Scott et al. 2017). 

As in 2016, a 3-day training workshop for stock assessment analysts was held at Nouméa, during March 
2017. This assisted in making the new features accessible to those undertaking the 2017 stock assessments. It 
is recommended that these workshops be a routine calendar item, because they facilitate the rapid use of new 
features, and participants can identify improvements to MULTIFAN-CL that make assessment modelling more 
efficient, e.g. a faster Windows executable. 

Ianelli et al. (2012) reported thirteen recommendations from an independent peer review panel 
specifically relating to MULTIFAN-CL. The rationale for these recommendations is to address the key areas of 
uncertainty for the tuna assessments reported to the Scientific Committee of the Western and Central Pacific 
Fisheries Commission (SC), through improving the biological description of population processes, better 
estimation of observation error, and the improved modelling of fishing mortality. Four of the recommendations 
remain yet to be implemented in MULTIFAN-CL and this was not addressed during 2016-17.  Rather, resources 
were directed to consolidating and improving the methods for fitting to size composition data. This was because 
of the importance of these data in WCPO tuna stock assessments. The model uncertainty due to assumptions 
made for the relative importance amongst the various data types included in the integrated modelling approach 
has dominated most fisheries assessment models. The self-scaling properties of the SSMULT_RE and DM 
approaches allow effective sample sizes to be estimated based upon robust statistical methods, and this offers 
a way to reduce this area of model uncertainty. Consolidating their development has therefore been a priority 
for 2016-17. Also, a number of tasks arose during 2016-17 that were unforeseen and were a priority for the 
2017 assessments, including making improvements to the multi-sex feature, and the developing functional 
forms for age-specific natural mortality. It is therefore reasonable to maintain some flexibility in the priority of 
project tasks, and the four recommendations of Ianelli et al. (2012) will be part of the project plan for 2017-18. 
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The key components recommended for the MULTIFAN-CL project during 2017-18 are itemised below: 

Peer review recommendation (Ianelli et al. 2012) Implementation 

b. Non-uniform size bins Development 

c. Long-term tag loss Development 

d. Tags inform movement  Development 

k. Maturity-at-length Development 

  

Other new features Implementation 

Self-scaling multinomial with random effects and 
Dirichlet-Multinomial 

Simulation testing, draft report 

Simulation mode – generating pseudo-observations Development 

Initial biomass approximates the equilibrium unexploited 
biomass 

Testing 

Exclude reporting rates from tag predictions during 
mixing period 

Testing 

Region-specific yield estimation Testing 

Tags inform growth Development 

 

 

1 INTRODUCTION 

MULTIFAN-CL is a statistical, age-structured, length-based model routinely used for stock assessments 
of tuna and other pelagic species. The model was originally developed by Dr Dave Fournier of Otter Research 
Ltd and Dr John Hampton (The Pacific Community) for application to south Pacific albacore tuna (Fournier et al. 
1998). 

MULTIFAN-CL is an integrated age-structured and length-based population model which is described in 
detail in the User’s Guide (Kleiber et al. 2017). It is typically fitted to total catch, catch rate, size-frequency and 
tagging data stratified by fishery, region and time period. For example, recent tropical tuna assessments (e.g. 
Tremblay-Boyer et al. 2017, McKechnie et al. 2017) encompass a time period of 1952 to 2016 in quarterly time 
steps, and model multiple separate fisheries occurring in 9 spatial regions specified these models. The main 
parameters estimated by the model include: initial numbers-at-age in each region (usually constrained by an 
equilibrium age-structure assumption), the number in age class 1 for each quarter in each region (the 
recruitment), growth parameters, natural mortality-at-age (if estimated), movement, selectivity-at-age by 
fishery (constrained by smoothing penalties or splines), catch (unless using the catch-conditioned catch 
equation), effort deviations (random variations in the effort-fishing mortality relationship) for each fishery, 
initial catchability, and catchability deviations (cumulative changes in catchability with time) for each fishery (if 
estimated). Parameters are estimated by fitting to a composite (integrated) likelihood comprised of the fits to 
the various data types, and penalized likelihood distributions for various parameters. 

Each year the MULTIFAN-CL development team works to improve the model to accommodate changes 
in understanding of the fishery, to fix software errors, and to improve model features and usability. This 
document records changes made since August 2016 to the software and other components of the MULTIFAN-
CL project both for the current release version (2.0.2.2), and the current unreleased development version, and 
updates the report for the previous period, 2015-16, (Davies et al. 2016).  

2 DEVELOPMENT OVERVIEW 

2.1 Team 

The senior developer of MULTIFAN-CL is Dr Dave Fournier, of Otter Software in Canada. Assisting with 
programming is Nick Davies, with occasional programming carried out by Yukio Takeuchi and John Hampton 
(SPC, New Caledonia). Other tasks include testing and debugging (ND, JH, and Fabrice Bouye (SPC)); 
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documentation (ND); and planning and coordination (DF, ND, and JH). Related project software are developed 
or managed by FB (MULTIFAN-CL Viewer, Condor, GitHub, Jenkins), ND, and Robert Scott (R4MFCL). 

2.2 Calendar 

August – November: Testing, planning and ongoing code development, Developer’s workshop 

December – February: Testing and ongoing code development 

March: Developer’s workshop 

April-July: Testing, ongoing code development and support for stock assessments 

2.3 Collaboration and versioning 

The repository and overall development are coordinated via the GitHub website on GitHub.com at 
https://github.com/PacificCommunity/ofp-sam-mfcl which is administered by Fabrice Bouye (fabriceb@spc.int) 
(section 2.4.4). 

Problems with MULTIFAN-CL operation or compilation have been reported to the project management 
website so as to maintain a list of desired enhancements, and to allocate tasks among the project team. Some 
of the tasks identified during the previous reporting period (2015-16) have been addressed in the current period 
through the model developments completed in 2016-17. A main trunk exists for the MULTIFAN-CL source code 
from which release versions are posted, and a development branch has been created to hold recent versions of 
the source currently being developed and tested. A formal testing procedure has been designed before source 
code is merged from the branch to the trunk, and a manual for the testing of new compilations, standardizing 
the source code compilation procedure, and posting of executables has been drafted. 

2.4 Compilation framework and Source code repository 

2.4.1 Compilation framework 

A continuous integration facility allows for automatic nightly compilations of the MULTIFAN-CL source 
on the master branch. This automation is done using the software called Jenkins (https://jenkins-ci.org/): an 
Open Source continuous integration tool that comes bundled with a web server used for administration. This 
software is now installed on the Virtual Machine (VM) that is dedicated to MULTIFAN-CL development.   

In this tool, we’ve added a custom scheduled task that automatically retrieves the MULTIFAN-CL source 
code out of the GitHub code repository (master branch); it also retrieves required libraries for the compilation. 
When done, our task compiles both debug and optimized versions of the software. We’ve also configured this 
task to produce code documentation out of the source code and to run some C++ code quality checking.  

Doing a nightly compilation allows us to find out more quickly whether issues have been included in the 
source code repository without being solved by the developer. It also helps us identify issues in the makefile 
configurations that may prevent the compilation of MULTIFAN-CL on some more neutral environment (i.e.: on 
a machine that is different from the one of the developer’s). So far, our nightly builds have a 99% compilation 
success rate.   

Although it was intended to extend this facility to support automated builds of the Windows release 
executable in 2016, this was not achieved. It is also intended to add to the Jenkins tool the running of automated 
tests using example fish model data, and, in the future, unit tests for the software. 

A directory structure on the dedicated VM was used that is mirrored on all the developer’s platforms in 
respect of source code Projects/, associated libraries libs/, and Testing/ directories. This ensures portability of 
source and makefiles among the developers and the automated build software. 

2.4.2 Visual Studio 2017 compilation of Windows executable 

The MinGW cross-compiler has been used to build the executable for the 64-bit Windows platform but 
it has performance issues, with, by comparison, around half of the computational performance of the Linux 
executable (based on rough tests). This difference in performance is evident in recent versions of MULTIFAN-CL 

https://github.com/PacificCommunity/ofp-sam-mfcl
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and for the current released version 2.0.2.2. This posed a potential problem for intense stock assessment 
modelling, and this was identified by users of MULTIFAN-CL attending the March 2016 Training Workshop. 

In the past Windows 64-bit compilations had been built using the Visual Studio 2010 cl compiler (used 
for MULTIFAN-CL compilations up to version 1.1.5.9) which exhibited comparable performance to the Linux 64-
bit executable. To ascertain the cause of this difference in performance, a compilation was done using the Visual 
Studio 2017 (VS2017) cl compiler. This required modifying the development version code, and included cl 
compilations of the dependent libraries (QD, Openblas, ADMB, pthreads). 

It has been a significant milestone to have the MULTIFAN-CL development version compiled using 
VS2017. Since the previous Visual Studio version, (single species/sex dimensions, and without multi-threading, 
last compiled in 2015), substantial new code has been developed which required substantial modifications for 
the VS2017 cl compiler, while maintaining consistency with the Linux gcc compiler. However, it was possible to 
completely reconcile all differences between linux and VS2017 versions of code, particularly those in respect of 
passing constant arguments by using the ADUNCONST macro. All source code is now compatible among the gcc 
and cl compilers. The next step is to replicate this compilation project on a platform at OFP, with a view to 
including it in the routine automated Jenkins compilations. 

It was not possible to achieve a completely static build using VS2017, and tests indicated that 7 
dependent .dll files must be ported with the Windows executable for running on either Windows 7 or 10 
platforms. This will be the priority for future work on this compilation. 

A VS2017 compilation guide will be documented for the full compilations of dependent libraries as well 
as MULTIFAN-CL.  

The performance of the Windows executable was tested using the SKJ2014 model including a complex 
method for fitting size composition data (SSMULT_RE, section 4.1). The time expended to run 50 model 
evaluations were compared: 

• Linux: 3 mins 32 secs 
• MinGW: 8 mins 9 secs 
• VS2017_nick: 2 mins 49 secs 
Illustrating that the VS2017 compilation is roughly 20% faster than the Linux executable, and 

confirming that the VS2017 compilation of the Windows 64-bit executable has comparable performance to 
the Linux compilation. Slight differences in the calculated objective functions were found (identical solutions 
to within 10 or 12 decimal places), with negligible differences in model derived quantities (Table 1). The 
Windows executable was therefore included in a benchmark test of the development version (section 2.6.4) 
that confirmed the integrity of its calculations relative to the Linux executable. 

2.4.3 Upgrade to gcc-5.4.0 compiler 

Upgrading from the gcc-4.6.3 compiler to gcc-5.4.0 was achieved. This entailed re-compiling all 
dependent libraries (ADMB, QD, OpenBLAS, pthreads) and then the MULTIFAN-CL source code. The QD 
project was upgraded using qd-2.3.17.tar.gz (http://crd-legacy.lbl.gov/~dhbailey/mpdist/), and the OpenBLAS 
project using OpenBLAS-0.2.19.tar.gz. 

Compilation errors were encountered when using gcc 5.4.0 mostly relating to the compiler’s protocol 
for passing a reference to a constant object to a function. This was remedied by casting the constant reference 
to a non constant one, using the macro ADUNCONST. Note that the changes required for the gcc 5.4.0 
compilations were backwardly compatible with earlier compiler versions, with the modified ADMB and 
MULTIFAN-CL code able to be compiled using the gcc 4.6.3 compiler. 

2.4.4 Source code repository 

The MFCL project is now hosted on GitHub.com at: 

• https://github.com/PacificCommunity/ofp-sam-mfcl 

This site is only accessible to registered members of the OFP-SAM team. In order to better coordinate 
developments within components of the project, separate repositories were created for the: 

• User’s Guide: https://github.com/PacificCommunity/ofp-sam-mfcl-manual  

• ADMB dependent library: https://github.com/PacificCommunity/ofp-sam-admb  

http://crd-legacy.lbl.gov/~dhbailey/mpdist/
https://github.com/PacificCommunity/ofp-sam-mfcl
https://github.com/PacificCommunity/ofp-sam-mfcl-manual
https://github.com/PacificCommunity/ofp-sam-admb
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A total of 27 commits were made to the development branch, including a merge to the master branch 
preceding the release of version 2.0.2.1. 

2.5 Developer’s workshops 

Developer’s workshops were held at Nanaimo, British Columbia, Canada, 1 – 14 September 2016, and 
at Nouméa, New Caledonia, 8 – 16 March 2017. The participants were the primary developer Dr Dave Fournier 
and Mr Nick Davies.  

The main areas of development during the first workshop were: 

- Self-scaling Multinomial M-estimator (SSMULT_RE) for composition data, including tail 
compression and improving the inner minimization stability 

- Dirichlet-Multinomial (DM) likelihood for composition data 
- Drafting a manuscript that introduces these approaches for fitting composition data 
- Simulation mode for generating pseudo-observations 
- Estimating autocorrelation in recruitments 

The main areas of development during the second workshop were: 

- Compilation of a Windows executable 
- Estimating the autocorrelation of BH-SRR deviates 
- Length-specific selectivity shared among sexes 
- SSMULT-RE and DM likelihood 
- Simulation tagging data 

The specific details of these developments are provided in Sections 4 and 5. 

2.6 Benchmark testing 2016-17 

The benchmark testing framework is described in section 2.9.2, and the series of benchmark tests 
undertaken in 2016-17 are listed in Annex 12.1 with a brief description of the tests, and the features tested, is 
provided in this section. 

2.6.1 Preceding the Sep.2016 developer’s workshop 

Prior to the first developer’s workshop of 2016-17, the development version code was benchmark 
tested. This was an “internal” test of the development branch to ensure continuity of the pre- and post-
workshop versions. The development version was tested versus the release version 2.0.1.1 using a doital fit with 
the SKJ2014 test data. Zero evaluation runs for making deterministic comparisons using the respective solution 
from each version confirmed the identical model and likelihood calculations. The doitall fits revealed slightly 
different minimisation solutions from the two versions (-0.021% difference in the total objective function value), 
resulting in dynamic and equilibrium model quantities being slightly different (largest difference of about -4% 
in recent absolute biomass; and up to -1.5% in reference points). This difference was most likely due to code 
changes made in the development version to improve minimisation stability, which resulted in slightly different 
minimisation paths taken to achieve the solutions.  

2.6.2 Version 2.0.2.1 

Following the first developer’s workshop, comprehensive benchmark testing was done of the 
development version versus the release version 2.0.1.1. Substantial developments and bug fixes had been made 
since the previous testing done in June 2016. The major changes included: an improved algorithm for applying 
stochastic recruitment deviates to BH-SRR predictions in simulation projections; the Dirichlet-Multinomial 
likelihood; a simulation mode for generating pseudo-observed data; deriving an autocorrelation coefficient in 
recruitment estimates; and, an improved variance calculation using the OpenBLAS library routine for the 
singular value decomposition. A number of bug fixes were identified and made during the testing (detailed in 
section 5.4). To improve the testing for existing features recently included in the release version, the ALB2015 
test data was added to the range of data sets used for benchmark testing. As was found in the Sep.2016 test, 
differences in the doitall solutions among the versions and compilation platforms could be explained by 
differences in the minimisation “paths” taken to reach a solution by each version, and was attributed to the 
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same reason (improvements made to the minimisation stability in the development version). Deterministic 
projections that assume the BH-SRR predictions for future recruitments generated very similar recruitments on 
average, but the new feature in the development version that includes seasonality results in differences within 
each quarter (section 2.6.5). A substantial difference among the versions was found in stochastic projections. 
This was due to the changes in the algorithm for applying stochastic deviates about the BH-SRR predictions. 
These differences were concluded to be caused by improvements made to the development version, which was 
consequently advanced as release version 2.0.2.1 and posted on 15 December 2016. 

2.6.3 Version 2.0.2.2 

A minor revison was made to release version 2.0.2.1 to implement an alternative formulation of the 
logistic selectivity function that is robust to implausible parameter values. This prevents arithmetic exception 
errors occurring during the early stages of minimisation. To ensure continuity in the master branch (i.e. the 
release version), an abbreviated benchmark test was done using single evaluations and doitall fits of the 
YFT2014 test data.  The single evaluation test proved positive, (identical model quantities among the versions), 
while the revised version provided a doitall fit solution with only minor differences to version 2.0.2.1. This was 
attributed to the revised formulation of the logistic selectivity at age resulting in slightly different minimisation 
“paths” being taken (probably due to the slight differences in the tagging data likelihood term). These 
differences were minor in respect of model quantities, (up to 2%). 

2.6.4 Visual Studio compilation of Windows executable 

For release version 2.0.2.2 the Windows executable was compiled using the MinGW cross-compiler, 
while a compilation had been developed using the Visual Studio 2017 compiler for the development version 
(section 2.4.2). Source code changes in the development version included: improvements to the length-specific 
selectivity for the multi-sex case; alterations to the feature to estimate autocorrelation in recruitments; and, 
corrections to the flag settings used for the DM likelihood. An abbreviated benchmark test was done using single 
evaluations and doitall fits of the YFT2014 test data. Relative to release version 2.0.2.2, the development version 
provided an identical doitall solution for the Linux compilation executable, with only minor differences for the 
among the Windows executables for the two versions. This was attributed to the compiler differences which 
results in slightly different minimisation “paths” being taken. However, the differences were minor in respect 
of both dynamic and equilibrium model quantities, (up to 1.1%).  

While the test was positive, the development version was retained within the development branch until 
comprehensive benchmark testing was possible. The improved Windows executable and new features in the 
development version were of utility for the 2017 stock assessments, therefore a provisional version number 
was assigned - 2.0.3.1. Preliminary tests were also performed in respect of the alternative size composition 
likelihoods (without tail compression) which proved positive, so this development version was distributed 
internally within OFP. 

2.6.5 Test of the improved feature for stochastic recruitments 

Following the first developer’s workshop (Sep.2016), two new features in MULTIFAN-CL were tested in 
detail: 

• For models having a quarterly time-step with the BH-SRR being fitted to the annual rather than the 
seasonal recruitments, (i.e. estimating an “annualised” BH-SRR that is fitted to the sum of the seasonal 
recruitments in each year), when performing projections using the BH-SRR, the predicted recruitments 
are apportioned among quarters according to the average of the estimated recruitment proportions in 
each season. 

• For simulation projections, the annualised BH-SRR deviates are stochastically resampled and applied to 
the predictions in the projection time periods. 

While the second feature had been applied in earlier versions of MULTIFAN-CL, it had been improved 
to avoid slight approximation errors present in the previous implementation. Details of this improvement were 
described by Davies et al. (2016). The testing entailed four experiments using the ALB2015 model that proved 
the new features had been correctly implemented as intended. Deterministic projections demonstrated that 
the BH-SRR predictions in each model year were allocated to each season according to the estimated average 
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seasonal proportions. Where stochastic deviates were drawn from a theoretical normal distribution, parity was 
illustrated between deterministic and stochastic projections that use the BH-SRR predictions ( Figure 1). 
However, when stochastic deviates were drawn from those estimated from fitting the BH-SRR, the mean of the 
stochastic recruitments is 27% lower on average than that of the deterministic recruitments, and consequently 
the mean stochastic biomass is also lower (Figure 2). This difference between the deterministic and stochastic 
recruitments relates to the variance of the deviates around the fitted relationship. When the assumption of 
normality in fitting the BH-SRR has been violated, therefore the correction for log-normal bias provides a poor 
approximation of the arithmetic mean. Consequently, the bias correction of the BH-SRR predictions may 
become inaccurate. This violation is probably an outcome of assuming a low penalty upon the BH-SRR fit via 
age_flags(145) that allows “freedom” in the estimation of the independent recruitment estimates. This may be 
desirable when fitting the dynamic model, however, this will reduce parity between deterministic projections 
with log-normal bias correction and stochastic projections using BH-SRR deviates that are not normally 
distributed. This condition should be kept in mind by analysts who apply this feature. 

2.7 Postings to website 

There have been two postings of the MULTIFAN-CL release version to the website since August 2016.  

2.7.1 24 February 2017 – version 2.0.2.1 

The main changes relative to the previous version 2.0.1.1 included: 

• An improved algorithm for applying stochastic recruitment deviates to BH-SRR predictions in 
simulation projections 

• Predictions of the annualised BH-SRR are allocated by the average seasonal recruitment in the 
projection periods 

• Tail compression was extended for weight composition data with a revised penalty formulation 

• Dirichlet-Multinomial likelihood for size composition data 

• Improved minimization stability 

• The SSMULT_RE implementation completed with a revised phi function formulation 

• Simulation mode for generating pseudo-observed data 

• Autocorrelation in recruitment estimates can be derived 

• Improved the variance calculation to use the OpenBLAS library routine for the singular value 
decomposition 

• Functional forms for natural mortality at age 

• Various fixes and minor improvements 

2.7.2 6 April 2017 – version 2.0.2.2 

A minor revision for an improved formulation of the logistic selectivity that avoids arithmetic exceptions 
due to implausible parameter values that are within the bounds shared with the spline selectivity formulations. 
This increased minimization stability in the early phases when estimating logistic selectivities. 

2.8 Independent Peer Review of the 2011 bigeye tuna stock assessment 

An outcome of an independent peer review of the 2011 bigeye tuna stock assessment (Ianelli et al. 
2012) was a set of recommendations for improvements and developments to the MULTIFAN-CL software. These 
aim not only to improve the software’s application in the context of the bigeye assessment specifically, but also 
its stock assessment application more generally. These recommendations have formed the core of MULTIFAN-
CL developments since the review, and an outline of the status in fulfilling these recommendations is provided. 

Of the thirteen recommendations, 9 have been implemented and tested, and 4 remain yet to be 
developed. These remaining recommendations were identified to be undertaken for 2016-17 (Table 2): 

• Maturity-at-length (recommendation "k")  

• Non-uniform size bins (recommendation "b") 

• Long-term and initial tag loss (recommendation "c") 

• Tags inform movement only (recommendation "d") 
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In 2016-17, following internal discussion, high priority was given to: developing approaches for fitting 
size composition data (the self-scaling multinomial with random effects, SSMULT_RE, section Error! Reference 
source not found., the Dirichlet-Multinomial likelihood, DM, section 4.2); completing the implementation of tail 
compression (section 4.3); and, to implementing a simulation mode (section 4.4). These other tasks have 
therefore taken priority over the implementation of the above four features recommended by Ianelli et al. 
(2012). Indeed, the implementation of the recommendation for a multinomial distribution for size composition 
data has extended beyond the scope of that initially intended, with the innovative SSMULT_RE and DM 
approaches improving upon the simple Multinomial as suggested by the panel. However, it is proposed that 
work toward these remaining recommendations be resumed for 2017-18 (section 7, and Table 3): 

2.9 Tool development 

2.9.1 R4MFCL 

The R scripts for working with MULTIFAN-CL, developed by OFP are maintained on a GitHub repository 
and have been partially updated to adapt to the recent MULTIFAN-CL release version file formats. These scripts 
are used to manipulate the input files, so that submitting model runs can be automated from R. Other scripts 
can be used to read in the output files, analyze the results, and generate plots and tables. Further refinements 
of these tools were undertaken as part of the 2017 stock assessments that consolidated new features to the 
utilities package. 

2.9.2 Testing framework 

The testing framework for MULTIFAN-CL compilations first developed in 2011-12, was applied 
extensively during 2016-17. This framework ensures the repeatability and traceability of testing by streamlining 
the process for new source code developments through a system of model testing procedures and directories. 
The testing criterion is based upon pair-wise comparisons of model run results obtained using an existing 
MULTIFAN-CL compilation (usually the current release version) versus those from a development version 
compilation. Tests are undertaken over multiple processor platforms and architectures, with application to 
multiple input testing data sets, and with various options for the MULTIFAN-CL operation, viz. single or multiple 
model evaluations, or full doitall model fits to convergence. This ensures a thorough integrity-check of model 
quantities and components of the objective function prior to the distribution of new versions. 

Since March 2013 MULTIFAN-CL source code has undergone substantial developments, major ones 
including: multi-threading of the tagged population calculations, combined tagging observations for multiple 
species/sexes, multi-sex equilibrium yield calculation, time-variant selectivities for individual fisheries, adding a 
likelihood term for age-length composition data, approaches for fitting size composition data, and a simulation 
mode. These developments have been described (Davies et al. 2016) and more recent ones are described in 
Section 4. 

Following the addition of these new features to the development version, regular testing of this versus 
the release version was undertaken to ensure the integrity of existing operations. Known as “benchmark tests” 
these are listed in Annex 12.1 and those undertaken in 2016-17 are described in section 2.6. The development 
version was last tested in April 2017 versus the release version, which defines the development version as the 
benchmark source code. Subsequent development versions were then tested relative to the benchmark to 
establish their integrity, after which they are defined as the new benchmark development version. The testing 
framework entails two levels of tests. 

1. Establish the accepted development version  

The first level of testing ensures the integrity of existing model features by undertaking tests using 
single-species data for ALB2012, ALB2015, BET2011, YFT2011, SKJ2011, STM2012, SWO2013, BET2014, YFT2014 
and SKJ2014 to conclude that single model evaluations and the fitted solutions are sufficiently close to regard 
the development version estimates as being essentially similar to the benchmark version. This indicates integrity 
of the development version for undertaking single-species model evaluations. Results are compared among the 
versions and operating systems, to confirm that the development and release versions produced identical 
solutions. When differences are found, but can be attributable to improvements in the development version, 
these are accepted. 
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Tests using multi-species data disaggregated among species are done which entails comparing the fitted 
solutions of the development version code versus those solutions obtained using the corresponding data for 
each species fitted individually. These tests concluded that the operations applying to each population in the 
disaggregated model have integrity and effectively emulate the solutions obtained when each population is 
modelled individually. Noting that species-specific fisheries data were supplied to the models in the test data 
examples used. Testing was not conducted using test data for which all fisheries data were aggregated among 
species (or sexes). 

Similarly, tests are done for deterministic and stochastic projections with the pair-wise comparisons 
among versions and operating systems being made. 

The benchmark tests undertaken during 2016-17 are described in section 2.6. All the benchmark tests 
concluded that the development version conserves the existing features and can either be advanced as the new 
release version, or accepted for the new benchmark development version. 

2. Establishing integrity of new features 

This second level of testing entails a detailed examination of new features. The inputs and model 
configuration are customized for the new features and the operation of the new algorithms are evaluated in 
respect of the original formulations. During 2016-17 this level of testing was done for the stochastic 
recruitments feature (section 2.6.5), the SSMULT_RE M-estimator (section 4.1), and the DM likelihood (section 
4.2), to ensure the correct calculations and the expected results.  

Review of Testing Framework 

In January 2016 the testing framework was reviewed by project members with the following agreed 
tasks for improvements: 

a) Tidy up the testing framework functions and utilities so as to be as automated as possible and 
more user-friendly with a view to including other team members in running the tests. 

b) Upgrade testing framework functions and utilities for applicability to both single-sex and multi-
sex file formats, with portability over condor. 

c) Integrate the testing framework functions and utilities into the R4MFCL package and ensure 
compatibility with all assessment modelling applications. 

d) Create a Github repository for the testing framework functions, utilities, and testing data. 
e) Consolidate the R4MFCL Github repository with Rob Scott as the lead developer, and add access 

levels to Nick Davies as a support developer. 
f) Construct a suite of routine tests for the R4MFCL package to be run following each revision to 

the repository, and load the updated R4MFCL package to the testing framework. 
g) Construct a single routine MULTIFAN-CL test operation (e.g. single-evaluation of a fitted test 

model solution) to be conducted daily and directly from the Jenkins compilation utility that 
returns an exit status value, with an email report sent to the project developers. 

While action on these tasks is unlikely in the remaining part of 2017, it is proposed that they be 
considered in the 2017-18 work plan for the MULTIFAN-CL project. 

2.9.3 Viewer 

A development version of the MULTIFAN-CL viewer that can display the results of a multi-species or 
multi-sex application was updated as new output was added to the report files. Development of this version is 
ongoing since the final output format of the multi-species/sex application is not yet complete. However, 
substantial improvements were made for displaying results of multi-sex models. 

2.9.4 Condor parallel processing facility 

The Condor (www.condor.wisc.edu) facility has been used routinely for managing multiple MULTIFAN-
CL model runs on a grid currently numbering more than 40 computers; being windows or linux platforms. 
Support for 32-bit architecture has been discontinued since MULTIFAN-CL executables in this architecture have 
not been produced since version 1.1.5.9. This grid enables intensive model runs for: benchmark testing 
MULTIFAN-CL development versions; undertaking stock assessments that entail multiple model runs (e.g. 
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sensitivity analyses and structural uncertainty analyses), and for management strategy evaluation. Additional 
Linux Virtual Machines were added to the grid to increase the number of model runs possible using the Linux 
development version executable. During 2017 the processors on the Condor grid were re-configured for 
dynamic memory so as to improve the efficient use of available CPU for running jobs. 

2.10 User’s guide 

A revision the MULTIFAN-CL User’s Guide (Kleiber et al. 2016) has been completed that documents the 
developments in version 2.0.2.1 and this has been posted on the website http://www.multifan-cl.org/. 
Proposed future revisions include incorporating the suggestions arising from the Training workshop (see section 
3) and the recent features added to release version 2.0.2.2 and also to the development version 2.0.3.1. 

3 TRAINING WORKSHOP 
The second training workshop for users of MULTIFAN-CL at the Oceanic Fisheries Programme (Pacific 

Community) was held 6-7 March 2017, at Nouméa, New Caledonia. The aim was to achieve proficiency with the 
new features in MULTIFAN-CL version 2.0.2.1, particularly with the approaches for fitting to size composition 
data and generating simulation model pseudo-observations (see agenda in Annex 12.2). The workshop was 
delivered by Nick Davies and Dr Dave Fournier and was well attended with four core analysts and several 
observers.  

Particular attention was paid to the self-scaling properties of the SSMULT_RE M-estimator and DM 
likelihood approaches for fitting size composition data. Dave Fournier provided essential clarification on aspects 
of the M-estimator and the related variance estimation of the Multinomial and the random effects. It was also 
made clear to the participants as to why including tail compression was important when using the SSMULT_RE 
M-estimator. This was because zeroes affected estimation of the auto-correlation parameter for the random 
effects, and tail compression reduces this influence. The question was raised during the workshop if the profile 
likelihood diagnostic could be produced for models incorporating the SSMULT_RE M-estimator for size 
composition data. Simply speaking this is not possible, however Dave explained that there may be approaches 
for approximating the calculation. Also it was not clear how to present the goodness of fit to observations that 
illustrates the relative estimates of multinomial error and errors in the random effects. It was requested that 
standardised reports be generated, in order to generate plots of the fits to size composition observations with, 
and without, the random effects. 

Participants were reasonably well-prepared for “hands-on” practical sessions using the examples for 
implementing the new features and for debugging the examples. Most found the methods easy to follow and 
were satisfied with their ability to locate simple causes for program interruption. 

The feature for generating simulation model pseudo-observations was relatively simple to explain and 
implement using the example supplied. One question raised was whether the ”dummy” size composition 
frequencies supplied in the .frq fisheries data could be either an integer or real number. All queries arising from 
the participants have been recorded in the project task list.  

During the section on auto-correlation in recruitments, a discrepancy was identified between the 
coefficient parameter estimated independently, and the moment estimate of the coefficient derived directly 
from the residuals of the fitted BH-SRR. This had been explored by the developers prior to the workshop, and it 
had been shown that the coefficient parameter estimated independently was positively biased if the variance 
was not estimated simultaneous with the coefficient. An alternative method was developed whereby the 
moment estimate was used among evaluations to “tune” the coefficient to a converged estimate. This method 
was included in the MULTIFAN-CL development version for further testing. 

The key features of the Github repositories for MULTIFAN-CL and the Manual were demonstrated, in 
particular how to post issues yet to be resolved by members of the project team. 

4 NEW FEATURES 
All new features that have been implemented in the MULTIFAN-CL source code have been added first 

to the development version. Once these features have been tested for their integrity, with no impacts on 

http://www.multifan-cl.org/
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existing features, then the development version is merged into the release version of the code. The current 
release version is 2.0.2.2. The developments described below have been made to the development version 
(currently denoted as version 2.0.3.1) during 2016-17 and will be merged to the release version upon the 
completion of benchmark testing.  

4.1 Self-scaling Multinomial plus random effects (SSMULT_RE) 

4.1.1 Rationale 

Ianelli et al. (2012) recommendation “j” was to “Add an option which allows the analyst to assume a 
multinomial likelihood for the compositional data in the first phases and only transition to the robust normal 
likelihood in the later phases.” This feature has been in development since 2014, it formed a significant 
component of the developments for 2015-16, and was mostly completed during 2016-17. While the 
recommendation provided the initial impetus for a development to use the Multinomial likelihood, the three 
known weaknesses with this method must be considered (Francis 2014): 

- It assumes the variance is proportional to the sample size, which is usually violated because 
variances are often larger, 

- It doesn't adequately account for positive correlations, and, 
- It doesn't adequately account for process error such that effective sample sizes often under-

estimate the true error. 

Size composition data are pivotal to the tuna stock assessments using MULTIFAN-CL, in particular for 
estimating growth and recruitments. Improvements that might offset these weaknesses would enable the 
correct use of these data in the integrated modelling approach, and this became the focus of this development. 
The lead developer, Dr Dave Fournier, formulated an innovative size composition minimizing function, being 
the Self-scaling Multinomial plus random effects (SSMULT_RE). Indeed, in developing this feature, the 
recommendation for a Multinomial distribution for size composition data (recommendation “j”) has been 
extended well beyond the scope of that initially intended, by researching a substantially better approach. 

4.1.2 Methods and Testing 

While the SSMULT_RE was described by Davies et al. (2016), a brief overview follows. The SSMULT_RE 
addresses the above-mentioned three weaknesses by modifying the Multinomial to have three attributes: self-
scaling properties (it estimates the effective-sample sizes, ESS), maintaining overdispersion, and to estimate 
autocorrelated random effects. We refer to this as the self-scaling Multinomial with estimation of random 
effects (SSMULT_RE), being a form of M-estimator (Huber 2009). In addition to addressing the noted 
deficiencies in the multinomial, the SSMULT_RE retains the key multinomial property of being able to deal with 
observed zero proportions in a completely natural way. Therefore, it does not require modification of the data 
(by adding an arbitrary constant) to remove observed zeros, which is required for the robust-normal or logistic-
normal likelihoods. 

At both of the Developer’s Workshops during 2016-17 the SSMULT_RE was refined, with testing by 
simulation to assess its performance in estimating the key parameters: ESS and correlation in the residuals; and, 
testing its implementation using real stock assessment model data.  

A problem with the inner minimisation of the random effects parameters was identified. The Φ function 
used for the random effects was revised to use the formulation being a simple lognormal random effects model 
implemented as per Hrafnkelsson & Stefnsson (2004). This is implemented in the inner minimisation. The key 
point is that the Laplace approximation is more accurate for this formulation. The performance of the inner 
minimisation was improved by restoring the Φ formulation to be consistent with the original Hrafnkelsson & 
Stefansson (2004) version. This improved model minimization stability for the large example data used for 
testing (SKJ2016). Visually comparing the size compostion data fits before and after the correction, for the 
model+RE predictions, now appear to be less precise. This is an improvement and may reduce the incidence of 
the SSMULT parameters hitting the bounds.  

However, a problem persisted with the correlation parameter tending towards the upper bound. 
Simulation testing was therefore done using a simple age-structured fish model with simulated autocorrelated 
composition data. Difficulties in estimating ρ were tested using an alternative estimation method that solves 
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iteratively using the moment estimate for ρ for the AR(1) penalty function within each model evaluation. While 
the method was accurate for a simple case where ρ was the single parameter, it was confounded when the ESS 
was estimated simultaneously. While this had potential for other applications, e.g. autocorrelation in 
recruitments, it was rejected as being a possible method for the SSMULT_RE. 

This development represents a substantial advance in the use of size composition data in population 
models, and has notable potential benefit. Further testing to improve the method for estimating ρ is proposed 
for the remainder of 2017. 

4.2 Dirichlet-Multinomial Likelihood 

The Dirichlet-Multinomial (DM) likelihood is an obvious option for composition data and is implemented 
in other integrated model software (Methot 2013). It has been re-formulated for introducing the feature in 
MULTIFAN-CL with a focus on the self-scaling properties. A key parameter is the maximum ESS that must be 
specified and has been formulated as in the following equation: 

𝑒𝑓𝑓_𝑁𝑖 =
𝑁𝑚𝑎𝑥(1 + 𝜆𝑖)

(𝑁𝑚𝑎𝑥 + 𝜆𝑖)
 

And Nmax can either be the default value (1000), or specified by a value assigned using a parest_flags 
that applies to both LF and WF data. The observed sample size, N, is used to calculate a relative sample size in 
respect of the mean, 

�̃�𝑖 =
𝑁𝑖

�̅�
 

And the DM ESS sample size covariate is, 

�̃�𝑖 = �̃�𝑖
𝑐 

 

Where c is the sample size covariate exponent, and the ESS multiplier is,  

𝜆𝑖 = 𝑒𝑑�̃�𝑖 

Where d is the sample size multiplier exponent. The parameters estimated are c and d, with the option 
for grouping their estimation in respect of fisheries. An assumed value is assigned to Nmax. 

This is the current implementation in the MULTIFAN-CL release version 2.0.2.1. This implementation 
has also been developed in a simple fish model simulator.  

In allowing for grouping of fisheries that share parameter estimates, routines were drafted to ensure 
the parameters have active flag settings compatible with the grouping, but also checks that the values of the 
model parameter vector are compatible with the grouping. This detects user-defined values for the parameters 
inconsistent with the specified grouping. 

A useful diagnostic for illustrating the self-scaling properties of the DM, and for evaluating its 
performance in respect of the ESS, is to compare the ESS with the observed sample sizes. There are two different 
ESS estimates. The first is the theoretical effective sample size as estimated in the model parameters which is a 
function of Nmax, the input sample size covariate, and the parameters which do overall scaling and include the 
covariate. The second is a moment estimator calculated from the observed and predicted sample sizes, using 
the size composition residuals.  Two reports are generated, (“wght_dmsizemult” and “dmsizemult”, for weight 
and length composition data, respectively) containing: the observed sample size; theoretical ESS; and, the 
moment estimate for the ESS. Direct comparisons are then possible in respect of each fishing incident for which 
size composition samples are available. 

The DM likelihood estimates specific to each fishery were added to the diagnostics report 
“test_plot_output” used for summarizing all components of the total objective function from the integrated 
model fit. This report is produced only when the fitted model is complete. 
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4.2.1 Methods and Testing 

The simple fish model simulator previously developed for testing the SSMULT_RE was adapted to 
generate simulated data from both the Multinomial and the DM distributions, and to include the DM likelihood 
in the analyzer component. In this case, random effects are not being estimated, but rather simply the ESS. 
Preliminary simulation experiments were run indicating this likelihood performs well. For example, simulation 
data incorporating process error (fishing and natural mortality, recruitment) and observation error (total 
catches, relative biomass, multinomial error with positive autocorrelation) resulted in effective sample size 
estimates that were negatively biased relative to the “true” values, e.g. around -67% for average true sample 
sizes of 10 with 40 age classes. At high sample sizes, with increased size composition observation error, the 
estimated ESS declined. These were the expected results.  

Simulation testing of the sensitivity of the DM to the assumed Nmax value was done for a range from 
50 to 2000 where the “true” value was 500. The average relative bias in the DM estimated ESS indicates some 
level of sensitivity to this assumed parameter (Table 4). If the DM analyzer is supplied with an Nmax that is 
larger than the "true" value it will under-estimate the effective sample size, and vice versa. This seems plausible, 
in that if the DM analyzer “expects” higher precision than the samples exhibit, it will estimate lower sample 
sizes, and vice versa. Therefore, the DM analyzer is sensitive to the assumed value of the ad hoc parameter 
Nmax. 

The next steps for the simulation testing using the simple fish model simulator is to design and run 
experiments that illustrate its performance in respect of a wider range of factors. The design will most likely 
incorporate the following factors. 

Simulator model factors:  
• sample size (range 20 to 1000) 
• process error 
• size composition observation error type - Dirichlet-Multinomial or Multinomial 
• size composition observation error – with or without autocorrelation 
Estimation model factors: 
• DM_noRE (possibly also test SSMULT-RE if considered necessary) 
• Assumed maximum sample size (Nmax = 1000, 2000, …) 
 
With possible performance indicators being: 
• Bias in estimated effective sample size relative to the “true” 
• Bias in total population numbers in terminal year 
 
Testing the DM likelihood with an example of real stock assessment model data was done during 2016-

17 using the same SKJ2014 data as used for the SSMULT_RE so as to permit relative comparisons among the 
three approaches. The example was used to explore the effects of the assumed Nmax value in the DM likelihood. 
The model runs using DM included tail compression, started from an existing solution obtained using the 
normal+constants size composition likelihood (robust-normal), and run to convergence for a range of assumed 
Nmax: 250, 1000, 1500, and 2000. The results indicated only a moderate effect of Nmax on model derived 
quantities such as absolute spawing biomass (Figure 3), and minimal impact on important management-related 
quantities of relevance for making stock assessment advice (Table 5). 

4.3 Tail Compression 

Tail compression is an important component in fitting size composition data, in particular in cases where 
the tail is extended and includes high numbers of zero proportions. Applying tail compression was also 
considered as a means to avoid positive bias in the SSMULT_RE auto-correlation parameter. 

The existing code for performing tail-compression was consolidated so as to place the implementation 
procedures into discrete routines. The tail compression operation for both length- and weight-frequency data 
is conditional on specified parest_flags values for each, and is done before the call to the fitting_procedure() 
routine. 
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It is important to note that the predicted proportions outside of the bounds specified by the tail-
compression of the observed sample distributions are not included in the SSMULT_RE calculation. To include 
these in some manner in the objective function, a penalty is applied. This is unique to the SSMULT_RE and DM 
tail compression cases. When testing the tail compression implementation of the DM likelihood using the 
SKJ2014 case study, spurious selectivity-at-age estimates were obtained for size intervals outside of the tail-
compression bounds. The spurious selectivity estimates were attributable to the penalty formulation and this 
was revised to account for the variance in the observations. This feature is of significance for the SSMULT_RE 
because these proportions have impacts upon the random effects estimation. 

Currently there are two alternative methods for applying tail compression: 
• parest_flags(311): applied for the robust-normal and the logistic normal likelihood (a cumulative 

proportion in the smallest and largest compressed intervals is specified) 
• parest_flags(320): applied for SSMULT_RE M-estimator and DM likelihood (a minimum number of class 

intervals in the compressed distribution is specified). 
 

While the implementation of these tail compression methods has been completed, it is possible that as 
part of the testing yet to be done during 2017 for the SSMULT_RE and DM approaches, the second method may 
be further refined. 

4.4 Simulation mode 

To implement full simulation capability in MULTIFAN-CL, a simulation mode has been implemented such 
that an operating model is used for projections to produce pseudo-observed data with specified observation 
and process error as might be used in management strategy evaluations (MSE). The algorithm for producing 
predictions (in this case for example for size composition data) for the projection period, is as follows. 

- As normal for undertaking a projection, the analyst supplies catch or effort in the fisheries data for the 
projection period (i.e. in the .frq file). 

- Analyst populates the length frequency (LF) and/or weight frequency (WF) columns with non-zero 
frequencies in the fisheries data during the projection period for the specific fisheries for which 
simulation data are to be generated. The total of the frequencies is the desired effective sample size. 

- Analyst sets a parest_flags option that activates the feature for generating simulation data from 
projections using the projection model quantities. 
 
Essentially, the algorithm for generating pseudo-observations is activated by parest_flags(241) with the 

data to be generated specified by entries made in the projection section of the fisheries data in the *.frq file. 

4.4.1 Size compositions 

Observation error is applied to the predictions of LF and WF in the projection period, with Multinomial 
error applied to the predictions. The sample size is taken from the sum of the frequencies specified in the LF 
and WF data columns of the fishery data in the .frq file for the projection periods. As such, the analyst specifies 
the level of observation error. The size composition pseudo-observations are reported to a file “test_lw_sim” 
with each record indexed in respect of the parent fishery, true model projection year (e.g. 2019), and month. 

4.4.2 Relative abundance indices 

The general method for fitting to standardized indices of relative abundance derived from catch-per-
unit-effort (CPUE) in MULTIFAN-CL is to express the indices as standardized effort, assume constant catchability, 
and apply high penalty to the total catch likelihood. The generation of pseudo-observations from simulations 
for the projection period will depend upon the projected “observed” fishery data supplied by the analyst; i.e. 
projected catch or effort. As such there are two algorithms for generating the pseudo-observations. 

In the first case, the analyst may supply “observed” catches (either in weight or numbers of fish) in the 
fishery data for the projection period, and “-1” for the effort. As no “observed” effort is supplied, a Newton-
Raphson (N-R) solution for the predicted fishing mortality directly provides the predicted catch. The model 
estimates no predicted effort but solves for the fishing mortality level that achieves the supplied catch. To 
generate a predicted effort, a new formulation was developed using the Newton-Raphson solution for the 
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fishing mortality associated with a supplied “observed” catch for a projection fishing incident, the catchability 
in the final year of the estimation period. To express the predicted effort in the same units as the effort input 
for the fishery, the average observed effort input for the estimation period (in true units) is applied: 

�́�𝑦 = (
𝐹𝑦

𝑞𝑦=𝑡𝑒𝑟𝑚
)×�̅� 

With the term �̅� taken from the calculations for normalising fishing effort input to the model. Note that 
the normalisation is done only for the model “estimation period”, i.e. for the periods for which observations are 
supplied, and do not include the projection periods. This ensures the catchabilities are estimated for normalised 
effort over the estimation period only. Using the term �̅� in calculating projection effort ensures it is in the same 
order of magnitude and units as the original effort input to the model. 

Lognormal error is applied to the effort predictions with the standard deviation taken from the analyst’s 
value specified in age_flags(186). If no value is specified, i.e. age_flags(186)=0, then no observation error is 
applied to the prediction.  

In the second case the analyst supplies “observed” effort in the fishery data for the projection period, 
and “-1” for the catch. The implementation in MULTIFAN-CL for calculating the fishing mortality uses the 
“observed” effort directly with the estimated catchability to derive the mortality level which is applied to the 
population numbers to derive the predicted catch.  

For the projection period, the terminal catchability (ignoring age-specific effects for now) is used with 
the “observed” effort supplied by the analyst to calculate predicted fishing mortality, 

𝐹𝑦 = 𝑞𝑦=𝑡𝑒𝑟𝑚𝐸𝑦 

And the predicted catch is, 

𝐶𝑦 = (1 − 𝑒𝐹𝑦)𝑁𝑦 

Therefore, the relative abundance variability is inherent in the predicted catch given that effort is “fixed” 
by the analyst. 

Lognormal error is applied to the predictions with the standard deviation taken from the analyst’s value 
specified in age_flags(187). If no value is specified, i.e. age_flags(187)=0, then no observation error is applied 
to the prediction. 

4.4.3 Tagging data 

The implementation of the simulation mode was extended to produce pseudo-observed tagging data. 
The example ALB2015 stochastic projection model was used for the development of this implementation 
because it offered all possible data types that may be required as pseudo-observations. 

This entailed adding to the existing algorithm activated by parest_flags(241) for catch, effort, and size 
data. It was considered reasonable that the analyst would not impose an assumed composition upon a 
simulation tag release event, because the age or size structure may be incompatible with the simulation 
population conditions in the projection period. Therefore the only information to be supplied was considered 
to be the time, location and total number of simulation tag releases. 

A new input file called *.tag_sim was formatted that contains: tag group number; region of release; 
year, month, fishery number; and the frequency total number of releases. A new routine called 
read_tag_simulation_info() reads in these data and allocates the simulation variables in structures compatible 
with the “true” observed tagging data used in the estimation period of the model. A new routine was added to 
identify the fishing incident associated with the release during the projection period. 

Broadly, the algorithm for generating simulation tag recapture pseudo-observations was as follows: 

• Assign the release sample to an initial tag release cohort of numbers at age; this is based upon 
the predicted catch-at-age for the fishing incident associated with the simulation release event. 
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• Perform catch calculations upon the simulation tagged population. These calculations are based 
upon the existing code for tag groups within the estimation period to ensure consistency. This 
generates the predicted tag recaptures for the simulation tag release groups. 

A problem is that the predictions are very small real numbers and over a wide distribution of fishing 
incidents, which do not resemble real tag recapture frequency data. A sub-algorithm was therefore developed 
for a probabalistic method of generating simulation tag recapture frequency data with multinomial error. 

• For each age class, the tag catch calculations are done up to the terminal tag period based upon 
a hypothetical sample size, and if the probability of recapture > 0, the fishing incident at 
recapture is stored relative to the age at release. 

• This generates a matrix of probabilities of recaptures in respect of the release sample age class 
among future fishing incidents; this represents a multinomial probability distribution. 

• A routine generates multinomial samples of simulation tag recaptures given: 
o The tag recapture sample size being the total predicted recaptures with respect to tag 

release group, age and region. 
o The probability of recapture being the matrix calculated from the tag catch calculations 

in each future fishing incident. 

• The non-zero frequencies (trial successes) of simulation recaptures are stored in respect of the 
age at release, and future fishing incident of recapture, that comprises the simulation tag 
recapture sample at age. 

This sub-algorithm is somewhat analogous to an individual based model, however, it is performed in 
respect of the individual age classes rather than the individual fish. 

The next task for this development is to extend the simulation tagging data in respect of age to be 
instead in respect of length. A sub-algorithm must therefore be developed to project the simulation tag 
recapture sample from an age class at release to a range of length classes at release. This entails the estimated 
growth function and standard deviation for mean length at age over the model estimation period. 

4.4.4 Status and future work 

In summary, the status of implementing this new simulation mode feature is that: simulation data for 
size compositions and relative abundance indices can be generated; the algorithm for generating tagging data 
has been developed and is in progress; and, generating simulation age-length data and simulation data for the 
estimation period is not yet possible. It is proposed to firstly complete this feature in respect of generating 
tagging data, and data for the estimation period, as this is most important for validating and undertaking MSE 
work using MULTIFAN-CL. 

4.5 Autocorrelation in recruitments 

An implementation was developed for estimating auto-correlation in estimated recruitments. This has 
utility for providing an algorithm for applying the auto-regression coefficient when generating stochastic 
recruitments for simulation projections. 

A matrix solution was formulated for the autocorrelation using a property of the autocorrelation matrix 
where the choleski decomposition is used to get the logarithm of the determinant. The AR(1) penalty is then 
added to the total objective function in solving for the autocorrelation parameter. 

The two methods for estimating the autocorrelation are in respect of the residuals for either the: 

• independent log-normal recruitments (relative to the mean), or 

• the BH-SRR estimated deviates (relative to the BH-SRR prediction). 

The default case if ρ is not estimated, is to simply calculate the moment estimate for ρ from the BH-SRR 
deviates. If the feature is activated, both the moment estimate and the estimated ρ values are reported, 
otherwise, only the moment estimate is reported. The autocorrelation may be estimated in respect of the full 
model calculation period, or for a user-defined sub-set of periods. The user may also define the weighting 
assigned to the AR(1) penalty. 
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Given that predicted recruitments in simulation projections are often assumed to be a function of 
projected spawning biomass, it may be preferable that this quantity be considered when estimating a 
recruitment autocorrelation. Therefore, estimating autocorrelation among the deviates from the BH-SRR 
relationship may be the better approach. In this case the AR(1) penalty then replaces the lognormal error 
assumption of the BH-SRR fit.  

Besides some minor updates to the method for fitting ρ to the log-normal recruitments residuals, this 
method is still in development in version 2.0.3.1. 

4.6 Functional forms for age-specific natural mortality 

A feature for estimating age-specific natural mortality has long been an option in MULTIFAN-CL, 
however a method that estimates a functional form rather than individual deviates in respect of age has merit 
in the reduced number of parameters required. This was added to the existing feature using either a spline 
function, or a function consistent with that described by Lorenzen (1996). 

The spline function uses the same formulation as employed with the spline selectivity functions, with 
a parest_flags setting for activating the estimation of the splines with the flag value specifying the number of 
nodes.  

The Lorenzen function was slightly adapted for its implementation in MULTIFAN-CL. Parameterisation 
of the Lorenzen function is rather based on the scaled lengths from the von Bertalanffy growth estimates 

𝑀𝑎 = 𝑐(𝑙𝑎)
𝑏 

 Where la is the mean length of age class a. Now the mean length is parameterized in the model by the 
von Bertalanffy, but for numerical stability the function has been “undimensionalised” by the following 
paramerisation, 

𝑙𝑎 = 𝑑 + (1 − 𝑑) [
1 − 𝑒−𝐾(𝑎−1)

1 − 𝑒−𝐾(𝐴−1)
] 

  
  Where L1 is the mean length of the first age class, LA is the mean length of the oldest age class, and 

=
𝐿1

𝐿𝐴
 . 

The SKJ2016 example was used to illustrate the application of this feature, with a comparison relative 
to a model where the existing approach for estimating age-specific deviates was employed (Refcase). As might 
be expected, the spline function (having 5 nodes) produced age-specific indices more closely resembling the 
Refcase, than the more constrained Lorenzen form (Figure 7). Consequently, the differences in model quantities 
versus the Refcase for the model using the spline function were less (around 0.3 to 3%) compared to moderate 
differences for the model using the Lorenzen function (up to 12%), (Table 6). Note that neither of the models 
using function forms were fully converged solutions, and are presented here only for purposes of comparison. 

The preliminary testing of the feature revealed a high potential for instability in the minimisation during 
the initial phases. This is attributed to the large impact that natural mortality has on model processes, in 
particular the estimated catches. It was necessary to emulate the sequence used in the control phases for the 
penalty on the total catch likelihood, specified by age_flags(144). This is to begin with a low penalty of 1, and 
increase to: 5, 50, 200, 500, 1500, 2500, 5000, 10000, 100000; with at least 50 evals in each stage. 

 

4.7 Likelihood profiling 

This was identified as a required improvement to MULTIFAN-CL during the 2016 Training workshop, i.e. 
to revise the likelihood profile calculation so that this can be applied to particular model dependent variables, 
such as current biomass. Consequently, penalty terms were formulated for calculating likelihood profiles 
conditional upon the derived model quantities for average absolute biomass or a level of biomass depletion. 
The period over which the model derived quantity is calculated may be defined. The new feature is controlled 
by settings for parest_flags that activate the feature, and that specify the weighting applied to the penalty 
function that ensures the fixed target level is maintained during the minimisation. 

An enhancement to this feature was added for using the augmented Lagrangian algorithm for the 
penalty function calculation between successive stages of the minimisation. The Lagrangian multiplier is written 
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to the .par after a particular set of evaluations, and then read back in to then run with the new fixed multiplier 
value for the next set of evaluations. This improves the convergence at each point (i.e. scalar value) along the 
profile. 

 

5 OTHER ENHANCEMENTS AND BUG FIXES 

5.1 Extension of multi-sex model feature 

During the development of a south-west Pacific swordfish stock assessment model (Takeuchi et al. 
2017), a number of enhancement to the feature for a sex-disaggregated model were identified. 

5.1.1 Length-specific selectivity shared among sexes 

There was a requirement for modelling age-specific fishing mortality such that it approximates a length-
specific selectivity function that is shared among sexes having different growth rates. This allows fish of a 
particular size to have similar relative selectivity while their ages are different. To have a truly length-based 
selectivity the catch equations must be calculated upon numbers at length, and since MULTIFAN-CL is an age-
structured model, this is not possible. Within an age-structured model, ideally, a selectivity in respect of length 
can be approximated by integrating over a presumed length distribution to produce an age-based selectivity. 
So, given a “length-based” selectivity, to use it in the catch equations it must be converted into age-based 
selectivity by assuming you know the length distribution-at-age and integrating the “length-based” selectivity 
over that to convert it into age-based selectivity.  

It is possible to accomplish something very similar with the spline function, where one set of splines is 
applied for both sexes, but they are evaluated at the different relative mean lengths at age to get different age 
based selectivities. The spline selectivity at age is therefore estimated that produces a length-specific selectivity 
that is similar among sexes. The key aspect of this is the scaled mean lengths at age, tlength, from 0 to 1 that is 
shared among the sexes, i.e. only the sex having the largest length has the tlength element equal to 1 (Figure 
4). The same set of splines are then applied to the tlength vector but in respect of each sex.  The selectivity at 
age has a maximum index among sexes, such that in the case of asymptotic selectivities, the maximum of 1 
applies only one of the sexes; i.e. the one having the maximum length and hence the maximum selectivity at 
length (Figure 5). When expressed in terms of length, the selectivity is similar among the sexes (Figure 6). 

The feature was then extended from the spline function to also apply to the logistic selectivity function, 
i.e. to use the shared tlength vector in deriving the logistic function selectivity at age. An example is presented 
in panel “14_Other_2C” in Figure 6. To improve numerical stability during minimisation, it was necessary to 
extend the feature for the generic selectivity penalty to be fishery specific, so as to enable penalty for logistic 
selectivity functions only. This allows the relative weight of the penalty to be assigned specific to each fishery, 
thus enabling fisheries with particular selectivity forms, e.g. logistic, to be penalised differently to other 
selectivity forms. 

It may be desirable to define the ages over which selectivity is estimated to be specific to each sex, 
especially if they are substantially dimorphic. The existing features for defining the first and last age classes for 
selectivity were therefore important to the tlength calculation. It was formulated so as to accommodate 
flexibility in the age subscripts used. Also, the checks for grouping of the fish_flags were relaxed for this special 
case (multi-sex model with shared length-specific selectivity). 

A number of new reports are produced when activating this feature that contain: the re-scaled mean 
lengths at age in variable “tlength”; the selectivity at length for each fishery (i.e. sex); and, the selectivity at age 
for each fishery (sex).  

While this feature is in the prototype stage of development, preliminary testing indicates it is operating 
correctly as formulated. It is currently only implemented in the development version 2.0.3.1 and has not yet 
been released. 
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5.1.2 Various combinations of aggregated/disaggregated fisheries data 

Release version 2.0.2.2 accepts fisheries data in the form where: catches may aggregated or dis-
aggregated among sexes; and, size composition data may aggregated or dis-aggregated among sexes. However, 
size composition data consists of both length and weight frequency data, and observations for either of these 
data types may be aggregated or dis-aggregated among sexes. The release version only applies these options to 
both forms of size composition data at once. Therefore, the feature was extended to allow the aggregated or 
dis-aggregated options for each of the three fisheries data types individually, i.e. for catches, length frequencies, 
and weight frequencies.  

This was achieved by extending the pointers read in from the fisheries data section in the .frq file to 
include two pointers for the size composition data, one for length frequencies, and another for weight 
frequencies. This means there will be a total of: nspp + (3 * nspp) columns in each record of the .frq fisheries 
data section relating to the pointers for species, and aggregated or disaggregated fisheries data types, where 
nspp is the number of sexes or species. 

5.1.3 Sex ratio of predicted catch compositions 

In the case of fitting to size composition data aggregated among sexes, an assumption must be made 
on how the predicted size compositions are aggregated. Release version 2.0.2.2 aggregates the predicted 
proportions in size compositions as being the average among the sexes. Where sex ratios in predicted catches 
may be disproportionate, assuming equal representation of the sexes in the aggregated size compositions may 
be incorrect. Therefore, an option was implemented in development version 2.0.3.1 to scale the sex-specific 
predicted proportions at size for each fishing incident by the sex ratio in the predicted catches for that incident. 
This option is conditional upon a parest_flags setting, and preliminary testing indicates it is operating correctly. 

5.1.4 Identifiers for sex in output reports 

For various reports generated by MULTIFAN-CL, it was necessary to include indices used internally with 
the code that identify which of the two sexes is the female, and to which sex the fisheries and regions relate. 
This is required for the various utilities (R4MFCL, Viewer, etc.) to correctly display the reports graphically or in 
tables in respect of the two sexes. Consequently, the following indices and model output were added to: 

• .rep: multi sex pointer; species sex pointer. 

• .fit: in each fisheries block inserted the species number and the mean length-at-age for that 
species; pointers for the aggregated or dis-aggregated size compositions. 

The reference documents for these report files were updated to reflect these changes and the version 
numbers at the top of each report were incremented to identify these format changes. 

5.2 Improved standard deviation calculation 

The standard deviation (st.dev) calculations for model-derived variables were improved by applying the 
singular value decomposition (SVD) method for the matrix calculations. This entailed adding OpenBLAS as a 
dependent library to the MULTIFAN-CL project to make the SVD routines available. Preliminary testing using the 
SKJ2016 example showed that after the derivative calculations for the fished and un-fished model evaluations, 
the st.dev calculations were complete in only 2 minutes; substantially faster performance. Comparisons of the 
st.dev estimates before and after the improvement indicated they are either identical or extremely similar. For 
a sample of 5000 out of 20636 variables the improved calculation estimates are within 3.3% of the original 
calculation.  

During the course of this development, a minor problem was fixed with the st.dev report (.var) for age-
specific natural mortalities. This part of the report was extended to include the estimates obtained from using 
the functional forms (see section 4.6). 

5.3 Improved formulation for logistic selectivity 

Preceding version 2.0.2.2, the formulation of the logistic selectivity used a power function that was 
prone to causing arithmetic exceptions (overflow) in early stages of minimisation due to implausible parameter 
values. Since the bounds on the parameters are shared among the spline and logistic functions, it is possible for 
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values that are implausible for the logistic function (depending upon the input data) to be used during the 
minimisation. This problem has previously been dealt with by applying the generic selectivity penalty term using 
parest_flags(74) to avoid such implausible parameter values. However, this has proved cumbersome and 
ineffective in some cases. An alternative formulation that produces an equivalent logistic function was 
developed using an exponential function. It was tested and found to be robust to implausible parameter values 
and did not require the additional generic selectivity penalty term. It was distributed with the release of version 
2.0.2.2 as a minor revision. 

5.4 Bug fixes 

5.4.1 Fix to option for increasing the number of spline nodes 

An existing feature that enables the number of nodes in spline functions for fishery selectivity to be 
increased was found to fail. This error related to the implementation of time-variant selectivities released in 
version 2.0.0.1, because increasing the number of nodes was not compatible with the time-variant selectivity 
data structures. The ability to increase the spline degree is not an integral part of the spline parameterization. 
The spline models are not nested. Therefore, when increasing the number of nodes, the new node points are 
not in general a superset of the old nodes, but rather they occur at different points. To avoid repeating previous 
minimization phases for estimating the selectivities, the values for the new spline coefficients can be selected 
which produce the closest selectivities to those for the original spline parameterization. This entailed extending 
the dimensions of the time-variant selectivity data structures, and including them in the algorithm that obtains 
the selectivities consistent with original parameterisation. 

5.4.2 Fix to the age of common selectivity 

An option for the estimation of fishery-specific selectivity is to specify an age class at which selectivity 
indices for all classes at that age, and higher, are common. This option is controlled by fish_flags(i,3) having a 
value as specified by the user. When the value is not set, i.e. the value is 0, the default age class is applied, being 
one less than the maximum age class, nage-1. Although seldom done, it is possible to set a non-zero value to 
the flag during early phases of the doitall fit, and then to re-set the flag value to zero in later phases. Following 
the implementation of routines that check the integrity of fish_flags in versions preceding 2.0.2.1, this practice 
of restoring fish_flags(i,3) to a value of zero in later phases was found to cause an error. The error-checking 
routines were therefore corrected to restore the minimum age of common selectivity to nage-1 in this instance. 

5.4.3 Fix to equilibrium yield curve calculation for multi-sex model 

Equilibrium yields for the multi-sex model are calculated in respect of the spawning biomass for the 
female sex only, with the catches at equilibrium being aggregated among the sexes. A minor syntax error 
resulted in spawning biomass for the males being used when the female was the first sex. This was corrected. 

5.4.4 Fix to initial population numbers in maximum age class for multi-species/sex models 

Preliminary runs of the multi-sex swordfish model indicated the initial population numbers at 
equilibrium for the aggregate age class (nage) were unexpectedly high. This identified an error in the calculation 
for the case of multi-species/sex models that differed from the single species case. For the multi-species case 
the nage numbers were being aggregated after each movement between recruitment events, instead of 
aggregating fish into the maximum age class after all movements between recruitment events. The latter was 
being correctly applied to single species models. The correction was made for the cases of mult-species/sexes. 

5.4.5 Fix to the input of size composition data 

During benchmark testing, a change to the size composition likelihood was identified for some test data 
sets and found attributable to a fix made during the March 2016 developer’s workshop. This fix related to the 
declaration of a long int in earlier versions. The previous declaration resulted in the loss of the input of the first 
non-zero element of the vector of size composition data input from the .frq. Correction of the error was found 
to have minimal impact on the benchmark testing results due to minimal instances of non-zero values in the 
first vector element for most test data sets. 
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5.4.6 Fix to the long int definition for the Windows compilation 

During benchmark testing it was found that the Windows executable failed during multiple evaluations 
of multi-species/sex data sets. The problem was traced to the definition of long int being only 32 bits. The 
definition was changed conditional upon the macro __MINGW64__ for the MinGW cross-compiler to be: long 
long int. In the case of the ADMB compilation the definition was #define AD_LONG_INT long long int. This 
entailed substantial modifications to the ADMB code used for the dependent library of the MinGW compilation 
for the windows executable. 

5.4.7 Fix to the catch calculation for tagged fish 

Routine testing following the March 2017 developer’s workshop revealed a minor difference in the 
tagging data likelihood calculation compared to that obtained using the pre-workshop version. This was traced 
to the tag catch calculations that had been modified for developing the simulation capability of tagging pseudo-
observations. A simple syntax error. The correct code was restored in the post-workshop version to produce the 
identical likelihood as obtained previously. 

5.4.8 Fix to fish_flags used for DM likelihood 

An existing feature employed fish_flags(i,70) in scaling the average annual fishing mortalities by age 
used for applying fishery-specific penalties in the equilibrium yield calculations. In error, use of fish_flags(i,70) 
was duplicated for activating the estimation of a DM likelihood parameter (length frequency relative sample 
size covariate exponent). The effect of this bug was to produce spurious estimates for the fishing mortality 
multiplier (Fmult). The use of this fish_flags for the DM likelihood was changed to fish_flags(i,89). 

5.4.9 Fix to parameter labels in xinit.rpt 

The report “xinit.rpt” lists the independent parameters being estimated making up the x-vector. A 
simple syntax error produced errors in the labels for the DM likelihood parameters for weight frequency data. 
These were corrected to be the appropriate fish_pars(24) and fish_pars(25). 

5.4.10 Fix to missing components in report “test_plot_output” 

The report “test_plot_output” contains details of the component terms of the total objective function 
calculated in the integrated model fit. During the objective function calculation, each component term is 
assigned to members of the class ppstf. Values for the total catch likelihood term in respect of catches in weight, 
were correctly assigned to ppstf->tot_catch_like_by_realization, however this was neglected for catches in 
numbers of fish. This was correctly assigned. It was also confirmed that the assignments were made correctly 
for either single or multi-species catches in respect of fish numbers. 

A similar error was found in respect of the likelihood component for the BH-SRR fit (bh_steep). While 
for the single species case the bh_steep contribution was correctly assigned to ppstf; this had not been extended 
for the cases of multi-species/sexes. This was corrected, and for the multi-sex case, it assigns the single bh_steep 
for the female sex only. For the cases of multi-species/sexes the bh_steep contribution is reported to 
“test_plot_output” as a vector. In the multi-sex case, the vector element for the male "species" will be zero. For 
the multi-species case, both elements will be non-zero. 

 

6 APPLICATION OF NEW FEATURES 

A number of the new features and improvements described in sections 4 and 5 were employed for the 
2017 stock assessments for WCPO bigeye tuna, BET, (McKechnie et al. 2017), yellowfin tuna, YFT, (Tremblay-
Boyer et al. 2017), south Pacific swordfish, SWO, (Takeuchi et al. 2017), and for stochastic simulations with 
potential for Management Strategy Evaluations, MSE, (Scott et al. 2017). Specifically these are listed in respect 
of the feature and stock assessment: 

• Improvements for multi-sex model for the SWO assessment (Takeuchi et al. 2017), where investigative 
models were developed using: 

o Predicted size compositions scaled by sex ratios 
o Length-specific selectivity shared among sexes 
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o Mixed combinations of aggregated and dis-aggregated fisheries data 
o Improved report files for indexing multi-sex output 

• Formulations for age-specific natural mortality (BET and YFT) 

• Improved formulation of logistic selectivity (BET, YFT, SWO) 

• Improved standard deviation using the OpenBLAS library routine for SVD (BET, YFT, SWO) 

• Estimating autocorrelation in recruitments (BET, YFT) 

• Likelihood profiling in respect of model derived quantities: average absolute biomass, relative depletion 
(BET, YFT, SWO) 

• Investigative modelling was also done using the DM likelihood (BET) 

• Simulation projections under BH-SRR recruitments predictions with stochastic deviates, and generating 
pseudo-observations of size compositions and relative abundance indices (MSE). 

7 FUTURE WORK 
A future work plan for the development of new features in MULTIFAN-CL is suggested in Table 3 with 

those having high priority being undertaken in 2017-18, while others may be addressed in subsequent years.  

Of note are to resume work on the four remaining recommendations of Ianelli et al. (2012) yet to be 
implemented: 

• Non-uniform size bins (recommendation "b") 

• Long-term tag loss (recommendation "c") 

• Tags inform movement (recommendation "d") 

• Maturity at length (recommendation "k") 

Tasks of immediate priority and relating to the new features recently added (Section 4) are discussed in 
the following section. 

8 DISCUSSION 
2016-17 has seen a change of practice in managing the MULTIFAN-CL repository development branch. 

In previous years the separation of the master and development branches endured for long periods while new 
features were being implemented. In contrast, in the past year modified code has been committed to the 
development branch regularly (27 commits), and a merge with the master done in Jan. 2017 preceding the 
release of version 2.0.2.1. Regular testing of the development branch relative to the master has since followed, 
especially before and after workshops, with another merge intended upon completion of the next 
comprehensive set of benchmark tests. This practice is an improvement over previous years, which prevents 
large deviations occurring between the two branches that creates potential for extensive debugging being 
required to identify the causes of calculation differences. The current practice is more streamlined and uses the 
repository as intended. 

The list of bug fixes (section 5.4) made during 2016-17 is more than in previous years, but this reflects 
how important benchmark testing is in revealing coding errors generated when developing new features. 
Regular benchmark testing and testing immediately following new developments is certainly best practice. Also 
implementing the multi-sex feature in a real stock assessment context revealed a number of necessary and 
related fixes. Constructing the multi-sex swordfish model also identified a number of improvements to that 
feature, particularly for the special case of sharing length-specific selectivity among the sexes which is a better 
approach than using age-specific selectivity for a sexually dimorphic species such as swordfish (Takeuchi et al. 
2017). 

As in 2015-16, the core project task has been the development of innovative approaches for fitting to 
size composition data. The main theme of this task has been consolidating the method formulated by the 
primary developer Dr Dave Fournier, the SSMULT_RE. A substantial amount of testing has been done using 
examples of real stock assessment data that have revealed key issues like minimization problems and certain 
diagnostic requirements. An unsatisfactory result from these trials has been that estimates of the correlation in 
random effects have tended towards the upper bound. With closer examination through simulation testing, 
there may be problems in estimating both the ESS and the correlation simultaneously. Consequently, the 
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obvious alternative of the Dirichlet-Multinomial has been explored with apparent success. Preliminary 
simulation results indicate its good performance in estimating ESS, although the approach is somewhat sensitive 
to assumed Nmax parameter values. This core task is now at an advanced stage and these most recent findings 
may be confirmed with a final set of simulation experiments proposed for the latter part of 2017. Upon 
completion of these experiments, some final refinements may be made to the implementation of these 
methods in MULTIFAN-CL preceding their release. 

Directing resources to this core task is considered warranted given the importance of size composition 
data in WCPO tuna stock assessments. It is worth reiterating that model uncertainty due to assumptions made 
for the relative importance amongst the various data types included in the integrated modelling approach has 
dominated most fisheries assessment models. Selecting appropriate “weights” for these data is a “challenging 
aspect” of fisheries modelling (Punt 2015). The self-scaling properties of the SSMULT_RE and DM approaches 
allow the ESS to be estimated based upon robust statistical methods. This represents a real advance in reducing 
this area of model uncertainty. Consolidating their development has therefore been a priority for 2016-17. 

The implementation of the remaining four recommendations by Ianelli et al. (2012) was not addressed 
during 2016-17. Higher priority has been given to: methods for fitting size composition data, a simulation mode 
for generating pseudo-observations, and several unforeseen tasks, including improvements of the multi-sex 
feature as needed for the south-west Pacific swordfish model. However, the Peer-review recommendations 
remain prominent in the project task list for 2017-18. 

Increasing the utility of MULTIFAN-CL for MSE is important for its potential role in the simulation 
framework being developed for this type of management recommendation (Scott et al. 2017). Good progress 
was made during 2016-17 with the new simulation mode feature, and Scott et al. (2017) have demonstrated 
the potential of the pseudo-observations generated for undertaking MSE. The innovative algorithm for 
simulating tag recapture data (section 4.4.3) has utility for exploring the performance of decision rules based 
upon such data. Completing this feature entails: completing the generation of pseudo-observations of tagging 
data (transform into recaptures at length, and consider the potential for including overdispersion in the 
observation error); producing pseudo-observations (all data types) for the estimation period; and, widening the 
range of process error types to include auto-correlation in the recruitments. Estimating or deriving 
autocorrelation in the operating model is now possible, making it feasible to include it in generating stochastic 
recruitments for projections. Completing the development of this feature is the highest priority for the 
remaining part of 2017. 
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10 TABLES 
 

Table 1: Comparison of the total objective function, tagging data likelihood, gradient, and population scalar parameter 
as calculated using the MULTIFAN-CL Linux compilation (Linux) and the VS2017 compilation of the Windows executable 
(run on Windows 7 and 10 platforms). 

  Linux Win7 platform Win10 platform 

Obj.fn -6.17602425864468e+04 -6.17602425864229e+04 -6.17602425864368e+04 

Tag.data 2.75971189195884e+04 2.75971189195603e+04 2.75971189195728e+04 

Gradient 3.57476468178577e+00 3.57476367998121e+00 3.57476431569964e+00 

Totpop 2.10057550179922e+01 2.10057550179928e+01 2.10057550179928e+01 

 

Table 2. New features added to MULTIFAN-CL with respect to their state of completion as of August 2017. 

Peer review recommendations 

Task Description Status of completion 

i. Tail compression Include a “tail compression” option, which 
would pool all length- and weight-data for 
large and small sizes based on a specified 
percentage. 

Development 100%; Testing 100% 

j. Multinomial 
distribution for 
size composition 
data 

Add an option which allows the analyst to 
assume a multinomial likelihood for the 
compositional data in the first phases 

Development 100%; Testing 100% 

l. Tag likelihood 
relative weighting 

An option to add a likelihood weight to the 
tagging data component should be added 

Development 100%; Testing 100% 

k. Maturity-at-
length 

When maturity data are based on length, 
converting to ages should be done within the 
model. Presently, the maturity-at-age is based 
on a fixed age-length relationship. 

Development 0% 

b. Non-uniform 
size bins 

Allow the length bins to be of different widths. 
One might, for example, want many narrow 
length bins for the smaller lengths, but fewer 
but wider length bins for the larger lengths. 

Development 0% 

c. Long-term tag 
loss 

Allow for long-term and initial tag-loss. 
Currently initial tag-loss is implemented by 
reducing the number of animals tagged when 
inputting data to the model and no account 
can be taken of long-term tag-loss. 

Development 0% 

d. Tags inform 
movement  

Include an option which allows the tagging 
data to inform movement only rather than 
movement and mortality 

Development 0% 

 

Other developments 

Task Description Status of completion 

Initial biomass 
approximates the 
equilibrium 
unexploited 
biomass 

Abundance in the first model period is 
equivalent to that estimated using the 
estimated BH-SRR in an unexploited 
equilibrium state 

Development 90%; Testing 20% 

Region-specific 
yield estimation 

Calculate the equilibrium productivity and 
biomass from each region in a spatially 
disaggregated model 

Development 100%; Testing 20% 



 29 

Self-scaling 
multinomial with 
random effects 

Add a multinomial likelihood for composition 
data that is modified to be self-scaling and 
estimates auto-correlated random effects. 

Development 100%; Testing 90% 

Exclude reporting 
rates from tag 
predictions during 
mixing period 

Do not to account for the estimated tag 
reporting rate when solving the Newton-
Raphson catch algorithm for tags recaptured 
during the mixing period 

Development 100%; Testing 20% 

 

Table 3. New features to be added to MULTIFAN-CL in 2017-18 and those for which implementation and testing is to be 
completed. 

Peer review recommendations 

Task Description Implementation 

b. Non-uniform 
size bins 

Allow the length bins to be of different widths. One might, for 
example, want many narrow length bins for the smaller lengths, 
but fewer but wider length bins for the larger lengths. 

2016-17 

c. Long-term tag 
loss 

Allow for long-term and initial tag-loss. Currently initial tag-loss is 
implemented by reducing the number of animals tagged when 
inputting data to the model and no account can be taken of long-
term tag-loss. 

2016-17 

d. Tags inform 
movement  

Include an option which allows the tagging data to inform 
movement only rather than movement and mortality 

2016-17 

k. Maturity at 
length 

When maturity data are based on length, converting to ages should 
be done within the model. 

2016-17 

j. Multinomial 
distribution for 
size composition 
data 

Add an option which allows the analyst to assume a multinomial 
likelihood for the compositional data in the first phases Complete testing 2017-18 

(see SSMULT_RE below) 

 

Other developments 

Task Description Implementation 

Simulation mode 

Output of simulation operating model pseudo-observations for use 
in simulation model testing and as an Operating Model for 
Management Strategy Evaluations: 
- implement pseudo-observations for tagging and age-length data;  
- generate pseudo-observations of all data for the estimation 
period of the model;  
- format pseudo-observations consistent with the .frq, .tag and 
.age_length input file formats; and, 
- implement process error in future recruitments with application 
of the derived autocorrelation coefficient in historical recruitment 
estimates 

2017-18 

Windows 
executable 

Improve the static build using Visual Studio 2017 to reduce the 
number of dependent .dll files required to be ported with the 
executable. 

2017-18 

Cobb-Douglas 
scalar 

A biomass-related effect on catchability implying hyper-stability in 
catch rates. 

Complete testing 2017-18 

Self-scaling 
multinomial with 
random effects 
(SSMULT_RE) and 
Dirichlet-
Multinomial 

Add a multinomial likelihood for composition data that is modified 
to be self-scaling and estimates auto-correlated random effects. 

Complete testing 2017-18 

Initial biomass 
approximates the 
equilibrium 
unexploited 
biomass 

Calculate the equilibrium productivity and biomass from each 
region in a spatially disaggregated model 

Complete testing 2017-18 
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Exclude reporting 
rates from tag 
predictions during 
mixing period 

Do not to account for the estimated tag reporting rate when 
solving the Newton-Raphson catch algorithm for tags recaptured 
during the mixing period 

Complete testing 2017-18 

Region-specific 
yield estimation 

 
Complete testing 2017-18 

Tags inform 
growth 

Add length increments of tag recaptures to inform growth 
estimation. 

2017-18 

 

Table 4: Simulation average bias in DM estimates of ESS in respect of assumed Nmax values. 

“True” Nmax in Simulator DM Nmax in Analyzer Average bias in ESS 
500 50 24.452048 
500 250 11.552192 
500 400 4.444176 
500 500 1.121012 
500 750 -4.704076 
500 1250 -11.507652 
500 2000 -17.153992 

 
  

Table 5: Comparison among model quantities between RefCase and DM models indicating the effect of using the DM 
likelihood for size composition data with alternative assumptions for Nmax. Percentage difference is between 
DM_Nmax250 and DM_2000. 

Model quantity RefCase 
DM_Nmax2

50 
DM_Nmax1

000 
DM_Nmax1

500 
DM_Nmax20

00 

%diff_n
mx2000

_250 

MSY 1627600 1642800 1670400 1675600 1678000 2.14 

Ccurr.MSY 1.011 1.002 0.985 0.982 0.981 -2.09 

Fmsy 0.197 0.213 0.208 0.208 0.207 -2.72 

Fmult 1.658 1.912 1.983 2.005 2.017 5.49 

Fcurr.Fmsy 0.603 0.523 0.504 0.499 0.496 -5.21 

B0 6621000 5930000 6211000 6252000 6272000 5.77 

Bmsy 2071000 1926000 2005000 2017000 2023000 5.04 

Bcurr 3645390 3687621 3921952 3977954 4007873 8.68 

SB0 6262000 5574000 5844000 5884000 5905000 5.94 

SBmsy 1762000 1617000 1687000 1698000 1704000 5.38 

SBcurr 3289576 3315413 3537495 3592042 3621325 9.23 

Bcurr.Bmsy 1.760 1.915 1.956 1.972 1.981 3.47 

SBcurr.SBmsy 1.867 2.050 2.097 2.115 2.125 3.65 

SBcurr.SBcurrF0 0.489 0.527 0.535 0.539 0.540 2.63 

SBlatest.SBlatestF0 0.482 0.500 0.510 0.513 0.514 2.72 

obj_bhsteep 1.084 1.046 1.037 1.036 1.036 -0.94 

obj_effdev 994.179 1018.004 1015.242 1015.416 1015.668 -0.23 

obj_catdev 80.205 85.354 83.029 82.320 82.156 -3.75 

obj_lencomp -198131.093 105789.616 147886.245 160515.358 169541.415 60.26 

obj_tagdata 25974.935 25784.420 25754.084 25753.700 25753.448 -0.12 

obj_agelngdata 0.000 0.000 0.000 0.000 0.000 - 

Obj -170707.071 133068.018 175129.366 187762.167 196789.847 47.89 

gradient 0.4128503 0.2302405 0.0706059 0.0654338 0.0178001 -92.27 

Lmin 10.000 10.000 10.000 10.000 10.000 0.00 

Lmax 88.317 88.317 88.317 88.317 88.317 0.00 

K 0.197 0.197 0.197 0.197 0.197 0.00 
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Table 6: Comparison among quantities for models having age-specific natural mortality estimated using independent 
age-specific deviate parameters (Refcase), or the functional forms of splines (M_spline) or the Lorenzen function 
(M_lorenz). Percentage difference is with respect to the Refcase model. 

Model quantity Refcase M_spline M_lorenz %diff_M_spline %diff_M_lorenz 

MSY 472900 474400 485200 0.32 2.60 

Ccurr.MSY 3.648 3.636 3.555 -0.316 -2.54 

Fmsy 0.244 0.251 0.272 2.875 11.79 

Fmult 2.225 2.233 2.471 0.360 11.06 

Fcurr.Fmsy 0.449 0.448 0.405 -0.358 -9.96 

B0 7098000 6967000 6318000 -1.85 -10.99 

Bmsy 1942000 1894000 1782000 -2.47 -8.24 

Bcurr 4125554 4011290 3881456 -2.77 -5.92 

SB0 6764000 6662000 6021000 -1.51 -10.98 

SBmsy 1626000 1605000 1500000 -1.29 -7.75 

SBcurr 3749074 3667094 3539762 -2.19 -5.58 

Bcurr.Bmsy 2.124 2.118 2.178 -0.306 2.53 

SBcurr.SBmsy 2.306 2.285 2.360 -0.907 2.35 

obj_bhsteep 0.107 0.107 0.107 0.000 0.00 

obj_effdev 1631.811 1631.811 1631.811 0.000 0.00 

obj_catdev 58.283 58.283 58.283 0.000 0.00 

obj_lencomp -250887.004 -250887.004 16374.051 0 -106.53 

obj_tagdata 24487.383 24735.031 24773.250 1.011 1.17 

Obj -224289.687 -224125.298 -223989.587 -0.073 -0.13 

Gradient 0.0097396 62.2693952 4.9839515 639242.25 51072.02 

Lmin 10.000 10.000 10.000 0.000 0.00 

Lmax 88.317 88.317 88.317 0.000 0.00 

K 0.197 0.197 0.197 0.000 0.00 
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11 FIGURES 

 

Figure 1: Comparison of total biomass between a deterministic projection having recruitments predicted from the 
annualised BH-SRR allocated to quarters according to the average seasonal proportions (Determ_run_uuu_est_corrth), 
and 20 simulation projections using stochastic recruitment deviates sampled from the theoretical distribution 
(Stoch_run_uuu_expt3th) with the mean level shown (Stoch_mean). 

 

Figure 2: Comparison of total biomass between a deterministic projection having recruitments predicted from the 
annualised BH-SRR allocated to quarters according to the average seasonal proportions 
(Determ_run_uuu_est_devvsn3), and 20 simulation projections using stochastic recruitment deviates sampled from the 
estimated deviates (Stoch_run_uuu_est_devvsn3) with the mean level shown (Stoch_mean). 
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Figure 3: Absolute spawing biomass estimated using the robust-normal size composition likelihood (RefCase) and the 
DM likelihood under a range of assumed Nmax values (DM_Nmax250 to DM_Nmax2000). 

 

 

Figure 4: Sex-specific mean lengths at age re-scaled from zero to 1, (tlength). 
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Figure 5: Sex-specific selectivity at age derived from re-scaled mean lengths at age shared among sexes. 
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Figure 6: Sex-specific selectivity at length derived from re-scaled mean lengths at age shared among sexes. 
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Figure 7: Age-specific natural mortality estimated using independent age-specific deviate parameters (Refcase), or the 
functional forms of splines (M_spline) or the Lorenzen function (M_lorenz). 
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12 ANNEX 

12.1 Benchmark testing 

Summary of benchmark tests of the development version using single species data undertaken August 2013 to July 2017. 

 

 

Compilation name Compilation folder & Exec.name

Compilation 

date Test folder Test date Test configurations Results folder Key results

Benchmark testing 16 September 2014

MTHRD_2014_05_13

multi_spp_2014_05_13; 

exec_txf/mfclo64_2014_05_13 May.2014 2014-09-12_fit_bet 16/09/2014 af145 = -3; penwt=10.0**af145 2014-09-12_fit_bet

penwt=0.001; Obj.=1068534.244292082731; 

MSY=3.047e+06; B0=2.217e+08

MTHRD_2014_05_17

multi_spp_2014_05_17; 

exec_txf/mfclo64_2014_05_17 Sep.2014 2014-09-12_fit_bet 16/09/2014 af145 = -3; penwt=10.0**af145 2014-09-12_fit_bet

penwt=0.001; Obj.=1068556.974073923426; 

MSY=3.422e+06; B0=2.514e+08

Benchmark and Release version testing 22 September 2014

MTHRD_2014_05_17

multi_spp_2014_05_17; 

exec_txf/mfclo64_2014_05_17 Sep.2014 2014-09-22_fit_bet 22/09/2014 af145 = 1; pen_wt=af145 2014-09-22_fit_bet

pen_wt=1; Obj.=1068477.068569175899; 

MSY=1.894e+04; B0=1.410e+06

Release_vsn.1.1.5.8

C:\Nick\MFCL\2011-10-07\mfcl\; 

C:\Nick\I_Assessments\MFCL\2014_09_12 Sep.2014 2014-09-22_fit_bet 22/09/2014 af145 = 1; pen_wt=af145 2014-09-22_fit_bet

pen_wt=1; Obj.=1068457.480964803835; 

MSY=1.913e+04; B0=1.420e+06

Development version and Release version testing 20 October 2014

MTHRD_2014_09_16

multi_spp_2014_06_19; 

exec_txf/mfclo64_2014_06_19 8 Oct.2014 2014-09-22_fit_bet 20/10/2014 af145 = 1; pen_wt=af145 2014-09-22_fit_bet

pen_wt=1; Obj.=1068477.068569175899; 

MSY=1.894e+04; B0=1.410e+06

Release_vsn.1.1.5.8

C:\Nick\MFCL\2011-10-07\mfcl\; 

C:\Nick\I_Assessments\MFCL\2014_09_12 Sep.2014 2014-09-22_fit_bet 20/10/2014 af145 = 1; pen_wt=af145 2014-09-22_fit_bet

pen_wt=1; Obj.=1068457.480964803835; 

MSY=1.913e+04; B0=1.420e+06

Benchmark and Development version testing 6 November 2014

MTHRD_2014_05_17

multi_spp_2014_05_17; 

exec_txf/mfclo64_2014_05_17 Sep.2014 2014-11-06_fit_bet 6/11/2014 af145 = 1; pen_wt=af145 2014-11-06_fit_bet

pen_wt=1; Obj.=1068474.325769255171; 

MSY=1.884e+04; B0=1.397e+06

MTHRD_2014_09_16

multi_spp_2014_06_19; 

exec_txf/mfclo64_2014_06_19 5 Nov.2014 2014-11-06_fit_bet 6/11/2014 af145 = 1; pen_wt=af145 2014-11-06_fit_bet

pen_wt=1; Obj.=1068511.045675329166; 

MSY=1.899e+04; B0=1.405e+06

Benchmark and Development version testing 19-27 February 2015

MTHRD_2014_09_16

multi_spp_2014_06_19; 

exec_txf/mfclo64_2014_06_19 5 Nov.2014

2015-02-27_fit_bet/                    

bnchmrk_bet2011_fit 27/02/2015 af145 = 1; pen_wt=af145 2015-02-27_fit_bet

pen_wt=1; Obj.=1068511.045675329166; 

MSY=1.899e+04; B0=1.405e+06

MTHRD_2014_11_07

multi_spp_2014_11_07; 

exec_txf/mfclo64_2014_11_07 26 Feb.2015

2015-02-27_fit_bet/                    

devvsn_bet2011_fit 27/02/2015 af145 = 1; pen_wt=af145 2015-02-27_fit_bet

pen_wt=1; Obj.=1068553.274013987277; 

MSY=1.854e+04; B0=1.386e+06
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Benchmark and Development version testing 16 November - 2 December 2015

MTHRD_2014_11_07

multi_spp_2014_11_07; 

exec_txf/mfclo64_2014_11_07 26 Feb.2015

2015-11-25_fit_bet/                    

bnchmrk_bet2011_fit 25/11/2015 af145 = 1; pen_wt=af145 2015-11-25_fit_bet

pen_wt=1; Obj.=1068553.274013987277; 

MSY=1.854e+04; B0=1.386e+06

MTHRD_2015_09_15

multi_spp_2015_09_15; 

exec_txf/mfclo64_2015_09_15 3 Nov.2015

2015-11-25_fit_bet/                    

devvsn_bet2011_fit 25/11/2015 af145 = 1; pen_wt=af145 2015-11-25_fit_bet

pen_wt=1; Obj.=1.06765392664784e+06; 

MSY=1.775e+04; B0=1.074e+06

Benchmark and Development version testing 17 February 2016

MTHRD_2015_09_15

multi_spp_2014_11_07; 

exec_txf/mfclo64_2014_11_07 26 Feb.2015

2016-02-17_fit_skj2014/                    

release_skj2014_fit 18/02/2016 af145 = -1; pen_wt=10^af145

2016-02-

17_fit_skj2014

pen_wt=0.1; Obj.=170692.859; 

MSY=4.047e+005; B0=6.585e+006

MTHRD_2015_09_15

multi_spp_2015_09_15; 

exec_txf/mfclo64_2015_09_15 2 Feb.2016

2016-02-17_fit_skj2014/                    

devvsn_skj2014_fit 18/02/2016 af145 = -1; pen_wt=10^af145

2016-02-

17_fit_skj2014

pen_wt=0.1; Obj.=170247.097; 

MSY=4.056e+005; B0=6.603e+006

Benchmark and Development version testing 20 June 2016

MTHRD_2015_09_15

multi_spp_2015_09_15; 

exec_txf/mfclo64_2015_09_15 2 Feb.2016

2016-06-10_fit_yft2014/                    

bnchmrk_yft2014_fit 17/06/2016 af145 = -2; pen_wt=10^af145

2016-06-

10_fit_yft2014

pen_wt=0.01; Obj.=1195760.515; MSY= 

1.469e+05; B0=4.322e+06

MTHRD_2015_09_15

multi_spp_2015_09_15; 

exec_txf/mfclo64_2015_09_15 21 Jun.2016

2016-06-10_fit_yft2014/                    

devvsn_yft2014_fit 17/06/2016 af145 = -2; pen_wt=10^af145

2016-06-

10_fit_yft2014

pen_wt=0.01; Obj.=1195760.641; MSY= 

1.467e+05; B0=4.319e+06

Benchmark and Development version testing 16 August 2016

MTHRD_2015_09_15

multi_spp_2015_09_15; 

exec_txf/mfclo64_2015_09_15 21 Jun.2016

2016-08-16_fit_skj2014/2016-08-

16_fit_skj2014_bnchmrk 16/08/2016 af145 = -1; pen_wt=10^af145

2016-08-

16_fit_skj2014

pen_wt=0.1; Obj.=170249.547; MSY= 

4.046e+05; B0=6.562e+06

MTHRD_2016_04_15

multi_spp_2016_04_15; 

exec_txf/mfclo64_2016_04_15 15 Aug.2016

2016-08-16_fit_skj2014\2016-08-

16_fit_skj2014_devvsn2 16/08/2016 af145 = -1; pen_wt=10^af145

2016-08-

16_fit_skj2014

pen_wt=0.1; Obj.=170214.267; MSY= 

3.982e+05; B0=6.405e+06

Benchmark and Development version testing 7 November 2016 - devvsn4

MTHRD_2015_09_15

multi_spp_2015_09_15; 

exec_txf/mfclo64_2015_09_15 21 Jun.2016

2016-11-07_fit_skj2014/2016-11-

07_fit_skj2014_bnchmrk 7/11/2016 af145 = -1; pen_wt=10^af145

2016-11-

07_fit_skj2014

pen_wt=0.1; Obj.=170249.547; MSY= 

4.046e+05; B0=6.562e+06

MTHRD_2016_10_18

multi_spp_2016_10_18; 

exec_txf/mfclo64_2016_10_18 7 Nov.2016

2016-11-07_fit_skj2014/2016-11-

07_fit_skj2014_devvsn4 7/11/2016 af145 = -1; pen_wt=10^af145

2016-11-

07_fit_skj2014

pen_wt=0.01; Obj.=170214.267; MSY= 

3.982e+05; B0=6.405e+06

Benchmark and Development version testing 29 March 2017

MTHRD_2016_10_18

multi_spp_2016_10_18; 

exec_txf/mfclo64_2016_10_18 7 Nov.2016

2017-03-

29_fit_yft2014/vsn2.0.2.1_yft20

14_fit 29/03/2017 af145 = -2; pen_wt=10^af145

2017-03-

29_fit_yft2014

pen_wt=0.01; Obj.=1195611.492; MSY= 

592400; B0=4460000

MTHRD_2016_10_18

multi_spp_2016_10_18; 

exec_txf/mfclo64_2016_10_18 28 Mar.2017

2017-03-

29_fit_yft2014/vsn2.0.2.2_yft20

14_fit 29/03/2017 af145 = -2; pen_wt=10^af145

2017-03-

29_fit_yft2014

pen_wt=0.01; Obj.=1195578.322; MSY= 

583200; B0=4374000

Benchmark (vsn.2.0.2.2) and Development version (devvsn7) testing 17 May 2017

MTHRD_2016_10_18

multi_spp_2016_10_18; 

exec_txf/mfclo64_2016_10_18 4-May-17

2017-05-

17_fit_yft2014/vsn2.0.2.2_yft20

14_fit 17/05/2017 af145 = -2; pen_wt=10^af145

2017-05-

17_fit_yft2014

pen_wt=0.01; Obj.=1195578.322; MSY= 

583200; B0=4374000

MTHRD_2017_05_02

multi_spp_2017_05_02; 

..\I_Assessments\MFCL\2017_05_02_devvs

n7 17-May-17

2017-05-

17_fit_yft2014/devvsn7_yft2014

_fit 17/05/2017 af145 = -2; pen_wt=10^af145

2017-05-

17_fit_yft2014

pen_wt=0.01; Obj.=1195578.322; MSY= 

583200; B0=4374000
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Benchmark (vsn.2.0.2.2) and Development version (devvsn7) testing 6 June 2017

MTHRD_2016_10_18

multi_spp_2016_10_18; 

exec_txf/mfclo64_2016_10_18 4-May-17

2017-05-

17_fit_yft2014/vsn2.0.2.2_yft20

14_fit 6/06/2017 af145 = -2; pen_wt=10^af145

2017-06-

06_fit_yft2014

pen_wt=0.01; Obj.=1195578.322; MSY= 

583200; B0=4374000

MTHRD_2017_05_02

multi_spp_2017_05_02; 

..\I_Assessments\MFCL\2017_05_02_devvs

n7 2-Jun-17

2017-05-

17_fit_yft2014/devvsn7_yft2014

_fit 6/06/2017 af145 = -2; pen_wt=10^af145

2017-06-

06_fit_yft2014

pen_wt=0.01; Obj.=1195578.322; MSY= 

583200; B0=4374000
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12.2 Agenda for Training Workshop, March 2017 

 

MULTIFAN-CL training workshop – 6 to 7 March 2017, OFP 

 

Venue: ICT room, SPC campus 

Timetable: 8:30 am to 4:30 pm 

Aim: To achieve proficiency with the new features in MULTIFAN-CL version 2.0.2.1, particularly with:  

• the size-composition likelihoods 

• simulation model operations, and  

• using the Linux debugger. 

 

Presenters: Nick Davies; Dr Dave Fournier 

Agenda 

1. Workshop outline 

• Aim 

• Scope of material and course structure 

• Participant’s requirements 

 

2. New features in version 2.0.2.1 

An introduction is provided to each feature, followed by an application using an example 
model. 

• Size-composition likelihoods: 

o The self-scaling multinomial M-estimator (SSMULT) 

o Dirichlet-Multinomial likelihood 

o Tail compression for weight composition data with a revised penalty formulation 

• Simulation mode for generating pseudo-observed data 

o Description of current implementation 

o Flag settings for activation and outputs generated 

o Further developments proposed for this feature 

o Application using the ALB2015 example 

• Autocorrelation in recruitment estimates 

• Functional forms for the estimated age-specific natural mortality 

• An improved algorithm for applying stochastic recruitment deviates to BH-SRR predictions in 

simulation projections 

• Improved variance calculation that uses the OpenBLAS library routine for the singular value 

decomposition required for the st.dev report 

• Added a "catch" to detect when a vector of zeroes in size frequency data is input 

 

3. Overview of the code structure 

• Input of .frq and .par 

• Fitting procedure with implementation of routine fcomp() 

• Size-composition likelihoods 

• The “heart” of the age-structured model - routine get_numbers_at_age()  
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• Equilibrium yield calculations 

• Hessian operations (option 7) for generating simulation inputs 

 

4. Debugging 

• Using ddd with the MULTIFAN-CL debug compilation executable mfclsdbg64, with 

backtrace to locate problem using the tools call mp() 

• Low-level: detection of operation failures due to input errors; e.g. incompatible flags 

• High-level: functioning of certain features that collapse with a problem; e.g. arithmetic 

exception 

• Getting assistance with resolving the bug – what to prepare 

 

5. Parked issues 

 

 

 


