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Summary
Catch per unit effort (CPUE) of skipjack caught by Japanese pole and line (JPN PL) in two spatial structures
(same as 2014 stock assessment and alternative spatial structure for 2016 stock assessment as sensitivity runs)
were estimated from logbook data between 1972 and 2015. Three years data from 2013 and 2015 were added
after the 2014 stock assessment and model configuration for estimating CPUE were same as in 2014. Standard-
ized CPUEs for alternative spatial area definition in 2016 were also estimated by two cases using all available
data and extracted data that vessel operated continuously for more than 30 years. Overall trend of standardized
CPUEs by updated data in each area were similar results by 2014. As for alternative spatial structure, overall
trends by core data decreased in each region. Standardized CPUEs by all data were lower than results the
CPUE by core data before 1990 especially in area 2 (tropical) and area 6 (subtropical), and trend after 1990
were vice verse. This indicates that vessels operated before 1990 have some impacts for estimating CPUE.

Introduction
In this document, catch per unit effort (CPUE) of skipjack tuna caught by both of the Japanese offshore

(PLOS) and distant water pole-and-line (PLDW) in the WCPO was updated based on logbook data between
1972 and 2015 as same model configuration as in 2014 stock assessment. JPN PL CPUE is an important
index as representative of abundance and input data for skipjack stock assessment in the WCPO. Those indices
was created by taking non-zero catch for a fishing day (binomial model and the non-zero skipjack catch for a
fishing day (lognormal, non zero catch model) into account. The delta-lognormal indices were calculated by
multiplying the two sets of indices (Langley et al., 2010; Kiyofuji et al., 2011; Kiyofuji and Okamoto, 2014).
Standardized CPUE for the alternative spatial structure was also estimated by the similar model configuration
but two data set (all available data and 30 years continuously operated data; core data) were applied.

Data and Methods
Fisheries Data
The operational level of catch and effort data for the Japanese pole and line (JPN PL) from 1972 to 2012 with
noon positions in equidistant 1◦× 1◦ grid cells was used. Date, number of poles, catches in weight and vessel
size in gross register tonnage (GRT) was employed. In this document, JPN PL was categorized by vessel size
and their equipment. Vessel size between 20-199 GRT is defined as offshore PL (JPN PLOS) and larger than
200 GRT as distant-water PL (JPN PLDW).

Recent spatial patterns of catch (tonnes) by aggregated in 1x1 degree both for PLOS and PLDW were shown
in Fig.2 and Fig.3. There was no significant spatial changes for both PLOS and PLDW. Fishing areas by
PLOS in recent years were found within region 1. Two core fishing areas were identified for the PLDW. One is
equatorial region between 140°E and 160°W and another of the same area as the PLOS core area but extended
to 180°E.
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Information on the fishing technology used by the fleet has been collected via interview, as described in Shono
and Ogura (2000). Vessel specific information details the implementation of five important technological inno-
vations only in the JPN PLDW: the low temperature live bait tank (LTLBT), onboard NOAA meteorological
satellite image receiver (NOAA receiver), first and second generation bird radar, and sonar. The application of
these components is described in detail in Ogura and Shono (1999).

License number was applied to identify individual vessel and these number has changed in every five years
(1987, 1992, 1997 and 2007). For the distant-water pole and line fleet, a reference table has been created and
updated that details the license number of an individual vessel in each year (Langley et al., 2010; Kiyofuji et
al., 2011 and 2014).

A generalized linear model was applied and the basic GLM model formulation applied in this study is shown
as following equations for PLDW and PLOS, respectivley.

CPUE(PLDW ) = Y earQtr + V esselID + LatLong +NumPoles+Device+ µ

CPUE(PLOS) = Y earQtr + V esselID + LatLong +NumPoles+ µ

Definitions of the predictor variables are shown in Table 1 and 2. The model was implemented separately for
each region and both binomial and lognormal models were applied.

1. The presence/absence of skipjack catches for a fishing day. The dependent variables were modeled using
a binomial error structure to estimate probability of non-zero skipjack catch for a fishing day.

2. Non-zero skipjack catch for a fishing day after zero catch records have been excluded. The dependent
variable was modeled assuming a lognormal error structure.

For the binomial model, the year/quarter indices indicating probability of capture (p) were derived using the
inverse logit of the individual year/quarter factorial coefficients, with the average predicted value of p in the
first 5 years constrained to equal t he observed average p for the same period. For the lognormal model, the
year/quarter CPUE indices were derived by exponentiation of the individual year/quarter factorial coefficients.
Delta-lognormal indices were derived by multiplying the binomial p values and the non-zero lognormal indices
(Lo et al., 1992).

Japanese offshore pole-and-line fishing activity near Japanese water mainly occurs during April - October,
targeting both of skipjack and albacore. The absence of skipjack in the catch from targeting albacore trips
is unlikely to be suitable for representing the relative abundance of skipjack. This is also a critical issue for
derivation of relative abundance of albacore (e.g. Kiyofuji and Uosaki, 2010). To exclude such data from
the analysis, those fishing trips that skipjack represented 75% of the combined skipjack and albacore were
removed. The data set was limited to individual vessels that completed a minimum of 10 days fishing each year
for a minimum of five years.

In 2016 SKJ stock assessment, sensitivity run for alternative spatial structure are planed and CPUEs for this
area also should be standardized as same manner. Standardized CPUE was estimated both for all regions of
2016 stock assessment and alternative spatial structure shown in Fig.1. Standardized CPUE for alternative
spatial structure were estimated by two cases using all available data and extracted data that vessel operated
continuously for more than 30 years during the study period as core data set. The reason why data were ex-
tracted was because vessel operated longer time period would have a consistency in terms of technological
changes through the periods. Fig.4 represents time distribution of each unique vessel in each region for alter-
native spatial structure and red line shows vessel operated more than 30 years during the study period. Number
of core vessel was approximately 1/10 relative to number of vessel of all available data. Focusing simply on
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before 1990, approximately 50 - 60% of vessels closed fisheries. In 1980’s, JPN PL was converted to the purse
sein fisheries as policy change due to deterioration of PL management of each vessel. Hence, those data might
have some impacts to standardization process and results.

Table 3 shows a list of final model configurations for 2014 and 2016 stock assessment area and 2016 alternative
structure. As for alternative spatial structure, two data set were analysed in separately. PLOS were operated
mainly in region 1 and 7, PLDW were in region 2, 3 and 6. Several vessels in region 7 operate differently
around anchored FADs, so that data in west of 130◦E was deleted in this analysis. Final model was determined
with statistically significant explanatory variable after running all available variables.

Results and Discussion
2016 CPUE in 2014 SA area
Updated results of probability of catching skipjack, non zero catch and delta-lognormal are shown in Fig.5 -
Fig.7 in red lines. Overall trends of each SKJ index were not significantly changed from the results in 2014
(black) with generally continue to be flat in region1, decreasing trend after 2000 and increased updated year in
region2 and continuously decreasing after 1990 in region3.

The binomial model indicates that the probability of catching skipjack within region1 is between 0.7 and 0.9
during the analysis period and there were no any significant trends (Fig.5). The lognormal non zero model
estimated the non zero daily catch of skipjack. There were also no particular trends derived from the model
(Fig.6). The indices calculated by multiplying both binomial and lognormal non zero (delta-lognormal) shows
annual trend that it did not change largely until 2000 but decreased until 2005. The indices increased gradually
from 1990 to 2000 and then decreased until 2005 (Fig.7).

The index estimated by the binomial model suggests that the probability of catching skipjack in region2 de-
creased from 1970 ’to 2010 (Fig.5) and slightly increased recently. The index estimated by the lognormal
non zero model are likely decreased after 1995 (Fig.6). Indices by delta-lognormal also decreased constantly
especially after 1990 (Fig.7).

Skipjack catch rates in region3 were between 0.8 and 1.0 and decreased after 2000 (Fig.5). The index estimated
by the lognormal non zero model fluctuated largely after 1990, with an overall declining trend on average
(Fig.6). As in region 2, there appears to be a step change in about 1984. The delta-lognormal index shows
similar variability to the lognormal non zero model with decreasing trend after 1990 (Fig.7).

Alternative Spatial Structure in 2016
Results of probability of catching skipjack, non zero catch and delta-lognormal in alternative spatial structure
for all data and core data are shown in Fig.8 - Fig.10 in black and red lines, respectively. The binomial model
indicates that the probability of skipjack in region 1 is between 0.4 and 0.8 with flat, but recent year after 2010
shows decreased trend. The probability in region2, region3 (tropical area) and region6 (subtropical area) shows
gradually decreasing trends, but in region7 were slightly increased trend. The index estimated by the lognormal
non zero model both all and core data show similar trend in region1, region3 and region7, but different trend
were identified in region2 and region6 among the data set before and after end of 1980’.

Overall trends of delta-lognormal by core data likely decreased in all regions but in region7. It is worth noting
that trends in region2 (tropical) and 6 (subtropical) shows different trends between all and core data before
and after 1990. This indicates that vessels operated before 1990 have some impacts for estimating CPUE
because JPN PL was converted to the purse sein fisheries as policy change due to deterioration of each vessel
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PL management, so that not only lower ranked vessel changed or stopped fisheries but also higher ranked vessel
as well.

Followings are summary of this document.

• Skipjack abundance indices by the Japanese pole-and-line fisheries in the WCPO were undated until
2015 in same area definition in 2014 stock assessment.

• CPUE for alternative spatial structure was also estimated using all data and core data that vessel operated
for more than 30 years.

• Compared to 2014 indices, no significant changes were identified from updated CPUE.
• Different trends were identified between CPUEs by all and core data in alternative spatial structure.

CPUE by all data before 1990 was larger than CPUE by core data in especially region 2 and 6, and
trends after 1990 were vice verse. This indicates that vessels operated before 1990 have some impacts
for estimating CPUE.

• Estimating CPUE by the JPNPL by core data should be used in the assessment because clearer data have
exceptional prospects for stock assessment inputs.

• Recent effort declines in region3 should also be addressed as representativeness of abundance index in
this region.
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Table 1. Definition of the predictor variables included in the model. JPPL offshore (PLOS; fleet size ≤ 200).
Region1 for 2014 SA area and Region1 and 7 for 2016 alternative spatial structure.

Variable Data Type Description
YrQtr Categorical Unique year and quarter (2 and 3)
latlong Categorical 5◦ of latitude and longitude spatial strata (midday position)
VesselID Categorical Unique vessel identifier
NumPoles Continuous Number of Poles

Table 2. Definition of the predictor variables included in the model. JPPL distant water (PLDW; fleet size >

200). Region2 and 3 for 2014 SA area and Region 2, 3 and 6 for 2016 alternative spatial structure.

Variable Data Type Description
YrQtr Categorical Unique year and quarter
latlong Categorical 5◦ of latitude and longitude spatial strata (midday position)
VesselID Categorical Unique vessel identifier
NumPoles Continuous Number of Poles
Bait Tank (BT) Categorical (2) 1. Vessel does not have bait tank

2. Vessel has bait tank
NOAA (NOA) Categorical (2) 1. Vessel does not have NOAA receiver

2. Vessel has NOAA receiver
Sonar (SN) Categorical (2) 1. Vessel does not have sonar

2. Vessel has sonar
Bird Radar (BR) Categorical (3) 1. Vessel does not have any bird radars

2. Vessel has 1st or 2nd generation bird radar
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Table 3. Summary of the final model configurations of JPN PL CPUE estimations in 2014 and 2016.

2014 SA 2016 SA (2014 SA area) 2016 alternative SA
Region1 (PLOS)

[all data]
binominal yrqtr + latlon+ vID + poles

positive logn yrqtr + latlon+ vID + poles

[core data]
binominal - - yrqtr + latlon+ vID

positive logn - - yrqtr + latlon+ vID

Region2 (PLDW)
[all data]

binominal yrqtr + latlon+ vID + SN +BR yrqtr + latlon+ vID + SN

positive logn yrqtr + latlon+ vID + poles+BT +BR

[core data]
binominal - - yrqtr + latlon+ vID + poles

positive logn - - yrqtr + latlon+ vID + poles+BT

Region3 (PLDW)
[all data]

binominal yrqtr + latlon+ vID +BR

positive logn yrqtr + latlon+ vID + poles+BT +BR yrqtr + latlon+ vID + poles+BR

[core data]
binominal - - yrqtr + latlon+ vID +BT

positive logn - - yrqtr + latlon+ vID + poles+BT +BR

Region6 (PLDW)
[all data]

binominal - - yrqtr + latlon+ vID

positive logn - - yrqtr + latlon+ vID + poles+BR

[core data]
binominal - - yrqtr + latlon+ vID + poles

positive logn - - yrqtr + latlon+ vID + poles+BT +BR

Region7 (PLOS)
[all data]

binominal - - yrqtr + latlon+ vID + poles

positive logn - - yrqtr + latlon+ vID + poles

[core data]
binominal - - yrqtr + latlon+ vID

positive logn - - yrqtr + latlon+ vID + poles
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Figure 1. (a) Area definition used for the 2014 SKJ stock assessment and (b) New area definitions for the 2016
SKJ stock assessment as sensitivity analysis.
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Figure 2. Catch distribution by JPN PLOS (< 200grt) in recent 6 years.
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Figure 3. Catch distribution by JPN PLDW (>= 200grt) in recent 6 years.
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Figure 4. Time distribution of each unique vessel in each region. Red lines represent that vessel operated more
than 30 years during the study period.

10



2014 SA area definition
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Figure 5. Probability of non zero catch in each area for data for 2014 (black) and 2016 (red).
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2014 SA area definition
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Figure 6. Indices for positive catch by JPN PL in each area for data for 2014 (black) and 2016 (red).
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2014 SA area definition
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Figure 7. Abundance Indices of skipjack by JPN PL in each area for data for 2014 (black) and 2016 (red).
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2016 alternative area definition
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Figure 8. Probability of non zero catch by PLOS (1 and 7) and PLDW (2, 3 and 6) in each region for alternative
area definition. (Black and red represents that all and extracted data, respectively.)
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2016 alternative area definition
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Figure 9. Indices for positive catch by PLOS (1 and 7) and PLDW (2, 3 and 6) in each region for alternative
area definition. (Black and red represents that all and extracted data, respectively.)
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2016 alternative area definition
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Figure 10. Abundance Indices scaled by mean by PLOS (1 and 7) and PLDW (2, 3 and 6) in each region for
alternative area definition. (Black and red represents that all and extracted data, respectively.)
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