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Abstract 
The bigeye thresher shark, Alopias superciliosus, has been identified as one of the least productive 
pelagic sharks and there is concern regarding its conservation status.  Although it is one of three 
thresher sharks designated by WCPFC as key shark species, no stock assessment has been conducted 
due to information gaps and changes in reporting and observer coverage over time and space, which 
do not yet support a traditional approach to stock assessment. As an alternative to gain new insights 
into the sustainability status of bigeye thresher shark in relation to pelagic longline fisheries in the 
Pacific, this study applies a spatially explicit and quantitative sustainability risk assessment to 
available data. The analytical framework evaluates sustainability risk as the ratio of current impacts 
from fisheries (spatially-explicit and cumulative fishing mortality F) to a maximum impact sustainable 
threshold (MIST) reference point based on population productivity. This approach differs from 
traditional stock assessments, in which F is compared to estimates of population abundance. The risk 
assessment approach evaluates F in terms of whether the population’s ability to withstand fishing 
pressure is exceeded, rather than evaluating biomass (B) and whether the population is overfished.   
 
The assessment is constrained by the available data and by some aspects of the methodology which 
are currently being addressed. Key components (and analytical procedures) include: 1) estimation of 
the species distribution or relative abundance in space; 2) calibration of population and fishery 
groups catchability; and 3) estimation of the maximum intrinsic population growth rate r for the 
species, using available life history data. The first two are used in conjunction with commercial effort 
(logsheet) data to quantify fishing impact. The third is used to define the MIST reference point.  
 
Observer data from the Pacific Community (SPC), United States (US) and Japan were standardized 
with two models, a zero-inflated negative binomial (ZINB) model and a geo-statistical delta-
generalised linear mixed (delta-GLMM) model, which permitted derivation of spatial indices of 
relative abundance over different but overlapping areas.  
 
Population catchability (q) is statistically calibrated using a Bayesian state-space biomass dynamics 
model (BDM) fitted to time series of relative abundance and annual catch estimates obtained using a 
representative subset of the observer data. This approach is under development and serves to 
estimate a plausible range of values for q, which are then adjusted spatially by fishing season and 
targeting strategy (i.e., ‘fishery groups’). Relative F are calculated as the sum product of total effort 
and fishery-group specific catchability in 5x5 degree cells, weighted by the relative density of bigeye 
thresher shark in each cell, as obtained from the spatial standardization. Post-capture survival is not 
taken into account in the present assessment.  
 
The strengths and value of a spatially-explicit, sustainability risk assessment framework reside in 
data integration from multiple sources and the ability to map relative fishing impact and 
sustainability risk spatially and among fishery sectors, with uncertainty. 
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List of acronyms 
 

ABNJ  Areas Beyond National Jurisdiction (or Common Oceans) 

AFFRC  Agriculture, Forestry and Fisheries Research Council, Japan 

ALB  Albacore Tuna (Thunnus alalunga) 

BET  Bigeye Tuna (Thunnus obesus) 

BTH  Bigeye Thresher Shark (Alopias superciliosus) 

CES  Tuna Fishery Catch and Effort Query System  

HBF  number of hooks between floats 

IATTC  Inter-American Tropical Tuna Commission 

ICCAT  International Convention for the Conservation of Atlantic Tunas 

IOTC  Indian Ocean Tuna Commission 

JP  Japan 

MIST  Maximum impact sustainable threshold 

MLS  Striped marlin (Kajikia audax) 

NOAA  National Oceanographic and Atmospheric Administration 

ROP  Regional Observer Program 

SPC  The Pacific Community 

SST  Sea surface temperature 

SWO  Broadbill Swordfish (Xiphias gladius) 

TCSB  Tuna Project Technical Coordinator Sharks and Bycatch 

TUBS  Tuna Fisheries Observer System 

US  United States 

YFT  Yellowfin Tuna (Thunnus albacares) 

WCPFC  Western and Central Pacific Fisheries Commission 

WCPO  Western and Central Pacific Ocean 
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1 INTRODUCTION 
The Western and Central Pacific Fisheries Commission (WCPFC) is one of five tuna Regional Fisheries 

Management Organizations (t-RFMOs) responsible for the sustainable use, conservation and 

management of highly migratory species taken by tuna fisheries. Unlike some of the other t-RFMOs, the 

WCPFC has explicit responsibility for assessing and managing not only tuna species, but also dependent 

and associated species under Articles 5(d) and 10.1(c) of its Convention. Recognition by the WCPFC of 

sharks as dependent and associated species in need of conservation and management has resulted in a 

list of thirteen shark species found in the Western and Central Pacific Ocean (WCPO) for which both data 

provision and assessment are required (WCPFC 2012). The three thresher shark species of the family 

Alopiidae (Alopias superciliosus, bigeye thresher; A. pelagicus, pelagic thresher; and A. vulpinus, 

common thresher) have been included in this list since its original formulation in 2008. Thus far, the 

WCPFC has conducted stock assessments for three of the shark species on the key shark list: oceanic 

whitetip shark (Carcharhinus longimanus), silky shark (Carcharhinus falciformis) and North Pacific blue 

shark (Prionace glauca) (Rice & Harley 2012, 2013; Rice et al. 2014). A stock assessment for South Pacific 

blue shark is currently underway.  

Indicator analyses for the thresher sharks were conducted by the WCPFC’s Scientific Services Provider, 

the Pacific Community (SPC), in 2011 and 2015 (Clarke et al. 2011, Rice et al. 2015). In both cases, most 

of the analyses were performed at the family level due to presence of a substantial number of non-

species specific observer records. The most recent of these analyses hinted at a declining index of 

abundance for the thresher group as a whole based on decreased catch rates in 2012-2014 and an 

overall decline since 2003 (Rice et al. 2015). On this basis, the WCPFC Scientific Committee in August 

2015 recognized assessment of thresher sharks as a priority.  

The WCPFC, along with the four t-RFMOs, is a partner in the Areas Beyond National Jurisdiction (ABNJ) – 

also referred to as Common Oceans – Tuna Project (www.commonoceans.org). The objective of the 

ABNJ Tuna Project is to achieve efficient and sustainable management of fisheries resources and 

biodiversity conservation in marine areas that do not fall under the responsibility of any one country. 

One set of activities of the GEF-funded ABNJ Tuna Project aims at reducing the impact of tuna fisheries 

on biodiversity by improving data and assessment methods for sharks and thereby promoting their 

sustainable management. Within this set of activities WCPFC has committed to leading four new stock 

status assessment studies for Pacific-wide shark stocks. The bigeye thresher shark was identified as the 

thresher species with the widest distribution and the greatest number of catch records from the WCPO 

(Matsunaga and Yokawa 2013, Rice et al. 2015), and it is likely to be the most vulnerable of the three 

threshers to longline fishing (WCPFC 2006, IOTC 2012, ICCAT 2015), so it was chosen as the best 

candidate for assessment. A bigeye thresher shark stock status assessment meets the criteria for ABNJ 

funding as this species has a Pacific-wide distribution, was identified as a priority assessment by at least 

one of the t-RFMOs, and provides an opportunity to further develop methods for data-poor species.  

Biology and distribution 

In the Pacific, the bigeye thresher shark primarily occurs in tropical waters, however its habitat ranges as 

far north as central Japan and Baja California and as far south as the North Island of New Zealand and 

the southern coast of Peru (Matsunaga & Yokawa 2013). This species is found near the surface at night 

and makes deep dives to experience temperatures of 6-11oC (up to 500 m depth) during the day, 
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perhaps aided by its rete mirabile, a structure within the orbital sinus believed to help stabilize brain and 

eye temperatures (Nakano et al. 2003, Weng & Block 2004). Studies from the Atlantic suggest that 

juveniles concentrate primarily in the tropical North Atlantic, and pregnant females are found at higher 

latitudes off West Africa and Brazil (Fernandez-Carvalho et al. 2015). Findings from the Pacific suggest a 

slightly different pattern: neonates and juveniles are clustered near 10oN and S latitude, with pregnant 

females either also at 10oN or at higher latitudes (20-30oN) to the northeast. Few pregnant females have 

been found south of the equator in the Pacific (Matsunaga & Yokawa 2013).  

There is limited information from which to draw any conclusions regarding stock structure for any of the 

thresher shark species. One unpublished study indicated no population structure across what it 

considered to be the Indo-Pacific (samples from California, Gulf of California, Ecuador, Hawaii, Taiwan 

and South Africa). However, the sample size was small (n=64) and it used only one type of DNA 

(mitochondrial control region) (Trejo 2005). Tagging studies of bigeye thresher sharks off Hawaii have 

reported movements in both northwesterly and easterly directions with a maximum linear displacement 

of nearly 3,500 km over 240 days (Weng & Block 2004, Musyl et al. 2011).  

The bigeye thresher shark is characterized by high juvenile survival and year-round reproduction (i.e. 

there is no fixed mating or birthing season), but its low fecundity causes it to have low productivity 

compared to other pelagic sharks and to be highly vulnerable to fisheries which catch juveniles of this 

species. In the Pacific, age at maturity was estimated at 12.3-13.4 years for females and 9-10 years for 

males. The litter size is 2 pups per cycle with a 1:1 sex ratio and the reproductive cycle duration is 

unknown (Clarke et al. 2015). In a recent ecological risk assessment conducted for pelagic sharks caught 

by Atlantic longline tuna fisheries, the bigeye thresher was found to have the lowest intrinsic rate of 

increase (0.009, confidence interval 0.001-0.018), in other words to be the least productive, of the 16 

species considered (ICCAT 2012).  

Review of population trends 

As introduced above, standardized catch rate indicators for Alopias spp. have been produced from SPC 

data holdings twice under the WCPFC’s Shark Research Plan (Clarke et al. 2011a, Rice et al. 2015). 

Japanese longline logbook and research and training vessel data catch rate series for threshers as a 

group were also produced in the earlier round of analysis (Clarke et al. 2011b)1. In the 2011 analyses, no 

strong trends in standardized catch rates were found for thresher sharks analysed as a group, although 

the Japanese research and training vessel data indicated a slight increase in catch rates in the central 

Pacific from the early 2000s through 2008 (the last available data point; Clarke et al. 2011a,b). The Rice 

et al. (2015) update study, analyzing data through 2014 but excluding data from the US observer 

programmes, noted that most catches were observed in the longline fishery in an area from 10oS to 

20oN and east of 170oE, and the majority of observed individuals were immature. Catch rates rose from 

1995-2001 but decreased slightly from 2003-2011 before falling more sharply in 2012-2014. That study 

thus concluded that the thresher shark complex appeared to be declining though it was noted that the 

last data point was based on relatively few data and may have exaggerated the trend in the final year 

(Rice et al. 2015).  

                                                           
1 Note that while the Japanese research and training vessel data recorded the three thresher species separately, the Japanese 
logbook data do not, and so for the sake of comparison between the two Japanese datasets, as well between the Japanese 
datasets and the SPC datasets, threshers were analysed as a group.  
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All three studies also examined trends in median size as a potential measure of fishing pressure. The first 

SPC analysis considered threshers as a group and found statistically significant decreasing median sizes 

in the central Pacific (Clarke et al. 2011a). The analysis of Japanese research and training vessel data 

found declines in median size only for pelagic threshers and no trend for bigeye threshers (Clarke et al. 

2011b) which suggests that the trends identified by Clarke et al. (2011a) may have been driven by 

pelagic thresher shark. The Rice et al. (2015) update study noted that thresher sharks as a group showed 

relatively stable size trends based on a sample of mostly immature females and immature and mature 

males in the central Pacific (Rice et al. 2015).  

The only consistent catch rate time series specific to bigeye thresher shark prior to the current study 

was an analysis by the United States National Oceanic and Atmospheric Administration (NOAA) in 

support of a decision regarding whether to list bigeye thresher sharks on the United States Endangered 

Species Act. The analysis standardized catch rates based on the extensive Hawaii-based longline 

observer data for 1995-2014. The catch rate in the final year of the series (2014) was nearly double that 

of the previous year and was the highest on record. As a result, NOAA conducted a sensitivity test by 

excluding the 2014 data point but concluded that the influence of the 2014 data point was negligible 

and that abundance was relatively stable (Young et al. 2016).  

At present there are no known stock status assessments for the bigeye thresher shark in any ocean, but 

two studies of pelagic thresher in Taiwanese waters concluded that the stock was slightly over-exploited 

(Liu et al. 2006, Tsai et al. 2010). NOAA also recently completed a stock assessment for the common 

thresher shark (Alopias vulpinus) based primarily on data from California and Mexico. That assessment 

found that fishing mortality for this primarily coastal stock was relatively low (0.08), well below the 

overfishing threshold, and the stock was at 94% of its unexploited level and so substantially larger than 

the minimum stock size threshold. Therefore, the assessment concluded that the common thresher 

shark was unlikely to be in an overfished condition nor to be experiencing overfishing (Teo et al. 2016).  

Finally, there have been a number of studies of thresher sharks in the Atlantic Ocean in recent years, but 

most analyses have been conducted for Alopias species, i.e. at the family level. In this region, the most 

consistent, comprehensive data sources are logbook and observer records from the United States’ 

longline fishery in the northwest Atlantic. Selecting the observer data as the more reliable dataset, 

Young et al. (2016) re-analysed the time series from 1992-2013 for bigeye thresher shark per se. They 

found no obvious change in the population trend over time and thus concluded that the northwest 

Atlantic population had stabilized. One older analysis from the southwest Atlantic, quoted in Amorim et 

al. (2009), indicated increasing catch rates from 1971-1989 and a gradual decrease from 1990-2001. 

However, the authors noted that during this period a change in the depth of fishing operations also 

occurred and this may have affected the time series (Amorim et al. 2009). There are no known available 

catch rate time series for bigeye thresher sharks from the Indian Ocean.  

Current conservation and management designations and measures 

The IUCN Red List classifies all three thresher species as “Vulnerable” (IUCN 2015). The Red List 

assessment for the bigeye thresher shark dates from 2007 and is supplemented by regional assessments 

of “Vulnerable” in the eastern central Pacific, “Endangered” in the northwest and western central 

Atlantic, “Near Threatened” in the southwest Atlantic, “Data Deficient” in the Mediterranean Sea; and 

“Vulnerable” in the Indo-West Pacific (Amorim et al. 2009).  
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Two of the five t-RFMOs have adopted conservation and management measures which pertain to bigeye 

thresher sharks. In 2009, ICCAT adopted a measure requiring all members to prohibit retention of bigeye 

thresher sharks with the exception of Mexican small-scale coastal fisheries with catches of less than 110 

fish (ICCAT Resolution 09-07). IOTC’s measure requires all members to prohibit retention of all species of 

thresher shark (IOTC Resolution 13/06). In addition to these species-specific measures, starting with 

ICCAT in 2004 (Recommendation 04-10), and followed by IATTC (Resolution C-05-03) and IOTC 

(Resolution 05/05) in 2005, WCPFC in 2006 (CMM 2006-05) and CCSBT in 2008, all of the t-RFMOs have 

adopted a 5% fins‐to-carcass ratio as a means of controlling shark finning for all species including 

thresher sharks (Clarke et al. 2014a).  

All three species of thresher sharks were listed on Appendix II of the Convention on the Conservation of 

Migratory Species of Wild Animals (CMS) in November 2014. CMS Appendix II listing encourages 

international cooperation towards conservation of shared species. Subsequently, the three thresher 

species were added to the Convention on Migratory Species (CMS) Memorandum of Understanding 

(MOU) for Sharks in February 2016. The function of the MOU is to develop a Conservation Plan to guide 

cooperation between the signatories to CMS Convention as well as other interested stakeholders.  

A proposal to list the bigeye thresher shark, along with the pelagic and common threshers as look-alike 

species, on Appendix II of the Convention on International Trade in Endangered Species of Wild Flora 

and Fauna (CITES) was first posted on 2 May 2016 and revised on 1 June 2016. The proponents for the 

proposal include Sri Lanka, the Bahamas, Bangladesh, Benin, Brazil, Burkina Faso, the Comoros, the 

Dominican Republic, Egypt, the European Union, Fiji, Gabon, Ghana, Guinea, Guinea-Bissau, Kenya, the 

Maldives, Mauritania, Palau, Panama, Samoa, Senegal, Seychelles and Ukraine. The proposal will be 

considered at the 17th Conference of the Parties (COP) in Johannesburg, South Africa from 24 

September-05 October 2016. If listed, all exports of thresher sharks, including landings in non-flag State 

ports will require permits to be issued by the flag State CITES Management Authority. Export permits are 

contingent upon legal acquisition and non-detriment findings (NDFs), the latter of which represents a 

certification by an authorized CITES Scientific Authority that the proposed export is not detrimental to 

the survival of the species (Clarke et al. 2014b).  

Sustainability status evaluation 

This report presents the preliminary results of a Pacific-wide, spatially-explicit sustainability risk 

assessment of bigeye thresher shark. Risk assessment tools have been developed in response to data 

limitation problems in the evaluation of fishing effects on non-target species, including sharks and other 

elasmobranch species (Stobutski et al. 2002, Griffiths et al. 2006, Braccini et al. 2006, Zhou & Griffiths 

2008, Cortés et al. 2010, Gallagher et al. 2012). Recent applications have used semi-quantitative 

approaches (namely productivity-susceptibility analysis) and demographic methods to estimate 

population productivity, without quantifying total impacts from fisheries or fishing-induced mortality. 

Such risk assessments applied to pelagic sharks caught in Atlantic pelagic longline fisheries identified 

bigeye thresher as one of the most vulnerable species to exploitation (Cortés et al. 2008, 2010, 2012).  

Herein, we develop and apply a quantitative framework for estimating spatially-explicit fishing mortality 

and derive a sustainability status for the species as the ratio of total impact to a maximum impact 

sustainable threshold (MIST) reference point. Rather than following a traditional stock assessment 

approach, which relies heavily on population processes that for sharks are often poorly understood, this 

spatially-explicit approach is based on species productivity, inferred distribution and data on the 
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occurrence, characteristics and intensity of fishing. The quantitative framework allows uncertainty to be 

quantified and propagated throughout the assessment process. An important outcome is that impact, 

sustainability risk and uncertainty can be partitioned spatially and/or among fishery sectors, allowing 

more focused management.  

2 DATASETS 
Review of the potential sources of catch, effort and size data for A. superciliosus in the Pacific identified 
the following as key data sets: 
 

 Non-public domain longline catch and effort data for the entire Pacific maintained in the SPC CES 

database and accessible to the ABNJ TCSB via the WCPFC Secretariat (“CES longline logsheet data”); 

 Non-public domain longline observer data maintained by SPC as part of the ROP and on behalf of 

Australia, the Cook Islands, the Federated States of Micronesia, Fiji, French Polynesia, the Republic 

of the Marshall Islands, New Caledonia, New Zealand, Samoa, Solomon Islands, Tonga and Vanuatu 

and accessible to the ABNJ TCSB through data confidentiality agreements with each country for use 

in the ABNJ Tuna Project (“SPC observer data”); 

 Non-public domain United States longline observer data provided directly to the ABNJ TCSB for use 

in the ABNJ Tuna Project under a data confidentiality agreement (“US observer data”); 

 Non-public domain Japan longline observer data provided to the ABNJ TCSB and to NIWA under a 

data confidentiality agreement specific to this BTH assessment (“Japan observer data”).  

Each of these datasets is described separately below. Data confidentiality agreements necessary to 
obtain access to the data required for this study have precluded the provision of the majority of datasets 
described in this report to NIWA. As a result, the ABNJ (Common Oceans) Tuna Project Technical 
Coordinator-Sharks and Bycatch (ABNJ TCSB) has taken on the role of data manager and has served as 
an intermediary between NIWA and the raw datasets.  
 

2.1 CES longline logsheet (commercial effort) data  
The data were downloaded by the ABNJ TCSB from CES on 11 March 2016 and again on 14 April 2016 as 
there was an update to the data by SPC. The downloaded data consisted of 269,702 records aggregated 
by year (1950-2014), month (1-12), flag2, and 5 degree latitude by 5 degree longitude (5x5) cell (ranges: -
82.5 to 62.5 latitude; 7.5 to 362.5 longitude). The coordinates for each grid represent the southwest 
corner of each 5x5 cell. Catch data were provided for albacore (ALB), bigeye (BET), Pacific bluefin, 
skipjack (SKJ), southern bluefin, and yellowfin tunas (YFT); black, blue and striped marlin; Indo-Pacific 
sailfish; shortbilled spearfish; broadbill swordfish (SWO); blue, “mako”, silky, oceanic whitetip, 
“thresher” and “other” sharks; and “other”. 
 
Annual effort totalled 1.3-1.4 billion hooks in 2011-2013, with lower effort recorded for 2014 likely as a 
result of incomplete reporting at the time of writing (Figure 1). Overall trends in effort and target 
species catch in the WCPO longline fishery through 2014 were reviewed by Williams & Terawasi (2015).  

                                                           
2 Flags (countries and fishing entities) include AU, BZ, CK, CN, ES, FJ, FM, GU, ID, JP, KI, KR, MH, NC, NU, NZ, PF, PG, PH, PT, PW, 
SB, SN, TO, TV, TW, US, VN, VU and WS (see http://www.nationsonline.org/oneworld/country_code_list.htm for code and 
country name matching) 

http://www.nationsonline.org/oneworld/country_code_list.htm
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Catch was downloaded in number of sharks as that is the unit used in the observer datasets and is likely 

to be more accurate than weight-based measures. The total number of “thresher” sharks in the dataset 

was 129,933 with an annual high of 28,991 in 2014 (data for 2015 were likely incomplete at the time of 

writing). The first “thresher” shark to be recorded on a logsheet was by Papua New Guinea in 1997; 

other flags’ first reporting was in 1998 (Samoa), 2000 (US), 2002 (Fiji), 2006 (Spain), 2007 (Australia and 

New Zealand), 2008 (Japan and Taiwan), 2010 (Korea and New Caledonia), 2011 (Cook Islands), 2013 

(FSM and Vanuatu), 2014 (Kiribati) and 2015 (China). These dates probably reflect the year in which the 

logsheets first provided a space for recording thresher sharks rather than the actual first encounter of a 

thresher shark by each flag’s fishing vessels.  

The CES longline logsheet data were aggregated by year, month, 5x5 cell and flag to obtain the total 

effort in hooks fished per strata. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Total longline effort for the Pacific Ocean, 1995-2014 as downloaded from the SPC Catch Effort Query 
System (CES as of April 2016). 

 

2.2 SPC observer data 
These data were downloaded by the ABNJ TCSB on 3 March 2016 through a special TUBS interface for 
SPC and WCPFC Secretariat staff. Some issues with large files sizes were encountered which prevented 
remote downloading of all necessary files at that time; the remaining large data files were received on 8 
March 2016. Downloaded data consisted of two files for each fleet and year: one file that contained set-
level information with one row per set and one file that contained catch records for individual sharks 
with one row per shark or ray caught.  
 
Length data were provided in some datasets (i.e. SPC and Japan data), but were not formatted for use3. 
Length data can be used to distinguish life stages of the species, potentially allowing for fishing impacts 
to be evaluated for different life stage groups, but this requires further development of the 

                                                           
3 Length data presumably exist in the US observer programme data but were not included in the extract provided by the US for this study.   
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methodology in this assessment which has not been undertaken. Fate and condition data were provided 
and used to distinguish between BTH which were and were not alive upon release. This was 
accomplished by first removing all BTH which were recorded as unknown either at landing or upon 
release. Then those with fate codes beginning with R (retained) or DFR (discarded, fins retained), or 
condition codes A3 (alive but dying) or D (dead) were considered dead and all others were considered to 
be alive at release. These data could be used to examine the trend in the post-capture survival. Data on 
BTH sex exist in the SPC observer dataset (Clarke et al. 2011, Rice et al. 2015) but were not included in 
the subset of data downloadable through the TUBS interface.  
 
To link each catch record to its set characteristics, a unique identifier was created by combining set 
identifiers and trip identifiers in the set database. At this step, 522 set records shared identifiers with 
another set. As it was impossible to know which, if any, of these set records were correct, all 522 were 
removed. From the remaining number of sets (n=41,048), containing 3,388 BTH, the following number 
of sets (and BTH records) were removed sequentially:  
 

 Removed due to missing lat/long information (1,947 sets and 180 BTH); 

 Removed due to not being within the year range 1995-2014 (4,791 sets and 51 BTH); 

 Removed due to missing hooks fished values (715 sets and no BTH); 

 Removed due to missing hooks between floats (68 sets and no BTH); 

 Removed due to too many or too few hooks (965 sets and 34 BTH); 

 Removed due to too many or too few hooks between baskets (220 sets and 7 BTH); and 

 Removed due to being outside the spatial boundaries of the assessment (4,226 sets and 4 BTH) (see 

Section 3.1 for the spatial range criteria applied).  

Removals related to missing values (hooks between floats, latitude, longitude and number of hooks 
fished) were necessary because these values are likely to be very important in the standardizations and 
missing values may interfere with coefficient estimation. Extreme values of hooks fished (i.e. <500 or 
>4000) were considered to represent abnormal fishing operations and were also thus removed. 
Similarly, sets recording fewer than four, or more than 45 hooks between baskets were considered 
dubious and were removed. Finally, sets before 1995 (the year when the SPC regional observer program 
began in earnest) were removed due to expected poorer data quality in the initial years, and sets after 
2014 were removed to avoid biases associated with incomplete reporting.  
 
A number of other filters applied or discussed in Rice et al. (2015) were considered but not applied as 
follows:  

 sets from fisheries known to be targeting sharks (e.g. Papua New Guinea) and those sets for which 

the set header field target_shk_yn=yes (Table 3), were not removed a priori as it was considered 

that any shark targeting effect could be addressed through the catch rate standardization; 

 removing sets from small national observer programs with < 100 sets each was not considered 

necessary as this analysis will not be using the observer program identifier in lieu of actual (lat/long) 

location; 
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 removing records considered to be outside the sea surface temperature (SST) range of species was 

not done due to doubts about the certainty of bigeye thresher species’ SST range and a preference 

to address habitat issues through a lat/long exclusion criterion; and  

 removing records where the catch rate of BTH was greater than the 97.5th percentile of nominal 

mean CPUE for the dataset as a whole was not done because BTH may exhibit schooling behaviour 

and thus we might expect to see rare large catches.  

In total 12,932 sets were removed from the analysis, containing 276 BTH, leaving 28,116 sets and 3,112 
BTH4. The annual number of sets observed and number of BTH caught per year in the SPC observer 
dataset are shown in Table 1. 

Table 1. Summary of BTH catch and effort information by year available in the SPC observer dataset.  

Year Sets 
BTH Catch 

Records 

1995 469 3 

1996 485 4 

1997 621 9 

1998 581 38 

1999 456 39 

2000 507 61 

2001 634 62 

2002 1 576 136 

2003 1 536 87 

2004 1 428 86 

2005 1 834 247 

2006 2 497 876 

2007 1 960 698 

2008 1 540 111 

2009 1 581 150 

2010 1 284 23 

2011 1 346 63 

2012 1 566 187 

2013 3 328 131 

2014 2 887 101 

 
The SPC observer dataset is distributed with low coverage over a wide area from 1993-2015. Detailed 
analysis of thresher shark data in the SPC observer set was conducted by Clarke et al. (2011) and Rice et 
al. (2015) but it should be noted that most of those analyses were conducted for Alopias spp (see 
section 1). The spatial distribution of the SPC observer dataset is shown in Figure 2. 
 

                                                           
4 There were n=2,001 sets with 183 BTH that had date or time errors (missing values, or Haul Start before Set Start) but these 
were retained pending a decision about whether time of day, soak time, hours of set during night, or other time-related 
variables would be used in the standardization model.  
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2.3 US observer data 
Data from the US longline observer programme were prepared by NOAA on 11 March 2015 and sent by 
post to the ABNJ TCSB in the Federated States of Micronesia. When the ABNJ TCSB began using the data 
for this study in March 2016 it was discovered that all Hawaiian longline fleet data for 2002 were missing 
from the provided dataset. Upon request, the missing 2002 data were provided by NOAA via a secure 
download facility on 24 March 2016. Table 2 shows the number of sets observed, total catch, and the 
number of BTH caught per year, for the observed sets in the Hawaii-permitted and American Samo-
permitteda longline fleets.  

Table 2. Number of sets observed, total number of fish (etc.) caught, and BTH caught by year in the 
observed sets of the two fleets covered by the US observer programme and used in this study.  

Year Sets Total Catch 
Records 

BTH Catch 
Records 

Sets Total Catch 
Records 

BTH Catch 
Records 

 Hawaii-permitted Longline Fishery American Samoa-permitted Longline 
Fishery 

1995 519 26,422 75 0 0 0 
1996 587 28,560 208 0 0 0 
1997 443 30,507 140 0 0 0 
1998 556 31,511 229 0 0 0 
1999 421 24,794 83 0 0 0 
2000 1,370 69,393 399 0 0 0 
2001 2,699 132,214 692 0 0 0 
2002 3,296 152,505 1,271 0 0 0 
2003 3,078 160,255 765 0 0 0 
2004 3,855 186,788 1,789 0 0 0 
2005 5,829 274,322 1,158 0 0 0 
2006 4,120 180,912 1,521 235 27,100 20 
2007 4,762 223,752 1,293 327 40,497 19 
2008 4,968 226,722 1,075 266 29,254 19 
2009 4,683 199,899 1,660 237 26,167 24 
2010 4,958 246,262 1,381 890 100,052 61 
2011 4,572 236,003 1,319 1,017 90,357 67 
2012 4,639 224,117 1,708 592 57,427 28 
2013 4,389 262,919 1,645 584 44,863 49 
2014 4,857 279,463 3,828 515 40,115 43 
Total 64,601 3,197,320 22,239 4,663 455,832 330 

 
 
Length and sex data may exist in the US observer dataset but were not included in the subset provided 
for this study. Regarding fate and condition classification, the US observer programme only records 
shark condition at retrieval as alive or dead, and at release as alive, dead or kept. This simplified 
distinguishing between BTH which did and did not survive until release.  
 
As for the SPC observer data, a number of filters were considered to clean and format the US observer 
data (see section 2.3). Of these, six filters were applied with the following results:  
 

 Removed due to missing lat/long information (9 sets and 1 BTH); 

 Removed due to missing hooks fished values (6 sets and no BTH); 

 Removed due to missing hooks between floats (22 sets and 8 BTH); 
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 Removed due to too many or too few hooks (293 sets and 17 BTH); 

 Removed due to too many or too few hooks between baskets (186 sets and 9 BTH); and 

 Removed due to being outside the spatial boundaries of the assessment (551 sets and 11 BTH) (see 

section 3.1 for the spatial range criteria applied).  

In total 1,067 sets were removed from the analysis, containing 46 BTH, leaving 69,264 sets and 22,523 
BTH.  

 
The US observer dataset is a rich source of BTH data with considerably more records for this species 
than the SPC dataset (22,523 BTH in 69,264 sets versus 3,112 BTH in 28,116 sets). The spatial 
distribution of the US observer dataset is shown in Figure 2.  
 

2.4 Japanese observer data 
Japan’s longline observer program has been operating since 2007 but has only been fully implemented 
since 2011. A data confidentiality agreement was negotiated between the Japan Fisheries Agency, NIWA 
and the ABNJ (Common Oceans) Tuna Project on 24 March 2016. Data were provided using a secure 
internet file sharing system on the same day and re-provided on 25 March 2016 to correct minor 
formatting errors. The number of sets observed, total number of thresher sharks caught and the number 
of BTH caught per year for the observed Japanese longline sets as received are shown in Table 3.  

Table 3. Number of sets observed, total number of threshers caught, and BTH caught by year in the 
observed sets of the Japanese longline fleet as provided by Japan. Note that Japan did not provide catch records 
for species other than thresher sharks (bigeye, pelagic, common and unknown).  

Year Sets Total Catch of Threshers Catch of BTH  

2007 13 4 4 
2008 143 27 20 
2009 89 4 2 
2010 162 183 28 
2011 638 275 152 
2012 908 357 57 
2013 1,756 972 376 
2014 1,877 788 513 
2015 1,371 355 171 
Total 6,957 2965 1323 

 
Length data were provided for 949 BTH and sex data for 939 BTH. These data have not yet been 
formatted for use. Fate and condition data were not provided.  
 
Filters were considered and applied as for the other observer data (see section 2.3). Of these, six filters 
were applied with the following results:  
 

 Removed due to missing lat/long information (317 sets and 28 BTH); 

 Removed due to missing hooks fished values (1 set and 3 BTH); 

 Removed due to missing hooks between floats (33 sets and 20 BTH); 
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 Removed due to being outside the spatial boundaries of the assessment (218 sets and 6 BTH) (see 

section 3.1 for the spatial range criteria applied).  

 
In total 569 sets were removed from the analysis, containing 57 BTH, leaving 6,405 sets and 1,266 BTH.  
 
The Japan observer dataset contains 1,266 BTH from 6,405 sets. The number of BTH per set in the Japan 
observer dataset (0.20) is intermediate between that of the SPC observer dataset (0.11) and the US 
observer dataset (0.33). The spatial distribution of the Japanese observer dataset is shown in Figure 2.  
 

2.5 Composite dataset 
A composite dataset composed of the SPC, US and Japanese observer data consisting of 104,320 sets 
and 26,917 BTH was compiled on 25 March 2016. The distribution of BTH captures by 5x5 grid and 
source dataset is shown in Figure 2. The annual observed effort and annual observed catch by source 
dataset are shown in Figure 3.  
 
Fields such as the number of hooks between floats (HBF), bait_type, hook_type and wire_trace that 
were recorded for some sets were retained for analyses. HBF was used as a proxy for the fishing depth 
of pelagic longline sets. Information on the time of set start and hauling start was used to estimate 
fishing duration at night (number of hours fishing in dark conditions) for each set. This was done by 
relating the reported setting and hauling times with the expected sunrise and sunset times at each 
location and date. 
 
A standardised measure of SST was assigned to each set, corresponding to monthly average SSTs 
recorded from 1995 to 2014, available from NOAA Extended Reconstructed Sea Surface Temperature 
(ERSST) database (http://www1.ncdc.noaa.gov/pub/data/cmb/ersst/v4/netcdf/). Other, finer scale 
datasets were sought but could not be accessed in a workable format within the timeframe of this 
study. 
 
  

http://www1.ncdc.noaa.gov/pub/data/cmb/ersst/v4/netcdf/
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Figure 2. Distribution of BTH caught in observed sets in the Pacific, 1995-2014. Catches from the SPC dataset are in blue, the US dataset in red and the 
Japanese dataset in black. The size of the circle is proportional to log(catch) as shown in the legend. The grey-shaded portion in each grid square represents 
the proportion of sets with positive catches of BTH. Catches from grids where fewer than three vessels caught BTH are not shown. The numbers in 
parentheses are numbers of BTH caught.
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Figure 3. Total observed effort (in million hooks) by data source (top panel) and total number of BTH 
observed by data source (bottom panel), 1995-2014. 
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3 APPROACH AND METHODS 

3.1 Analytical approach 

The analytical framework is risk-based and spatially-explicit. Sustainability status S  is assessed 

relative to current impacts from fisheries (or relative fishing mortality F) and a maximum impact 

sustainable threshold (MIST) limit reference point (LRP): 

LRP

F

MIST

Impact
S  

Uncertainty in all parameters is quantified and propagated through the assessment framework. In 

this context, sustainability risk R is the probability p, given the uncertainty, that the total impact 

exceeds the MIST: 

MIST]Impact  p[ R   

The assessment is conducted over a spatial grid of 5 by 5 degree latitude and longitude cells (section 
3.2). Fishing impact is estimated as the average of fishing mortality iF weighted by species relative 

abundance in in each cell:  






i

i

i

ii

n

nF

Impact   

Cell-specific iF is calculated as the product of fishing effort E  and catchability q  distinguished 

among (and summed across) fishery groups j : 


j

jjii qEF ,  

where jq  expresses the fraction of the total population in each cell that is available for capture by 

each unit of effort, adjusted for capture efficiency in fishery group j . 

Effort differentiation into fishery groups serves to handle the effects of different fishing operations 

and operational practices on total impact. Impacts are assumed to be cumulative across fishery 

groups and over the spatial domain of the assessment. As a result, sustainability risk, fishing impact 

and uncertainty can be disaggregated in space and among fishery sectors.  

MIST is the sustainable reference threshold for the species. The MIST is defined based on population 

productivity inferred from life history data. Life history parameters are used to estimate a maximum 

intrinsic population growth rate r, with uncertainty. In turn, r is used to derive sustainable impact 

thresholds similar to the fishing mortality-based sustainability reference points (Fcrash,Fmsm, Flim) 

described by Zhou et al. (2011).  

The assessment is implemented in a flexible framework allowing incremental improvements and 
fine-tuning as data are augmented and/or better information becomes available.  
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A summary of data inputs, analytical methods and key parameters is presented in Figure 4. Details 
on all components are presented in the following sections. 
 

 

Figure 4. Conceptual representation of data inputs, analytical methods and key parameters used in 
Pacific-wide spatially-explicit sustainability assessment of bigeye thresher shark. BDM = Bayesian state-
space biomass dynamics model. The dashed outline box represents analytical methods applied to an area 
subset of the available data. 

 

3.2 Spatial and temporal domains of the assessment 

The spatial domain of the assessment was defined as the region between 38°N and 42°S latitude and 

120°E and 70°W (290°E on map) longitude. The latitudinal range is based on published information 

on the geographic distribution of bigeye thresher in the Pacific Ocean (Compagno 2001, Matsunaga 

& Yokawa 2013). The longitudinal range is arbitrarily defined, with the eastern limit set to 

encompass the full eastern extent of the Pacific (i.e., area offshore of the boundary between Peru 

and Chile) and the western limit set near the Makassar Strait between Borneo and Sulawesi.  

The assessment is conducted over a spatial grid of 5 by 5 degree latitude and longitude cells, 
corresponding to the spatial resolution of the catch and effort data available for assessment. Three 
area subsets were distinguished for analyses within the spatial domain of the assessment (Figure 5): 
 

1) Assessment Area - corresponding to all grid cells in which at least one specimen of A. 
superciliosus was caught between 2000 and 2014 (n=219 cells); 

2) Core Area – corresponding to those grid cells that together contributed 95% of A. 
superciliosus captures between 2000 and 2014 (n=62 cells). 

3) Calibration Area – subset of grid cells from the Core Area (above) corresponding to the area 
covered by the US Hawaii observer data (n=33 cells).  
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Figure 5. Spatial domain of the assessment as defined in 5x5 degrees of latitude and longitude grid cells, 
showing the three area subsets considered for analyses: Assessment Area (cells with numbers); Core Area 
(shaded grey cells), and Calibration Area (cells with red borders). Cell numbers were assigned sequentially 
from west to east and from south to north and are used to identify each cell in the datasets. 
 
The timeframe of the assessment was set to include all commercial effort (logsheet) and observer 
data from 1995 to 2014 in preliminary analyses. The start of this period corresponds to the full-scale 
implementation of the SPC and US observer programmes. Species distribution was estimated using 
the composite observer dataset including data from 2000 to 2014 (section 3.4). The start year of 
2000 reflects the small amount of observer data in previous years (Figure 3). The catchability (q) 
parameter calibration was performed using observer and commercial effort data for the period 
1995-2014. A longer time period was considered in this process to better inform the catch series and 
abundance index required by the calibration. Impact was estimated using the total commercial 
pelagic longline fishing effort from the last fifteen years (2000-2014).  

3.3 Targeting strategies and fishery groups definition 

Fishery groups or targeting strategies were determined by performing hierarchical clustering 

analyses on logsheet data using the “k-means” algorithm (see Hoyle et al. (2015) for details). 

Logsheet data (rather than observer data) were used as they contain complete and reliable 

information on catch composition by species for the main target species.  

Catch data for albacore tuna, southern bluefin and yellowfin tuna, bigeye tuna, broadbill swordfish 

and striped marlin were clustered over two periods (19952004 and 20052014) to account for 

potential changes in fishing operations over time. The optimal number of clusters was determined 

based on the maximum reduction of mean square error (Figure 6). 

For both time periods, the analyses produced four clusters corresponding to a predominance of BET, 

ALB, YFT or SWO in the catch, as well as an additional cluster (‘others’) in which none of the main 

five target species (above) were caught. The five clusters were used to distinguish targeting 

strategies in the assessment.  

  



 

21 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Diagnostics from kmeans cluster analysis showing the optimal number of targeting strategies 
based on the species composition of the longline catch for 1995-2004 (left) and 2005-2015 (right).  

 

Observer sets were then assigned a targeting strategy based on the results of the clustering analysis 

performed on the logsheet data. A target species was assigned to each combination of grid cell, year, 

and month in the logsheet data, and then all the observer records were assigned a targeting strategy 

based on year, month, and set location. This approach was used because there appears to be little 

reliable information on the targeting strategy for all observer programmes (especially SPC). We 

aimed to “assign” a targeting strategy based on location (5x5 grid cell) and time (year/month) of the 

observed set using the assumption that the ALB, BET, YFT and SWO fisheries would be separated in 

space and/or time. It has been suggested that the targeting strategies for the Japan and US fleets are 

more straightforward, and could be determined using prior information such as Hooks between 

Floats (HBF) or recorded targeted species. This has not been considered for two reasons: first, it is 

difficult to relate the observer data to the logsheet data due to differences in the resolution of the 

datasets (5x5 vs 1x1 (or finer)) and the lack of operational characteristics in the latter. Additionally, 

target strategy directly inferred from other effort variables (such as HBF) may lead to double 

counting of information if it is also included as an explanatory variable in a standardisation analysis. 

Our approach permitted us to account for differences in targeting strategies in the observer data 

(and spatial and year effects standardisations), despite incomplete and/or unreliable information.  

Variations in the number of hooks between floats (HBF) and fishing duration at night among 

targeting strategies are shown in Figure 7. Sets targeting BET generally fished deeper (HBFs mostly 

ranging between 20 and 30) and operated during daylight hours, right before sunset. Sets targeting 

SWO were mostly shallow and fished during the night. Other targeting strategies (YFT and ALB) 

covered a broad range of HBF values (with some differences among datasets) and mainly fished 

during daylight hours. 

Agreement between targeting strategies inferred from cluster analyses and recorded target species 

was assessed using the Japanese observer data (not including SBT effort). Recorded target species in 

the Japanese observer data are believed to be representative of targeting strategies (Y. Semba, 

AFFRC, pers. comm.). Proportions of matching sets (i.e. agreement between inferred vs recorded 

target species) were 62% for ALB, 59% for YFT, 94% for BET and only 5% for SWO. 

Fishery groups were defined as the combination of targeting strategies and fishing season (Jan-Mar, 

Apr-Jun, Jul-Sep and Oct-Dec). Commercial effort (logsheet) data were then categorised into fishery 

groups for impact estimation. Each group is assumed to represent different operational 

characteristics of the effort, as this is likely to affect capture efficiency for A. superciliosus.  
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Figure 7: Total observed effort (no. of sets) as related to (a) hooks between floats (HBF) and (b) 
nighttime fishing duration (hours in darkness) among targeting strategies (YFT, ALB, BET and SWO) and 
observer datasets (US, JP and SPC) in the Assessment Area, 2000-2014. 

 

  

 (a) 

 
(b) 
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3.4 Species distribution estimation 

3.4.1 Approach and input data 

Standardisation analyses performed on observer catch and effort data were used to infer the spatial 
distribution of A. superciliosus. The composite observer dataset for the period 2000-2014 was used. 
Data from 1995-1999 were excluded owing to comparatively limited spatial and numerical coverage.  
 
Two standardisation models were applied for comparison: a zero-inflated negative binomial model 
(ZINB) (Zuur et al. 2009) and a geo-statistical delta-generalised linear mixed model (delta-GLMM) 
(Thorson et al. 2015). Both were used to standardise catch rates of A. superciliosus in 5x5 degree 
cells. The standardised catch rates or relative densities are assumed to be representative of spatial 
abundance distribution for the species. 
 
Data from all observed longline sets were included in the spatial standardisations (i.e., no 
representative ‘fishery subset’ was defined for the species). Outputs from both models as well as 
strengths and limitations are compared and discussed in the context of spatially-explicit 
sustainability risk assessment for pelagic shark species. 

3.4.2 ZINB standardisation 

ZINB models serve to handle overdispersed count data with excessive number of zeros (Zuur et al. 
2009). The relationship between the response variable (in this case, the number of A. superciliosus 
caught per set) and a set of explanatory variables is modelled as a mixture of an encounter 
probability (binomial process) and a negative binomial count process (that allows for overdispersion 
and zero occurrences).  
 
The estimation of spatial effects in each grid cell requires a large number of coefficients to be 
estimated. To reduce the number of parameters and improve estimation, the fitting of the ZINB 
model was restricted to observer catch and effort data from the Core Area (Figure 5, section 3.2). 
This was required to ensure successful model convergence. Likewise, convergence problems caused 
by the estimation of a large number of coefficients precluded the inclusion of vessel effects in the 
ZINB model. The implication of this is that the abundance outside the Core Area is assumed to be 
very low so that its contribution to the overall fishing impact on the whole population is negligible.  
 
Explanatory variables considered in spatial standardisations are listed in Table 4. A number of 
variables including bait_type, hook_type, wire_trace, sst and night_fishing were included in 
preliminary analyses but excluded from the final models due to missing or ambiguous values 
(wire_trace and hook_type); too many values (too many coefficients to be estimated and no clear 
basis for grouping) (bait_type); confounding effects with other covariates (night_fishing) and 
dubious relationships to the response variable (sst). Other variables were offered sequentially, 
producing a series of nested models. The same sets of variables were offered simultaneously to both 
the zero and count components of ZINB models. Likelihood ratio tests with AIC (performed using 
function lrtest in R package lmtest (R core development team 2016)) were used to assess the effect 
of each additional variable on model fit and explanatory power. Alternative models were also 
compared using AIC (Akaike Information Criterion).  
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Table 4. Summary of explanatory variables offered to ZINB models for spatial standardisation of catch 
rates of A. superciliosus in observed pelagic longline fisheries in the Pacific Ocean. Continuous variables 
were modelled as natural splines with 3 degrees of freedom. 

Variable Type  Description 

year Categorical Calendar year (2000-2014) 

cell Categorical 5x5 degree grid cells in the Core Area  

month Continuous Calendar month (1-12) 

Target Categorical Targeting strategy  

log(effort) Offset No. of hooks per set 

HBF Continuous Hooks between floats 

bait_type Categorical Types of bait used  

hook_type Categorical Types of hooks used 

wire_trace Categorical Presence/Absence (retention effect) 

night_fishing Continuous Fishing duration at night (hours) 

SST Continuous Sea surface temperature 

 

Spatial indices of relative abundance were derived as the predicted catch rate (no. of A. superciliosus 

caught per 1000 hooks) for each grid cell in the Core Area, with other covariates fixed to a reference 

value corresponding to the coefficient calculated for the intercept term (categorical variables) or the 

median observed value multiplied by the coefficient (continuous variables).  

Model fit was assessed using a number of diagnostics plots, including observed versus fitted catch 

rates, plots of Pearson residuals versus fitted values and Pearson residuals by year and grid cell.  

3.4.3 Delta-GLMM standardisation 

The delta-GLMM model developed by Thorson et al (2015) allows for extrapolation to nearby cells 

(i.e., density estimation in cells with no observations) by assuming spatially correlated spatial 

variation. Similar to the ZINB, the delta-GLMM includes a binomial process that models the 

probability of encounter (i.e., proportion of sets that catch A. superciliosus) and a count process 

(positive catch rates) that follows a gamma distribution. Additional complexity relates to the 

integration and differentiation of fixed and random effects.  

Random spatial variation and spatiotemporal variation are approximated using Gaussian Markov 

random fields over a number of ‘knots’. The location of each knot is determined by applying the k-

means clustering algorithm to the positional information in the available data (i.e., latitude and 

longitude data from all sets converted to eastings and northings). This results in a distribution of 

‘knots’ with density proportional to sampling intensity (or in this case, fishing intensity as related to 

observer coverage). The knots define the model’s ‘predictive framework’ and allow for piecewise-

constant random fields approximation. This approach has a number of computational advantages 

and assumes that density at any location is equal to the density value estimated at the nearest knot. 

The number of knots can be specified within the model framework, allowing control over the 

accuracy of random effects estimation. This can also be used to achieve a balance of accuracy and 

computational speed (Thorson et al. 2015). Both the encounter probability and catch process are 

modelled using a link function and a combination of linear predictors including the random fields. 

Fixed effects are estimated using maximum marginal likelihood (approximated using the Laplace 

approximation), while integrating across all random effects. The model is implemented in template 

model builder (Kristensen et al. 2014). 
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For application to A. superciliosus, year was included as a fixed effect and vessel was included as a 

random effect in all models. Other variables considered and included as potential linear predictors 

were fishery groups, HBF and month (see Table 4, section 3.4.2 for details). The number of knots was 

fixed at 1000 in all runs. The estimation of spatial abundance indices (number of A. superciliosus 

caught per 1000 hooks) involved a two-step process: 1) fine-scale extrapolation; and 2) density 

estimation at the spatial scale of the assessment (5x5 degree cells).  

The Assessment Area (Figure 5, section 3.2) was subdivided into a fine-scale (10x10 km cells) 

extrapolation grid. Density extrapolation was restricted to cells with observations (i.e., in which 

there was a recorded longline set start position) and to cells with no observations but a recorded 

longline set start position within a maximum distance of 50 km. The resulting predictive framework 

was composed of 296 045 square grids of 100 km2 each and an extrapolation layer of 1000 knots. 

Relative abundance at the scale of 5x5 degree cells was calculated as the average density estimated 

in 10x10km cells in the predictive framework. Three separate delta-GLMM models were fitted and 

compared: 1) a spatial model (assuming constant spatial variation over time); 2) a spatiotemporal 

model (allowing spatial variation to differ among years); and 3) a core vessels model (like the spatial 

model in 1) but including only vessels that caught at least one specimen of A. superciliosus). 

Spatial correlation was assessed using geometric anisotropy plots. Estimated vessel effects on 

encounter probability and positive catch rates were plotted (with 95% confidence intervals) and 

differentiated among contributing observer datasets.  

3.4.4 Uncertainty estimation 

Uncertainty in species distribution inferred from the final ZINB model was estimated using a 
bootstrap (resampling) procedure that resampled data from all sets within each grid cell (with 
replacement) and refitted the standardisation model to predict spatial indices (300 iterations).  
 
Uncertainty in species distribution inferred from the delta-GLMM model was reported as the 
marginal standard deviations estimated for the spatial effects and spatiotemporal effects on 
encounter probabilities and positive catch rates. Details on the computation of marginal standard 
deviation for random fields are available in Thorson et al. (2015). However, uncertainty estimation 
and summarization for the delta-GLMM model still require further research (Thorson et al. 2015). 
Additional complications also arise when extrapolating spatial effects to obtain spatial indices on 5x5 
cells. For these reasons, uncertainty for the spatial indices inferred from the delta-GLMM model is 
not formally quantified.  

3.4.5 Key assumptions 

The estimation of a species distribution layer using available data from observed fishing events 
assumes that the aggregated data from observer programmes from 2000 to 2014 are representative 
of the species distribution in the Pacific. The estimated spatial distribution for A. superciliosus is 
assumed to have remained constant over the timeframe of the assessment (2000-2014; see Section 
5.2 for discussion of this assumption).  
 
The delta-GLMM model applied in this study was designed to estimate population abundance from 
survey (fishery-independent) data and area-swept by trawl gear. Its application to estimate spatial 
indices of abundance for A. superciliosus using fishery-dependent catch and effort data from pelagic 
longlines assumes that all observed longline sets have a comparable area of impact. Constant gear-
affected area has been assumed in the catchability studies for passive fishing methods including 
longline by Zhou et al. (2014). 
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3.5 Catchability estimation 

3.5.1 Approach and input data 

The approach to catchability estimation was developed based on the assumption that the available 
data were insufficient to estimate absolute catchability, but could be used to calibrate a relative 
catchability parameter for use in relative impact estimation. Plausible values for the population 
catchability scalar q were derived in a calibration exercise using available life history information for 
A. superciliosus and a representative subset of the observer data within a subsection of the 
Assessment Area (the Calibration Area (AΩ) - see Figure 5, section 3.2). The Calibration Area 
accounted for 82% of all captures in the observer datasets and is assumed to be representative of 
population dynamics for the species.  
 
The calibration fits a Bayesian state-space biomass dynamics model (BDM, Edwards 2016) to an 
index of relative abundance with year effects (CPUEΩ) (section 3.5.3) and a catch series (CΩ) (section 
3.5.2) (Figure 4). The model assumes a uniform prior on log(K) (the biomass at unexploited 
equilibrium) and an informed prior on r (the maximum intrinsic population growth rate) estimated 
using life history data (section 3.8). The maximum plausible values for q ( i.e., values corresponding 
to lower K estimates) were derived from the posterior samples distribution. Thus, qΩ is the maximum 
population catchability assumed to be constant over the Calibration Area AΩ. The catchability scalar 
qΩ is then adjusted by fishery group and scaled to the spatial resolution (5x5 degree cells) used to 
estimate fishing impact in the assessment. 

3.5.2 Catch history 

A catch history (CΩ) for A. superciliosus in the Calibration Area AΩ was constructed by scaling the 
number of observed captures by the ratio of total effort to total observed effort. Data from all 
observer sets in the Calibration Area for the period 1995-2014 and commercial effort (logsheet) data 
aggregated in 5x5 degree cells for the period 1952-2014 (which covers the time span of extracted 
logsheet data), were used. 
 

Catch estimation was stratified by year, year and fishery group, or year and season (JanMar, 

AprJun, Jul-Sep, and OctDec). The number of observed captures was multiplied by the ratio of the 
total number of hooks (logsheet data) and the number of observed hooks within each stratum, 
summed over all strata to obtain the annual catch from 1995 to 2014. Historical (pre-1995) catches 

were calculated by scaling the average observed catch for the period 19952014, by the ratio of the 
annual (logsheet) effort to the average annual observed effort (1995-2014) in each year from 1952 
to 1994. The catch history calculated for the pre-1995 period is highly uncertain and is provided only 
as an indication (i.e., only the 1995-2014 catch history is included in BDM runs for qΩ calibration). 

3.5.3 Abundance index 

Year effects standardisations of observer catch and effort (CPUE) data were used to estimate annual 
indices of relative abundance (CPUEΩ) for A. superciliosus in the Calibration Area AΩ.  
 
Standardisations were performed by fitting a ZINB model to the US Hawaii observer data in AΩ from 
1995 to 2014. These data accounted for the majority (82%) of observed BTH captures in the 
composite observer dataset (see sections 2.3 and 2.5) and provided a relatively long and spatially 
consistent time series of catch and effort information over a region with generally high observer 
coverage (10% or higher since 2000). Pre-2000 data were included to estimate a more informative 
index of abundance for the BDM process, but were characterized by comparatively limited observer 
coverage.  
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Explanatory variables included in year effects standardisations were month, HBF, targeting strategy, 

effort (log no. of hooks) and subarea. Variables were offered sequentially and nested models were 

compared using the likelihood ratio test and AIC.  

Subarea was used to include spatial effects on a coarser scale than the 5x5 degree cells used to 
estimate species relative densities (section 3.4) and fishing impact (section 3.7). This was done to 
ensure that spatial effects on annual indices of relative abundance are estimated at a scale that 
reflects differences in fishing intensity (as opposed to an arbitrarily defined geometric grid). The data 
were partitioned into 12 knots (subareas) by applying the k-means clustering algorithm (similar to 
that used in the geostatistical delta-GLMM model (see section 3.4.3)) to position (latitude-longitude) 
data from all sets in the Calibration Area. The number of knots was based on the maximum 
reduction of mean square error from the clustering (as shown in section 3.3). 
 
The aim of this analysis is to derive an annual CPUE index for use in qΩ calibration. This requires the 
CPUE index to measure the average catch rate of BTH (numbers per 1000 hooks) with respect to the 
Calibration Area (not a specific subarea). Therefore spatial effects (coefficients for subareas), which 
are assumed to represent differences in abundance among subareas, need to be excluded when 
predicting the annual index (but spatial effects must be accounted for in the standardisation 
process). To this end, the following procedure was carried out: 
 
The annual CPUE index for a “reference” subarea was predicted using the final ZINB model by fixing 
the value of all covariates (intercept term for categorical variables including subarea or a median 
value for continuous variables). A ‘non-spatial’ model (final ZINB model without spatial effects) was 
fitted to estimate the effort-weighted average annual CPUE over all subareas (Appendix A). Annual 
indices predicted by the final ZINB model for the reference subarea were then scaled to have the 
same mean as the annual CPUE predicted by the ‘non-spatial’ model:  
 


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Where yCPUE  is index of CPUE in year y ; i
spatialnonCPUE 

is the CPUE index from non-spatial model 

in year i ; and i
leffortCPUE  is the CPUE index from the final model “leffort” in year i .  

Sensitivity testing of year effects standardisation was performed by fitting a number of geostatistical 
delta-GLMM models (n=4) and a delta lognormal model to the same dataset and using the same 
explanatory variables as the final ZINB model. 

3.5.4 BDM calibration 

The index of relative abundance (CPUEΩ) (section 3.5.3) and catch history (CΩ) (section 3.5.2) for A. 

superciliosus in the Calibration Area AΩ are inputted into the BDM to estimate a range of plausible 
values for q .  

A detailed description of the BDM model is presented in Appendix B. The model describes changes in 

biomass in response to a particular harvest regime and according to the generalised (hybrid) 

production function described by McAllister et al. (2000). The catchability scalar relates the 

abundance index and estimated biomass trajectory and is calculated as a set of most likely values 

relative to the values of other parameters, assuming a uniform prior on the natural scale.  

For q calibration runs, the shape parameter value is arbitrarily fixed at 0.4 ( K4.0 ) and both the 

observation errors and process errors are fixed at 0.05. BDMs are fitted to the catch history and 
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abundance index for A. superciliosus in the Calibration Area, and to an informed prior on the 

maximum intrinsic population growth rate r for the species (lognormal with mean 0.03 and standard 

deviation 0.02) (section 3.7) (see Figure 4 for conceptual representation).  

The population was unlikely to be in an unfished equilibrium state at the start of our time series in 

1995 (i.e., initial biomass (depletion) level u <1). Initial depletion could not be estimated by the 

model and values u were randomly sampled from three normal distributions with means 0.3 (low 

initial biomass), 0.5 (medium initial biomass) and 0.7 (high initial biomass) and a standard deviation 

of 0.05. Each was sampled 300 times, for a total sample of 900 u values ranging from 0.15 to 0.84 

(Figure 8). A BDM was fitted to obtain 1000 posterior samples of q for each u. Calibration runs are 

currently focused on the medium initial biomass level (i.e., depletion state ranging from 0.35 to 0.63 

with a median of 0.5) and the assumptions of low (0.3) and high (0.7) initial biomass (depletion 

state) levels are examined in sensitivity tests.  

A plausible range of q values corresponding to K distributions bounded by multiples of the lowest K, 

are retained from each of the 1000 BDM runs. K distributions are selected so as to represent the 

most precautionary signal (1x to 2x minimum K) and less precautionary signals (2x to 5x minimum K 

and 5x to 10x minimum K, respectively). This is done because the available data are generally 

uninformative for the biomass estimation process. The lack of contrast in the abundance index and 

potentially incomplete catch series do not permit us to constrain the upper range of the unfished 

biomass K (corresponding to the lower range for q), but allow successful estimation of the lower 

range (corresponding to maximum q values). The combined samples therefore, constitute the  
plausible range of q values across a probable range of K levels defined based on minimum K values. 

This approach does not fully capture the uncertainty in the catchability scalar, which is restricted to a 

statistically estimated distribution of minimum K values and a subjective but plausible set of K 

multipliers. Another way to achieve this is through the definition of an informed prior on K (i.e., 

making an informed guess as to what the maximum and most likely biomass values may be for the 

species in the Calibration Area).  These, and potentially other options, will be explored in the Final 

Report.   

The estimation process involves process error specification and inclusion. At present, process error 

standard deviation values ranging from 0.01 to 0.1 are being explored. Process error allows the 

model to account for inter-annual variability in stock biomass caused by temporal changes in 

biological processes that are not observed or modelled (Edwards 2016). In this case, this includes 

potential immigration/emigration of bigeye thresher to/from the Calibration Area. The effect of 

process error inclusion on q estimation is being tested in sensitivity analyses.  

Sensitivity testing of the BDM calibration process is also being conducted by varying input 
assumptions and/or data and refitting the model to examine and compare outputs.  
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Figure 8: Initial biomass (depletion) level µ was sampled from three normal distributions (n=300 from each), 
with means of 0.3, 0.5, and 0.7 (vertical dashed lines), respectively, and a standard deviation of 0.05.  
 

3.5.5 Spatial scaling and adjustments by fishery groups 

The catchability scalar is adjusted by fishery groups to account for differences in operational 
practices and associated capture efficiency for A. superciliosus among fishery sectors.  

Fishery group-specific catchability jq is estimated as: 

 

jj qfq   

 

where q  is the average catchability ( q ) scaled to the spatial resolution of the assessment (5x5 

degree cells) and jf is the adjustment factor for fishery group j  (see Appendix C for complete 

derivation).  
 

The adjustment factor jf  is calculated as the predicted catch rate for each fishery group relative to a 

reference group (defined as the ‘BET’ targeting strategy and ‘Jan-Mar’ season) using the final (spatial 
standardisation) ZINB model fitted to all observer data within the Core Area. Since month was 
modelled as a continuous variable, seasonal predictions are based on the intermediate month within 
each season (i.e., February for Jan-Mar). 
 

Uncertainty in jf  can be estimated using a bootstrap procedure (similar to that used for the spatial 

abundance indices) but will not be performed in this assessment.  

3.5.6 Key assumptions 

Our q estimation method assumes that the Calibration Area and US Hawaii observer data are 
representative of population dynamics for bigeye thresher sharks at the scale of the Pacific Ocean. 
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This means we assume that on average the fishing power of longline sets on bigeye thresher is the 
same across the Pacific region, but differences in relative catchability (targeting strategy and 
seasonal effects) and population density explain the differences in catch rates. This is unlikely to be 
the case but was a necessary assumption in the absence of informative data indicating otherwise. 
The assumptions made on the initial biomass level for the population are arbitrary and intended to 
improve estimation and ensure realistic outcomes in q estimation. Indirectly, initial biomass level 
assumptions also serve to deal with uncertainty in post-capture survival of A. superciliosus in pelagic 
longline fisheries (e.g., a high post-capture survival scenario would correspond to a high initial 
biomass level for the stock, and vice-versa). As in most age-structured stock assessment models, 
values of q are assumed to remain constant over the time frame of the assessment (2000-2014). 

3.6 Impact estimation (fishing mortality) 

Impact was estimated relative to the total (commercial) pelagic longline effort available in the CES 

Longline Logsheet dataset, from 2000 to 2014. 

Spatially-explicit impact is the average annual fishing mortality in 5x5 degree cells calculated using 
commercial effort data (split by fishery groups), species relative density and fishery group 
catchability. We assumed cumulative fishing mortality as contributed from different fishery groups 
in each cell, and cumulative impact over the spatial domain of the assessment.  
 
Fishing mortality in each cell is calculated as the product of effort and fishery group catchability and 
contrasted across a range of scenarios. 
 
Impacts are estimated and compared for the Core Area (using species relative density estimates 
derived from the ZINB model); and for the Assessment Area (using density estimates from the delta-
GLMM model). Uncertainty in species distribution information is incorporated in impact estimation 
by resampling density indices from bootstrapped estimates.  

3.7 Population productivity and MIST estimation 

3.7.1 Maximum intrinsic growth rate r 

The life history module (LHM) for BDM developed by Edwards (2016) was used to estimate a 
distribution for the maximum intrinsic population growth rate r  for A. superciliosus. The model 
implements Monte Carlo sampling of life history parameter distributions, with iterated solving of the 
Euler-Lotka equation (McAllister et al. 2001). The Euler-Lotka equation defines maximum intrinsic 
growth r as the net balance of survivorship s and unconstrained fecundity f, integrated over all age 
classes a: 
 

∑ safae-ar∞
a=0 =1  

 

sa=e-aM 

 

fa=α mawa 

 
Survivorship (s) is a function of the natural mortality M, assumed constant across ages. Fecundity (f) 

is the product of female maturity m, weight w and the maximum recruits per spawner α (in the 

absence of density dependent effects). The relevant functional forms are the maturity-at-age ma, 

length-at-age la (modelled as per von Bertalanffy growth), weight-at-age wa and recruits per spawner 

α:  



 

31 
 

 

ma=(1+exp((a50-a) δ⁄ ))
-1

 

 

la=l∞ (1-exp(-k(a-t0))) 

 

wa=ala
b 

 

α=
4h

ρ(1-h)
 

 
 
 
Recruits per spawner is related to steepness h and the female spawning biomass per recruit ρ, 
assuming a Beverton-Holt stock recruitment relationship.  
 
The model incorporates uncertainty in all parameters, which can be fixed on input. Life history data 
used to estimate a distribution for r are summarized in Table 5. Parameter values calculated for 
females of A. superciliosus were used whenever possible. Parameters that were poorly-informed or 
unobserved (i.e., those relating to maturation and recruitment) were given a higher cv (0.2) in the 
estimation process, and others that were estimated based on observations with sample sizes >100 
specimens (growth and longevity) were given a cv of 0.10. We assumed that females have a litter 
size of two (Chen et al. 1997) and an annual reproductive cycle. 
 
The maximum observed age for female A. superciliosus in the Atlantic was 22 yr (Fernandez-Carvalho 
et al. 2011), and the maximum observed age in the Pacific was 21 yr (Liu et al. 1998). True longevity 
in an unfished population probably exceeds both these values, so we used the larger value in the 
Euler-Lotka equation. Natural mortality estimates were available from Smith et al. (2008) (M=0.223) 
and Chen and Yuan (2006) (M=0.147). Additional M estimates were derived using four empirical 
equations summarised in Tsai et al. (2010), including the Hoenig (1983) and Campana et al. (2001) 
approximations based on maximum age; and the Jensen (1996) approximations based on age at 
maturity and the growth parameter of the von Bertalanffy equation. The value in the table 
represents the mean value for M (and calculated cv) obtained using the four empirical relationships. 
 
A number of sensitivities were performed on selected input parameters, including h, M and 
parameters of the maturity ogive. A thousand (x1000) iterations were performed in each run.  

3.7.2 Maximum Impact Sustainable Threshold (MIST) 

In preliminary analyses, the MIST was set at 1.0r = Fcrash (the instantaneous fishing mortality rate 
corresponding to the minimum unsustainable instantaneous fishing mortality rate) (Zhou et al. 
2011). The MIST was used to compute sustainability status and sustainability risk for the species in 
the Pacific.  

3.7.3 Key assumptions 

The intrinsic growth rate r is assumed to represent population productivity (and thus resilience and 

recovery potential) for A. superciliosus. Productivity is assumed to have remained constant over the 

spatial domain of the assessment, from 2000 to 2014. This implies a stable environment and stable 

state (equilibrium) population dynamics for the species.  
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Table 5: Input life history information used to develop a prior for the maximum intrinsic population growth 
rate of A. superciliosus in the Pacific. Maturation, Growth and Recruitment parameters are based on 
available information for females only.  
 

Process Parameter Value cv Reference(s) 

Longevity 
    

 
Amax (yr) 22 

 
 Fernandez-Carvalho et al. 2011 

Maturation 
   

 
A50 (yr) 13.4 0.20  Liu et al. 1998 

 
delta δ 0.6 0.20 estimated 

Growth 
    

 
Linf (cm, PCL) 224.6 0.10 Liu et al. 1998 

 
k 0.092 0.10 Liu et al. 1998 

 
t0 -4.21 0.10 Liu et al. 1998 

 
a 6.87x10

-5
 0.10 Liu et al. 1998 

 
b 2.769 0.10 Liu et al. 1998 

Recruitment 
   

 
α 2 

 
Liu et al. 1998 

 
h 0.30 0.20 estimated 

Mortality M 0.171 0.17  See text 

 
 

3.8 Sustainability risk calculations 
Sustainability status is determined relative to fishing impact from pelagic longline fisheries in the 
Pacific over the period 2000-2014, and computed relative to a MIST=1.0r= Fcrash. A sustainability risk 
metric, corresponding to the ratio of total impact to the species MIST, was computed and compared 
between impact estimated at the scale of the Core Area (ZINB model species distribution) and 
impact estimated at the scale of the Assessment Area (delta-GLMM model species distribution).  
 
The probability that current impacts exceed the MIST (Pr(Impact/MIST>1)) is calculated by re-
sampling across the uncertainty range estimated for all parameters. Additional sustainability risk 
thresholds were defined a posteriori based on the distribution of annual sustainability status and 
uncertainty.  
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Appendix A – CPUEΩ estimation and derivation 
In this section we derive CPUE  (the CPUE index for the Calibration Area AΩ) from aCPUE  (CPUE in 

subarea a  within AΩ).  

CPUE  is used to estimate a range of plausible values for q in the BDM calibration. 

aCPUE is the predicted catch rate for subarea a from the final ZINB standardisation model.  

Firstly, 
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where 
q  is the catchability scalar over AΩ, and q  is the average catchability in each subarea. aE and

an are the total effort and abundance in subarea a  respectively, and n is total abundance in AΩ.  

Assuming that CPUE index is proportional to abundance implies that: 
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Appendix B – BDM description 
The Biomass dynamic model (BDM) developed by Edwards (2016) implements the Fletcher-Schaefer 

hybrid model proposed by McAllister et al. (2000) in a state-space modelling framework that 

describes changes in stock depletion in response to fishing,: 
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where tx  is the depletion in year t  (abundance as a percent of unfished equilibrium abundance); 

u is the initial biomass;   is the depletion level at which Maximum Sustainable Yield occurs, 

which is controlled by a shape parameter n , and  
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r  is the intrinsic growth rate. tH  is the harvest rate in year t, and  

K

C
H t

t            (6) 

where tC is the catch is year t and K is the unfished equilibrium abundance, t is the process error 

in year t  following a normal distribution: 

 2,0  normal~ pt           (7) 

p  is the standard deviation for the process error. The expected abundance index in year t , tÎ is 

calculated as, 
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Where q is the catchability coefficient and t  is the observation error in year t , and  

),0(  normal~ 2
ot            (9) 

Where o is the standard deviation for observation errors.  

The hybrid model allows K5.0  whilst maintaining an ecologically consistent interpretation of r . 

Using a Bayesian framework, BDM estimates the marginal posterior distribution of underlying 

parameters including K , r , and q , by incorporating time series of catches and observed abundance 

indices.  
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Appendix C – q adjustment by fishery groups and spatial scaling 

In this section, we derive jq , the catchability for fishery group j at the level of 5x5 degree cells used 

in the assessment. Firstly, 

jj qfq            (1) 

where q  is the average catchability on the grid cell (constant across spatial domain) and jf is the 

adjustment factor for fishery group j , calculated as the predicted CPUE for each fishery group 

(averaged over space and time) relative to a reference fishery group (i.e., targeting strategy of “BET” 

in February).  

To obtain the qj, we first write the fishing mortality in the Calibration Area,
F , as  
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ijEqF
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         (2) 

            

  

where 
q  is the catchability over AΩ, jiE , is the fishing effort for fishery group j in grid cell i . Using a 

spatially-explicit approach: 
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Where in is the abundance (relative density) in cell i and 
n is the total relative abundance in the 

Calibration Area AΩ 

Combining (1), (2), and (3) we obtain: 
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