Non-entangling FADs: research to support management

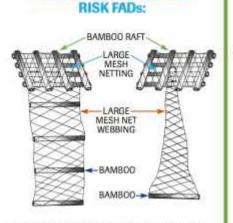
ISSF Research and Management Outcomes Claire van der Geest

WFCPFC – FAD Design

Focus: reducing the entanglement of non-target animals and impact of FADs on ecosystem

<u>Results</u>:

- Biodegradable FADs research ongoing
 - Hawaii coconut husk large diameter rope and small square mesh
 - Maldives cotton, cotton+sisal, cotton+linen+ sisal
- Other mitigation strategies
 - Handling practices on deck



Live release of non-target catch from the net with satellite tagging to assess post-release survival rates

WFCPFC – FAD Design

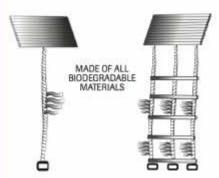
Results continued:

Design and test options to develop risk based FAD designs

HIGHEST ENTANGLEMENT

- Constructed with any netting materials, including old purse seine netting, used to cover rafts or suspended beneath in open panels
- These DFADs are known to cause entanglements with turtles and sharks

HIGHEST RISK



- Rafts are tightly wrapped with small mesh netting, with no loose netting hanging from it
- The underwater structure is tightly tied into bundles (sausages)
- A single panel can be used instead of bundles, but the panel must be weighted to keep it taut
- The panel should consist of either netting with a stretched mesh of 2.5 inches (7 cm) or less, or a solid sheet (e.g., canvas or nylon)
- Despite using netting, these design elements reduce the risk of entanglement events

- . No netting is used in their construction
- The raft is not covered or covered with shade cloth or canvas
- The subsurface structure is made with ropes, carivas or nylon sheets, or other non-entangling materials
- These FADs are expected to have minimum risk of causing entanglement

BIODEGRADABLE NON-ENTANGLING FADS:

 In addition to having minimal risk of entanglement, they are constructed exactly like other non-entangling FADS, but using only natural and/or biodegradable materials, further reducing the environmental impact of DFADs on the oceans

LOWEST RISK

Observations:

- FAD DESIGNS
 - Non-entangling and biodegradable = precautionary

Focus: Residence times and vertical migration on dFADs **<u>Results</u>**:

- Tuna, sharks & bycatch near-continuous association with dFADs for weeks/months
 - BET & YFT relatively long residence times
 - SKJ & silky sharks shorter residence times
 - Rainbow runner and oceanic trigger fish intermediate residence times

Results continued:

- Distinct 24hr patters (diel) with FAD associations; differences observed:
 - Between ocean areas and for target and non-target species
- Tuna and silky shark same pattern:
 - day time presence, depart early evening, returning ~3am
 - BET less presence in early evening, but coincides with departure of SKJ and YFT

Difficult to mitigate BET, silky sharks or finfish based on diel behaviour

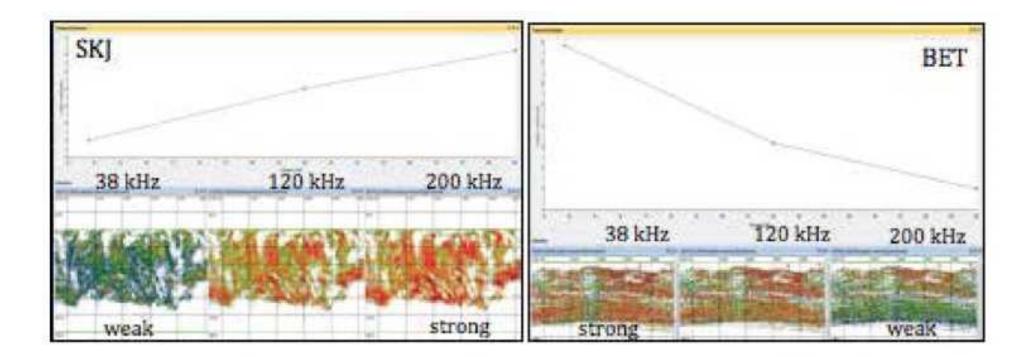
Results continued:

- Acoustic tagging shows changes in vertical migration on dFADs
 - All species are at shallower depths during the night (deeper depths during the day)
 - Particularly evident pre-dawn hours all species were at their shallowest depths
 - Suggests that shallowing the PS net depth is not likely to be a viable/practical solution for BET mortality on FADs

Focus: Behaviour of SKJ, BET and YFT in multispecies aggregations associated with dFADs

<u>Results</u>:

- Spatial and temporal differences in schooling behaviour
 - Differences not sufficient such that modifications to PS fishing practices would mitigate capture of juvenile BET and YFT


Observations:

- TUNA BEHAVIOUR
 - Expand the focus on acoustic tagging research as a priority for skipjack, yellowfin and bigeye tuna, in addition to include non-target species.

WFCPFC – Acoustic FADs

Focus: Differentiate tuna from non-target species by identifying the size and species under FADs **Results**:

Observations:

- ACOUSTIC FADs
 - Differentiate YFT from BET
 - Target strength frequency measurement required for YFT
 - Need single species schools = difficult for YFT
 - Determine how fishing technology and increases in FAD-related effort creep influence PS CPUE and fleet dynamics

ISSF FAD Research

Ongoing FAD Research

Technical methods to reduce catch of small bigeye tuna and impacts to sharks and other finish by purse seine vessels, include:

Echo-sounder buoys to remotely assess the amount of small bigeye tuna around FADs

Acoustic & visual means to assess the species composition and behavior of fish aggregations around FADs and in the net

Acoustic tagging and tracking of bigeye and non-target species around FADs

Comparison of shallow vs deep hanging components on bigeye catch

Double FAD experiments to examine potential to separate bycatch from tuna on adjacent FADs ¢

) ¢

potential reduction of under-sized tuna caught

potential reduction of bycatch through avoidance or selective release; i.e. escape panels, backdown procedure

potential avoidance of small bigeye and non-target species

potential avoidance of small bigeye

potential avoidance of small tuna and non-target species

Summary of Observations:

- FAD DESIGNS
 - Precautionary approach is the adoption of nonengagement and biodegradable FAD designs to minimise the impact on bycatch and the ecosystem.
- TUNA BEHAVIOUR
 - Expand the focus on acoustic tagging research as a priority for skipjack, yellowfin and bigeye tuna, in addition to include non-target species.

Summary of Observations:

- ACOUSTIC FADs
 - Differentiate YFT from BET
 - Target strength frequency measurement required for YFT
 - Need single species schools = difficult for YFT
 - Impact of fishing technology on effort creep influence PS CPUE and fleet dynamics plus treatment of supply/tender vessels of PS efficiency

