Predicting skipjack tuna dynamics and effects of climate change using SEAPODYM with fishing and tagging data

Working Doc.: WCPFC-SC12-2016/EB WP01

Inna Senina ${ }^{1}$ Patrick Lehodey ${ }^{1}$ Beatriz Calmettes ${ }^{1}$ Simon Nicol ${ }^{2}$ Sylvain Caillot ${ }^{3}$ John Hampton ${ }^{3}$ and Peter Williams ${ }^{3}$
${ }^{1}$ CLS, Marine Ecosystems Department, Ramonville St Agne France
${ }^{2}$ Department of Agriculture and Water Resources, Canberra, Australia
${ }^{3}$ SPC, Oceanic Fisheries Programme, Noumea, New Caledonia

Outlines

- SEAPODYM 3.0
- Pacific Skipjack optimization experiments
- Stock estimates
- Climate change projections
- Perspectives

ㄷㄴ SEAPODYM 3.0

\checkmark Fully explicit spatial representation of fish population dynamics \checkmark Include Fish movements (currents + swimming)
\checkmark Population, not only «stock », meaning it includes spawning and larval stages
\checkmark Based on mechanisms that control life stage dynamics and relying on physical and biological characteristics of the ecosystem
\checkmark Using all detailed spatially disaggregated data in parameter optimization (i.e., Max. Likelihood Estimation as in Multifan-CL)
\checkmark Search for overall species parameterization, ie valid everywhere at basinscale or even globally
\checkmark Allowing to predict fish distribution even where there is no catch information

Less dependent from fishing data (especially effort) than standard S/R models

Becomes dependent of environmental data accuracy

SEAPODYM 3.0

In each cell of the grid domain, at each time step, the model computes:
> the production and biomass of ecosystem functional groups (zooplankon and micronekton) that are prey of large fish
$>$ the density of fish for each age-cohort from larvae recruits to oldest adult

$>$ the predicted catch by age (size) if a (observed or simulated) fishing effort for a defined fishery is available (or simulated).

Predicted skipjack density (all cohorts aggregated) and observed catch rates ($\%$ to circles)

SEAPODYM 3.0

Major changes in new version (3.0):

1. Revision of the spawning habitat with prey and predator functions defined separately (instead of using the prey-predator ratio as in previous version).
2. one additional parameter associated to each functional group of prey can be estimated providing more flexibility in the representation of vertical behavior and access to tuna forage.
3. Implementation of alternative approach to account for fishing mortality and to predict catch without fishing effort, i.e. based on observed catch and model biomass only, which can be particularly useful when reliable fishing effort is not available.
4. Use of Tagging data in the Maximum Likelihood Approach for parameter estimation (pre-processing with geo-statistical methods before integrating observed tag recapture data).

Pacific Skipjack optimization

Table 3: Configuration of optimization experiments.

ID	Catch prediction method	Data in the likelihood
E1	Effort-based for PL, catch removal for PS	Catch, LF
E2	Catch removal for all fisheries	Catch, LF, tags
E3	Effort-based for PL, Catch removal for PS	Catch, LF, tags

Table 1: Skipjack Fishing Dataset 2014. Definition of SEAPODYM fisheries in Pacific Ocean.

ID Description	Nation	Resolution	Time period
P1 Sub-tropical pole-and-line	Japan	1°, month	1972-2012
P21 Pole-and-line	Japan	1°, month	1972-1982
P22 Pole-and-line	Japan	1°, month	1982-1990
P23 Pole-and-line	Japan	1°, month	1990-2012
P3 Tropical pole-and-line	Pacific Islands	1°, month	1970-2012
S4 Sub-tropical purse-seine	Japan	1°, month	1970-2012
S5 PS anchored FADs, WCPO	ALL	1°, month	1967-2012
S6 Purse-seine	Philippines, Indonesia	1°, month	1986-2010
S7 PS free schools, WCPO	ALL	1°, month	1967-2012
L8 Longline, WCPO	ALL	5°, month	1950-2012
L9 Longline, Domestic fisheries	Philippines, Indonesia	5°, month	1970-2011
S10 PS FADs, EPO	ALL	1°, month	1996-2013
S11 PS LOGs, EPO	ALL	1°, month	1996-2013
S12 PS Animal associations, EPO	ALL	1°, month	1996-2013
S13 PS Free schools, EPO	ALL	1°, month	1996-2013
S14 PS Unknown log, EPO	ALL	1°, month	1996-2013
P15 Pole-end-line, EPO	ALL	5°, month	1972-2008

Mean monthly distributions of skj larvae (2001-2010) with E3

Estimated parameters in the optimization experiments

Pacific Skipjack optimization

 http://www.cis.fr
Pacific Skipjack optimization

Estimated parameters in the optimization parameters

Observed tag recaptures (a) and predicted using parameter estimates of E1 (b) .and E2
(c). Red circles are releases.

Skipjack stock estimates

Mean distribution 1980-2010

Catch prediction method

PL -effort
PS- catch removal LF

E2 Catch removal
Catch,
LF, tags

PL -effort
PS- catch removal
Catch,
LF, tags

Immature skj: age 3 to 9 months

Adult skj: > 9 months

cLs
 Skipjack stock estimates

Multifan_CL regions for skipjack tuna

Regional comparison between SEAPODYM (black line: dashed E2; solid E3) and MULTIFAN-CL estimates for total skipjack biomass

skj B tot. region 3

skj B tot. region 4

cLs
 COLLECTE LOCALISATION SATELUTES
 Skipjack stock estimates

Predicted total biomass of skipjack tuna

Fishing impact

Figure 3: Pacific-wide total skipjack stock estimate with and without fishing (E2 = thin line; E3 = thick lines)

End 2010: 20\% (total) 25\% (Spawning B)

Biomass change of young skj (mean of B-B.ref over 1/2010-12/2010) (units are $\mathrm{kg} / \mathrm{sq} . \mathrm{km}$; isopleths show change in $\%$ of the B.ref biomass)

Biomass change of adult skj (mean of B-B.ref over 1/2010-12/2010) (units are $\mathrm{kg} / \mathrm{sq} . \mathrm{km}$; isopleths show change in $\%$ of the B.ref biomass)

Climate change projections

Concentration - CO_{2}-eq. (incl. all forcing agents)

Testing each forcing variable by
replacing projection
with climatology
(historical average) variable by
replacing projection
with climatology
(historical average) variable by
replacing projection
with climatology
(historical average) variable by
replacing projection
with climatology
(historical average)

Projection without fishing

Predicted total biomass of skipjack tuna in Pacific Ocean

Climate change projections

NorESM: 2046-2055

NorESM: 2091-2100

Perspectives: Climate Change

- Ensemble simulations with more simulations
> Simulations at higher resolution
(Matear et al 2015: Deep-Sea Research II 113: 22-46)
> Test ocean acidification impact
Two examples of introducing pH effect through functional relationships in the modeling of early life history of tuna

With the financial support from the New Zealand Ministry for Foreign Affairs and Trade, the Principality of Monaco (The Pacific Islands Partnership on Ocean Acidification Project) and the Global Environment Facility (Oceanic Fisheries Management Project II).

a) Assuming lower pH has an energetic cost (requiring higher prey density).

b) Introducing a more general functional relationship between pH and favorability in the definition of the spawning habitat index.

Perspectives: Other Species

> Other species: YFT BET ALB SWO

Ongoing update for yellowfin and bigeye tuna using

Perspectives: Operational

INDESO: INfrastructure DEvelopment for Space Oceanography (2013-17)

 INDESO project for the Gov. of Indonesia (Balitbang KP: Research \& Development Agency of the Indonesian Ministry of Fisheries and Marine Affairs), with support of French Agency for Development, includes the development of an operational configuration of SEAPODYM to provide real-time and forecast of SKJ, YFT and BET pop. Dynamics in the Indonesian region.

Perspectives: Operational

To provide initial and boundary conditions to the high resolution regional model at $1 / 12^{\circ} \mathrm{x}$ day, a global model at resolution of $1 / 4^{\circ} \mathbf{x}$ week has been developed.
Realtime and 2-week forecast are generated each week.

Basin scale optimization conducted with SPC are used to update the system.

Perspectives: Operational

The final objective is to use real time catch and effort information in the system rather than the average fishing effort based on the last few years, using Electronic Reporting System (ERS) or /and Vessel Monitoring Systems (VMS).

Longliner VMS data
Setting Soak time Hauling

Data mining techniques to detect regular patterns without any prior information are used to get accurate estimates of fishing effort

