Monitoring of FADs Deployed and Encountered in the WCPO

FAD-IWG, 28-30th September, 2016

Overview

- Why uniquely mark FADs?
- What type of marking options exist?
- What are others doing?
- Cost-benefit modelling
- Proposed way forward

What type of FADs are used in WCPO?

Anchored FADs (aFADs)

- Most common type is drum/ bamboo, with chain, palm leaves or mesh
- 6% of assoc. sets

Natural FADs (nFADs)

- Logs, debris
- 16% of assoc. sets (~40% with buoy attached)

Drifting FADs (dFADs)

- Variable materials most common are bamboo cane, floats, net mesh
- Usually satellite buoys attached, some sonar buoys
- 59% of assoc. sets (26% on other vessel's FAD)

Figures from Abascal et al, 2014

Why uniquely mark/monitor FADs?

Legal responsibilities

 Marking fishing gear/FADs required/encouraged in FAO CCRF, UN FSA, FAO Tech. Guidelines for Responsible Fisheries

Scientific benefits

- Clear picture of number and type of FADs, plus capacity to track 'life history' of individual FAD, essential to understanding impacts of FADs – e.g.
 - Influence of duration at sea/design/materials on target/non-target catch
 - Influence of FADs on stock dynamics, catch rates
 - Examining how increased use of sonar buoys affects CPUEs
- Abascal et al (2014) highlighted inability to uniquely identify FADs a key impediment to effective scientific analysis

Why uniquely mark/monitor FADs?

• Management and compliance benefits

- # FADs deployed in WCPO essentially uncapped and unknown, BUT key component of overall PS fishing capacity/efficiency – difficult to manage effectively
- Stronger marking/monitoring allows for:
 - Stronger capacity to manage overall numbers/impacts of FADs
 - Stronger capacity to enforce existing FAD measures (e.g. set limits/FAD closures)
 - Industry accountability for abandoned/washed up FADs
 - Tracking dFADs through closed waters

Economic benefits

 Better positions WCPFC CCMs to meet stock management objectives (BET/YFT) – should lead to economic benefits through higher stock sizes, improved catching efficiency, etc

What type of marking options exist?

Marking Options

- Can broadly be divided into 2 types:
 - Physical unique ID permanently attached to the FAD itself
 - Electronic uses unique ID of sat buoy
- Options examined:
 - Physical marking
 - Industry applied (e.g. epoxy paint)
 - Pre-printed tag
 - Acoustic tags
 - Electronic marking (satellite buoy ID)
 - Combined physical + electronic

Physical marking - industry applied

- Would involve industry applying a permanent physical marking to FAD prior to deployment
- ID # could be sat buoy ID, or standalone ID doesn't really matter, key thing is its unique
- Ideally should be standard format/materials (e.g. size/colour of lettering/background)
 - field test to define best configuration (durability, visibility for captains/observers)
- To be most effective, FADs should be registered prior to deployment provides upfront record of number and type of FADs, allows for verification of details at time of deployment

Industry applied – benefits/costs

- Benefits
 - Marking stays with FAD itself allowing life history to be tracked (resilient to changes of buoy)
 - Requiring FADs to be registered upfront (with info verified at deployment) will provide credible account of number and type of FADs in WCPO for first time
- Costs
 - Main costs are in institutional staffing/IT costs, industry compliance costs (registration, materials)
 - ~\$600,000 annually (assumes 50,000 FADs = ~\$12/FAD)
 - Other costs (e.g. updating logsheet/observer workbooks etc) assumed to be marginal

Industry applied – practical issues

- For manual marking system to be effective, number of supporting measures required:
 - All FADs registered prior to deployment (or for nFADs encountered and set upon, within a specified time – e.g. 48hrs);
 - No deployment of FADs other than in presence of an authorised observer
 - No setting on FADs without authorised marking
- Trade-off between increasing visibility of marking for captains/observers Vs making other companies' FADs easier to see

Pre-printed tags

- Industry apply for, or purchase, pre-printed tags with unique ID
- Must be permanently applied to FAD prior to deployment
- Could either be large enough for observer/captains to see, or could be small and require industry to apply same (larger) marking to FAD
- Registration/verification system same as industry-applied marking option

Pre-printed tags

- Benefits
 - If large enough, removes need for industry marking
 - No scope for same 'unique' ID to be applied
 - Costs of implementing system could be recovered through purchase of tags (additional costs applied to recover costs of FAD research/monitoring etc)
- Costs
 - Similar to industry applied option
 - Main additional cost would be tags
 - ~\$560k annually (more with more expensive tags)

Acoustic tags

- Two different electronic 'tag' types assessed:
 - RFID
 - Acoustic
- RFID effective scanning distance v. small in seawater (although technology improving)
- Acoustic more promising:
 - can be detected at distances up to 1km,
 - can be embedded with unique ID,
 - Long battery life (3-5yrs)

80 kHz Acoustic Tag

Acoustic tags

- Benefits
 - Removes need for industry applied marking
 - Assist with identification avoids problems with fouling covering marking, markings degrading
 - Assists with FAD ID in pre-dawn sets
 - Assist in monitoring compliance with FAD prohibition/FAD sets
 - Can detect submerged FADs
 - No possibility of same 'unique' IDs being applied

Costs

- Main additional costs are hardware/set up
- Tags ~ \$190 each; data logger/hydrophone set ~ \$4,000
- Total cost ~ \$10m; \$202/FAD

Satellite buoy based ID

- Based on using unique ID associated with each satellite buoy
- PNA trials confirm sending buoy info to more than one receiver feasible (at no additional comms cost)
- Most poll twice/day
- If unique ID of sat buoy used, all FADs in WCPO would need to fit sat buoys in order to get complete picture of FAD usage

Satellite buoy based ID

- Benefits
 - Key benefit is access to near-real time sat buoy position info:
 - Scientific analysis (e.g. impact of FAD distribution/density on stock dynamics, etc)
 - Compliance/industry accountability (may have some utility in helping enforce FAD measures; tracking unrecovered FADs)
 - Management (tracking of FAD sets; drift of FADs through closed zones)
 - Biomass info from sonar buoys
 - Oceanographic info sea surface temperature, speed, etc

• Costs

- Institutional costs dependent on whether WCPFC can 'piggyback' off existing systems (e.g. PNA)
- Industry costs buoy/airtime costs assumed to be marginal; extra costs if buoys required on all FADs
- ~\$400k annually; ~\$8.30/FAD

Satellite buoy based ID

- Potentially efficient, BUT subject to practical challenges:
 - Buoy swapping
 - anecdotal evidence suggest buoy swapping relatively common (25% sets made on another company's buoys); sometimes remote from main vessel
 - High potential for 'life history' of FAD to be lost (therefore need permanent marking on FAD itself)
 - Data access complications (if multiple systems used with different rules of access)
 - Reporting of buoy numbers between 2009 and 2014, buoy number reported only 52% of associated sets by observers (albeit may be improved with increased emphasis)
 - CRITICAL NEED FOR DATA SECUITY

Combined physical+satellite buoy

- 'Best of both worlds' system ensures life history of FAD is maintained, while providing valuable sat buoy info
- Costs likely to be only marginally higher than physical system alone because hardware/airtime already paid for
- ~\$644k annually; \$12.89/FAD

Cost comparison

	Painting	Тад	Acoustic	Electronic	Combined Painting/electronic
Average annual cost	\$603,713	\$558,713	\$10,098,463	\$413,903	\$644,403
Total per FAD (50,000)	\$12.07	\$11.17	\$201.97	\$8.28	\$12.89

- Main messages:
 - Sat buoy based system cheapest, but subject to major flaws
 - Physical marking systems slightly more expensive, but needed to maintain 'life history' of FAD itself
 - Costs of having a combined physical+electronic system are only marginally more than physical alone, BUT additional science/management/compliance benefits are substantial

What are others doing?

IATTC (Resolution C-16-01)

- All FADs to be marked by 1 Jan 2017
- Alphanumeric codes to be provided by IATTC, or can use sat buoy ID
- If sat buoy attached, ID painted in 5cm letters on buoy
- If no buoy attached, painted on uppermost part of FAD
- No sat buoy info at this stage, but Secretariat working with vessel owners to get info (with few months time delay)
- Key issue highlighted during interviews was possibility of FAD life history being lost if buoy swapped

IOTC (Resolution 15/08)

- FADs to be marked from January 2016 marking scheme to be considered at Regular meeting in 2016
- Should be easy to read, easy to apply, will not dissociate
- Vessels must submit provisional purchase of instrumented buoys by 1 Jan 2016;
- By end 2016 provide # of buoys activated, deactivated, active in each quarter
- Radio buoys to be phased out by 1 Jan 2017
- Advice from Secretariat suggests scheme yet to be adopted in practice

PNA

- PNA recently commenced trial that requires all FADs deployed by vessels on OVR to be registered through FIMS
- 'Port to port' monitoring
- Potentially covers majority of FAD-related activity (exc. ID/PH domestic fleets)

%	2010	2011	2012	2013	2014
FAD Sets - PNA	95.1%	95.6%	92.7%	92.0%	92.5%
FAD Catch - PNA	93.3%	93.5%	92.2%	89.5%	90.6%

- But, as basis for universal FAD marking scheme faces challenges:
 - No marking on FAD itself (life history may be lost)
 - Unknown levels of compliance

PNG (Gazettal, Sept 2015)

- Comprehensive scheme requires both physical mark and sat buoy info
 - All FADs to be registered unique # to be allocated by NFA
 - FADs to be marked with name and rego of deploying vessel
 - 30cm high, contrasting colour to back plate
 - Raft section of FAD must remain above waterline and be visible from 1km
 - Sat buoys linked to registered FAD vessel operator shall provide direct feed of ALL data
 - FADs cannot be deployed from non-licensed vessel (100% obs. coverage)
 - If nFAD is encountered and set upon, must attach sat buoy
 - Cost recovered
- Early days of new arrangements will be settling in period

Cost-benefit analysis

Cost-benefit – overall approach

- Quantifying direct economic benefits of FAD marking difficult
- Putting aside 'ecosystem type' benefits, one major benefit is better positioning CCMs to effectively manage target stocks (e.g. BET/YFT)
 - more chance of meeting stock management objectives (MSY)
 - should lead to economic benefits (larger stock sizes, more efficient fishing, fewer restrictions, etc)
- One way of quantifying benefits is to look at hypotheticals around likelihood of meeting stock management objectives
 - What would be the economic benefit gained if FAD marking/monitoring meant we were 10% more likely to meet stock management objectives?
 - e.g. if marking scheme cost X, how much more likely would we need to be to meeting stock management objectives to offset cost?
- Cost-benefit judgement to be made is whether likely improvement exceeds 'tipping point' – i.e. benefits outweigh costs
- Not meant to be definitive 'educated hypothetical'

Cost-benefit modelling - inputs

- Costs based on cost estimates for each marking scheme
- Benefits based difference between economic rent from fishery under status quo scenario and improved scenario with FAD marking
- Only considered benefits to the PS sector, BET/YFT (conservative because benefits also flow to LL, SKJ)
- Prices calculated from BKK import data; rents calculated from previous studies
- Two scenarios for each stock modelled MSY and 'poor' (1/2 MSY for BET; ³/₄ MSY for YFT) (23 years)
- Benefits calculated by adjusting likelihood that stock will meet either scenario

Cost benefit analysis - results

Marking system		5%	10%	20%	30%	40%	50%
Manual	Painting	\$68.54m	\$145.76m	\$300.21m	\$454.66m	\$609.10m	\$763.55m
	Tags	\$68.13m	\$145.36m	\$299.80m	\$454.25m	\$608.70m	\$763.15m
	Acoustic	-\$84.00m	-\$6.78m	\$147.67m	\$302.12m	\$456.57m	\$611.02m
Electronic (Sat. buoy)		\$70.29m	\$147.51m	\$301.96m	\$456.40m	\$610.85m	\$765.30m
Combined (Paint-Elect.)		\$66.62m	\$143.84m	\$298.29m	\$452.74m	\$607.18m	\$761.63m

Cost-benefit analysis - 'tipping point'

Marking system		Manual		Combined	
	Paint	Tags	Acoustic	Electronic (Sat. buoy)	(Paint/sat. buoy)
'Tipping point'	0.56%	0.59%	10.44%	0.45%	0.69%

- Main message: only a very small (<1%) improvement in the likelihood of meeting MSY objectives is required to offset the cost of implementing marking system
 - Because of high value of BET/YFT resource even small improvements in management performance result in substantial improvements in economic return

Main messages and proposed way forward

Main messages

- Is there a need for a marking system for FADs? Yes
 - Scientific, management, compliance benefits little dispute amongst stakeholders interviewed
 - Question really is which system/combination of systems provides best value for money
- Physical marking slightly more expensive than sat buoy based systems, BUT important in tracking life history of FAD
 - Requires range of supplementary regulations to be effective
- Electronic (sat buoy) marking less able to track life history of FAD, BUT delivers v important information at little marginal cost
 - Critical to ensure data security
- Combination of systems likely to be most cost-effective
- Other types of marking (e.g. acoustic tagging) offer potential benefits
- All are likely to result in net economic benefits, even with only minor improvements in management performance

Proposed way forward

 Need to better understand number and effects of FADs, means starting point required – can be refined and improved over time

• Step 1: Introduce a manual marking scheme

- Require FADs to be registered and marked
- Registration can be either be centralised (through WCPFC) or hybrid based on national/sub-regional systems
- Upon registration unique ID allocated details can be verified by observer at time of deployment
- Marking should be applied in a way that's permanent, easily identifiable to captain/observer (ideally should be field-tested to identify best specifications)
- Range of supplementary measures required to ensure integrity
 - Prohibit FAD deployment except with observer present
 - Prohibit setting of FADs without authorised ID
 - Require sat buoys on all dFADs
 - Require vessels to report all changes of sat buoys on logsheets

Proposed way forward

• Step 2: Secure access to sat buoy information

- V valuable information can be accessed at modest marginal cost
- Explore with PNA allowing data from trials to be made available to SPC for analysis
- Covers up to 95% of FAD activity (exc. ID/PH domestic)
- Consider whether arrangements are required to access info from FADs not covered by PNA system

• Step 3: Further investigate and trial alternative marking systems

- Potentially offer advantages over manual marking alone (e.g. predawn sets, compliance with FAD closures, FAD set limits etc)
- Most promising seems to be acoustic tags
- Funds should be sought for field trials to determine practicality

Proposed way forward

- Approach generally consistent with existing recommendation from IWG (scheme should apply to FAD and sat buoys)
- Steps 1 and 2 can be implemented concurrently; step 3 soon after
- None of these systems likely to be implemented without 'hiccups'
 - where possible, practical trials should be run prior to implementation
 - System should be subject to ongoing review/refinement where necessary

Thank you!

Thanks to all those interviewed, WCPFC Secretariat, IWG Chair for overseeing work

www.mragasiapacific.com.au