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Executive Summary

1.

Standardised CPUE is regularly used as an indebwofdance to tune the population
dynamics models used to assess the status of ticks Sn the WCPO. The primary
purpose of CPUE standardizations is the removathefvariation in the data not
attributable to changes in abundance. In the W@®e indices have typically been
generated to meet the model structures of MULTIFBN-and fine scale spatial
variation is removed as part of the standardisatias a result these indices have not
been applicable for alternative population dynamicslels such as SEAPODYM.

An adjusted CPUE index with spatial structure wasedbped for albacoreTlunus
alalunga) in the south Pacific, based on operational logsdata from distant-waters
and domestic fleets.

To avoid bias due to targeting change, a clustaalyars was carried out for

identifying fleets targeting albacore. These datre used in a GLM model to

standardize CPUE using year-month, latitude, lenigt vessel, and longitude and
latitude aggregated to 5 degrees resolution asorfactThe predictor variable

explaining most of the logged CPUE variability whs year-month factor (18.9%).

The vessel factor explained 10.2% of the variatidine effort correction factor was

defined as the exponential of the vessel factortotal of 1421 vessel coefficients

were extracted (p < 0.05 for 1142 of these) andl tiseggenerate the adjusted CPUE.
This index was built using the correction factar ééfort, estimated as the exponential
of the estimate of the boat parameter from the GOMis approach assures the
equivalency of effort in all ships from the twodts included in the analysis.

The average of the vessel correction factor wasdi8®a standard deviation of 0.69.
Extreme values of the correction factor were defirgs those whose value was
outside the range of the 95% confidence interiRdther than remove these data from
the analysis we assign them the corresponding sdiaen the limits of the 95%
confidence interval. The removal of the influendetltese extreme values on the
correction factor was required as they increasedesreased the nominal effort to
levels that could be considered abnormal.

The majority of the effort correction factors wdaeger than one and their overall
effect was to increase the effort and consequestiyice the adjusted CPUE. The
results of the temporal annual trend of the nomamal adjusted CPUE show higher
values at the beginning of the series. The nomGRIUE for years 1960 and 1961
were 214 and 204 albacore/1000 hooks respectildly. adjusted CPUE values for
the same years were 64 albacore/1000 hooks. Bdibeis presented a decreasing
CPUE trend for the period 1960 to 1975. From 19¥@Q09 the CPUE values were
stable oscillating between 9 and 22 albacore/1Qfiks for the adjusted CPUE and
12 and 29 albacore for the nominal CPUE. The dpdigribution of the mean
adjusted CPUE show higher values in the southeofefion.

This new index is suitable for use in the SEAPODYNdel for albacore and is
expected to provide further improvement to thenestes generated by SEAPODYM.
This index will, through further statistical analsallow the exploration of the
relationship between catch rates and environmesat@bles, including the potential
influence of ENSO events on the distribution andiretance of South Pacific
albacore.



I ntroduction

Single-species models have played a central rdishieries management, establishing target
reference points and setting allowable harvestdinidowever, fishery managers are
increasingly asked to consider different typesitdractions in their harvesting decisions and
the potential effects on other species and theysta®.Unintended consequences of fishing,
including habitat destruction, incidental mortalitiynontarget species, evolutionary shifts in
population demographics, and changes in the fumeti@ structure of ecosystems are being
increasingly recognized (Pikitad al., 2004). Therefore, it has been recommended tadiecl
ecosystem considerations in fisheries managemastoVerall objective of the Ecosystem-
base fishery management (EBFM) is to sustain heafidrine ecosystems and the fisheries
they support (Pikitclet al., 2004). This task requires the development of cemplex
management tools and the participative inclusioallgtake holders. In particular, in the
South Pacific, a spatial ecosystem and populatyoiahics model (SEAPODYM) has been
developed. It is a physical-biological-fisheriesdabwith spatial structure at ocean basin
scale with a maximum likelihood estimate approawmtphrameter estimation (Senietaal.
2008), providing a general framework for the intggm of diverse areas of knowledge on
tuna species. Recent work on SEAPODYM has beeustal on the description of new
model developments its capacity to capture impofeatures of tuna spatial dynamics
species (Lehodest al., 2008) and the validation of the model through elditting,

parameter and uncertainty estimation. As most o§ygstem and multispecies models,
SEAPODYM requires constant improvement; currenlBBABODYM is fitted to spatially-
distributed nominal catch-at-age data and size ositipn data (Seninet al., 2008).
Therefore, incorporating a relative index of aburaain the SEAPODYM fitting process is
recommendable.

The main objectives of CPUE standardization areokeéng most of the annual
variation in the data not attributable to changeakiundance and detecting trends over time
in abundance (Maunder and Punt, 2004). CurrerityyMultifan-CL albacore stock
assessment uses twelve series of standardized @3UEng from combinations of four
regions and three distant-water fleets targetibg@ire (Bigelow and Hoyle, 2008; Bigelow
and Hoyle, 2009). Unfortunately, this procedureneiates the spatial variability; therefore,
this information cannot be used for estimatingatmacore spatial distribution and its
migration patterns. In the present work, we devetdba spatial-temporal structured adjusted
CPUE based on fisheries data (information from FRago and Domestic fleets) targeting
albacore in the south Pacific. This approach migiprove the SEAPODYM fit and its
estimates and therefore its use in fisheries maneage In addition, it will provide valuable
information to explore through further statistiealalyses the relationship between catch rates
and environmental variables.

M ethods

A potential improvement for SEAPODYM is the inclosiof an adjusted CPUE with spatial-
temporal structure to be used in the fitting precd$ie development of this new index
included only catch and effort data from fishetageting albacore in the region defined by
the coordinates 59.75latitude south, 9.75atitude north, 142.250ngitude east, and

111.75 longitude west. This information was taken froneigtional logsheet data of vessels
from distant-water fleets (Korea, Japan and Taiviamjing at the two major canneries (Pago



Pago, American Samoa and Levuka, Fiji) and data lomestic fleets (American Samoa,
Cook Islands, Fiji, French Polynesia, New Caledoh@nga and Western Samoa) provided
to the Secretariat of the Pacific Community. Thstfdata base included information of
532,262 sets corresponding to 9588 trips and 18388els from 1960 to 2007 (Bigelow and
Hoyle, 2009). The domestic fleet data series iretLiciformation of 408,637 fishing sets;
thus the complete initial information included ®B®H sets from 1960 to 2010 containing
information such as the flag identification, trgentification, set identification, date,
geographical coordinates, number of organisms daafgdach tuna species, number of hooks
(effort), captain, crew, etc. A total of 2581 fisgiboats operated targeting albacore from
1960 to 2007, being the Taiwanese the biggest fledile 1). The information about the
number of trips and sets for the domestic fleeth@vn in Table 2. The spatial distribution
of catch for the domestic, the Japanese, the Kaadrihe Taiwanese fleets is shown in
Figure 1.

Previous studies (Bigelow and Hoyle, 2008, 200g)gssted the possibility that the
catchability for albacore could have changed wienTtaiwanese fleet switched targeting to
bigeye tuna. Also spatial changes in the fishdry,use of deeper longline gear and higher
catch rates of bigeye tuna are also believed te bantributed to a change in catchability.
Cluster analysis has been used to remove thighriasgh separating the catch and effort
data according to target species (Bigelow and H&089). We applied the same approach
in this study. The first step for building the nadjusted CPUE with special-temporal
structure was the identification of the South Readiéets (distant-waters and domestic)
targeting albacore with cluster analysis on spemi@sposition for albacore, bigeye and
yellowfin tuna. Cluster analysis was implementethmm statistical package R (version 2.10.0
for Linux 64). Longline sets with zero tuna catcaresremoved because they are
uninformative in the cluster analysis (Bigelow dtalyle, 2009). We assumed that within a
trip, targeting did not change; therefore, the tluanalysis was made by trip instead of by
set (Appendix A).

In particular, two clustering routineBq{uster from the packagemap andclara from
the packageluster) were used in the analysis. It is important tanpout that thencluster
routine is a mixture of routinetist andclust from the packageluster. Thehcluster routine
produced dendrograms for determining the apprapriatber of clusters (species targeting)
represented in the data. For the Pago-Pago dataokedvantage of the experience of
previous analysis (Bigelow and Hoyle, 2008), whtry took in account the change of
targeting in the Taiwanese fleet, we also defimeml periods of time (1990 — 1998 and 1999-
2007) to describe the number of clusters (Bigelad doyle, 2009). For the domestic fleet
information, we were more cautious and we decidezhtry out the analysis in periods of
time of three and four years, depending on the amofuinformation.

The second clustering routingdra) was used to partition the data sets into
appropriate number of clusters as determined byémelrograms. The long line gear set up
for targeting albacore also catches yellowfin theaause these two species are found at the
same deep and are attracted by the same bait.fofegréepending on the season, sometimes
boats targeting albacore catch mostly yellowfirat@shley Williams, personal
communication, Secretariat of the Pacific Commuynitherefore the criterion used for
defining a fishery targeting albacore was the stith® proportion of these two species, if the
sum was less than 80% we defined that fishery atangeting albacore.

Once we had identified the fisheries targeting @dba. We built a file with the
information from the Pago-Pago and the domestatdldata base, including the entire Japan



and Korean time series and the albacore clusterBdigvanese fisheries targeting this species
(Table 3). The fisheries from domestic fleets eaeldi from this file are shown below (Table
4). The data included in the file was: flag id@adition, trip identification, number of
albacore caught, number of tuna caught, year aadeyuof the set, effort (number of hooks),
month of the set, boat identification, latitudeis¢égred, longitude registered, superficial
temperature, latitude aggregated by five degreesgitude aggregated by five degrees,
weight associated to each fishing trip, and clust@rmation. To avoid bias, we eliminated
from the information those boats operating fouless quarters (Bigelow and Hoyle, 2008,
2009). Therefore the information was reduced toia bf 788,982 records of fishing sets.
Contrary to the CPUE standardization for albacom1FCL, we did not allocate the data into
four regions. We used the whole region to take athge of the SEAPODYM spatial
structure that allows predicting the albacore migrapatterns and zooming at the exclusive
economical zone (EEZ).

Previous work (Bigelow and Hoyle, 2008; Bigelow dtalyle, 2009) tested several
generalized linear models containing different g/pépredictor variables and selected the
following model also used in the present analysis:

In(C/E) = year _quarter + month* lat® +lat5* long5+ vessel _id + ¢

Where the response variable is the natural logarahCPUEC is the catchE the effort.

The predictor variables were all considered a®facdndat represented the local latitude
andlat5 andlong5 represented the latitude and longitude aggregatddlegrees resolution.
Because the individual sets within a trip are oftaghly correlated, each set was weighted by

the factor {//number of setsby trip).

It is important to point out that a standardizedJEHs comprised of the
exponentiated year_quarter coefficients. In oueca® did not use this approach, instead,
we extracted the exponentiated parameter estinidlbe @essel factor and used it as a
correction factor for the fishing effort. The castien factors have a great variation with
some extreme values; therefore, we decided to nigglmse values that were in the 95%
confidence interval of the correction factpt{.965). Instead of erasing the information
outside this interval, we decided to replace th@dees with the corresponding upper and
lower limits of the 95% confidence interval. Therected effort was estimated multiplying
the registered effort by the correction factor. &lgusted CPUE (number of albacore per
1000 hooks) with spatial structure was calculatggregating the corrected effort and the
albacore catch by flag id, year, month and geogcapboordinates (one degree resolution)
in a pivot table in Excel 2007. The aggregatiothig information reduced the file size to
183,954 records.

For comparison purposes, a hominal and an adj@®dE with temporal structure
were built aggregating catch and effort by yeae T@mporal trend of the albacore nominal
CPUE was estimated dividing the total catch (numbtiided by the total number of hooks
aggregated by year using all information from PBggo and the domestic fleets. For
building the adjusted CPUE with temporal trend,¢htch and the corrected effort from the
total information file were aggregated by year gsanpivot table in Excel 2007.

Results

In the area defined for this analysis, the totaluah albacore catch from distant-
waters and domestic fleets presented a first pémicréase from 1960-1967. From 1968 to



1974, catches were stable around 1.6xlbacore. From 1974 to 2000 most of the annual
catches were smaller than one million tuna. Inldlseperiod (2001-2008) we observed a
period of increased catch with an important de@@ashe last two years (Figure 2).
Concerning the effort, after an initial period ntiease (1960-1967) the effort varied
between 18.7 and 55.6 millions of hook from 1962@01. In the last period of time an
important increase in effort was observed betwd¥hahd 150 millions of hooks (Figure 2).

Regarding the results from the cluster analysisdentifying targeting, as mentioned,
the entire Korean and Japanese fleets were assangeting albacore during the whole
period of time. In agreement with Bigelow and Ho{@809), we defined two periods of time
for the Taiwanese data defining: 1989-1998 and 24®8). For the first period of time, we
assumed that the fishery targeted albacore; isehend period, results suggested the
existence of two clusters targeting albacore araltargeting big eye tuna (Table 3).

The cluster analysis for the domestic fleet infaiorawas more complicated. During
different periods of time, for the majority of thational fleets (American Samoa, French
Polynesia, New Caledonia, Tonga and Western Sarvea);lusters targeting albacore were
found as shown below (Figure 3). In the case ofidslands, in some periods of time,
clusters targeting albacore were found; howeveegtielusters did not target albacore.
Similarly, for Fiji two clusters were found targegi big eye (Table 4). The information
targeting big eye was excluded in the final filedisn the generalized linear model used to
standardize the CPUE.

GLM results suggested the model explained 50.6%eafariability observed in the
logged CPUE. The predictor variable explaining nodghe variability was the factor year-
month associated to the fishing set (18.9%). Tieselefactor also explained an important
amount of variation (10.2%) and the cubic latiteaelained 8.8% of the observed
variability. The remaining predictor variables eaipkd less than 5% of the variability
observed (Table 5).

A total of 1866 parameters (coefficients) weremaated; in particular, for the vessel
factor, out of 1421 parameter estimates, 1142 astiswere significant (p-value < 0.05). As
mentioned, the effort correction factor was defiasdhe exponential of the vessel factor
estimate and their average was1.39 with a stardtanation of 0.69; therefore, the lower
limit of the 95% confidence interval was 0.0280d éime upper limit was 2.743597. It is
important to point out that extreme values of tbgection factor would increase or decrease
the nominal effort to levels that could be consedeabnormal. Therefore, we considered that
a minimum of 0.25 was reasonable because it wogietase the effort by a factor of four.
Out of 788574 correction factors, only 2757 weraken than 0.25 and 18826 were larger
than the upper limit; thus, we decided that instefaerasing those values, we would assign
them the corresponding values from the limits ef #% confidence interval. The original
correction factor distribution is shown below (Figut). As seen, the majority of the
correction factors are larger than one. Therefitvepverall effect of the effort correction
factor was to increase the effort (Figure 5a) amtsequently the adjusted CPUE was
reduced (Figure 5b).

These results were confirmed when the temporalarirend of nominal and adjusted
CPUE were compared. Both indices had their highkres at the beginning of the series;
the nominal CPUE for years 1960 and 1961 were 2ti4284 albacore/1000 hooks
respectively. The adjusted CPUE values for the sgaes were 64 albacore/1000 hooks.
Both indices presented a decreasing CPUE trentthéoperiod 1960 to 1975. From 1976 to



2009 the CPUE values were stable oscillating batveand 22 albacore/1000 hooks for the
adjusted CPUE and 12 and 29 albacore for the ndi@RBE. In general, the nominal CPUE
was larger than the adjusted CPUE, suggestinghibatffect of correcting effort by vessel
probably reduces the overall catch rate estimagrif€ 6). Finally the spatial distribution of
the mean adjusted CPUE is shown below (Figure shown higher values are found in the
south of the region defined.

Discussion

Indices of abundance have played an importantindisheries management and are
commonly used to tune stock assessment model®rifisidependent indices are costly or
difficult to collect and in most situations stocksassment fitting is carried out with fishery-
dependent data (Maunder and Punt, 2004). In tshafiies, an index of relative abundance
(catch per unit effort, CPUE) has been used foragament or for fitting single-species
stock assessment models. This approach is basdiffenent statistical techniques to
standardize the index and remove the effects @rakfactors and possible change of
targeting with the aim of detecting trends overgtim abundance. Therefore, most of
standardized CPUE for tuna species include onlyteal trend of abundance (Chagigl .,
2011; Hsielet al., 2008; Hazinget al. 2008). To our knowledge, a relative index of
abundance with temporal-spatially structure haseen built for any tuna species using
standardization methods. Consequently, existidg@s are not particularly useful for
population models with high resolution spatial stawe such as SEAPODYM. In this work
we built an index with this characteristic thatlvaélp to improve SEAPODYM data fitting
and the overall model performance.

Using CPUE as an index of abundance depends og bble to adjust (i.e. remove)
the impact on catch rates of changes over timaaibfs other than abundance. This
objective is generally achieved through regreseiethods (Maunder and Punt, 2004; Ortiz
and Arocha, 2004). In addition, given the requiretrie standardize the catch and effort data
of a species caught in a multi-species fisherse@ms desirable to use only the effort that
was directed at that species (Maunder and Pun#})200our case we have been able to
include only catch and effort data of fisheriegéding albacore in the south Pacific through
cluster analysis. It is important to point out tdae to the amount of data we had to include
in the analysis, instead of the typichlst subroutine, we used tieluster routine that is a
mixture of routineglist andclust from the packageluster with the advantage of not storing
the distant matrix; therefore, it uses less menamy carried out the calculations faster
(Lucas and Jasson, 2006). This approach reduceificintly the amount of time used in the
cluster analysis.

We were able to remove the impact of factors otiwen abundance through the
generalized linear model. Regression diagnostistitasuggested an acceptable
performance of the GLM model and an agreement thuggrerror structure assumed. In
contrast to previous approaches where the exp@tedtyear-month coefficients were used
as the relative index of abundance, in our casasee the exponentiated vessel coefficient.
This allowed us to be able to adjust the efforadatsuch a way that 100 hooks of a particular
vessel are equivalent to 100 hooks of any vessal the distant-waters and domestic fleets.
The overall effect of the effort correction facteas to increase the effort and reduce the
adjusted CPUE. This was also confirmed in the caispa of the temporal annual trend of
nominal and adjusted CPUE. A similar tendency feasd also for yellowfin tuna in
Taiwanese purse seine fishery in the western edoifimn 1988 to 1997 and in yellowfin tuna
for the Taiwanese offshore longline fishery in Western Pacific from 1988 to 1997 where



the standardized CPUE was smaller than the nor@R&lE (Sun and Yeh, 1998). The
general tendencies found for the mean CPUE agrébdivese reported previously. Murray
(1993) commented that the Taiwanese longline CRUghest and most variable south of
20°S. Similar results were also found by Hsueh-Jehgl. (1998) when they explored the
relationship between El Nifio/Southern oscillationl she south Pacific albacore.

Even if CPUE is standardized appropriately, theltesy index of relative abundance,
in isolation, provides limited information for magement advice or about the effect of
fishing (Maunder at al., 2006). In general, intégdestock assessment model shows that raw
CPUE data from longline vessels for tuna can bdeaing if not interpreted in the context
of other data, biological information, and popwatdynamics theory (Hamptabal., 2005).
Therefore it is recommendable to use the indexbroader framework. In particular,
SEAPODYM offers the opportunity of including thidjasted CPUE data in a framework
used to integrate biological and ecological knowtedf tuna species and their responses to
fishing pressure. This model is characterized $gjiatial structure that allows providing
additional information, not available from the @nt single-species stock assessment used in
the south Pacific. Examples of this informationlinie the tuna migration patterns, spatially-
distributed biomass estimates at ocean and EEZ, lgy&wning habitat index and larvae
distribution maps etc. Therefore, it is ideal thelusion of an adjusted CPUE in the model
that could potentially improve the overall SEAPODYddrformance. It is important to
mention that our access to operational level dédaved us building for the first time a
relative index of abundance with spatial distribatfor albacore in the south pacific at one
degree of resolution. Finally, this index has ptg&ifior providing valuable information to
explore, through further statistical analyses,rélationship between catch rates and
environmental variables, including the potentidlluence of ENSO events in the spatial
distribution of catch, effort, abundance and reament.
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Table 1. Fishing vessels by flag operating in thatB Pacific from 1960 to 2010.

Fleet Number of boats
Japan 182
Korea 503
Taiwan 713
American Samoa 111
Cook Islands 88
Fiji 228
New Caledonia 44
French Polynesia 144
Tonga 60
Vanuatu 84
Western Samoa 424

Total 2581



Table 2. Number of fishing trips and sets from dstitefleets operating in the South Pacific

(1979 - 2010).

Year A. Sam. Cook I. Fiji FP Tonga Vanuatu W. Samoa
1979 0 0 0 0 1/96 0
1980 0 0 0 0 0 0
1981 0 0 0 0 0 0
1982 0 0 0 0 5/155 0
1983 0 0 0 0 6/147 0
1984 0 0 0 0 3/105 0
1985 0 0 0 0 3/70 0
1986 0 0 0 0 3/122 1/51
1987 0 0 0 0 5/196 1/52
1988 0 0 0 0 10/173 0
1989 0 0 9/153 0 9/198 0
1990 0 0 14/429 0 11/164 0
1991 0 0 29/616 0 9/153 0
1992 0 0 213/1453 45/569 6/195 0
1993 0 0 111/1263 23/157 1/57 0 29/81
1994 0 28/144 393/2472 327/1480 | 21/415 0 11/29
1995 0 72/368 389/2528 575/2714 |0 8/125 0
1996 40/526 31/130 181/1365 624/2675 | 17/70 28/420 0
1997 119/1534 1/2 469/3529 703/3521 | 60/318 8/234 0
1998 156/1754 0 570/4710 790/4051 | 41/331 2/93 4310/4476
1999 155/2105 0 508/4357 738/4784 | 92/508 1/41 4095/5820
2000 245/2810 0 774/6836 734/5053 | 202/1242 | 13/351 656/1107
2001 430/4799 6/18 1123/9960 | 738/4734 | 290/1844 | 25/781 774/1075
2002 514/6901 132/865 1556/14359 | 659/4799 | 257/2517 | 101/3065 855/1756
2003 424/6220 450/3114 | 1543/16617 | 889/6847 | 239/2561 | 143/3149 498/2179
2004 321/4824 453/3834 | 1282/17438 | 886/7705 | 148/1341 | 211/8945 466/2003
2005 43/488 295/3708 | 1582/21143 | 673/6642 | 169/1428 | 218/8950 247/1163
2006 0 275/3508 | 1016/14325 | 694/6431 | 201/1590 | 163/9634 480/1406
2007 0 219/2767 | 630/10296 | 652/5638 | 210/1555 | 157/7928 526/1619
2008 5/165 166/2406 | 142/2094 611/5499 | 172/1164 | 146/7226 181/970
2009 7/251 141/2087 | 3/87 601/5128 | 102/593 199/8597 414/1768
2010 4/90 23/240 0 0 24/118 23/458 248/1121
Trips 2463 2292 12537 10962 2317 1448 13790
Sets 32467 23191 136030 78427 19426 60100 26573




Table 3. Taiwanese Fisheries targeting albacoriersouth Pacific during the period 1999-
2007; bet_perc — average percentage of big eyadfoutuna catch, yft_perc - — average

percentage of yellowfin tuna, alb_perc - averageg#age of albacore found.

Cluster bet _perc yft_perc alb_perc
1 0.007355507 0.008378652 0.9842658
2 0.058588762 0.175125337 0.7662859

3 0.464638051 0.355813285 0.1795487



Table 4. Cook Island and Fiji Fisheries not tamggtlbacore (based on cluster analysis
results) in the South Pacific; bet_perc — averagegntage of big eye found in tuna catch,
yft_perc - — average percentage of yellowfin tumand in tuna catch, alb_perc - average

percentage of albacore found in tuna catch.

Country Period Cluster bet perc yft_perc alb_perc
Cook Islands  1994-1998 1 0.219 0.352 0.429

: 2003-2006 3 0.350 0.392 0.258

: 2007-2010 3 0.246 0.426 0.328
Fiji 1989-1991 1 0.236 0.395 0.369

1992-1994 2 0.220 0.400 0.382
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Figure 1. Spatial distribution of albacore catclihie south Pacific, domestic fleets —
American Samoa, Cook Islands, Fiji, French Polymdsew Caledonia, Tonga and Western
Samoa.



2.5E+006

Catch [numbers)

0.0E+00

2.0E+06 -

1.5E+06 -

1.0E+006 -

5.0E+05 -

—e—Catch

—=—Effort

- 160000

- 140000

- 120000

- 100000

- 80000

- 60000

- 40000

- 20000

1950 1960 1970 1980 1990 2000

Year

0
2010 2020

{n00y 40 5,000T) Hoy3

Figure 2. Annual albacore catch and effort in thetls Pacific.
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Figure 6. Comparison of the temporal trend of thmimal and the standardized CPUE for

the albacore fishery in the South Pacific.
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Appendix A

This appendix shows the code used to build an bthet is easier to manage for the cluster
analysis by trip. The file df.RData contains thisrmation from the domestic fleets

load("df.RData")

In particular applying the functiaiapply helps to calculate the total number of individuzfls
each species (albacore, bigeye and yellowfin) haddtal number of tuna by trip

test4<-

cbind(tapply(dfSbet_n,dfStrip_id,sum),tapply(dfSyft_n,dfStrip_id,sum),tapply(dfSalb_n,dfStrip_id,sum),tapply(
dfStuna_n,dfStrip_id,sum))

The following line helps avoiding the "atomic veccasror" when calculating the species
composition:

test4=as.data.frame(test4)

Adding the column names:
colnames(test4)<-c("bet_n","yft_n","alb_n","tuna_n")
Calculating the species composition
test4Sbet_perc<-test4Sbet_n/test4Stuna_n

test4Syft_perc<-test4Syft_n/test4Stuna_n
test4Salb_perc<-test4Salb_n/test4Stuna_n

Checking....

names(test4)
test4[1:5,]

building an equivalent trip_id with the same lengghsize composition:
trip_id<-tapply(dfStrip_id,dfStrip_id,mean)

The following line is magic...it adds the trip_iformation to the data set test4:
test4<-cbind(test4,trip_id)

Checking:

names(test4)
test4[1:5,]

The following lines add the flag_id and the ret nieformation to the data set test4. Colum
8 intest4 is trip_id, column 1 in fd is trip_idénoolumn 4 in df is flag_id

test4Sflag_id<-df[match(test4[,8],df[,1]),4]
test4Sret_year<-df[match(test4[,8],df[,1]),107] # check the agreement for columns 107 coud be 106 or 108
test4_backup<-test4

Erasing extra info not needed in cluster calculegio



test4Salb_n<-NULL
test4Sbet_n<-NULL
test4Syft_n<-NULL
test4Stuna_n<-NULL

Placing the tuna_n in the last column
test4Stuna_n<-test4_backupStuna_n
Checking

test4[1,]
summary(test4Sflag_id)

First step for the cluster analysis:

install.packages("amap")
library(amap)
df_clust<-test4

Methodology applied to New Caledonia. This methodglcan be applied to different
periods of time depending on the characteristiab@iPCT information.

In this line we select the information from New &ddnia and we only include the data
different from zaro

newjunk3NC<-df_clust[df_clustSflag_id=="NC" & df_clustStuna_n!=0,]
summary(newjunk3NCSret_year)

dim(newjunk3NCSret_vyear)

#[1] 4375 10

Here we select for the first period of time:

newjunk5NCprev<-newjunk3NC[newjunk3NCSret_year>=1990 & newjunk3NCSret_year<1999,]
dim(newjunk5NCprev)
#[1] 428 10

This line carries out the cluster analysis usisglaroutine from the amap package:
fitNCprev<-hcluster(newjunk5NCprev[4:6],method="euclidean")

This line provides the plot of the clusters so &e appreciate the number of different
targeting:

plot(fitNCprev,labels=FALSE,hang =-1,main="dendrogram NC 1990-1998")
groups<-cutree(fitNCprev,k=2)

rect.hclust(fitNCprev,k=2,border="red")

dev.off()

The last code could be adapted for each IPTC takiagcount the number of periods of time
according to suspected change of targeting. Thenskestep in building the cluster analysis is
the use of thelara subroutine for partitioning the data sets intodperopriate number of
clusters as determined by dendrograms.

load("df.RData")
library(cluster)
DF<-test4



dim(DF)

#[1] 49581 7

junk3FP<-DF[DFSflag_id=="PF" & DFStuna_n!=0,]
dim(junk3FP)

Applying the methodology for French Polynesia:
Includes only data from the first period of time9091999

junk5FPprev<-junk3FP[junk3FPSret_year>=1990 & junk3FPSret_year<1999,]
dim(junk5FPprev)

includes only the data necessary to make the alzalysis avoiding memory waste

junk4FPprev <- junk5FPprev[,c("bet_perc","yft_perc","alb_perc","ret_year","trip_id")]
dim(junk4FPprev)
#[1] 3068 5

It usesclara with two groups, result from the dendrograms

claraFPprev<-clara(junk4FPprev[1:3],2)

junkFPprev<-aggregate(claraFPprevSdata, by=list(claraFPprevSclustering),FUN=mean)
junkFPprev

# Group.1l bet_perc yft_perc alb_perc

#1  10.07912053 0.0855782 0.8353013

#2  20.10105452 0.5295291 0.3694164

junk2FPprev <- table(claraFPprevSclustering)

junk2FPprev

# 1 2

#2473 595

Pasting the cluster information

junk5FPprev <- cbind(junk4FPprev,claraFPprevSclustering)
dim(junk5FPprev)

names(junk5FPprev)
#[1] "bet_perc" "yft_perc" "alb_perc"
#[4] "ret_year" "trip_id" "claraFPprevSclustering"

Changing the name for clustering

names(junk5FPprev)[6] <- "clustering"
names(junk5FPprev)

#[1] "bet_perc" "yft_perc
#[6] "clustering"

alb_perc" "ret_year" "trip_id"

This procedure is repeated for all IPTC. More infation can be found in penguin:
Z/RIR _script_for_clara_run.txt

After all countries have been done, we need tahisequivalent to the following code

junk<-
rbind(junk5FPprev,junk5FPpost,junk5NCprev,junk5NE&pank5ASprev,junk5ASpost,junk5WSprev,junk5WS
post,junk5FJprev,junk5FJpost,junk5TOprev,junk5 TQ@ask5CKprev,junk5CKpost)



However we will do the instructions step by stegxclude those clusters not targeting
albacore:

junk<-
rbind(junk5FPprev,junk5FPpost,junk5NCprev,junk5NCpost,junk5ASprev,junk5ASpost,junk5WSprev,junk5WSpo
st)

dim(junkSflag_id)

#[1]31312 6

junk<-rbind(junk,junk5TOprev,junk5TOprev2,junk5TOprev3)

dim(junk)

#[1] 33746 6

For Cook Islands the cluster 1 for the period 12998 will not be included in future
analysis; therefore that information has to be wket!:

dim(junk5CKprev)

#[1]1129 6
junk5CK<-junk5CKprev[junk5CKprevSclustering=="2",]
dim(junk5CK)

#[1]1 60 6

#Same thing for the cluster 3 of the period 2003 - 2006
dim(junk5CKprev3)

#[1] 1399 6
junk5CKb<-junk5CKprev3[junk5CKprev3Sclustering!="3" ]
dim(junk5CKb)

#[1]1 962 6

Same thing for the cluster 3 for Cook Island frod®2 — 2010:

dim(junk5CKprev4)

#[1] 528 6
junk5CKc<-junk5CKprev4[junk5CKprevaSclustering!="3" ]
dim(junk5CKc)

#[11423 6

We have to add to junk junk5CK, junk5CKb and junk®Gnd junk5CKprev2

junk<-rbind(junk,junk5CK, junk5CKprev2, junk5CKb, junk5CKc)
dim(junk)
#[1] 35323 6

For Fiji, clusters 1 from the period 1989-1991 ahdster 2 from 1992-1994 will be
excluded:

dim(junk5FJprev)

#[1]145 6
junk5FJa<-junk5FJprev[junk5F)prevSclustering=="2",]
dim(junk5FJa)

#[1]26 6

dim(junk5FJprev2)

#[1]714 6
junk5FJb<-junk5FJprev2[junk5F)prev2Sclustering=="1",]
dim(junk5FJb)

#[1] 371 6



Now paste junk5FJa and junk5FJb to junk togethér thie rest of the FJ cluster results

dim(junk)

#[1] 35323 6
junk<-rbind(junk,junk5FJa,junk5FJb,junk5F)prev3,junk5F)preva,junk5F)prevs,junk5Fpreve,junk5Flprev7)
dim(junk)

#[1] 47126 6

The next step is pasting the cluster informatioth®original file df, matching the trip_ id
information:

names(junk)
#[1] "bet_perc" "yft_perc
#[6] "clustering"

alb_perc" "ret_year" "trip_id"

For back up a csv file a RData were created:

write.csv(junk,file="junk.csv")
save(junk,file="junk.RData")
Next step is incorporating the cluster informatiorihe file df:

names(df)
dfScluster<-junk[match(df[,1],junk[,5]),6]
dim(df)

#[1] 408637 114

#cleaning df

dfSdup_t<- NULL

dfSdup_r<- NULL

dim(df)

[1] 408637 112

#atot <- df[(dfSret_year<1999 | (dfSret_year>=1999 & dfScluster<3)),]
atot <- df[dfScluster<3,]

dim(atot)

[1] 408568 112

Getting rid of the NA's

atotl<-atot[atotScluster==1,]
dim(atot1)
#[1] 292513 112

summary(atot1Scluster)
# Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
# 1 1 1 1 1 1 66928

atotl<-atot1[na.omit(atot1Scluster),]
summary(atot1Scluster)

# Min. 1st Qu. Median Mean 3rd Qu. Max.

# 1 1 1 1 1 1
atot2<-atot[atotScluster==2,]

dim(atot2)

#[1] 182983 112

summary(atot2Scluster)

# Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
# 2 2 2 2 2 2 66928

atot2<-atot2[na.omit(atot2Scluster),]



dim(atot2)
#[1] 116055 112

summary(atot2Scluster)
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# 2 2 2 2 2 2

atot<-rbind(atot1,atot2)
dim(atot)
#[1]341640 112

Saving atot in R format

save(atot,file="atot.RData")

For carrying out the GLM analysis, it is needegaste the files from the Pago-Pago (pl) and
the domestic fleet (df). After the previous anadytsiese two files already contain the cluster
information.

load("pl.RData")
dim(pl)
#[1] 532262 112

The dimensions from the two files (df and pl) hawenatch to paste them. In the file df the
column 3 correspond to dup_t, similarly there isthar column called dup_r. We need to
erase this information:

dfSdup_t<-NULL
Erasing dup_r

dfSdup_r<-NULL
dim(pl)
[1] 532262 112
dim(df)
[1] 408637 112

Although the matrices have the same dimension (eumbcolumns), the order in both files
is not the same, as shown:

names(pl)

#[106] "ret_year" "ret_month" "ret_day"
#[109] "cluster" "tmp" "sets_per_trip"
#[112] "wt"

names(df)

#[106] "ret_year" "ret_month" "ret_day"
#[109] "tmp" "sets_per_trip"  "wt"

#[112] "cluster"

To solve this problem we need saving the conteintiseocolumn 109 from the file pl, then
we need to erase column 109 and paste the infaxmaitom the back up in the last column.



cluster_backup<-plScluster

length(cluster_backup)

#[1] 532262

summary(cluster_backup)

# Min. 1stQu. Median Mean 3rd Qu. Max. NA's
# 1.000 1.000 1.000 1.344 2.000 3.000501256.000
plScluster<-NULL

dim(pl)

$[1] 532262 111
pl<-cbind(pl,cluster_backup)
dim(pl)

#[1] 532262 112

names(pl)

#[109] "tmp" "sets_per_trip"
#[112] "cluster_backup"

Wt"

Changing the name of last column:

colnames(pl)[112]<-"cluster"
names(pl)

#[109] "tmp" "sets_per_trip"
#[112] "cluster"

Wt"

Paste them in a new file:

cpueSP<-rbind(pl,df)

dim(cpueSP)

#[1] 940899 112
write.csv(cpueSP,file="cpueSP.csv")
save(cpueSP,file="cpueSP.RData")

Building the input file for the GLM:

Getting rid of the non-targeting from Taiwan:

a_tot <- cpueSP[(cpueSPS$ret_year<1999 | (cpueSP$ret_year>=1999 & cpueSPScluster<3)),]
Selecting the data for the GLM

a_tot <-
a_tot[,c("flag_id",trip_id","alb_n","tuna_n","set_yrqtr","hook","set_mon","boat_id","lat.loc","lon.loc","temp",

"flag_id","reg","lat5","lon5","wt","cluster")]

dim(a_tot)
summary(a_totScluster)
save(a_tot, file="a_tot.RData”)

Filter for active boats:

for (vessyrs in c(3)) {
a <- tapply(a_totSboat_id,list(a_totSboat_id,a_totSset_yr),length)
al <- apply(is.na(a[,])=="FALSE",1,sum)
al <- al[al>vessyrs]
activeboats <- c(as.numeric(names(al)))
activeboats <- unique(activeboats)
a <- a_tot[a_totSboat_id %in% activeboats,]



aSlatlong<-paste(aSlat5,aSlon5)
save(a, file="a_tot.RData"”)

GLM model;

model_test_tot <- glm(log((alb_n+0.5)/hook) ~
as.factor(set_yrgtr)+as.factor(set_mon)*poly(lat.loc,degree=3)+as.factor(lat5)*as.factor(lon5)+as.factor(boat_i
d), data=a_tot, weights=a_totSwt)

hist(model_test_totSresiduals, density = 12,xlab="Residuals",main=NULL)
savePlot(file="Residuals_tot.jpg",type="jpeg")

hist(model_test_totSresiduals, density = 12, xlab="Residuals",main=NULL,freq=FALSE)
savePlot(file="Residuals_tot_density.jpg",type="jpeg")
plot(model_test_totSfitted.values,model_test_totSresiduals,xlab="Fitted values",ylab="Residuals",
main=NULL)

savePlot(file="Residuals_fitted_tot.jpg", type="jpeg")
plot(model_test_totSfitted.values,sqrt(abs(model_test_totSresiduals)), xlab="Fitted
values",ylab="sqrt(abs(residuals))",main=NULL)

savePlot(file="Residuals_sqrt_abs_fitted_tot.jpg", type="jpeg")
plot(model_test_totSfitted.values,model_test_totSy,xlab="Fitted values",ylab="In(CPUE)", main=NULL)
savePlot(file="InCPUE_fitted_tot.jpg",type="jpeg")
summary_model_test_tot<summary(model_test_tot)

save(summary_model_test_tot, file="summary_model_test_tot.RData”)

New R session:

load(“summary_model_test_tot.RData”)
coef<-summary_model_test_totScoefficients
write.csv(coef,file="coeff_tot.cvs”)

Open the file coeff_tot.cvs in Excel and erasendtirmation not needed.

load(“a_tot.Rdata”)

coeff<-read.csv("coeff_tot.csv, header=TRUE)
a_totSboat_est<-coeff[match(a_tot[,8],coeff[,1]),2]
write.csv<-(a_tot, file="CPUE_SP_raw_tot.csv)

Open the file “CPUE_SP_raw_tot.csv” in Excel antrigtof NA'’s for the coefficients. The
total number of records is 788574 after cleanidg(K08). The average correction factor is:
1.385834 and the standard deviation is 0.6927&8efbre the inferior limit of the 95%
confidence interval is 0.02807 and the superioitlisn2.743597. All values smaller to the
inferior limit were set equal to 0.25 and the valgeeater than the superior bound were set at
2.75. The new corrected effort was effort*correctfactor. The aggregation to one degree
and five degrees were done in Excel with pivoteabllhe corresponding files are:
STD_CPUE.csv and STD_CPUE_IRD.csv. The pivot tdbkes not fill the empty spaces.
This was done in Visual Basic with the followingdeo

Option Explicit
Sub relleno()
Dim i As Integer, temporall As Double, salvar As Double

Fori=1To 23614



temporall = Sheets("CPUE").Range("c4").Rows(i)

If (temporall <>0) Then

salvar = temporall

Else

Sheets("CPUE").Range("c4").Rows(i) = salvar
End If

Next

End Sub

Adapt the code, check the number of data so ingieddfining i as integer, it is defined as
long. The R script for the figure is:

##all data

library(maps)
library(mapproj)
library(mapdata)
library(RColorBrewer)

datnew <- read.csv("STD_CPUE_fig.csv",header=T, sep=",")
eez <- read.table("eznew2.txt", sep="", header=F)

##does smmooth/filled contours

filled.contour.adl <- function (x = seq(0, 1, len = nrow(z)), y = seq(0, 1, len = ncol(z)),
z, Xlim = range(x, finite = TRUE), ylim = range(y, finite = TRUE),
zlim = range(z, finite = TRUE), levels = pretty(zlim, nlevels),
nlevels = 20, color.palette = cm.colors, col = color.palette(length(levels) -
1), plot.title, plot.axes, key.title, key.axes, asp = NA,

xaxs ="i", yaxs ="i", las = 1, axes = FALSE, frame.plot = axes,

...)

if (missing(z)) {
if (!missing(x)) {
if (is.list(x)) {
7<-x$z
y <- xSy
X <- XSX
}
else {
z2<-X
x <-seq(0, 1, len = nrow(z))
}
}
else stop("no 'z' matrix specified")
1
else if (is.list(x)) {
y <- XSy
X <- X$x
1
if (any(diff(x) <=0) | | any(diff(y) <= 0))
stop("increasing 'x' and 'y' values expected")
#mar.orig <- (par.orig <- par(c("mar", "las", "mfrow")))Smar
#on.exit(par(par.orig))



#w <- (3 + mar.orig[2]) * par("csi") * 2.54
#layout(matrix(c(2, 1), nc = 2), widths = ¢(1, lcm(w)))
plot.new()
plot.window(xlim, ylim, "", xaxs = xaxs, yaxs = yaxs, asp = asp)
if (lis.matrix(z) | | nrow(z) <=1 || ncol(z) <= 1)
stop("no proper 'z' matrix specified")
if (lis.double(z))
storage.mode(z) <- "double"
.Internal(filledcontour(as.double(x), as.double(y), z, as.double(levels),
col = col))
if (missing(plot.axes)) {
if (axes) {
title(main ="", xlab ="", ylab ="")
Axis(x, side = 1)
Axis(y, side = 2)
}
t

HEESSEEE S R E SA E E S R B  A E E
## do plotting

par(mfrow=c(1,1), mar=c(0,2,0.5,1), omi=c(0.4,0,0,0))

dat2 <- tapply(datnewScpue, list(datnewSlong, datnewSlat), mean)
catchsum <- round(sum(dat2, na.rm=T),1)

longlabs <- sort(unique(datnewS$long))

lat <- sort(unique(datnewSlat))

a <- length(pretty(dat2,9))

cols <- rev(brewer.pal(a-1, "RdYIBu"))

plot(1,1, yaxt="n", xaxt="n", type="n", xlim=c(140,275), ylim=c(-50,0))

lines(eez[,1], eez[,2], col=1)

filled.contour.adl(longlabs, lat, dat2, zlim=range(dat2, na.rm=T), col=cols, yaxt="n", xaxt="n", nlevel=a,
xlim=c(140,275), ylim=c(-45,0))

map('world2Hires', yaxt="n", xaxt="n", add=T, resolution=1)

map('world2Hires', region = c("Korea", "Fiji", "Vanuatu", "Malaysia", "Australia", "Indonesia", "Papua New
Guinea", "China", "Philippines", "Solomon Islands","Cook Islands", "French Polynesia", "Samoa", "American
Samoa", "New Caledonia","New Zealand", "Tonga","Nauru", "Tuvalu","Line Islands"), fill=T, add=T, yaxt="n",
xaxt="n", col="light grey")

symbols(datnewSlong, datnewSlat, datnew$cpue/500, add=T, inches=FALSE, bg=1, fg="black", lwd=2,
yaxt="n", xaxt="n")

lines(eez[,1], eez[,2], col="black", lwd=2.5)

box(lwd=3)

text(260, -7, "Avg. Adj. CPUE", xpd=NA, cex=1.25)

text(260, -9, " Catch/1000 hooks", xpd=NA, cex=1.25)

axis(1, at=c(140, 150,160,170,180,190,200,210,220,230,240,250,260,270,280,290), labels=F)

axis(1, at=c(140,160,180,200,220,240,260,280), labels=c("140E", "160E", "180", "160W", "140W","120W",
"100W", "80W" ), cex.axis=0.75)

axis(2, at=c(-50,-45,-40,-35,-30,-25,-20,-15, -10,-5), labels=F)

axis(2, at=c(-50,-40,-30,-20,-10), labels=c("50S","40S", "30S", "20S", "10S"), cex.axis=0.75)

##tdo legend
y <- lat[2]
yint<-3

x1 <- 260



X2 <- x1+5

for (i in 1:length(cols)){

polygon(c(x2,x2,x1,x1), c(y,y+yint,y+yint,y), xpd=NA, col=cols][i])
y <- y+yint

}

ymin <- min(pretty(dat2,8))

ymin

ymax <- max(pretty(dat2,8))

ymax

yint2 <- ((length(cols))*yint)/(ymax-ymin)

labs <- pretty(dat2,8)

labs <- labs[labs > ymin & labs < ymax]

loc <- lat[2]+(labs-ymin)*yint2

text(rep(x2+4, length(loc)), loc, labs, xpd=NA, cex=0.85)
text(x1+2, 28, "CPUE index", xpd=NA, cex=1.25, adj=0)

savePlot(file="STD_CPUE_mean.jpg",type="jpeg")





