
SCIENTIFIC COMMITTEE

TWELFTH REGULAR SESSION

Bali, Indonesia

3–11 August 2016

Stock assessment of skipjack tuna in the western and central Pacific Ocean

WCPFC-SC12-2016/SA-WP-04

S. McKechnie1, J Hampton 1, G. M. Pilling 1, N. Davies2

1Oceanic Fisheries Programme, The Pacific Community
2Te Takina Ltd



Contents

1 Introduction 7

2 Background 7

2.1 Stock structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Biological characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Fisheries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Data compilation 10

3.1 General notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Spatial stratification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3 Temporal stratification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.4 Definition of fisheries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.5 Catch and effort data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.5.1 General characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.5.2 Purse seine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.5.3 Longline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.5.4 Pole-and-line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.5.5 Other fisheries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.6 Size data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.6.1 Purse seine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.6.2 Longline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.6.3 Pole-and-line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.6.4 Other fisheries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.7 Tagging data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Model description 17

4.1 General characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2 Population dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2.1 Recruitment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2.2 Initial population . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2.3 Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2.4 Movement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2.5 Natural mortality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2.6 Sexual maturity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.3 Fishery dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3.1 Selectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3.2 Catchability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3.3 Effort deviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.4 Dynamics of tagged fish . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2



4.4.1 Tag reporting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.4.2 Tag mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.5 Likelihood components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.6 Parameter estimation and uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.7 Stock assessment interpretation methods . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.7.1 Yield analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.7.2 Fishery impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.7.3 Reference points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.7.4 Kobe analysis and Majuro plots . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.7.5 Stochastic projections from the reference case model . . . . . . . . . . . . . . 27

5 Model runs 27

5.1 Developments from the last assessment . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.2 Sensitivity analyses and structural uncertainty . . . . . . . . . . . . . . . . . . . . . 28

5.2.1 Steepness [h0.65, h0.95] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.2.2 Tag mixing period [mix2qtr] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.2.3 Relative weighting of length composition data [Lgth10, Lgth50] . . . . . . . . 29

5.2.4 Alternative growth functions [EstVB, EstVBSD, TanGrth] . . . . . . . . . . . 29

5.2.5 Overdispersion in the tagging likelihood [EstOD, ODmiddle] . . . . . . . . . . 29

5.2.6 Age-invariant movement [InvMov] . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2.7 Quarterly stock recruitment relationship [SRRqtrly] . . . . . . . . . . . . . . . 30

5.2.8 Constraints on terminal recruitments [TermRec4, TermRecFree] . . . . . . . . 30

5.3 Structural uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6 Results 31

6.1 Fit of the reference case model to data sources . . . . . . . . . . . . . . . . . . . . . 31

6.1.1 Catch data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.1.2 Standardised CPUE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.1.3 Size composition data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.1.4 Tagging data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.2 Model parameter estimates (reference case) . . . . . . . . . . . . . . . . . . . . . . . 32

6.2.1 Catchability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.2.2 Selectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.2.3 Movement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.2.4 Natural mortality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.2.5 Tag Reporting Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.2.6 Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.3 Stock assessment results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.3.1 Recruitment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.3.2 Biomasss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3



6.3.3 Fishing mortality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.3.4 Fishery impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.3.5 Yield analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.4 Stock status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.4.1 Majuro plot and comparisons with Limit and Target Reference Points . . . . 37

6.5 Multimodel inference - stepwise model development, sensitivity analyses and struc-

tural uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.5.1 Consequences of key model developments . . . . . . . . . . . . . . . . . . . . 38

6.5.2 One-off changes from the structural uncertainty analysis . . . . . . . . . . . . 39

6.5.3 Structural uncertainty analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 41

7 Discussion and conclusions 42

7.1 Changes to the previous assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7.2 Sources of uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7.2.1 Data weighting and conflict among data components . . . . . . . . . . . . . . 43

7.2.2 Robustness of CPUE indices . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7.2.3 Caution in using SB latest/SBF=0 for species with very short generation time 44

7.3 Recommendations for further work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7.3.1 WCPFC-specific recommendations . . . . . . . . . . . . . . . . . . . . . . . . 44

7.3.2 Biological studies and data investigations . . . . . . . . . . . . . . . . . . . . 45

7.4 Main assessment conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

8 Tables 54

9 Figures 61

10 Appendix 115

10.1 Likelihood profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

10.2 Stochastic simulations for the reference case model . . . . . . . . . . . . . . . . . . . 115

10.3 Retrospective analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

10.3.1 Removal of recent years data . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

10.3.2 Comparison of results to previous skipjack stock assessments in the WCPO . 117

4



Executive Summary

This paper describes the 2016 stock assessment of skipjack tuna Katsuwonus pelamis in the western

and central Pacific Ocean. A further three years data were available since the last stock assessment

was conducted in 2014, and the model time period extends to the end of 2015. New developments to

the stock assessment include addressing the recommendations of the 2014 stock assessment report

(Rice et al., 2014), exploration of uncertainties in the assessment model, particularly in response

to the inclusion of additional years of data, and to improve diagnostic weaknesses of previous

assessments.

This assessment is supported by the analysis of catch-per-unit-effort data for pole-and-line (Kiy-

ofuji, 2016) and purse seine fisheries (Bigelow et al., 2016; Tremblay-Boyer et al., 2016), tagging

data (McKechnie et al., 2016) and the data summaries for fisheries definitions used in the stock

assessment (McKechnie, 2016).

Changes made in the progression from the 2014 to 2016 reference case models include: a modified

tagging input file that no longer includes Japanese tag releases before 1998; changes, and exploration

of the relative weightings of CPUE, length composition and tagging data; application of new features

in MULTIFAN-CL; and modifications to model parameters such as selectivity to improve fit to the

various data sources.

In addition to a single reference case model that we present, we report the results of one-off sensitiv-

ity models to explore the impact of key data and model assumptions for the reference case model on

the stock assessment results and conclusions. We also undertook a structural uncertainty analysis

(model grid) for consideration in developing management advice where all possible combinations

of those areas of uncertainty from the one-off models were included.

The main conclusions of the current assessment are largely consistent with previous assessments and

are based on the results of the reference case model and consideration of the results of sensitivity

runs (including the structural uncertainty grid). These general conclusions can be summarised

concisely as:

1. The current stock assessment estimates stock status to be very similar to the 2014 assessment,

with a period of moderately higher spawning biomass over the subsequent years.

2. Current catches are lower than, but approaching estimated MSY.

3. Fishing mortality of all age-classes is estimated to have increased significantly since the begin-

ning of industrial tuna fishing, but fishing mortality still remains below the level that would

result in the MSY, and is estimated to have decreased moderately in the last several years.

4. Recent levels of spawning biomass are well above the level that will support the MSY, and

are well above the limit reference point, 20%SBF=0.

5



5. Depletion-based reference points (including SB latest/SBF=0, SBrecent/SBF=0 and SB2015/SBF=0[2015])

for the reference case model, sensitivity analyses and uncertainty grid suggest that the skip-

jack stock is most probably at or close to the target reference point of 50%SBF=0.

6. Modelling assumptions explored in sensitivity and structural uncertainty analyses had a mod-

erate impact on model output but did not change the broad conclusions about recent stock

status.

7. Modelling results were most sensitive to assumptions about weighting of data components,

tag mixing period and steepness, and several important avenues of research related to these

assumptions have been identified and will improve future assessments.
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1 Introduction

This paper presents the 2016 stock assessment of skipjack tuna (Katsuwonus pelamis; SKJ) in the

western and central Pacific Ocean (WCPO; west of 150◦ W). Since 2000, the assessment has been

conducted regularly and the most recent assessments are documented in Hoyle et al. (2010), Hoyle

et al. (2011), and Rice et al. (2014). The independent review of the 2011 bigeye tuna assessment

(Ianelli et al., 2012) made several recommendations that also improved the subsequent assessment

of the WCPO skipjack stock (Rice et al., 2014). The current assessment continues the imple-

mentation of the review recommendations that have been facilitated by the ongoing development

of the statistical stock assessment software, known as MULTIFAN-CL3 (MFCL; Fournier et al.,

1998; Hampton and Fournier, 2001; Kleiber et al., 2014), that is used by the Pacific Community

(SPC). Further developments to the stock assessment have been undertaken to address the recom-

mendations of the 2014 stock assessment report (Rice et al., 2014), to explore uncertainties in the

assessment model, particularly in response to the inclusion of additional years data, and to improve

diagnostic weaknesses of previous assessments.

The objectives of this assessment are to estimate population parameters, such as time series of

recruitment, biomass and fishing mortality, which indicate the stock status and impacts of fishing.

We summarize the stock status in terms of reference points adopted by the Western and Central

Pacific Fisheries Commission (WCPFC). The methodology used for the assessment is based on

the general approach of integrated modelling (Fournier and Archibald, 1982), which is carried out

using MFCL, and implements a size-based, age- and spatially-structured population model. Model

parameters are estimated by maximizing an objective function, consisting of both likelihood (data)

and prior information components.

This assessment report should not be seen as a standalone document and should be read in con-

junction with several supporting papers, specifically the analyses of Bigelow et al. (2016); Kiyofuji

(2016); McKechnie et al. (2016); McKechnie (2016) and Tremblay-Boyer et al. (2016). Finally,

many of these issues were discussed in detail at the Pre-Assessment Workshop held in Noumea over

11–15 April, 2016 (Pilling and Brouwer, 2016).

2 Background

2.1 Stock structure

Surface-schooling, adult skipjack tuna (greater than 40 cm fork length; FL) are highly abundant

in tropical and subtropical waters of the Pacific Ocean (Figure 1). Skipjack in the WCPO are

considered a single stock for assessment purposes (Wild and Hampton, 1994). In the western

Pacific, warm, pole-ward-flowing currents near northern Japan and southern Australia seasonally

3http://www.multifan-cl.org
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extend their distribution to about 40◦ N and 40◦ S. These limits roughly correspond to the 20◦ C

surface isotherm.

A substantial amount of information on skipjack movement is available from tagging programmes,

which have documented some large-scale movement within the Pacific (Figures 2). In general,

skipjack movement is highly variable (Sibert et al., 1999) and is thought to be influenced by large-

scale oceanographic variability (Lehodey et al., 1997).

2.2 Biological characteristics

Skipjack growth is rapid compared to yellowfin and bigeye tuna. Approximate age estimates from

counting daily rings on otoliths suggest that growth may vary between areas of the Pacific. At

150, 200, 300 and 400 days, fork lengths (FLs) of 30, 33, 40, and 46 cm were estimated for fish

sampled mostly in the north Pacific (Tanabe et al., 2003), but growth estimates were faster (42,

47, 55, and 60 cm) for fish sampled close to the equator (Leroy, 2000). Growth has been found to

vary spatially in the eastern Pacific (Maunder, 2001) and in the Atlantic (Gaertner et al., 2008),

based on analyses of tagging data.

Estimates of natural mortality rate have been obtained using a size-structured tag attrition model

(Hampton, 2000), which indicated that natural mortality was substantially larger for small skipjack

(21–30 cm FL, M=0.8 mo−1) compared to larger skipjack (51–70 cm FL, M=0.12–0.15 mo−1). The

longest period at liberty for a tagged skipjack to date has been 4.5 years.

Commensurate with their fast growth and relatively short lifespan, skipjack mature at an early

age, when they reach a length of around 40 cm FL (Wild and Hampton, 1994).

2.3 Fisheries

Skipjack tuna are caught using a wide variety of fishing gears and comprise the largest component

of tuna fisheries throughout the WCPO. Fisheries can be broadly classified into the Japanese pole-

and-line fleets (both distant-water and offshore), domestic pole-and-line fleets based in Pacific Island

countries, artisanal fleets fishing a wide range of gear based in the Philippines, eastern Indonesia

and the Pacific Islands, and distant-water and Pacific-Island-based purse seine fleets.

The Japanese pole-and-line fleets operate over a large area of the WCPO, although effort and the

spatial extent of this fishery has gradually declined since the 1980’s. A domestic pole-and-line

fishery occurred in PNG from 1970 to 1985 and active fisheries have occurred in Fiji since 1974

(now discontinued), and the Solomon Islands since 1971 (now operating at a very low level).

A variety of gear types (e.g. gillnet, hook and line, longline, purse seine, ring net, pole-and-line and

unclassified) capture a significant amount of skipjack in the Philippines and Indonesia. Small but
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locally important artisanal fisheries for skipjack and other tuna (mainly using traditional methods

and trolling) also occur in many of the Pacific Islands.

Purse seine fleets usually operate in equatorial waters from 10◦ N to 10◦ S; although a Japanese

offshore purse seine fleet operates in the temperate North Pacific. The distant-water fleets from

Japan, Korea, Chinese Taipei and the USA capture most of the skipjack in the WCPO, although

catches by fleets flagged to or chartered by Pacific Island countries have increased considerably in

recent years. The purse seine fishery is usually classified by set type categories - sets on floating

objects such as logs and fish aggregation devices (FADs), which are termed “associated sets” and

sets on free-swimming schools, termed “unassociated sets”. These different set types have somewhat

different spatial distributions, catch per unit effort (CPUE) and catch different sizes of skipjack

and other tuna.

Skipjack tuna catches in the WCPO increased steadily after 1970, approximately doubling during

the 1980s (Figure 4). The catch was then relatively stable during the early 1990s, approaching 1

million mt per annum. Catches increased again from the late 1990s and have varied between about

1.5 and 2 million mt since 2007, with a record catch of just over 2 million mt taken in 2014.

Pole-and-line fleets, primarily Japanese, initially dominated the fishery, with the catch peaking at

380,000 mt in 1984, but the relative importance of this fishery has declined steadily for economic

reasons. Annual skipjack tuna catches increased during the 1980s due to growth in the international

purse-seine fleet, combined with increased catches by domestic fleets from the Philippines and

Indonesia.

Historically, most of the catch has been taken from the western equatorial Pacific (regions 2, 4

and 5) (Figure 5). During the 1990s, combined annual catches from this region fluctuated around

500,000–800,000 mt before increasing sharply to approximately 1.2 million mt in 2007–2009 (Figure

4). Since the late 1990s, there has been a large increase in the purse-seine fishery in the eastern

equatorial region of the WCPO (region 3), although catches from this region have been highly

variable among years. Since the terminal year of catches included in the previous stock assessment

(2012), significant changes in the distribution of catch have occurred. This has been influenced

by recent very strong El Nino conditions which are thought to have a strong impact on skipjack

population dynamics including a significant eastward shift in biomass (Lehodey et al., 1997) which

favours the eastern equatorial region, and is reflected in high catches in region 3, particularly in

2014 and 2015.

The purse seine catch history used in the assessment has been corrected for the over-reporting of

skipjack and under-reporting of yellowfin and bigeye on logsheets (Hampton and Williams, 2011)

and for the selection bias in grab samples (spill-sample corrected purse seine estimates) taken by

observers. These corrected catches represent the primary catch data incorporated in the stock

assessment and are the basis of quoted catch estimates in this paper.
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3 Data compilation

3.1 General notes

Data used in the stock assessment of skipjack tuna using MFCL consist of catch, effort and length-

frequency data for the fisheries defined in the analysis, and tag-recapture data. Improvements

in these data inputs are ongoing and more detailed summaries of the analyses and methods of

producing the necessary input files are given by Abascal et al. (2014) (length compositions for

purse seine fisheries), McKechnie et al. (2016) (tagging data), and Bigelow et al. (2016), Kiyofuji

(2016) and Tremblay-Boyer et al. (2016) (CPUE standardisations). In addition, a more detailed

description of the fisheries definitions, their data summaries and changes in fisheries structures since

the 2014 stock assessment, are provided in McKechnie (2016). The full details of these analyses are

not repeated here, rather, a brief overview of the key features is provided and readers are directed

to the relevant papers referenced throughout this section.

3.2 Spatial stratification

The geographical area considered in the assessment corresponds to the WCPO from 50◦ N to 20◦ S

and from oceanic waters adjacent to the east Asian coast (110◦ E between 20◦ N and 20◦ S; 120◦ E

north of 20◦ N) to 150◦ W. The assessment model area comprises five regions (Figure 1), with a

single region north of 20◦ N (Region 1), and four equatorial regions between 20◦ S to 20◦ N. The

western equatorial region is from 110◦ E to 140◦ E (Region 4), and eastern equatorial from 170◦ E

to 150◦ W (Region 3). Region 2 comprises the area between 140◦ E and 170◦ W with the exception

of the area south of the equator between 140◦ E and 155◦ E along with the area south of 5◦ S

between 155◦ E and 160◦ E.

The southern regions are similar to the bigeye and yellowfin tuna regional structure, the difference

being the inclusion of 10◦ S to 20◦ S in the skipjack regional structure. The assessment area covers

practically the entire skipjack fishery in the WCPO, with the exception of relatively minor catches

south of 20◦ S. The eastern boundary for the assessment regions was 150◦ W, and as such excludes

the WCPFC Convention area component that overlaps with the IATTC area.

3.3 Temporal stratification

The time period covered by the assessment is 1972–2015. Within this period, data were compiled

into quarters (1; Jan–Mar, 2; Apr–Jun, 3; Jul–Sep, 4; Oct–Dec). Unlike the other recent tuna stock

assessments conducted by SPC, this assessment included data from the most recent full calendar

year (2015). These data are only finalized very late and can be subject to revision post-SC and

this must be considered when interpreting results for the final year of the assessment. However, the

skipjack population has a much shorter generation time than the other tuna species assessed in the
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WCPO, therefore stock status can change very rapidly and assessment of the most recent dynamics

is highly valuable. Furthermore, catch estimates for the entire fishery are less dependent on gears

where there is a substantial lag between fishing and catch reporting (such as longlining) and so

the most recent year’s catch estimates are likely to be significantly more accurate than for other

species. For these reasons the WCPFC Scientific Committee decided that it is highly desirable to

include the most up-to-date data on the fishery and stock so that the most accurate status of the

stock can be estimated for management purposes.

3.4 Definition of fisheries

MFCL requires the definition of “fisheries” that consist of relatively homogeneous fishing units.

Ideally, the defined fisheries will have selectivity and catchability characteristics that do not vary

greatly over time and space, although in the case of catchability some allowance can be made for

time series variation. For most pelagic fisheries assessments, fisheries are defined according to gear

type, fishing method and region and sometimes also by vessel flag or fleet.

Equatorial purse seine fishing activity was aggregated over all nationalities, but stratified by re-

gion and set type, in order to sufficiently capture the variability in fishing operations. Set types

were grouped into associated (log, FAD, whale, dolphin, and unknown set types) and unassociated

(school) sets. Further fisheries were defined for pole-and-line fisheries in each region and miscel-

laneous fisheries (gillnets, ringnets, handlines etc.) in the western equatorial area. A longline

fishery was defined in each region to hold the long time series of skipjack length composition data

from Japanese research longline cruises in the WCPO and more recently, observer-measured length

composition samples.

Several changes were made to the 2014 fisheries definitions and these are presented in detail by

McKechnie (2016) however the total number of fisheries in the assessment remains 23 (see Table 2

for fishery descriptions). A brief summary of these changes is as follows:

• The longline fisheries in each region only include JP data under the 2014 definitions, but this

was extended to include data from vessels for all flags (except Chinese-Taipei; see McKechnie,

2016 for details) to increase the sample sizes and temporal coverage of the availability of length

composition data.

• The area of the domestic purse seine fishery in region 4 (S-ID.PH-4) was extended to cover the

whole region to include fishing activity in archipelagic waters, and thus be more consistent

with the area used by Bigelow et al. (2016) to calculate the CPUE index received by this

fishery in the assessment model.

• The pole-and-line fishery in region 2 was expanded to include all data from all flags using this

gear in that region (previously the fishery included only JP). This new definition included

a moderate amount of historical catch and effort data for the Pacific Island fleets that are
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unlikely to have a significant influence on population dynamics, but lead to the inclusion of

a moderate number of tag recaptures for the Regional Tuna Tagging Programme (1990’s)

which were previously excluded.

3.5 Catch and effort data

3.5.1 General characteristics

Catch and effort data were compiled by year and quarter according to the fisheries defined above.

The catches of all fisheries were expressed in weight of fish, with the exception of the longline fishery

(the catches of which are very small and set at a nominal level) which were expressed in numbers

of fish.

Total annual catches by major gear categories for the WCPO are shown in Figure 4 and a regional

breakdown is provided in Figure 5. The spatial distribution of catches over the past ten years is

provided in Figure 6. Discarded catches are estimated to be minor and were not included in the

analysis. Catches in the northern region are highly seasonal.

A number of significant trends in the fisheries have occurred over the model period, specifically:

• The development of the Japanese off-shore purse-seine fishery in region 1 since the mid-1990s.

• The virtual cessation of the domestic pole-and-line fisheries in Papua New Guinea (PNG)

and Fiji and the recent low catches from the Solomon Islands fishery;

• The general decline in the Japanese distant-water pole-and-line fisheries in the equatorial

regions, particularly region 3.

• The development of the equatorial purse-seine fisheries from the mid-1970s and the widespread

use of FADs since the mid-1990s, allowing an expansion of the purse-seine fishery in region 3.

• Large changes in the purse seine fleet composition and increasing size and efficiency of the

fleet.

• The steady increase in catch for the domestic fisheries of Indonesia and the Philippines.

3.5.2 Purse seine

Briefly, catch data are estimated by 1◦ latitude, 1◦ longitude, month, flag and set-type. Though

the exact algorithm depends on the year and data available (Hampton and Williams, 2016), total

catches are taken from the logsheet-declared totals and catches by species are estimated from

observer grab samples corrected for bias based on the estimates of the correction factors from the

paired spill and grab sampling trials. For the Japanese fleet for which there is greater confidence

in species-based reporting, we use reported catch by species rather than estimating it.

12



As in previous assessments, effort data units for purse seine fisheries are defined as days fishing

and/or searching, and are allocated to set types based on the proportion of total sets attributed

to a specified set type (associated or unassociated sets) in logbook data. Recently it has been

discovered that some fleets have changed their reporting practices (SPC-OFP, 2013) such that far

fewer searching days are reported and these are instead reported as non-fishing transit days. This

practice essentially represents effort creep and we have not yet specifically corrected recent data to

ensure consistency of reporting. We minimize the impact of this by estimating time-variant changes

in catchability for these fisheries, and ascribing low weight to the effort deviations.

In the two regions (4 and 5) where effort of the JP pole-and-line fleet was not adequate for con-

ducting CPUE standardisations, purse seine fisheries instead received standardised CPUE. CPUE

for the Philippines domestic purse seine was analysed using generalised linear models (GLMs) by

Bigelow et al. (2016), who produced a standardised index of abundance (Figure 7). These indices

were applied to the catches of the S-ID.PH-4 fishery for the years 2005–2015 and in contrast to

2014, estimates of time-variant precision were available and were implemented as time-variant effort

deviation penalties in MFCL.

CPUE data for the purse seine fishery operating largely within the PNG archipelagic waters (region

5) was also analysed using GLMs (Tremblay-Boyer et al., 2016; Figure 7). These indices were

applied to the catches of the S-ASS-All-5 fishery for the years 1997-2015 and time-variant effort

deviation penalties were again estimated and used.

3.5.3 Longline

Longline fisheries take a negligibleproportion of the total skipjack catch and longline fisheries were

included in the model solely to utilise the available size frequency data. Catches are set at very

low, arbitrary levels and this is detailed later in the document.

3.5.4 Pole-and-line

Standardised CPUE indices of abundance applied to fisheries 1, 4, and 12 were based on Japanese

pole-and-line fisheries in region 1, 2, and 3, respectively. These standardised indices were estimated

using generalized linear models (GLM) fitted to operational catch and effort data (Kiyofuji, 2016).

Separate analyses were conducted for each region. The uncertainty in each pole-and-line CPUE

estimate, by fishery and time, was included in the model by way of time-variant penalty weights

for the effort deviations.

In contrast to other tuna stock assessments in the WCPO, regional weight scaling factors were

not applied to the CPUE estimates from the different regions. Significant quantities of tagging

data exist in all 5 regions which provides information on region-specific fishing mortality and hence

biomass, and therefore allows catchabilities for these fisheries to be estimated independently. The
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relative regional population sizes are therefore estimated relatively freely by the model. Nominal

fishing-vessel-day was used as the unit of effort for the domestic pole-and-line fisheries of PNG,

Solomon Islands, and Fiji and the mixed flag (but mainly ID) PL fishery in region 4.

3.5.5 Other fisheries

Effort data for the Philippines and Indonesian surface fisheries and research longline fisheries were

unavailable. Where effort data are absent, the model directly computes fishing mortality consistent

with the observed catch using a Newton-Raphson procedure. This is described in more detail in

Section 4.3.3.

3.6 Size data

3.6.1 Purse seine

Only length frequency samples are used in the skipjack assessment and the penultimate assessment

(2011) only used samples obtained from observer programmes which had been corrected for grab-

sample bias. As observer coverage had been very low and unrepresentative in early years, there were

many gaps and the time series of size data showed little evidence of model progression. Two major

changes were made for the 2014 assessment and were carried through to the current assessment,

and are described in detail in Abascal et al. (2014): first the long time series of port sampling data

from Pago Pago, American Samoa, was included; and second, all samples were spatially weighted

by the catch - both at the set and spatial strata level, with thresholds applied to ensure that small

samples from important catch strata did not get too much weight (as was conducted for the longline

fisheries in the bigeye and yellowfin tuna assessments in 2014; Harley et al., 2014 and Davies et al.,

2014, respectively).

3.6.2 Longline

Longline fisheries typically do not target skipjack but do catch small numbers of large skipjack

within the 50–90 length range as bycatch, and the catch is usually discarded. Japanese research

vessels have routinely collected measurements of the length of skipjack caught since the start of

the assessment time period. Japanese research data is only available sporadically in several regions

and sample sizes have decreased or ceased to exist in areas where JP longline fishery effort has

declined or the fleet has contracted away from. For the 2016 stock assessment, data for other flags

conducting longline fishing were added to these fisheries, resulting in substantial increases in sample

size and temporal coverage. Most of these samples were collected by observer programmes (since

the 2000’s) and the datasets for these fisheries are covered in detail by McKechnie (2016).
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These data are included to provide information to the model on the existence of these larger

sized skipjack rarely caught in purse seine or pole-and-line fisheries. These data are important,

because they allows selectivity of surface fisheries to be measured against these larger-sized skipjack

that would otherwise be part of a “cryptic biomass” component of the population that would not

otherwise be sampled by the fishery, and would consequently be difficult to model.

3.6.3 Pole-and-line

Size composition for pole-and-line fisheries are largely reliant on observer data with the exception

of region 1 and 2 where length data are available from the Japanese offshore and distant-water

fleet (sourced from NRIFSF) from the beginning of the model period until 2015. For the equatorial

(excluding region 2) pole-and-line fishery, length data are available from the Japanese distant-water

fleet and from the domestic fleets.

The data from the pole-and-line fishery in region 3 (P-ALL-3) was dominated by data for the

Japanese fleets (1974–2004) with additional data from Fiji in the 1990’s. Length data from the

pole-and-line fishery in region 4 (P-All-4) consists of mostly Japanese data from the 1972–2009,

with significant data from Indonesia sporadically available, though mostly over 2009–2015. The

data from the pole-and-line fishery in region 5 (P-ALL-5) are a large dataset for multiple countries

with the Solomon Island and PNG contributing the majority of length composition samples. The

pole-and-line fisheries in the northern region generally catch smaller fish than the equatorial fisheries

(regions 2–5), (Figure 19) although over the model period, there was a slight general increase in

the length of fish sampled from the pole-and-line fisheries in regions 1 and 2. No systematic trend

in the length composition was evident in regions 3–5 (Figure 20).

3.6.4 Other fisheries

Size composition data for the Philippines domestic fisheries (Z-PH-4) were collected by a sampling

programme conducted in the Philippines in 1993–95 and augmented with data from the 1980s. In

addition, data collected during 1997–2006 under the National Stock Assessment Project, and in

more recent years under the GEF-WPEA project, were included in the current assessment. Despite

the large catch taken by the Indonesian domestic fishery (Z-ID-4), only limited length samples from

the recent sampling under the GEF-WPEA project are available for the fishery and the selectivity

for this fishery was linked to Z-PH-4 (Table 3).

Data have become available for the Vietnam domestic fishery (Z-VN-4) since the last stock assess-

ment was conducted and now number in the order of tens or thousands of samples in several years

(McKechnie, 2016). Selectivity for this fishery was also shared with Z-PH-4 (Table 3).

For previous assessments, few usable size data were available for the PH-ID domestic purse seine

fishery in region 4 (S-ID.PH-4), and this fishery’s selectivity was linked to the associated purse
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seine fishery in region 2 (S-ASS-ALL-2). Considerably more length composition data have become

available for the current assessment and due to differences in the compositions observed for this

fishery a fishery-specific selectivity function was estimated (Table 3).

3.7 Tagging data

A large amount of tagging data were available for incorporation into the assessment and a summary

of its characteristics and the process of constructing the MFCL tagging file are presented in detail

by McKechnie et al. (2016). The data were available from SPC’s Skipjack Survey and Assessment

Project (SSAP) carried out during 1977–80, the Regional Tuna Tagging Project (RTTP) during

1989–92 (including affiliated in-country projects in the Solomon Islands, Kiribati, Fiji and the

Philippines), and the Pacific Tuna Tagging Programme (PTTP) carried out during the period 2006

until the 3rd quarter of 2014. Tagging data from regular Japanese research tagging cruises were

available for the period 1998–2015. Note that this period of availability of Japanese tagging data

is shorter than in 2014 (1988–2012) and relates to the difficulties of reproducing tagging events for

the tagging cruises prior to 1998, as there is an absence of measured release lengths of fish over

that time. This information is a requirement for inclusion in MFCL, but the data used to estimate

these lengths were unavailable for this assessment (see McKechnie et al., 2016 for further details of

these issues).

Tags were released using standard tuna tagging equipment and techniques by trained scientists and

technicians. Tags have been returned mostly from purse seine vessels via processing and unloading

facilities throughout the Asia-Pacific region.

In the current assessment, the numbers of tag releases input to the assessment model were adjusted

for a number of sources of tag loss - unusable recaptures due to lack of adequately resolved recapture

data, estimates of tag loss (shedding and initial mortality) due to variable skill of taggers, and

estimates of base levels of tag shedding/tag mortality. The procedures used in re-scaling the releases

are described in detail in Berger et al. (2014) and McKechnie et al. (2016), but essentially the re-

scaling preserves the recovery rates of tags from the individual tag groups that would otherwise be

biased low when an often significant proportion of recaptures cannot be assigned to a recapture

category in the assessment.

There is a delay between tagged fish being caught, the tag being reported and the data being

entered into tagging databases. If this delay is significant then reported recaptures rates for very

recent release events will be biased low and will impact estimates of fishing mortality in the terminal

time periods of the assessment. For this reason, any release events occurring after the end of 2014

were excluded from the assessment (McKechnie et al., 2016).

For incorporation into the assessment, tag releases were stratified by release region, time period of

release (quarter) and the same size classes used to stratify the length-frequency data. A total of
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277,562 effective releases were classified into 204 tag release groups (Table 4). The returns from

each size-class of each tag release group (52,929 effective, usable tag returns in total) were then

classified by recapture fishery and recapture time period (quarter). Because tag returns by purse

seiners were often not accompanied by information concerning the set type, tag return data were

aggregated across set types for the purse seine fisheries in each region. The population dynamics

model was in turn configured to predict equivalent estimated tag recaptures by these grouped

fisheries.

4 Model description

4.1 General characteristics

The model can be considered to consist of several components, (i) the dynamics of the fish popula-

tion; (ii) the fishery dynamics; (iii) the dynamics of tagged fish; (iv) the observation models for the

data; (v) the parameter estimation procedure; and (vi) stock assessment interpretations. Detailed

technical descriptions of components (i)–(iv) are given in Hampton and Fournier (2001) and Kleiber

et al. (2014). In addition, we describe the procedures followed for estimating the parameters of

the model and the way in which stock assessment conclusions are drawn using a series of reference

points.

4.2 Population dynamics

The model partitions the population into five spatial regions and 16 quarterly age-classes. The last

age-class comprises a “plus group” in which mortality and other characteristics are assumed to be

constant. The population is “monitored” in the model at quarterly time steps, extending through

a time window of 1972–2015. The main population dynamics processes are as follows.

4.2.1 Recruitment

Recruitment is defined as the appearance of age-class 1 fish (i.e. fish averaging ∼ 10 cm given

the current growth curve) in the population. Tropical tuna spawning does not always follow a

clear seasonal pattern but occurs sporadically when food supplies are plentiful (Itano, 2000). It

was assumed that recruitment occurs instantaneously at the beginning of each quarter. This is a

discrete approximation to continuous recruitment, but provides sufficient flexibility to allow a range

of variability to be incorporated into the estimates as appropriate.

The proportion of total recruitment occurring in each region was initially set relative to the variation

in recruitment predictions from Lehodey (2001) and then estimated during the later phases of the

fitting procedure. The distribution of recruitment among the model regions was estimated within
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the model and allowed to vary over time in a relatively unconstrained fashion. The time series

variation in spatially-aggregated annual recruitment was somewhat constrained by a lognormal

prior on deviations from the stock-recruitment relationship. Variance of the prior was set such that

spatially aggregated recruitments of about three times and one third of the average recruitment

would occur about once every 25 years on average.

In recent assessments of tuna in the WCPO the terminal recruitments have often been fixed at the

mean recruitment of the rest of the model period to prevent the instability that has been detected by

retrospective analyses. This approach has been continued here and several models were constucted

with different numbers of terminal recruitments fixed.

Spatially-aggregated (over all model regions) recruitment was assumed to have a weak relationship

with spawning biomass via a Beverton and Holt stock-recruitment relationship (SRR) with a fixed

value of steepness (h). Steepness is defined as the ratio of the equilibrium recruitment produced

by 20% of the equilibrium unexploited spawning biomass to that produced by the equilibrium

unexploited spawning biomass (Francis, 1992; Harley, 2011).

In the reference case model, it was assumed that annual recruitment was related to spawning

biomass, which was recommended by the 2011 Bigeye Tuna Peer Review (Ianelli et al., 2012) and

was previously assumed for the south Pacific albacore assessment (Harley et al., 2015). Alternative

model runs exploring the former assumption of estimating the SRR at the quarterly-scale were also

undertaken.

The SRR was incorporated mainly so that yield analysis and population projections could be under-

taken for stock assessment purposes, particularly the determination of equilibrium-based reference

points. We therefore opted to apply a relatively weak penalty for deviation from the SRR so that

it would have negligible effect on recruitment and other model estimates (Hampton and Fournier,

2001), which was confirmed by sensitivity analyses. The SRR was calculated over the period from

1982 onwards to prevent the early recruitments (which appear to be part of a different “regime” to

subsequent estimates) from influencing the relationship, which is consistent with the approach of

the 2014 assessment.

Typically, fisheries data are not very informative about the steepness parameter of the SRR param-

eters (ISSF, 2011); hence, the steepness parameter was fixed at a moderate value (0.80) and the

sensitivity of the model results to the value of steepness was explored by setting it to lower (0.65)

and higher (0.95) values of steepness.

4.2.2 Initial population

The population age structure in the initial time period in each region was assumed to be in equilib-

rium and determined as a function of the average total mortality during the first 20 quarters. This

assumption avoids having to treat the initial age structure, which is generally poorly determined,
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as independent parameters in the model.

4.2.3 Growth

The standard assumptions made concerning age and growth are (i) the lengths-at-age are normally

distributed for each age-class; (ii) the mean lengths-at-age follow a von Bertalanffy growth curve;

(iii) the standard deviations of length for each age-class are a log-linear function of the mean

lengths-at-age; and (iv) the probability distributions of weights-at-age are a deterministic function

of the lengths-at-age and a specified weight-length relationship. These processes are assumed to be

regionally invariant.

4.2.4 Movement

Movement was assumed to occur instantaneously at the beginning of each quarter via movement

coefficients that connect regions sharing a common boundary. Note that fish can move between non-

contiguous regions in a single time step due to the “implicit transition” computational algorithm

employed (see Hampton and Fournier, 2001 and Kleiber et al., 2014 for details). Movement is

parameterised as the proportion of fish in a given region that move to the adjacent region. Across

each inter-regional boundary in the model, movement is possible in both directions for the four

quarters, with a log-linear relationship between age and movement rates estimated. Alternative

models with age-invariant movement were also considered and are presented later in the document.

The seasonal pattern of movement persists from year to year with no allowance for inter annual

variation in movement. A prior mean of 0.1 is assumed for all movement coefficients, inferring a

relatively high mixing rate between regions. A weak penalty is applied to deviations from the prior

mean.

4.2.5 Natural mortality

Natural mortality was estimated and assumed to be age-specific, but invariant over time and region.

Penalties on the first difference, adjacent age classes, and deviations from the mean were applied

to restrict the age-specific variability to a certain extent. The estimated M-at-age for the reference

case model is shown in Figure 12.

4.2.6 Sexual maturity

Sexual maturity was fixed in the model and assumed to be age-specific, knife-edge, and invariant

over time and region. The onset of sexual maturity was assumed to occur at age-class 3 (7–9 months

of age; Figure Wild and Hampton, 1994). The adult component of the population was therefore

essentially defined as age classes 3–16. Unlike in Thunnus species, sex ratio does not appear to vary
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with size for skipjack. Sex ratio and fecundity at size were not included in the maturity parameter,

so in this assessment the term “spawning biomass” refers to the biomass of adult fish, rather than

female spawning biomass as in the yellowfin, bigeye, and albacore stock assessments.

4.3 Fishery dynamics

4.3.1 Selectivity

In many stock assessment models, selectivity is modelled as a functional relationship with age,

e.g. using a logistic curve to model monotonically increasing selectivity and various dome-shaped

curves to model fisheries that select neither the youngest nor oldest fish. Modelling selectivity with

separate age-specific coefficients (with a range of 0-1), constrained with smoothing penalties, allows

more flexibility but has the disadvantage of requiring a large number of parameters. Instead, we

have used a method based on a cubic spline interpolation. This is a form of smoothing, but the

number of parameters for each fishery is the number of cubic spline “nodes” that are deemed to

be sufficient to characterise selectivity over the age range. We chose five nodes, which seems to be

sufficient to allow for reasonably complex selectivity patterns.

For particular fisheries alternative functions were employed, including logistic and non-decreasing

(Table 3). In all cases, selectivity is assumed to be fishery-specific and time-invariant. However, it is

possible for a single selectivity function to be “shared” among a group of fisheries that have similar

operational characteristics and/or exist in similar areas and with similar length compositions. This

grouping facilitates a reduction in the number parameters being estimated.

The selectivities of the longline fisheries were assumed to increase with age and to remain at the

maximum once attained. Two pole-and-line selectivity curves were estimated: one for region 1 and

one for the equatorial fisheries (regions 2-5). Selectivity for the equatorial purse seine fisheries were

grouped by set type i.e. a separate selectivity function for associated and unassociated fishing, but

each was shared over the fisheries in different regions. The Indonesian, Philippines and Vietnam

domestic fisheries in region 4 (Z-ID-4, Z-PH-4, Z-VN-4) were also grouped (Table 3).

4.3.2 Catchability

Constant catchability (time-invariant) was estimated for all fisheries for which standardised indices

of relative abundance were available (Table 3). This assumption is similar to assuming that the

CPUE for these fisheries indexes the exploitable abundance over time. No grouping of catchability

for these fisheries was employed, and therefore the relative level of CPUE was not used to scale the

relative exploitable biomass in regions 1, 2 and 3 - the model relies on other data, size and most

importantly tagging, to estimate the regional distribution of abundance.
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For all other fisheries, catchability was allowed to vary slowly over time (akin to a random walk)

using a structural time series approach. Random walk steps were taken every two years, and

the deviations were constrained by prior distributions of mean zero and variance specified for the

different fisheries according to our prior belief regarding the extent to which catchability may have

changed. For fisheries having no available effort estimates (e.g. the Philippines and Indonesian

surface fisheries), partial fishing mortalities were estimated consistent with the observed catches

using a Newton-Raphson procedure. Therefore, catchability deviations (and effort deviations) are

not estimated for these fisheries.

For the other fisheries with time series variability in catchability, the catchability deviation priors

were assigned a variance approximating a CV of 0.10. Apart from those fisheries for which the

data were based on annual estimates, the catchabilities of all other fisheries were allowed to vary

seasonally, including those fisheries that received standardised CPUE indices (Table 3).

4.3.3 Effort deviations

Effort deviations were used to model the random variation in the effort - fishing mortality relation-

ship, and are constrained by pre-specified prior distributions (on the log-scale). There were several

categories of fisheries with respect to the effort deviation penalties applied and these are outlined in

Table 3. For fisheries which received standardised CPUE indices the prior was set to have a mean

of zero and for the abundance index fisheries the CV was time-variant and based on the variance

estimates (using the canonical variance method of Francis, 1999) from the GLMs fitted to each

fishery (Bigelow et al., 2016; Kiyofuji, 2016; Tremblay-Boyer et al., 2016). The penalties for fishery

1 (P-JPN-1) were set to be time-invariant and equivalent to a CV of about 10% as there are few

informative data in this region before the occurrence of tagging data in 1998, particularly since

CPUE estimates are only available in two out of four quarters in any year, and so more informative

priors are needed to prevent spurious results in early years.

The miscellaneous fisheries have very unreliable estimates of effort and to prevent them from in-

fluencing population dynamics they are given missing effort at all time-steps except the last four

quarters, when they are given an arbitrary effort of one, and receive effort deviation penalties

equivalent to a CV of about 0.22. This is done simply to provide a basis for scaling effort so that

the effort deviates converge around 0 to allow effort-based population projections. This approach

was also used for all longline fisheries which are only included for their length composition data

and are given arbitrary catches.

Finally, for all other fisheries the nominal effort was used, but to prevent the CPUE of these fisheries

from influencing population dynamics they received effort deviation penalties equivalent to a CV

of about 0.7 (Table 3).
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4.4 Dynamics of tagged fish

4.4.1 Tag reporting

In principal, tag-reporting rates can be estimated internally within the model. In practice, expe-

rience has shown that independent information on tag-reporting rates for at least some fisheries

tends to be required for reasonably precise estimates to be obtained. We provided reporting rate

priors for all reporting groups that reflect independent estimates of the reporting rates and their

variance.

Previous assessments have assumed fishery-specific reporting rates are constant over time. This

assumption was reasonable when most of the tag data were associated with a single tagging pro-

gramme. However, tag reporting rates may vary considerably between tagging programmes due to

changes in the composition and operation of individual fisheries, and different levels of publicity

and follow-up. Consequently, fishery-specific tag reporting rates that are also specific to individual

tagging programmes were estimated. Tag recapture and reporting rate groupings are provided in

Table 3.

The estimation of the reporting rates included penalty terms in respect of pre-determined priors.

These were derived from analyses of tag seeding experiments (Peatman et al., 2016). For the RTTP

and PTTP, relatively informative priors were formulated for the equatorial purse seine fisheries given

the larger extent of information available. All reporting rates within a tagging programme were

assumed to be time-invariant.

4.4.2 Tag mixing

The population dynamics of the fully recruited tagged and untagged populations are governed by the

same model structures and parameters. The populations differ in respect of the recruitment process,

which for the tagged population is the release of tagged fish, i.e. an individual tag and release

event is the recruitment for that tagged population. Implicitly, we assume that the probability of

recapturing a given tagged fish is the same as the probability of catching any given untagged fish in

the same region and time period. For this assumption to be valid either the distribution of fishing

effort must be random with respect to tagged and untagged fish and/or the tagged fish must be

randomly mixed with the untagged fish. The former condition is unlikely to be met because fishing

effort is almost never randomly distributed in space. The second condition is also unlikely to be

met soon after release because of insufficient time for mixing to take place.

Depending on the distribution of fishing effort in relation to tag release sites, the probability of

capture of tagged fish soon after release may be different to that for the untagged fish. It is

therefore desirable to designate one or more time periods after release as “pre-mixed” and compute

fishing mortality for the tagged fish based on the actual recaptures, corrected for tag reporting (see
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below), rather than use fishing mortalities based on the general population parameters. This in

effect de-sensitises the likelihood function to tag recaptures in the pre-mixed periods while correctly

removing fish from the tagged population for the recaptures that occurred. We assume that tagged

skipjack gradually mix with the untagged population at the regional level and that this mixing

process is complete by the end of the first quarter after release.

Tagged fish are modelled as discrete cohorts based on the region, year, quarter and age at release

for the first 12 quarters after release. Subsequently, the tagged fish are pooled into a common

group. This is to limit memory and computational requirements.

4.5 Likelihood components

There are three data components that contribute to the log-likelihood function for the skipjack stock

assessment - the total catch data, the length-frequency data and the tagging data. The observed

total catch data are assumed to be unbiased and relatively precise, with the SD of residuals on the

log scale being 0.002.

The probability distributions for the length-frequency proportions are assumed to be approximated

by robust normal distributions, with the variance determined by the effective sample size and the

observed length-frequency proportion. Length frequency samples are assigned effective sample sizes

lower than the number of fish measured. Reduction of the effective sample size recognises that (i)

length- and weight-frequency samples are not truly random (because of non-independence in the

population with respect to size) and would have higher variance as a result; and (ii) the model does

not include all possible process error, resulting in further under-estimation of variances.

The size data were considered to be moderately informative and were assigned moderate weight

in the likelihood function; such that individual length frequency distributions were assigned an

effective sample size of 0.05 times the actual sample size, with a maximum effective sample size

of 50 (MFCL has a default limit on maximum effective sample size of 1,000 fish per time-step,

per fishery). Alternative scalars for down-weighting the length composition data were explored in

sensitivity analyses.

A log-likelihood component for the tag data was computed using a negative binomial distribution.

The negative binomial is preferred over the more commonly used Poisson distribution because tag-

ging data often exhibit more variability than can be attributed by the Poisson. We have employed

a parameterisation of the overdispersion parameter such that as it approaches 1, the negative bino-

mial approaches the Poisson. Therefore, if the tag return data show high variability (for example,

due to contagion or non-independence of tags), then the negative binomial is able to recognise

this. This should then provide a more realistic weighting of the tag return data in the overall

log-likelihood and allow the variability to impact the confidence intervals of estimated parameters.

A complete derivation and description of the negative binomial likelihood function for tagging data
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is provided in Kleiber et al. (2014).

4.6 Parameter estimation and uncertainty

The parameters of the model were estimated by maximizing the log-likelihood of all data compo-

nents plus the log of the probability density functions of the priors and smoothing penalties specified

in the model. The maximization to a point of model convergence was performed by an efficient

optimization using exact derivatives with respect to the model parameters (auto-differentiation,

Fournier et al., 2012). Estimation was conducted in a series of phases, the first of which used rela-

tively arbitrary starting values for most parameters. A bash shell script, “doitall”, implements the

phased procedure for fitting the model. Some parameters were assigned specified starting values

consistent with available biological information. The values of these parameters are provided in the

skj.ini input file.

In this assessment two approaches were used to describe the uncertainty in key model outputs.

The first estimates the statistical uncertainty within a given assessment model, while the second

focuses on the structural uncertainty in the assessment by considering the variation among a suite

of models. For the first approach, the Hessian was calculated for the reference case model run to

obtain estimates of the covariance matrix, which is used in combination with the delta method to

compute approximate confidence intervals for parameters of interest (for example, the biomass and

recruitment trajectories). For the second approach, a crosswise grid of model runs was undertaken

which incorporated many of the options of uncertainty explored by the key model runs and one-off

sensitivity analyses. This procedure attempts to describe the main sources of structural and data

uncertainty in the assessment.

For highly complex population models fitted to large amounts of often conflicting data, it is common

for there to be difficulties in estimating absolute abundance. Therefore, a profile likelihood analysis

was undertaken of the marginal posterior likelihood in respect of the total population scaling

parameter (Lee et al., 2014). Reasonable contrast in the profile was taken as indicating sufficient

information existed in the data for estimating absolute abundance, and also offered confirmation

of the global minimum obtained by the maximum likelihood estimate. This procedure is presented

in the Appendix (Section 10.1).

Due to the low number of observations for recent cohorts, recruitment estimates in the terminal

model time periods may be poorly estimated. This was investigated using retrospective analysis in

2014 where data from the terminal time periods (the last three years) were successively removed and

the model fitted to each case with terminal recruitments estimated. Based on that analysis the last

2 terminal recruitments were fixed at the mean of the recruitments over the rest of the time-period.

The sensitivity to this assumption was explored in sensitvity analyses. Retrospective analyses also

provide a more general test of the stability of the model as a robust model should produce similar

output when rerun with data for the terminal year/s sequentially excluded (Cadigan and Farrell,
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2005). The retrospective analyses for the 2016 reference case model are presented in the Appendix

(Section 10.3.1).

4.7 Stock assessment interpretation methods

Several ancillary analyses using the converged model/s were conducted in order to interpret the

results for stock assessment purposes. The methods involved are summarized below and the details

can be found in Kleiber et al. (2014).

4.7.1 Yield analysis

The yield analysis consists of computing equilibrium catch (or yield) and biomass, conditional on

a specified basal level of age-specific fishing mortality (Fa) for the entire model domain, a series

of fishing mortality multipliers (fmult), the natural mortality-at-age (Ma), the mean weight-at-age

(wa) and the SRR parameters. All of these parameters, apart from fmult, which is arbitrarily

specified over a range of 0–50 (in increments of 0.1), are available from the parameter estimates of

the model. The maximum yield with respect to fmult can easily be determined using the formulae

given in Kleiber et al. (2014), and is equivalent to the MSY.

Fishing mortality-at-age (Fa) for the yield analysis was determined as the mean over a recent period

of time (2011–2014). We do not include 2015 in the average as fishing mortality tends to have high

uncertainty for the terminal data year of the analysis and the catch and effort data for this terminal

year are potentially incomplete.

4.7.2 Fishery impact

Many assessments estimate the ratio of recent to initial biomass as an index of fishery depletion.

The problem with this approach is that recruitment may vary considerably over the time series,

and if either the initial or recent spawning biomass estimates (or both) are “non-representative”

because of recruitment variability or uncertainty, then the ratio may not measure fishery depletion,

but simply reflect recruitment variability.

We approach this problem by computing the spawning biomass time series (at the region level)

using the estimated model parameters, but assuming that fishing mortality was zero. Because

both the estimated spawning biomass SBt (with fishing), and the unexploited spawning biomass

SBF=0[t], incorporate recruitment variability, their ratio at each quarterly time step (t) of the

analysis SBt/SBF=0[t] can be interpreted as an index of fishery depletion. The computation of

unexploited biomass includes an adjustment in recruitment to acknowledge the possibility of re-

duction of recruitment in exploited populations through stock-recruitment effects. To achieve this

the estimated recruitment deviations are multiplied by a scalar based on the difference in the SRR
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between the estimated fished and unfished spawning biomass estimates. This analysis was con-

ducted by estimating these quantities with no fishing activity, but also with respect to groups of

fisheries (gear-types) so as to describe the relative fishing impacts of each group on the popula-

tion. In the latter case fishing for each gear-type was “turned off” in turn to indicate their relative

influence on fishing depletion.

We note that this approach is similar to that undertaken for the estimation of the LRP, 20%SBF=0,

except that for the LRP the level of SBF=0 is the average over a particular time window (2005–2014

for the current assessment) rather than the fully dynamic value (SBt/SB0,t) predicted for a given

year (Table 1).

4.7.3 Reference points

The unfished spawning biomass (SBF=0) in each time period was calculated given the estimated

recruitments and the Beverton-Holt SRR as outlined in Section 4.7.2. This offers a basis for

comparing the exploited population relative to the population subject to natural mortality only.

The WCPFC adopted 20%SBF=0 as a limit reference point (LRP) for the skipjack stock where

SBF=0 is calculated as the average over the period 2005–2014. The recently adopted target reference

point (TRP) for this stock is 50%SBF=0 where SBF=0 is again calculated over 2005–2014. Stock

status was referenced against these points by calculating the reference points; SBrecent/SBF=0 and

SB latest/SB0 where SBF=0 is calculated over 2005–2014 and SB latest and SBrecent are the estimated

spawning biomass in 2015, and the mean over 2011–2014, respectively (Table 1).

The other key reference point, Frecent/FMSY, is the estimated average fishing mortality at the full

assessment area scale over a recent period of time (Frecent; 2011–2014 for this stock assessment)

divided by the fishing mortality producing MSY which is a product of the yield analysis and has

been detailed in Section 4.7.1.

4.7.4 Kobe analysis and Majuro plots

For the standard yield analysis (Section 4.7.1), the Fa are determined as the average over some

recent period of time (2011–2014 herein). In addition to this approach the MSY-based reference

points (Ft/FMSY) were also computed using the average annual Fa from each year included in the

model (1972–2014, with no value calculated for the terminal year) by repeating the yield analysis

for each year in turn. This enabled temporal trends in the reference points to be assessed and a

consideration of the differences in MSY levels under historical patterns of age-specific exploitation.

This analysis is presented in the form of Kobe plots or the “Majuro plot”, which has been presented

for all stock assessments since SC10.
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4.7.5 Stochastic projections from the reference case model

Projections of stock assessment models can be conducted routinely within MFCL to ensure consis-

tency between the fitted model and the simulated future dynamics, and the framework for perform-

ing this exercise is detailed in (Pilling et al., 2016). The reference case model is used as the basis for

stochastic 10 year projections of skipjack abundance in the WCPO, assuming similar conditions to

those recently encountered: future catch (longline, domestic Indonesian and Philippines fisheries)

or effort (purse seine, most pole-and-line fisheries) was assumed to remain at 2015 levels (status

quo); catchability was assumed to remain constant in the projection period at the level estimated

in the terminal year of the assessment model. Future recruitments were sampled from deviates

from the estimated SRR over the period 1982–2014. Two hundred population trajectories were

simulated and a summary of the results is given in the Appendix (Section 10.2).

5 Model runs

5.1 Developments from the last assessment

The progression of model development from the 2014 reference case to the model proposed as the

reference case in 2016 was incremental, with stepwise changes to the model made in-turn to ensure

that the consequences of each modification could be ascertained. Changes made to the previous

assessment model include additional input data for the years 2013–2015, modified methods in

producing the input files (e.g. McKechnie et al., 2016; Tremblay-Boyer et al., 2016), minor changes

to the fisheries structures (McKechnie et al., 2016), and implementation of additional, or new

features of MFCL (Davies et al., 2015). An outline, and basis for, the progression through the

models is as follows:

1. The 2014 reference case model [Ref14].

2. The 2014 reference case model with the new MFCL executable [Ref14exe].

3. The 2014 reference case model with the new tagging file produced by McKechnie et al. (2016)

but truncated so that the time period of the tagging file matched that used in 2014 [Ref14-

NewTag].

4. The 2014 reference case model with the new tagging file produced by McKechnie et al. (2016)

and fully updated data inputs extending until the end of 2015 [Update16].

5. The previous model with effort deviation penalties on fisheries not receiving standardised

CPUE indices reduced to the equivalent of a CV of ∼ 0.7, from, on average, ∼ 0.4, to prevent

the CPUE of these fisheries from influencing population trends as the time-variant CVs on

the standardised fisheries increase late in the assessment period [EffDev16].
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6. The previous model with the introduction of the new fisheries structures outlined by McK-

echnie (2016) with details of changes given in Section 3.4[NewFish16].

7. The previous model with terminal recruitments for the last two quarters set at the arithmetic

(rather than the default geometric) mean of recruitments estimated over the remaining time

periods, and the new reporting rate penalties calculated by Peatman et al. (2016). The latter

change was included in this run as the consequences for model results were established to be

negligible during model development [RecRR16].

8. The previous model with; selectivity of fishery 18 (S-ID.PH-4) estimated alone (no longer

grouped with the associated purse seine fishery in region 2), due to considerably more length

composition data becoming available since the 2014 assessment, and selectivities of fisheries 13

(S-ASS-ALL-3) and 14 (S-UNA-ALL-3) shared with the other equatorial associated and unas-

sociated fisheries, respectively, for consistency due to few differences in observed length com-

positions since the catch- and spatially-weighted analyses of Abascal et al. (2014) [SelMod16].

9. The previous model with the spawner-recruit relationship estimated assuming that annual,

rather than quarterly recruitments were related to spawning biomass. This is the recom-

mended reference case model for the 2016 stock assessment [RefCase].

5.2 Sensitivity analyses and structural uncertainty

Several hundred runs were undertaken in conducting the 2016 skipjack assessment, but in terms of

presenting information on the bounds of plausible model sensitivity we have focused on a small set

of uncertainty axes which are described in further detail below. These axes were used for “one-off”

changes from the reference case model and several of these sensitivity models were used in the

structural sensitivity analyses (after Hoyle et al., 2008). The latter process involves constructing

a grid of model runs where all-possible combinations of the assumptions are explored (see Section

5.3).

5.2.1 Steepness [h0.65, h0.95]

Steepness is a particularly difficult parameter to estimate in stock assessment models, but if it

is fixed in the model, the choice of value may have significant influence on most reference points

used in management. As was the case in other tropical tuna, and albacore tuna assessments, we

assumed a value of 0.8 for the reference case, but examined values of 0.65 (h0.65) and 0.95 (h0.95) in

sensitivity runs. This choice of values is consistent with the results of the meta-analysis conducted

on tuna stock-recruitment data (Anon., 2011).
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5.2.2 Tag mixing period [mix2qtr]

The tag mixing period is imposed to allow tagged fish to distribute themselves throughout the

region of tagging, although it is somewhat difficult to ascertain how long this period should be. In

the reference case model the mixing period was set at one quarter and an alternative model was

run assuming a mixing period of two quarters.

5.2.3 Relative weighting of length composition data [Lgth10, Lgth50]

The difficulties in assigning weighting to the length composition data were discussed in Section

4.5. To assess the sensitivity of model results to the weighting of this data two alternative models

were considered; a model where composition data were up-weighted (corresponding to a maximum

effective sample size of 100 fish) relative to the reference case model (Lgth10); and one where those

data were down-weighted (corresponding to a maximum effective sample size of 20 fish) relative to

the reference case (Lgth50).

5.2.4 Alternative growth functions [EstVB, EstVBSD, TanGrth]

The paucity of reliable modal progression in the length composition data means that it can be

difficult to estimate all growth parameters internally in the model. Therefore, alternative models

were formulated with different assumed growth functions. The reference case model used the same

growth function as that assumed in the 2014 reference case model (the 2010 growth estimate). The

alternative formulations were; a model with the Von Bertalanffy parameters (k, L1, L16) estimated

but the parameters defining the SD of length-at-age fixed at the 2014 values (EstVB); a model

with all growth parameters (Von Bertalanffy and two SD parameters) estimated (EstVBSD); and

finally, a model (TanGrth) assuming the all parameters (growth function parameters and the two

SD parameters) were fixed at the values estimated by Tanabe et al. (2003). The latter model was

unstable, and produced unreasonable results, and so was not considered further in the modelling

process.

5.2.5 Overdispersion in the tagging likelihood [EstOD, ODmiddle]

A reformulation of the negative binomial likelihood for the tagging data was undertaken in MFCL

between the 2014 and current assessments to make the estimation of the overdispersion param-

eter more stable. Previously this parameter was fixed at an assumed reasonable value for stock

assessments in the WCPO. A higher value of overdispersion suggests more variation in the tagging

data than assumed by the Poisson likelihood and effectively down-weights the tagging data to some

extent. The reference case model assumed the same value as used in 2014, which was equivalent to
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a variance just marginally greater than Poisson. Two alternative runs were considered - overdis-

persion estimated by the model with one overdispersion parameter common to all recapture fishery

groups ([EstOD]; see Table 3 for these groupings) and another with a common overdispersion pa-

rameter fixed at a value approximately mid-way between the estimated parameter and the value

used in the reference case model (ODmiddle).The relationships between the expected value and the

standard deviation for these 3 options are displayed in Figure 14.

5.2.6 Age-invariant movement [InvMov]

Age-dependent movement was estimated in the reference case model, which is facilitated by the sub-

stantial tagging dataset. An alternative model was also run to test the sensitivity of model results

to age-invariant movement, which retains seasonal movement coefficients but set them constant

over all age-classes.

5.2.7 Quarterly stock recruitment relationship [SRRqtrly]

To assess the sensitivity of the model to the change to assuming annual recruitment (rather than

quarterly in the 2014 assessment) was related to spawning biomass, an alternative model was run

assuming an SRR function between recruitments and spawning biomass at the quarterly scale.

5.2.8 Constraints on terminal recruitments [TermRec4, TermRecFree]

The sensitivity of the model to assumptions about terminal recruitments were explored using two

alternative models; one with the 4 terminal recruitments fixed at the arithmetic mean of the

recruitments over the assessment period (TermRec4), and another where terminal recruitments

were freely estimated (TermRecFree).

5.3 Structural uncertainty

Stock assessments of pelagic species in the WCPO in recent years have utilised an approach to assess

the structural uncertainty in the assessment model by running a “grid” of models that explore the

interactions among selected “axes” of uncertainty. The grid contains all combinations of levels of

several model quantities or assumptions and allows the sensitivity of stock status and management

quantities to this uncertainty. The axes are generally selected from those factors explored in

the one-off sensitivities with the aim of providing an approximate understanding of variability in

model estimates due to assumptions in model structure not accounted for by statistical uncertainty

estimated in a single model run, or over a set of one-off sensitivities.
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The structural uncertainty grid for the 2016 assessment was constructed from 5 axes with 2–3

levels for each, with the values for the reference case model embolded and the levels used directly

comparable to Sections 5.2.1–5.2.8 through identical notation:

1. Steepness [0.8; 0.65 (h0.65); 0.95 (h0.95)]

2. Length composition data weighting [20; 10 (Lgth10); 50 (Lgth50)]

3. Assumed tag mixing period, in quarters [1; 2 (mix2qtr)]

4. Tagging data weighting [default; estimated (EstOD); fixed at intermediate level (ODmiddle)]

resulting in a grid of 54 models (Table 5).

6 Results

6.1 Fit of the reference case model to data sources

6.1.1 Catch data

Very high penalties were applied to the catch data for all fisheries and so the residuals of the

observed and model-predicted catches were very small (Figure 15).

6.1.2 Standardised CPUE

There was substantial temporal variability in the standardised CPUE indices used in the assessment,

but despite this the model-predicted CPUE fitted the indices relatively well, particularly the long

term trends in observed abundance (Figure 16). The model largely captured the substantial seasonal

variability observed for the pole-and-line fishery in region 1 (P-JPN-1) and was able to predict the

shift from lower to higher abundance observed for the standardised fisheries in regions 2 and 3

(P-ALL-2 and P-ALL-3; Figure 16).

The main source of divergence between observed and model-predicted CPUE occurred in regions

2, 3 and 5 since 2012 when the model predicted a significant increase in CPUE that either did

not occur (region 3) or was less pronounced (regions 2 and 5) in the standardised CPUE indices.

This pattern can be observed in a tendency for very recent effort deviates being negative (Figure

17). This is partly a consequence of the lower effort deviation penalties towards the end of the

assessment period in several regions (Figures 7 and 8) and high model-predicted recruitments, and

consequently spawning biomass over the last several years of the assessment period. These features

of the model will be discussed in more detail in subsequent sections.

The CPUE of fisheries not receiving standardised CPUE indices have far less influence in estimating

temporal trends in biomass as much lower effort deviation penalties are applied and catchability is
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allowed to vary over time in these fisheries. Examination of the estimated effort deviations for these

fisheries did not reveal any cause for concern, with deviations centred around zero and no temporal

trends (that might indicate misspecification of temporal changes in catchability etc.; Figure 18).

6.1.3 Size composition data

There was a generally reasonable fit to the length composition data as revealed from a comparison

of the observed and model-predicted numbers-at-length (Figure 19). There was some lack of fit

to the miscellaneous fisheries in region 4, which share selectivity. This is partly due to different

observed length compositions, but for several of these fisheries there are few data with which to

estimate fishery-specific selectivities. The shift to allowing the domestic purse seine fishery in region

4 (S-ID.PH-4) to have its own selectivity function appears to have improved the fit to the length

compositions for this fishery compared to the previous assessment.

These patterns were largely reflected in the comparison of temporal variation in observed and

model-predicted median fish lengths (Figure 20). Compared to the 2014 assessment there are no

longer extreme outliers for the longline fishery in region 1 (L-ALL-1) and several of the fisheries

have substantially more recent data to be fitted to. Some lack of fit is evident for several of the

fisheries in region 4 which is a consequence of high variability in observed median length which is

not reflected in the model estimates. At least some of this variability is likely to be attributable to

the sampling programmes that have occurred in this region in the past, or extremely low sample

sizes (e.g. L-ALL-4).

6.1.4 Tagging data

The model appeared to fit the overall tagging data very well (Figure 21), and also at the finer scale

of the individual tag recapture groupings (Figures 22 and 23). The observed and model-predicted

recapture numbers show large increases during the three tagging programmes that released the

most fish (SSAP; ∼ 1980, RTTP; early 1990’s, PTTP; 2006–present; Figure 21). There is close

concordance between the observed and modelled values for most time-periods with some lack of

fit during periods of particularly high recaptures late in the assessment period. The observed and

model-predicted tag attrition rates across all tag release events for the reference case model were

very similar (Figure 24).

6.2 Model parameter estimates (reference case)

6.2.1 Catchability

Most fisheries where catchability was permitted to vary over time showed a generally increasing

trend, and in some cases this increase was substantial, particularly the purse seine fisheries in regions
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2–5 (Figure 28). In some cases, catchability levels off at the end of the time series, which may be

due to some extent to reduced information at the end of the time series, resulting in parameters

being estimated at close to their prior mean (0). The exceptions to this pattern were; the purse

seine fishery in region 1 (S-ALL-1) which is likely due to differences in CPUE compared to the pole-

and-line fishery in the same region and changing fleet structure during the middle period of the

assessment; and pole-and-line fishery in region 5 (P-ALL-5) which showed fluctuations over a long

time-scale that possibly reflect changes in the composition of the fleet (with different catchability

of different flags) and the pronounced decline in effort for this fishery over time. Seasonal variation

in catchability in many fisheries was high, particularly those operating in more temperate areas of

the assessment region.

6.2.2 Selectivity

A range of selectivity patterns are shown by the different fisheries in the model and can be largely

classified by fishing gear, with the age-specific selectivity coefficients being displayed in Figure 27.

The pole-and-line and purse seine fisheries select mostly young fish of around 3–8 quarters of age

while the longline fisheries are estimated to catch very few fish below about 6 quarters of age and

full select fish in the very old age-classes. The miscellaneous fisheries in region 4 share selectivities

and the estimated coefficients reflect the highly variable length composition data available for

these fisheries with a range of very small through to large fish caught, with substantial temporal

variability.

6.2.3 Movement

To interpret the movement among regions in the reference case model it is beneficial to examine the

empirical movements of tagged fish (Figure 10), the estimated seasonal-, and age-specific movements

(Figure 29), and Figure 30, which portrays the origin (which region the fish were originally recruited

into) of the equilibrium skipjack biomass in each region. From these it is evident that the model

estimates significant variability in seasonal movement between several pairs of regions, perhaps

most notably from regions 2 and 3 into 1, which is also reflected in seasonal variability in biomass

(Figure 32).

Significant movement also occurs between regions 2 and 5 (in both directions), 2 and 3 (in both

directions) and 2 and 4 (Figure 29). The movement coefficients tend to increase with age, in some

cases by significant amounts, though it is important to note that only a negligible proportion of

the population are in these old age-classes.
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6.2.4 Natural mortality

The estimated age-specific natural mortality function is very similar to that estimated in the pre-

vious stock assessment. Natural mortality is estimated to be very high for the first few age-classes,

declining by about half at age-classes 5–7, before increasing somewhat with increasing age beyond

that point.

6.2.5 Tag Reporting Rates

The estimated tag reporting rates by fishery recapture groups (see groupings in Table 3) are dis-

played in Figure 25. The most important groups for scaling the population size are the purse seine

fisheries in regions 2–5 and which account for the overwhelming majority of recaptures for the

SPC tagging programmes and the pole-and-line/purse seine fisheries in region 1 which recapture

most of the JPTP tag releases. These reporting rates were all estimated to be well away from the

bounds and in general were relatively consistent with the informative prior distributions assigned

to these groups. A number of reporting rates are estimated at their bounds although these groups

are generally unimportant for scaling population size, for example all of the reporting rate groups

for region 4 fisheries are estimate at, or close, to the lower bound for the JPTP as a result of no

usable recaptures for these fisheries being available for tags released on Japanese tagging cruises.

6.2.6 Growth

The growth function in the reference case model was fixed at the values used in the previous two

stock assessments. This Von Bertalanffy function specifies most rapid growth over the youngest

age-classes, starting from a mean length of about 10cm at age-class one, before slowing down over

older ages with a mean length of about 88cm for the oldest fish in the model (age-class 16). The

standard deviation of length-at-age increases significantly with age (Figure 26).

6.3 Stock assessment results

6.3.1 Recruitment

The estimated distribution of recruitment across regions must be interpreted with caution to a de-

gree, as MULTIFAN-CL has the ability to use a combination of movement and regional recruitment

to distribute the population in a way that maximises the total objective function. The reference

case recruitment estimates for each region and the entire assessment domain are shown in Figures

31 and 33. The overall pattern of recruitments is similar to previous assessments; slightly lower

recruitments in the 1970’s, an increase in the early 1980’s and a slight increasing trend over the
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remaining assessment period. Several very high recruitments were estimated in the years since the

last assessment (2013–2015), most notably in region 3, and to a lesser degree in region 2.

Note that the final two estimates of recruitment at the full WCPO scale are constrained to equal

the arithmetic mean of recruitments over the entire assessment period which was guided by the

retrospective analyses conducted in 2014 (Rice et al., 2014) and in the Appendix (Section 10.3.1).

This will have no impact on spawning biomass or reference points, including those that use the

latest period of 2015, as the maturity schedule ensures that all these recruits would only reach

maturity in the quarter following the end of the stock assessment period.

6.3.2 Biomasss

The relative pattern in spawning biomass at the regional scale is consistent with the results pre-

sented for the 2014 stock assessment (Figure 32 and 33). There is a period of relatively stable

biomass over the first decade of the model, followed by an increase in the early 1980’s resulting

from the higher recruitments at this time, before the biomass fluctuates and declines slightly up

until around the end of the previous assessment time period (2012).

Since that time the model estimates a strong increase in spawning biomass, peaking in 2013–2014

at a level moderately below the highest levels of biomass predicted to have occurred in the early

1980’s. These increases can be largely attributed to pulses of fish in regions 2, 3 and 5 that result

from very high estimated recruitments predicted to have occurred in the preceeding quarters. Part

of this pattern is influenced by recent tagging data which shows lower recapture rates than tag

release events in earlier years, which estimates a lower fishing mortality and consequently higher

abundance. This result is corroborated when the tagging data is down-weighted (when higher

overdispersion values are assumed or estimated) in the one-off sensitivity analyses (Section 6.5).

Spawning biomass is estimated to have declined somewhat over 2015.

The relative spawning biomass among regions is displayed in Figure 33. Estimates are largely similar

to those of the 2014 assessment although biomass in region 1 is now estimated to account for a lower

proportion of overall biomass and is now more consistent with the predictions of SEAPODYM.

6.3.3 Fishing mortality

Average fishing mortality rates for juvenile and adult age-classes increase significantly throughout

the time series with occasional fluctuations due to temporal variation in total and spawning biomass,

which is particularly evident in the mid to late 2000’s (Figure 34). This is also observed over the

period 2013–2015 due to the significant pulse of recruitment in regions 2, 3 and 5, and to a lesser

degree the reductions in catch in regions 2 and 5 over the last few years (Figure 5). This can

be observed by examining the region- and age-specific fishing mortality rates in Figure 35. Also
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notable is that the fishing mortality of the youngest age-classes is only significant in region 4 where

the small-fish (miscellaneous) fisheries operate.

Changes in fishing mortality-at-age and population age structure are shown for five-yearly time

intervals in Figure 35. Since the 1980s, the increase of fishing mortality to the current levels is

due to the increase of catches of both juvenile and adult fish beginning at that time from both

associated purse seine sets and the mixed gear fisheries in the Philippines and Indonesia. Fishing

mortality on intermediate ages (5–8 quarters) is also increasing through time consistent with the

increased fishing mortality from the purse seine fishery (Figure 35).

6.3.4 Fishery impact

We measure fishery impact at each time step as the ratio of the estimated spawning biomass relative

to the spawning biomass that which would have occurred in the historical absence of fishing. This

is a useful quantity to monitor, as it can be computed both at the region level and for the WCPO

as a whole. This information is plotted in two ways, firstly as the fished and unfished spawning

biomass trajectories (Figure 37) and secondly as the depletion ratios themselves (Figure 38). The

latter is relevant for the agreed reference points and are discussed in more detail in Section 6.4.1.

The reference case model estimated that steady declines in depletion ratio have occurred in all

regions, with the exception of region 1, which was estimated to have been stable over most of the

assessment period (Figure 38). The other regions were estimated to have a terminal depletion ratio

in the range of about 0.3–0.6, although there has been moderate temporal variation in these ratios.

It is also possible to attribute the fishery impact with respect to depletion levels to specific fishery

components (grouped by gear-type), in order to estimate which types of fishing activity have the

most impact on spawning biomass (Figure 39). The early impacts on the population were primarily

driven by pole-and-line fishing, but the impact of that gear has generally declined to be relatively

insignificant in regions 2, 3 and 5. With the exception of region 1, purse seine fishing is estimated

to have had the most significant impact on spawning biomass with the associated component

generally identified as having more impact than unassociated fishing. The miscellaneous fisheries

were estimated to have a significant impact on spawning biomass in region 4.

6.3.5 Yield analysis

The yield analyses conducted in this assessment incorporate the spawner recruitment relationship

(Figure 40) into the equilibrium biomass and yield computations. Importantly in the reference case

model the steepness of the SRR was fixed at 0.8 so only the scaling parameter was estimated.

The equilibrium virgin spawning biomass (SB0) was estimated at 6,764,000 mt and the spawning

biomass that would support the MSY was estimated to be 1,626,000 or 24% of SB0 (Table 6) with
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the catches in 2015 estimated to be 89% of the estimated MSY. The total equilibrium biomass in

the absence of fishing (SBF=0) was estimated to be 7,221,135 mt .

The yield analysis also enables an assessment of the MSY level that would be theoretically achievable

under the different patterns of age-specific fishing mortality observed through the history of the

fishery (Figure 42). Prior to 1980, the WCPO skipjack fishery was almost exclusively conducted

using pole-and-line gear, with a low exploitation of small skipjack. The associated age-specific

selectivity pattern resulted in a comparable, but slightly higher estimate of MSY (∼ 2 million mt

per annum) in the early period compared to the recent estimates of MSY. This is probably due to

the increased catch of smaller fish by associated purse seine and miscellaneous gears, compared to

the early period where pole-and-line fishing was more dominant.

6.4 Stock status

6.4.1 Majuro plot and comparisons with Limit and Target Reference Points

The quantity SBF=0 calculated for the period 2005–2014 is the basis for the limit reference point

and is estimated to be a spawning biomass of 7,221,135 mt (Table 6). The limit reference point

is 20%SBF=0 which is estimated to be a spawning biomass of 1,444,227 mt, while latest (2015)

spawning biomass (SB latest/SB0) is estimated to be 58% of SBF=0 (4,166,815, Figure 43). The

quantity SB latest/SBF=0 is more optimistic than estimated in the 2014 stock assessment (0.48) and

results from the strong recruitment-driven increase in spawning biomass over the period 2013–2015.

This leads to an increase in the estimate of SB latest relative to the previous assessment; however,

the estimate of SBF=0 for 2005–2014 is relatively unaffected. The dynamic annual terminal deple-

tion estimate is less optimistic with SB2015/SBf=0[2015] = 0.51 . The suitability of these various

depletion-based reference points for a species with very short generation time and large temporal

variability in biomass is discussed in detail later in the report.

Fishing mortality has generally been increasing through time with a moderate decrease in the

terminal few years (Figure 34), and for the reference case the fishing mortality reference point

Frecent/FMSY (the numerator is the mean over 2011–2014) is 0.45 (Figure 44, Table 6). This indicates

that an increase in fishing mortality of 2.2 times is necessary to produce the MSY (Table 6).

Presentation of the results in the form of a Majuro plot are displayed in Figure 44 which shows the

steady depletion of the stock over most of the assessment period, along with the increase in the

ratio of fishing mortality to fishing mortality at MSY. The stock is still estimated to be healthy

however, and is estimated to have been close to 50%SBF=0 for the past decade.
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6.5 Multimodel inference - stepwise model development, sensitivity analyses

and structural uncertainty

6.5.1 Consequences of key model developments

The progression of model development from the 2014 to 2016 reference case models is outlined in

Section 5.1 and results are displayed in Figures 45–46. A summary of the consequences of this

progression through the models is as follows:

• The reference case model refitted with the latest version of MFCL (green line; Figure 45a)

produced almost identical results to the 2014 version.

• The new tagging input file that did not include any JPTP tagging data before 1998 produced

results relatively similar to the previous model although relative abundance among years was

slightly different (blue line; Figure 45a). The overall trends in biomass remained very similar

and estimated depletion was extremely similar to the previous model (Figure 46a).

• The model with fully updated datasets (catch/effort, length compositions, tagging) produced

results that were relatively similar to the previous model, with very similar fluctuations in

abundance, although biomass (and recruitment) was scaled down moderately (red line; Figure

45a), and the model predicted a strong increase in biomass since 2012 that resulted in terminal

biomass being significantly higher than the terminal biomass estimated by the reference case

model in 2014. Estimated depletion for this model was also scaled downwards by several

percentage points but followed a very similar trajectory, and the increase in biomass after

2012 resulted in the terminal depletion level being almost indistinguishable from the terminal

depletion (2012) estimated in the 2014 assessment (Figure 46a).

• The next 2 models in the progression (EffDev16] and [NewFish16) again produced very similar

relative fluctuations in biomass (green and blue lines, respectively; Figure 45b), and depletion

(Figure 46b), but in both cases these metrics were scaled up slightly to lie between the previous

model and the 2014 reference case model.

• The model with the new reporting rate penalties and recruitment during the terminal 2

quarters fixed at the arithmetic mean of recruitments over the remaining period was virtually

indistinguishable from the previous model.

• The model with modified assumptions for grouping of selectivities of 3 fisheries was very

similar to the previous model with slight inter annual deviations in biomass, most notably

in the final few years of the assessment (Figure 45b), but a very similar depletion trajectory

(Figure 46b).

• The last modification in the model progression was a shift to an annual SRR and this is

presented as a suggested reference case model. This model was very similar to the previous
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model with respect to the quantities compared above, only differing in MSY-based quantities

which depend on the estimated SRR.

6.5.2 One-off changes from the structural uncertainty analysis

Comparisons of the recruitment, spawning biomass, and depletion trajectories for the reference case

and one-change sensitivity runs from the structural uncertainty analysis are provided in Figures

47–49, the key reference points are compared in Table 6 and the likelihood components in Table 7.

Majuro plots for the one-off models are provided in Figures 50–51.

Steepness [h0.65, h0.95]

The low penalties on the SRR relationship resulted in the assumed value of steepness having a

negligible effect on model fit and stock assessment output, with the exception of quantities related

to yield. The alternative one-off sensitivity runs with steepness values of 0.65 (h0.65) and 0.95

(h0.95) displayed predictable results, consistent with previous assessments of skipjack and other

tuna in the WCPO - namely that low, and high steepness values lead to more pessimistic and

optimistic estimates of stock status, respectively (Figure 50, Table 6). This was particularly the

case for MSY and MSY-based reference points while the depletion-based reference points were less

sensitive to assumed steepness (Figure 49b, Table 6).

Increased mixing period of 2 quarters [mix2qtr]

The model with a mixing period of 2 quarters imposed (rather than the 1 quarter assumed for

the reference case model) for tag recaptures estimated very similar relative fluctuations in biomass

and recruitment, although the absolute values of these metrics were scaled higher, presumably due

to lower relative recapture rates for longer times-at-liberty, which lead to lower fishing mortality

and higher estimates of biomass. Estimated stock status for this run was extremely similar to the

reference case model (Figure 50, Table 6).

Weighting of the length composition data [Lgth10, Lgth50]

Two alternative models were run with differing weightings given to the length composition data,

one up-weighting the data relative to the reference case (Lgth10; scaled down by 10), and the other

down-weighting the data relative to the reference case (Lgth50; scaled down by 50). These models

predictably showed differing changes to the reference case model, most notably with the scale of

the population and associated parameters. For the heavily down-weighted model (Lgth50) biomass,

recruitment and yield were scaled up slightly and this lead to slightly lower fishing mortality and

more optimistic estimates of MSY-based reference points (Table 6). The opposite of these results

were estimated for the up-weighted model (Lgth10). Depletion-based reference points were very

similar between these models and the reference case model (Table 6). While the weighting of the

length composition data resulted in slightly different estimates of key stock assessment quantities,

overall management consequences and estimated stock status were similar (Figures 50, 53 and 54).
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Alternative growth functions [EstVB, EstVBSD]

The sensitivity model where the parameters of the Von Bertalanffy growth function were estimated

(k, L1, L16), but the SD parameters were fixed at the values used in 2014 showed very few

differences to the reference case model with respect to all model-estimated quantities (Figures 47a

and 49a, Table 6). This can largely be attributed to the relatively similar estimates of the growth

parameters (k = 0.26 and 0.20; L1 = 9 and 10cm; L16 = 81 and 88cm, for EstVB and the reference

case, respectively; Figure 26). The model EstVBSD also estimated a relatively similar growth

function to the reference case (Figure 26), but produced variation in length-at-age that was highest

at young age-classes and decline with age. There was also some evidence of local minima when

significantly different starting values were used. For this reason, this model must be treated with

caution.

Overdispersion parameter of the negative binomial tagging likelihood [EstOD, ODmiddle]

The one-off sensitivity models with alternative values of the overdispersion parameter produced

the most significant deviations from the estimates of the reference case model. The model with

estimated overdispersion estimated absolute values for biomass and recruitment that were scaled

down from the reference case. The model with a moderate fixed overdispersion parameter produced

results in-between these extremes (Figures 47b, 48b and 49b, Table 6). Similarly, while the trajec-

tory of depletion was very similar to the reference case model, it was also scaled down by about 5

percentage points on average (Figure 49b), and SB latest/SBF=0 was estimated to be 0.41 (0.47 for

ODmiddle) against a value of 0.58 for the reference case. The value assumed of the overdispersion

parameter leads to non-linear estimates with respect to SB latest/SBF=0, with the model with a

“middle” value producing more similar results to EstOD than the reference case model. Part of

these differences during the terminal period of the assessment result from these models producing a

significantly reduced increase in spawning biomass over the period 2013–2015 as they down-weight

the tagging dataset including the influential tagging data over these years.

Age-invariant movement [InvMov]

A model assuming age-invariant rather than age-dependent movement produced very similar results

to the reference case model, both with respect to model parameters and indicators of stock status

such as the reference points (Figures 47b and 49b, Table 6). The estimates of the origin (which

region the fish were originally recruited into) of the equilibrium skipjack biomass in each region

were also very similar (not shown) to those of the reference case model, despite the more restrictive

assumptions of this sensitivity run.

Quarterly SRR estimation [SRRqtrly]

The run with the SRR fitted using quarterly (consistent with the 2014 assessment), rather than

annual recruitments (assumed by the reference case model), produced negligible differences with

respect to stock dynamics and population parameters. Yield for this model was significantly lower
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than for the reference case however, at 1,591,600 versus 1,891,600 mt for the reference case model.

Other MSY-based quantities were also slightly more pessimistic than observed for the reference case

model (Table 6). Minor differences from the reference case model were observed in the estimated

depletion dynamics owing to small differences in the recruitments used to calculate the unfished

biomass from the modified SRR. Despite this, the depletion-based reference points were still very

similar to those of the reference case model (Table 6).

Alternative constraints on terminal recruitment [TermRec4, TermRecFree]

Fixing the last 4, rather than 2 recruitments at the arithmetic mean of the remaining values

produced very similar results to the reference case model (Figures 47b, 48b and 49b, Table 6),

with the exception that spawning biomass in the terminal year did not decline as much resulting

in a slightly more optimistic SB latest/SBF=0. The model with all recruitments freely estimated

produced results almost indistinguishable from the reference case model aside from estimating very

low recruitments in the last 2 quarters (Figure 48b), which do not influence any of the indicators of

stock status. These estimates appear to be the result of instability in estimating these parameters

in the terminal period which has been identified by previous retrospective analyses. For this reason,

and the very similar results for all reference points, the results for this model are not shown in Table

6 for brevity.

6.5.3 Structural uncertainty analysis

The results of the structural uncertainty analysis are summarised in several forms; Majuro plots

showing the estimates of Frecent/FMSY and SB latest/SB0 across all models in the grid (Figure 52),

boxplots of Frecent/FMSY, SB latest/SB0 and MSY for the different levels of each of the 4 axes of

uncertainty (Figures 53–55) and quantiles across the full grid of 54 models for all the reference

points and other quantities of interest that have been presented for the reference case model and

one-off sensitivity models (Table 8).

The results of the structural uncertainty analysis are consistent with the results of previous assess-

ments of tuna stocks in the WCPO that used the same uncertainty axes.

The general features of the uncertainty analysis are as follows:

• The value of steepness had a significant influence on MSY-based quantities with models with

higher and lower steepness resulting in more and less optimistic stock status, respectively

(higher Frecent/FMSY for the latter), and while a similar result was observed for SB latest/SB0,

the differences between steepness values were less pronounced (Figures 53–55).

• The weightings assigned to the length composition data had less influence on the quantities

investigated, especially the depletion-based reference point, SB latest/SB0 (Figure 54).

• Models with a mixing period of 2 quarters produced more optimistic estimates of stock status
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with a median value of SB latest/SB0 of about 0.53 versus about 0.47 for models with a mixing

period of 1 quarter (Figures 53–55).

• The different levels of overdispersion of the negative binomial tagging likelihood had a mod-

erate impact on all quantities examined, with models with the default value producing the

most optimistic estimates of stock status (lower Frecent/FMSY, higher SB latest/SB0) with

models with the estimated overdispersion parameter giving the most pessimistic results, and

the models with fixed (middle) overdispersion roughly half way between these extremes for

the MSY-related quantities, but closer to the “estimated” models for SB latest/SB0 (Figures

53–55).

• The quantiles across the full grid for all quantities suggested a relatively healthy stock status;

median fmult = 2.07 (95% uncertainty limits of 1.57–2.62), median SB latest/SB0 = 0.51 (0.39–

0.67), median SBrecent/SBF=0 = 0.49 (0.40–0.57), median Frecent/FMSY = 0.48 (0.38–0.64).

• Most models in the in the uncertainty analysis were spread relatively closely around the

target reference point and well away from the limit reference point, and no models met, or

even approached the thresholds of formal definitions of “overfishing” or “overfished” (Figure

52).

7 Discussion and conclusions

7.1 Changes to the previous assessment

The changes implemented since the 2014 skipjack stock assessment (Rice et al., 2014) are less pro-

found than the major restructuring undertaken between the 2011 and 2014 assessments. However,

several modifications made in the current assessment have a significant impact on conclusions and

management recommendations. Three additional years of data (tagging, catch, effort, length com-

positions) were included in the assessment, covering a period of strong El Nino conditions, with a

significant redistribution of the catch.

Model estimates of population parameters over the years since the last stock assessment suggest

a more favourable period for skipjack abundance, at least in the more eastern equatorial region.

This is reflected in an improvement in many of the indicators of stock status, although the overall

conclusions of the current assessment are very similar to 2014, with the stock estimated to be

relatively close to the target reference point and well away from the limit reference point. This

recent time period has also seen a moderate drop in fishing mortality as a consequence of the recent

pulse of recruits into the fishery. However, this is also consistent with a fall in overall purse seine

effort in 2015 relative to 2014 of approximately 20% (Williams and Terawasi, 2016).

While the estimated stock status appears to be healthy, stock assessment models for tuna are

difficult to construct and a number of sources of uncertainty must be considered when assessing
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the management implications of assessment results. The following section (7.2) will address some

of these uncertainties, the consequences of these and other issues encountered during model fitting.

Future research priorities will be discussed in Section 7.3, and the main conclusions of the assessment

will be presented in Section 7.4.

7.2 Sources of uncertainty

7.2.1 Data weighting and conflict among data components

Stepwise model progression, the sensitivity analyses and the structural uncertainty grid all em-

phasised the importance of the tagging data for the assessment, and highlighted some conflict

with other data types. This was supported by preliminary examination of data-component-specific

likelihood profiles.

The weighting of the tagging data (determined by using different values of the negative binomial

overdispersion parameter) had a significant influence on recruitment and spawning biomass, re-

duced the recent pulse in abundance and produced more pessimistic estimates of stock status. It is

important to note however that the general inferences about stock status were robust to the signif-

icant variation in data weightings explored in the uncertainty analyses. However, these issues have

important implications for the future modelling of tagging data for skipjack and the other tuna

species in the WCPO, and a suggested approach for further investigation of the issues is presented

in Section 7.3.2.

One of the difficulties in fitting integrated models is the need to assign relative weightings to the

different data components. It is increasingly recognised that data components should be actively

down-weight in some situations, for example down-weighting length compositions to allow CPUE

data to provide the most information on trends in abundance (Francis, 2011). How to weight the

tagging data is less clear and accepted recommendations are currently lacking. For skipjack tuna the

tagging data provides most of the information on scaling biomass and parameters such as natural

mortality and movement, as there is little evidence for long-term shifts in length compositions and

the CPUE indices are either limited in duration, highly variable and in the case of pole-and-line

indices, becoming more uncertain as effort of these fisheries contracts. The current approach of

giving high weight to these data is consistent with previous assessments and we have explored a

much wider range of uncertainty bounds in this assessment than in the past.

7.2.2 Robustness of CPUE indices

One feature of the pulse in recruitments and spawning biomass in recent years is that the model

predicts deviation away from the standardised indices in regions 2, 3 and 5, over this period, as it

attempts to fit the other data components; length compositions, tagging data and very high recent
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catches. Generally in stock assessments it is desirable to fit the CPUE data well over the whole

assessment period, but in the case of skipjack tuna it is unclear how reliable the CPUE indices are

for the pole-and-line fisheries (Kiyofuji, 2016). For example, the data used to standardise CPUE

in region 3 are very sparse, effort has contracted to a restricted area in the west of the region,

and estimates are not available for all time-steps in many years. The model-predicted increase is

supported by the increase in purse seine CPUE observed over this period and the consequences of

this result for future assessments is discussed further in Section 7.3.2.

7.2.3 Caution in using SB latest/SBF=0 for species with very short generation time

The increase of recruitment, and subsequent increase in spawning biomass in recent years, high-

lighted some of the difficulties in applying several of the reference points widely used for the other

tropical tunas and south Pacific albacore in the WCPO to species such as skipjack with a shorter

generation time. The problem arises when highly variable recruitments occur and these fish quickly

mature (∼ 2 quarters later) and become part of the defined spawning biomass. The reference point

SB latest/SBF=0 is therefore based on a numerator that is very high (the last year of the assess-

ment) and a denominator that includes many values that were part of a period of significantly

lower unexploited abundance (pre-2013). This leads to a very high reference point indicator, with

significant deviation from the fully dynamic estimate of depletion.

This reference point was formulated to compare latest estimates of abundance with fishing impacts

over a period of “typical” recent population productivity. In the case of this stock assessment how-

ever, the change in the reference point from the 2014 estimate mostly reflects the recent pattern of

recruitment rather than any significant changes in fishery impacts (as measured by depletion) which

conflicts with the purpose of this type of reference point. It is important to note that the opposite

of the observed change would occur if skipjack abundance were to significantly decline from the

high values recently estimated. In this case, the unexploited biomass giving rise to SB latest would

be significantly lower than most of the values in the denominator (which would include the high

values of SBF=0 over 2013–2015), and the reference point would be considerably more pessimistic.

For skipjack therefore, we recommend accounting for issue when interpreting the reference points

presented, and to also consider the fully dynamic estimate of depletion (SBt/SBF=0[t]; black line

in Figure 43) which better reflects current stock status and is in-line with the estimate of stock

status presented in 2014.

7.3 Recommendations for further work

7.3.1 WCPFC-specific recommendations

Management recommendations of the assessment are largely consistent with previous assessments

of skipjack tuna in the WCPO (Hoyle et al., 2011; Rice et al., 2014), and two of the main priorities
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that will affect the ability to conduct future stock assessments remain; availability of reliable CPUE

analyses and tagging data.

A major priority is developing an index of abundance based on purse seine data. There is a need

for continued work in this area to progress the work of Tidd et al. (2015) and others, noting

the problems in quantifying effort creep. Exploration of other supplementary sources of relative

abundance such as acoustic data from drifting FADs is certainly warranted. These indices would

be unlikely to provide a long time series of information but over a number of years they may add

valuable information to the assessment.

The tagging data is a critical component of the skipjack stock assessment and it is unlikely that

these models can provide robust estimates for recent time-periods without it. It is therefore rec-

ommended that regular large-scale tagging cruises and complementary tag recovery work continue

to be undertaken in a way that provides the best possible data for stock assessment purposes.

7.3.2 Biological studies and data investigations

Estimation of growth functions

The skipjack stock assessment is notable for the difficulty in reliably estimating growth within the

model. Growth parameters have been shown to have a significant influence on stock status and

management quantities in this and other tuna assessments (Harley et al., 2014; McKechnie et al.,

2015). For skipjack, the main opportunity for additional data on growth is from tagging-based

length-increment data. Incorporation of these data source into the MFCL model is currently a

high priority.

Investigation of length composition data

A related issue is the highly variable length compositions that are available for a number of fisheries,

most notably fishery 1 (P-JPN-1), the miscellaneous fisheries in region 4, and fishery 18 (S-ID.PH-

4), which have a significant influence on model results. The most unusual feature of these data is

that they are mostly comprised of small to medium sized skipjack, but with the sporadic appearance

of very large fish. It is important to diagnose whether these unusual compositions actually reflect

variation in selectivity or whether they are a consequence of the sampling schemes. We recommend

examination of the raw data at the finest scale possible to see if any of the variation can be explained

by temporal changes in factors such as spatial distribution of sampling or the vessels being sampled.

Fishery 1 would be the highest priority in this regard, especially due to the presence of mixed

targeting of skipjack and albacore by some vessels in the fishery and the very large geographical

area over which they are distributed.

Further work is also required on likelihoods for the size composition data in MFCL. Recent develop-

ments include progress towards a self-scaling multinomial with random effects which may overcome
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some of the difficulties encountered with currently used likelihoods which fail to account for non-

independence in composition data. These methods may also provide a more objective means of

weighting the composition data and should be explored more thoroughly in future assessments.

Standardised CPUE analyses

As noted in previous assessments, the JP pole-and-line fisheries provide the standardised CPUE

indices in regions 1, 2 and 3, but this fishery now makes up less than 10% of the total WCPO

skipjack catch, and an even smaller percentage in the main equatorial zone, but remains the only

fishery that can provide long-term information on relative biomass levels. If these fleets continue to

reduce, and contract their effort to restricted areas of the assessment regions there will be ongoing

problems with their utility in indexing relative abundance, and it is possible that they may not

even support standardisation analyses if data becomes even more sparse.

Further work is necessary to investigate if, and how alternative indices could be constructed for

purse seine fisheries, at least over recent time periods. The difficulties in performing this task, due to

rapids developments in technology and increases in catchability, are well known, however successful

standardisation of this data by removing time-variant catchability would have substantial benefits

for future stock assessments. Consideration of how this might take place is warranted and might

include investigation of whether it would be possible to define a core fleet that may provide more

robust information about relative abundance than the fishery as a whole. This was the approach

taken when constructing the standardised CPUE index based on purse seine fisheries in region 5

(Tremblay-Boyer et al., 2016).

Tagging data examination

The tagging data are extremely important for the skipjack stock assessment and several aspects of

its treatment require further examination. The value of the overdispersion parameter has a strong

influence on model results but it is not entirely clear how this should be modelled or what values

to use in reference case models or the structural uncertainty grid. It is recommended that further

investigation of the levels of overdispersion takes place including if, or how, overdispersion param-

eters are grouped across fisheries. Preliminary efforts have explored gear-specific overdispersion

parameters that gave consistent results and provided guidance for the “middle” value used in the

sensitivity analyses. An examination of the fit to the tag recaptures at the scale of the likelihood

calculations using statistics such as Pearson’s residuals may be beneficial in this regard.

Other uncertainties are also present in the tagging data including; the most appropriate period

to use for the mixing period, the influence of the distribution of tag releases with respect to fish-

ing effort and the relative influence of recapture (and tag reporting) rates. These issues require a

multifaceted approach of stock assessment modelling, including additional likelihood profiles, exam-

ination of raw data, and comparisons with recent developments in fine-scale tag-recapture models

for this stock (T. Peatman, unpublished data).
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A more general priority for the tagging input files is further work to improve the storage and

processing of the data from the Japanese tagging program. Currently these data are held externally

to SPC and there are difficulties in efficiently reproducing tagging data inputs from them. We

encourage more formal storage of these data and development of code to routinely filter them into

a usable format.

Alternative spatial structures and range contraction

Alternative regional boundaries of the stock assessment area have been suggested with the objective

of providing better inferences on process such as range contraction. While models with these

regional structures have not been explored in the current stock assessment, ongoing research and

model fitting will continue after SC12 to investigate these issues.

7.4 Main assessment conclusions

The main conclusions of the current assessment are largely consistent with previous assessments and

are based on the results of the reference case model and consideration of the results of sensitivity

runs (including the structural uncertainty grid). These general conclusions can be summarised as

follows:

1. The current stock assessment estimates stock status to be very similar to the 2014 assessment,

with a period of moderately higher spawning biomass over the subsequent years post 2012.

2. Current catches are lower than, but approaching estimated MSY.

3. Fishing mortality of all age-classes is estimated to have increased significantly since the begin-

ning of industrial tuna fishing, but fishing mortality still remains below the level that would

result in the MSY, and is estimated to have decreased moderately in the last several years.

4. Recent levels of spawning biomass are well above the level that will support the MSY, and

are well above the limit reference point, 20%SBF=0.

5. Depletion-based reference points (including SB latest/SBF=0, SBrecent/SBF=0 and SB2015/SBF=0[2015])

for the reference case model, sensitivity analyses and uncertainty grid suggest that the skip-

jack stock is most probably at or close to the target reference point of 50%SBF=0.

6. Modelling assumptions explored in sensitivity and structural uncertainty analyses had a mod-

erate impact on model results but did not change the broad conclusions about current stock

status.

7. Modelling results were most sensitive to assumptions about weighting of data components,

tag mixing period and steepness, and several important avenues of research related to these

assumptions have been identified and will improve future assessments.
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8 Tables

Table 1: Description of symbols used in the yield and stock status analyses. For the purpose of
this assessment, “recent” is the average over the period 2011–2014 and ‘latest’ is 2015

Symbol Description
C latest Catch in the last year of the assessment (2015)
Frecent Average fishing mortality-at-age for a recent period (2011–2014)
FMSY Fishing mortality-at-age producing the maximum sustainable yield (MSY)
MSY Equilibrium yield at FMSY

Frecent/FMSY Average fishing mortality-at-age for a recent period (2011–2014) relative to FMSY

SB0 Equilibrium unexploited spawning potential
SB latest Spawning biomass in the latest time period (2015)
SBrecent Spawning biomass for a recent period (2011–2014)

SBF=0 Average spawning biomass predicted to occur in the absence of fishing
for the period 2005–2014

SBMSY Spawning biomass that will produce the maximum sustainable yield (MSY)
SB latest/SBF=0 Spawning biomass in the latest time period (2015) relative to the average spawning biomass

predicted to occur in the absence of fishing for the period 2005–2014
SB latest/SBMSY Spawning biomass in the latest time period (2015) relative to that which will produce

the maximum sustainable yield (MSY)
SBrecent/SBF=0 Spawning biomass in for a recent period (2011–2014) relative to the average spawning

biomass predicted to occur in the absence of fishing for the period 2005–2014
20%SBF=0 WCPFC adopted limit reference point – 20% of spawning biomass in the

absence of fishing average over years t− 10 to t− 1 (2005–2014)
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Table 2: Definition of fisheries for the MULTIFAN-CL skipjack analysis. Gears: PL = pole and
line; PS = purse seine unspecified set type; LL = longline; DOM = the range of artisanal gear
types operating in the domestic fisheries of Philippines and Indonesia. Flag/fleets: JPN = Japan;
PH = Philippines; ID = Indonesia; ALL = all nationalities.

Fishery Nationality Gear Region

F1 P-JPN-1 JPN PL 1
F2 S-ALL-1 ALL PS 1
F3 L-ALL-1 ALL LL 1
F4 P-ALL-2 ALL PL 2
F5 S-ASS-ALL-2 ALL PS 2
F6 S-UNA-ALL-2 ALL PS 2
F7 L-ALL-2 ALL LL 2
F8 P-ALL-5 ALL PL 5
F9 S-ASS-ALL-5 ALL PS 5
F10 S-UNA-ALL-5 ALL PS 5
F11 L-ALL-5 ALL LL 5
F12 P-ALL-3 ALL PL 3
F13 S-ASS-ALL-3 ALL PS 3
F14 S-UNA-ALL-3 ALL PS 3
F15 L-ALL-3 ALL LL 3
F16 Z-PH-4 PH Dom 4
F17 Z-ID-4 ID Dom 4
F18 S-ID.PH-4 ID.PH PS 4
F19 P-ALL-4 ALL PL 4
F20 S-ASS-DW-4 DW PS 4
F21 S-UNA-DW-4 DW PS 4
F22 Z-VN-4 VN Dom 4
F23 L-ALL-4 ALL LL 4

55



Table 3: Summary of the groupings of fisheries within the assessment and their parameterisations with respect to estimation of selectiv-
ity, seasonal catchability (SeasCat), time-variant catchability (TimVarCat) and its CV (TimVarCatCV), effort deviation penalty type
(EffPen) and their mean SV (EffPenCV), tag recaptures, and tag reporting rates. Note that effort is missing for all L and Z fisheries and
so effort deviation penalties only apply to the last four quarters (see Section 4.3.3). See Table 2 for further details on each fishery.

Fishery Region Selectivity SeasCat TimVarCat TimVarCatCV EffPen EffPenCV Recaptures Reporting

F1 P-ALL-1 1 1 Y N NA time-variant 0.20 1 1
F2 S-ALL-1 1 2 Y Y 0.1 constant 0.71 2 1
F3 L-JPN-1 1 3 N N NA constant 0.22 3 1
F4 P-ALL-2 2 4 Y N NA time-variant 0.20 4 1
F5 S-ASS-ALL-2 2 5 Y Y 0.1 constant 0.71 5 2
F6 S-UNA-ALL-2 2 6 Y Y 0.1 constant 0.71 5 2
F7 L-JPN-2 2 7 N N NA constant 0.22 6 1
F8 P-ALL-5 5 4 Y Y 0.1 constant 0.71 7 1
F9 S-ASS-ALL-5 5 5 Y N NA time-variant 0.20 8 3
F10 S-UNA-ALL-5 5 6 Y Y 0.1 constant 0.71 8 3
F11 L-ALL-5 5 8 N N NA constant 0.22 9 1
F12 P-ALL-3 3 4 Y N NA time-variant 0.20 10 1
F13 S-ASS-ALL-3 3 5 Y Y 0.1 constant 0.71 11 4
F14 S-UNA-ALL-3 3 6 Y Y 0.1 constant 0.71 11 4
F15 L-JPN-3 3 9 N N NA constant 0.22 12 1
F16 Z-PH-4 4 10 N N NA constant 0.22 13 5
F17 Z-ID-4 4 10 N N NA constant 0.22 14 6
F18 S-ID.PH-4 4 11 N N NA time-variant 0.20 15 7
F19 P-ALL-4 4 4 Y Y 0.1 constant 0.71 16 1
F20 S-ASS-DW-4 4 5 Y Y 0.1 constant 0.71 17 8
F21 S-UNA-DW-4 4 6 Y Y 0.1 constant 0.71 17 8
F22 Z-VN-4 4 10 N N NA constant 0.22 18 9
F23 L-JPN-4 4 12 N N NA constant 0.22 19 1
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Table 4: Summary of the number of release events, tag releases and recoveries by region and program

Prog JPTP PTTP RTTP SSAP
Years 1998–2014 2006–2014 1989–1992 1977–1980

Category Grps Rel Rec Grps Rel Rec Grps Rel Rec Grps Rel Rec

1 57 17,391 1973 0 0 0 0 0 0 1 83 11
2 34 3,508 86 11 14,689 3,155 9 7,790 1,443 7 7,876 335
3 4 196 1 8 6,603 1,265 5 10,247 1,277 9 40,986 2,568
4 18 1,182 43 3 20,639 5,930 7 13,529 3,508 2 5,397 381
5 0 0 0 16 90,261 24,663 10 25,413 4,864 3 11,771 1,426

Total 113 22,277 2,103 38 132,193 35,013 31 56,978 11,092 22 66,114 4,721
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Table 5: Description of the structural sensitivity grid used to characterise uncertainty in the as-
sessment. The reference case option is denoted in bold face.

Axis Levels Option

Steepness 3 0.65, 0.80, or 0.95
Mixing period 2 1 quarter mixing, 2 quarters mixing
Length composition weighting 3 sample sizes divided by 10, 20 or 50
Tagging overdispersion 3 Default level, Estimated, or Fixed (moderate) level
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Table 6: Reference points and model results for the reference case model and one-off sensitivity models.

Quantity RefCase h0.65 h0.95 mix2qtr Lgth10 Lgth50 EstVB EstVBSD EstOD ODmiddle InvMov SRRqtrly TermRec4
C latest 1,679,528 1,679,517 1,679,522 1,679,609 1,679,535 1,679,467 1,679,194 1,679,283 1,679,169 1,679,313 1,679,538 1,679,520 1,679,698
MSY 1,891,600 2,026,400 1,832,800 2,076,800 1,84,8000 1,934,400 1,902,800 1,760,800 1,641,200 1,762,000 1,856,400 1,591,600 1,874,000
YFrecent 1,594,800 1,766,000 1,504,000 1,659,200 1,585,200 1,603,200 1,591,600 1,531,600 1,545,600 1,589,200 1,580,000 1,445,200 1,595,200
fmult 2.23 1.96 2.48 2.47 2.14 2.31 2.23 2.04 1.61 1.88 2.17 1.69 2.17
FMSY 0.24 0.22 0.27 0.24 0.26 0.23 0.25 0.27 0.24 0.25 0.24 0.19 0.24
Frecent/FMSY 0.45 0.51 0.40 0.41 0.47 0.43 0.45 0.49 0.62 0.53 0.46 0.59 0.46
SBMSY 1,626,000 1,972,000 1,423,000 1,858,000 1,496,000 1,761,000 1,560,000 1,346,000 1,470,000 1,509,000 1,597,000 1,813,000 1,622,000
SB0 6,764,000 7,637,000 6,284,000 7,463,000 6,256,000 7,420,000 6,996,000 5,453,000 5,858,000 6,055,000 6,618,000 6,469,000 6,767,000
SBF=0 7,221,135 7,802,299 6,877,143 7,751,452 6,744,980 7,825,861 7,449,414 5,981,232 6,436,206 6,539,112 7,086,859 7,205,705 7,212,830
SB latest/SB0 0.62 0.55 0.66 0.68 0.64 0.59 0.59 0.59 0.45 0.51 0.63 0.65 0.66
SB latest/SBF=0 0.58 0.53 0.61 0.65 0.60 0.56 0.56 0.54 0.41 0.47 0.59 0.58 0.62
SB latest/SBMSY 2.56 2.11 2.93 2.73 2.69 2.49 2.66 2.38 1.81 2.03 2.60 2.30 2.76
SBrecent/SBF=0 0.52 0.48 0.54 0.56 0.52 0.51 0.50 0.50 0.41 0.46 0.52 0.52 0.51
SBrecent/SBMSY 2.31 1.90 2.63 2.32 2.36 2.28 2.41 2.21 1.80 1.98 2.29 2.07 2.28

Table 7: Likelihood components for the reference case model and the one-off sensitivity models.

Component RefCase h0.65 h0.95 mix2qtr Lgth10 Lgth50 EstVB EstVBSD EstOD ODmiddle InvMov SRRqtrly TermRec4
Beverton Holt 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.2 0.2 1.8 0.2

Effort devs 1,624.2 1,615.0 1,614.9 1,638.9 1,745.4 1,540.5 1,594.2 1,547.3 1,512.8 1,531.5 1,619.5 1,615.0 1,637.0
Catch devs 58.0 57.8 57.8 55.9 63.3 49.2 57.2 56.4 51.2 53.0 56.8 57.9 57.1

Length comps -250,959.0 -250,945.9 -250,945.9 -251,067.0 -272,759.1 -214,711.7 -250,836.8 -249,979.7 -251,973.5 -251,861.6 -250,881.6 -250,945.8 -250,953.3
Tagging 24,488.8 24,490.7 24,491.2 19,651.7 25,589.0 23,273.4 24,398.9 23,804.0 20,196.4 20,437.7 24,737.4 24,489.9 24,494.1

Total -224,287.5 -224,281.9 -224,281.9 -229,326.4 -244,794.1 -189,401.7 -224,339.6 -224,203.9 -229,929.1 -229,519.6 -224,092.9 -224,280.9 -224,273.0
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Table 8: Summaries of important reference points and model results summarised by quantiles across
all models in the structural uncertainty grid.

Quantity 50% 5% 25% 75% 95%

C latest 1,679,444 1,678,646 1,679,170 1,679,497 1,679,592
MSY 1,875,600 1,618,060 1,785,400 1,976,700 2,199,880
YFrecent 1,607,000 1,486,660 1,533,200 1,755,200 1,808,860
fmult 2.07 1.57 1.85 2.29 2.62
FMSY 0.24 0.21 0.22 0.26 0.28
Frecent/FMSY 0.48 0.38 0.44 0.54 0.64
SBMSY 1,628,000 1,258,700 1,425,750 1,852,750 2,166,100
SB0 6,359,500 5,214,050 5,853,750 7,095,250 8,340,450
SBF=0 6,876,526 5,778,079 6,408,578 7,425,353 8,555,240
SB latest/SB0 0.55 0.43 0.49 0.59 0.71
SB latest/SBF=0 0.51 0.39 0.47 0.57 0.67
SB latest/SBMSY 2.15 1.60 1.81 2.43 3.08
SBrecent/SBF=0 0.49 0.40 0.46 0.52 0.57
SBrecent/SBMSY 2.04 1.58 1.82 2.32 2.65
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9 Figures

Figure 1: The geographical area covered by the stock assessment and the boundaries for the 5
regions.
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Figure 2: Map of the movements of tagged skipjack released in the WCPO and subsequently
recaptured.
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Figure 3: Presence of catch, standardised CPUE, and length frequency data by year and fishery for
the reference case model. The different colours refer to longline (green), pole-and-line (red), purse
seine (blue) and miscellaneous (yellow).
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Figure 4: Time series of total annual catch (1000’s mt) by fishing gear from the reference case
model over the full assessment period. The different colours refer to longline (green), pole-and-line
(red), purse seine (blue) and miscellaneous (yellow).
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Figure 5: Time series of total annual catch (1000’s mt) by fishing gear and assessment region from
the reference case model over the full assessment period. The different colours refer to longline
(green), pole-and-line (red), purse seine (blue) and miscellaneous (yellow).
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Figure 6: Distribution and magnitude of skipjack catches for the most recent decade of the stock
assessment (2006-2015) by 5◦ square and fishing gear: longline (green), pole-and-line (red), purse
seine (blue) and miscellaneous (yellow), for the entire Pacific Ocean. Overlayed are the regional
boundaries for the stock assessment.
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Figure 7: Standardised catch-per-unit-effort (CPUE) indices for the pole-and-line fisheries in regions
1, 2, and 3 (P-ALL-1, P-ALL-2, P-ALL-3), the ID/PH domestic purse seine fishery in region 4 (S-
ID.PH-4), and the associated purse seine fishery in region 5 (S-ASS-ALL-5), used in the reference
case model. See Bigelow et al. (2016), Kiyofuji (2016) and Tremblay-Boyer et al. (2016) for further
details of the estimation of these CPUE indices. The light grey lines represent the 95% confidence
intervals derived from the effort deviation penalties used in the reference case model.
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Figure 8: Plot of the effort deviation penalties applied to each fishery, by region. A higher the
penalty gives more weight to the CPUE of that fishery.
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Figure 9: Summary of the number of releases, recaptures and recapture rate of tags used in the
2016 reference case model, by tagging programme and region.
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Figure 10: Summary of the tagging file used in the reference case model. The upper panel shows the
observed movement of tagged fish; the x-axis is the region of release and the y axis is the region of
recapture, with the number in each cell being the number of fish recaptured for that combination of
release/recapture regions. The colour of the cell indicates the proportion of recaptures released in
that region (x-axis) that were recaptured in that region (y-axis). The lower panel shows the length
composition of released (pink) and recaptured (purple) fish for the different tagging programmes
(x-axis panels) and regions (y-axis panels).
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Figure 11: Number of length frequency samples available for each fishery for the reference case
model. Note that in the reference case model a maximum sample size of 1,000 is allowed by MFCL
and these are further downweighted in the model according to defined settings presented in Section
4.5.
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Figure 12: Quarterly natural mortality-at-age as estimated by the reference case model.

Figure 13: Maturity-at-age as assumed in the reference case model.
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Figure 14: The relationship between the expected value and the standard deviation for the three
levels of the overdispersion parameter used in the reference case model and sensitivity analyses.
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Figure 15: Observed (black points) and model-predicted (blue lines) catch for the 23 fisheries in
the reference case model. Note that the longline fisheries are given nominal catches and these can
be ignored.
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Figure 16: Observed (blue points and red lines) and model-predicted (black points and lines) CPUE
for the five fisheries which received standardised CPUE indices in the reference case model.
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Figure 17: Effort deviations by time period for each of the fisheries receiving standardised CPUE
indices in the reference case model. The dark line represents a lowess smoothed fit to the effort
deviations.
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Figure 18: Effort deviations by time period for each of the fisheries that did not receive standardised
CPUE indices in the reference case model. The dark line represents a lowess smoothed fit to the
effort deviations.
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Figure 19: Composite (all time periods combined) observed (blue histograms) and predicted (red
line) catch at length for all fisheries with samples for the reference case model.
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Figure 20: A comparison of the observed (red points) and predicted (grey line) median fish length
(FL, cm) for all fisheries with samples for the reference case model. The uncertainty intervals
(grey shading) represent the values encompassed by the 25% and 75% quantiles. Sampling data
are aggregated by year and only length samples with a minimum of 30 fish per year are plotted.
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Figure 21: Observed (red points) and model-predicted (black line) tag returns over time for the
reference case model across all tag release events with all tag recapture groupings aggregated.
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Figure 22: Observed (red points) and model-predicted (black line) tag returns over time for the
reference case model by recapture group for the first 8 recapture groups. Groups with extremely
low numbers of recaptures such as the longline fisheries are uninformative and not shown.

81



Figure 23: Observed (red points) and model-predicted (black line) tag returns over time for the
reference case model by recapture group for the remaining recapture groups. Groups with extremely
low numbers of recaptures such as the longline fisheries are uninformative and not shown.
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Figure 24: Observed and model-predicted tag attrition across all tag release events for the reference
case model. The exact correspondence between observed and predicted values for the first quarter-
at-liberty is a direct result of the mixing assumption.
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Figure 25: Estimated reporting rates for the reference case model (red lines)and the prior dis-
tribution for each reporting rate group. The imposed upper bound (0.9) on the reporting rate
parameters are show as a blue dashed line. Reporting rates can be estimated separately for each
release program and recapture fishery group but in practice are aggregated over some recapture
groups to reduce dimensionality.
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Figure 26: Estimated growth for the reference case model. The black line represents the estimated
mean fork length (FL, cm) at-age and the grey area represents the estimated distribution of length
at age. The blue and green lines are the estimates for the one-off sensitivity models that estimate
just the Von Bertalanffy parameters (EstVB), and all parameters - Von Bertalanffy and standard
deviation parameters (EstVBSD), respectively.
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Figure 27: Age-specific selectivity coefficients by fishery.
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Figure 28: Estimated time series of catchability (including seasonal variability) for those fisheries
assumed to have random walk in these parameters.
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Figure 29: Estimated age-dependent movement coefficients for the reference case model. The colour
of the line indicates the season (quarter) of the estimate and the y-axis and x-axis represent the
“source” and “destination” region, respectively.
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Figure 30: Proportional distribution of total biomass (by weight) in each region apportioned by the
source region of the fish, for the reference case model. The colour of the home region is presented
below the corresponding label on the x-axis. The biomass distributions are calculated based on the
long-term average distribution of recruitment between regions, estimated movement parameters,
and natural mortality. Fishing mortality is not taken into account.
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Figure 31: Estimated temporal recruitment by model region for the reference case model. Note
that the scale of the y-axis is not constant across regions.
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Figure 32: Estimated temporal spawning biomass by model region for the reference case model.
Note that the scale of the y-axis is not constant across regions.
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(a) Regional recruitment

(b) Spawning biomass

(c) Total biomass

Figure 33: Estimated annual average recruitment, spawning biomass and total biomass by model
region for the reference case model, showing the relative sizes among regions.
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Figure 34: Estimated annual average juvenile and adult fishing mortality for the reference case
model.
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Figure 35: Estimated age-specific fishing mortality for the reference case model, by region and
overall.
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Figure 36: Estimated proportion at age (quarters) and fishing mortality at age (right), by year, at
decade intervals, for the reference case model.
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Figure 37: Comparison of the estimated annual spawning biomass trajectories (lower solid black
lines) with those trajectories that would have occurred in the absence of fishing (upper dashed red
lines) for each region and overall, for the reference case model.
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Figure 38: Ratio of exploited to unexploited spawning biomass, SB latest/SBF=0, for each region
and overall for the reference case model.
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Figure 39: Estimates of reduction in spawning biomass due to fishing (fishery impact =
1−SB latest/SBF=0) by region, and over all regions (lower right panel), attributed to various fishery
groups for the reference case model.
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Figure 40: Estimated relationship between recruitment and spawning biomass based on annual
values for the reference case model.The darkness of the circles changes from light to dark through
time.
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Figure 41: Estimated yield as a function of fishing mortality multiplier for the reference case model.
The red dashed line indicates the equilibrium yield at current fishing mortality.
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Figure 42: History of the annual estimates of MSY (red line) for the reference case model compared
with annual catch by the main gear types. Note that this is a “dynamic” MSY which is explained
further in Section 4.7.4.
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Figure 43: Ratio of exploited to unexploited spawning biomass, SB latest/SBF=0, for the reference
case model. The current WCPFC limit reference point of 20%SBF=0 is provided for reference as
the grey dashed line, the adopted target reference point, 50%SBF=0, is shown by the green dashed
line, and the red circle represents, SB latest/SBF=0, the level of spawning biomass depletion based
on the agreed method of calculating SBF=0 over the last ten years of the model.
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(a) Majuro plot for reference case

(b) Kobe plot for reference case

Figure 44: Majuro plot (a) for the reference case model representing stock status in terms of
spawning biomass depletion and fishing mortality. The red zone represents spawning biomass
levels lower than the agreed limit reference point which is marked with the solid black line. The
orange region is for fishing mortality greater than FMSY (marked with the black dashed line). The
green line indicates the target reference point 50%SBF=0. The pink circle is SB latest/SBF=0 and
the white triangle is SBrecent/SBF=0, which are both detailed in Table 1. The equivalent Kobe
plot is provided for comparison.
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(a) Progression from 2014 to 2016 updated

(b) Progression from 2016 updated to reference case model

Figure 45: Stepwise changes in spawning biomass from the 2014 reference case model through to
a model with fully updated data (a), and from the updated model through to the 2016 reference
case model.
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(a) Progression from 2014 to 2016 updated

(b) Progression from 2016 updated to reference case model

Figure 46: Stepwise changes in fishing depletion from the 2014 reference case model through to a
model with fully updated data (a), and from the updated model through to the 2016 reference case
model.
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(a) First set of sensitivities

(b) Second set of sensitivities

Figure 47: Estimated spawning biomass for each of the one-off sensitivity models. The models are
separated into two groups to prevent obstruction of lines.
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(a) First set of sensitivities

(b) Second set of sensitivities

Figure 48: Estimated recruitment for each of the one-off sensitivity models. The models are
separated into two groups to prevent obstruction of lines.
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(a) First set of sensitivities

(b) Second set of sensitivities

Figure 49: Estimated fisheries depletion, SB/SBF=0, for each of the one-off sensitivity models.
The models are separated into two groups to prevent obstruction of lines.
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(a) Low steepness (h = 0.65) (b) High steepness (h = 0.95) (c) Mixing period 2 quarters

(d) Size data scalar = 10 (e) Size data scalar = 50 (f) Estimate growth parameters

(g) Estimate growth + SD parameters (h) Estimate tagging overdispersion (i) Fixed moderate tagging overdisper-
sion

Figure 50: Majuro plots for each of the one-off sensitivity models. See Figure 44 for an explanation
of the interpretation of Majuro plots.
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(a) Age-invariant movement (b) Quarterly SRR function (c) 4 Fixed terminal recruitments

(d) Terminal recruitments freely esti-
mated

Figure 51: Majuro plot for the one-off sensitivity models, continued. See Figure 44 for an explana-
tion of the interpretation of Majuro plots.
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(a) One-off sensitivity models

(b) Structural uncertainty grid

Figure 52: Majuro plot displaying estimated stock status for all of the one-off sensitivity models
(top panel) and the structural uncertainty grid (bottom panel). See Figure 44 for an explanation
of the interpretation of Majuro plots.
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Figure 53: Estimated Frecent/FMSY for each level within the 4 axes of uncertainty that make up the
structural uncertainty grid.
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Figure 54: Estimated SB latest/SBF=0 for each level within the 4 axes of uncertainty that make up
the structural uncertainty grid.
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Figure 55: Estimated MSY for each level within the 4 axes of uncertainty that make up the
structural uncertainty grid.
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10 Appendix

10.1 Likelihood profile

The approach for calculating a likelihood profile of the total population scaling parameter (totpop) is

outlined in Section 4.6. The profile reflects the loss of fit over all the data, i.e. the overall objective

function value, caused by changing the population scale from that of the maximum likelihood

estimated value. The vector of fixed values used for the parameter ranged from 0.6 to 1.7 times

the value estimated for the reference case model. The likelihood profile is shown in Figure 56 and

displays significant declines in the total log likelihood as the parameter moves further away from

the maximum value of the reference case model.

Figure 56: Profile of the total log-likelihood with respect to the total population scaling parameter
across a range of fixed values for the reference case model.

10.2 Stochastic simulations for the reference case model

Stochastic 10 year projections were run from the proposed reference case model, where future catch

(longline, domestic Indonesian and Philippines fisheries) or effort (purse seine, most pole-and-line

fisheries) was assumed to remain at 2015 levels (status quo). 200 projections were performed. Vari-

ability in future recruitment was implemented by randomly re-sampling from historical recruitment

deviations from the stock recruitment relationship over the period 1982-2015 (excluding the final 2

quarters that were fixed at average levels in the assessment). Catchability was assumed to remain

constant in the projection period at the level estimated in the terminal year of the assessment

model. In 2025, median SB/SBF=0 was estimated to be 0.49, and there was zero risk of the stock

falling below the limit reference point. Further general information on the approach to undertaking
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projections within the MFCL framework are presented in detail by Pilling et al. (2016).

Figure 57: Predicted trajectories of spawning biomass for the reference case model from stochastic
simulations and assuming status quo levels of fishing activity. The green and red horizontal dashed
lines indicate the target and limit reference points, respectively.

10.3 Retrospective analyses

10.3.1 Removal of recent years data

Retrospective analysis involves rerunning the selected model by consecutively removing successive

years of data to estimate model bias (Cadrin and Vaughan, 1997; Cadigan and Farrell, 2005). A

series of 4 models were fitted starting with the full data-set (through 2015), followed by models

with the retrospective removal of all input data for the years 2015, 2014 and 2013. The models are

named below by the final year of data included (e.g., 2012–2015). A comparison of the spawning

biomass, recruitment and depletion trajectories are shown in Figure 58.

The models with each year of data removed sequentially produced estimates of spawning biomass

and fishing depletion with very similar temporal dynamics to the full reference case model, with

some slight downward scaling in the 2 shorter time series models (2012 and 2013; Figure 58). For

further details of the retrospective approach and methods to interpret the results the reader is

referred to Scott et al. (2016).
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10.3.2 Comparison of results to previous skipjack stock assessments in the WCPO

The 2016 reference case model was compared retrospectively to the previous assessments conducted

in 2014, 2011 and 2010. The comparison is summarised with plots of spawning biomass, recruitment

and fisheries depletion in Figure 59, and a comparison of stock status for the 2016 and 2014 reference

case models are displayed in Majuro plots in Figure 60.
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(a) Estimated spawning biomass.

(b) Estimated recruitment.

(c) Estimated fishing depletion.

Figure 58: Estimated spawning biomass, recruitment and fishery depletion (SB/SBF=0) for each
of the retrospective models.
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(a) Estimated spawning biomass.

(b) Estimated recruitment.

(c) Estimated fishing depletion.

Figure 59: Retrospective comparison of spawning biomass and fisheries depletion (SB/SBF=0) for
the reference case models for the last 4 stock assessments of skipjack in the WCPO.
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(a) Majuro plot 2014 reference case (b) Majuro plot 2016 reference case

Figure 60: Comparison of Majuro plots for the reference case models of the 2014 and 2016 stock
assessments of skipjack in the WCPO. See Figure 44 for an explanation of the interpretation
of Majuro plots. Note that for (a), the green shaded area idicated the range of levels under
consideration as potential target reference points, at that time.
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