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Executive Summary 

1. Standardised CPUE is regularly used as an index of abundance to tune the population 
dynamics models used to assess the status of tuna stocks in the WCPO. The primary 
purpose of CPUE standardizations is the removal of the variation in the data not 
attributable to changes in abundance.  In the WCPO these indices have typically been 
generated to meet the model structures of MULTIFAN-CL and fine scale spatial 
variation is removed as part of the standardisation.  As a result these indices have not 
been applicable for alternative population dynamics models such as SEAPODYM. 

2. An adjusted CPUE index with spatial structure was developed for albacore (Thunus 
alalunga) in the south Pacific, based on operational logsheet data from distant-waters 
and domestic fleets.  

3. To avoid bias due to targeting change, a cluster analysis was carried out for 
identifying fleets targeting albacore.  These data were used in a GLM model to 
standardize CPUE using year-month, latitude, longitude, vessel, and longitude and 
latitude aggregated to 5 degrees resolution as factors. The predictor variable 
explaining most of the logged CPUE variability was the year-month factor (18.9%). 
The vessel factor explained 10.2% of the variation.  The effort correction factor was 
defined as the exponential of the vessel factor.  A total of 1421 vessel coefficients 
were extracted (p < 0.05 for 1142 of these) and used to generate the adjusted CPUE. 
This index was built using the correction factor for effort, estimated as the exponential 
of the estimate of the boat parameter from the GLM. This approach assures the 
equivalency of effort in all ships from the two fleets included in the analysis.  

4. The average of the vessel correction factor was1.39 with a standard deviation of 0.69.  
Extreme values of the correction factor were defined as those whose value was 
outside the range of the 95% confidence interval.  Rather than remove these data from 
the analysis we assign them the corresponding values from the limits of the 95% 
confidence interval. The removal of the influence of these extreme values on the 
correction factor was required as they increased or decreased the nominal effort to 
levels that could be considered abnormal.  

5. The majority of the effort correction factors were larger than one and their overall 
effect was to increase the effort and consequently reduce the adjusted CPUE.  The 
results of the temporal annual trend of the nominal and adjusted CPUE show higher 
values at the beginning of the series.  The nominal CPUE for years 1960 and 1961 
were 214 and 204 albacore/1000 hooks respectively. The adjusted CPUE values for 
the same years were 64 albacore/1000 hooks.  Both indices presented a decreasing 
CPUE trend for the period 1960 to 1975. From 1976 to 2009 the CPUE values were 
stable oscillating between 9 and 22 albacore/1000 hooks for the adjusted CPUE and 
12 and 29 albacore for the nominal CPUE. The spatial distribution of the mean 
adjusted CPUE show higher values in the south of the region. 

6. This new index is suitable for use in the SEAPODYM model for albacore and is 
expected to provide further improvement to the estimates generated by SEAPODYM. 
This index will, through further statistical analysis, allow the exploration of the 
relationship between catch rates and environmental variables, including the potential 
influence of ENSO events on the distribution and abundance of South Pacific 
albacore. 



 

 

Introduction 

Single-species models have played a central role in fisheries management, establishing target 
reference points and setting allowable harvest limits. However, fishery managers are 
increasingly asked to consider different types of interactions in their harvesting decisions and 
the potential effects on other species and the ecosystem. Unintended consequences of fishing, 
including habitat destruction, incidental mortality of nontarget species, evolutionary shifts in 
population demographics, and changes in the function and structure of ecosystems are being 
increasingly recognized (Pikitch et al., 2004). Therefore, it has been recommended to include 
ecosystem considerations in fisheries management. The overall objective of the Ecosystem-
base fishery management (EBFM) is to sustain healthy marine ecosystems and the fisheries 
they support (Pikitch et al., 2004). This task requires the development of new complex 
management tools and the participative inclusion of all stake holders. In particular, in the 
South Pacific, a spatial ecosystem and population dynamics model (SEAPODYM) has been 
developed. It is a physical-biological-fisheries model with spatial structure at ocean basin 
scale with a maximum likelihood estimate approach for parameter estimation (Senina et al. 
2008), providing a general framework for the integration of diverse areas of knowledge on 
tuna species.   Recent work on SEAPODYM has been focused on the description of new 
model developments its capacity to capture important features of tuna spatial dynamics 
species (Lehodey et al., 2008) and the validation of the model through model fitting, 
parameter and uncertainty estimation. As most of ecosystem and multispecies models, 
SEAPODYM requires constant improvement; currently SEAPODYM is fitted to spatially-
distributed nominal catch-at-age data and size composition data (Senina et al., 2008). 
Therefore, incorporating a relative index of abundance in the SEAPODYM fitting process is 
recommendable.  

The main objectives of CPUE standardization are removing most of the annual 
variation in the data not attributable to changes in abundance and detecting trends over time 
in abundance (Maunder and Punt, 2004). Currently, the Multifan-CL albacore stock 
assessment uses twelve series of standardized CPUE resulting from combinations of four 
regions and three distant-water fleets targeting albacore (Bigelow and Hoyle, 2008; Bigelow 
and Hoyle, 2009). Unfortunately, this procedure eliminates the spatial variability; therefore, 
this information cannot be used for estimating the albacore spatial distribution and its 
migration patterns. In the present work, we developed a spatial-temporal structured adjusted 
CPUE based on fisheries data (information from Pago-Pago and Domestic fleets) targeting 
albacore in the south Pacific. This approach might improve the SEAPODYM fit and its 
estimates and therefore its use in fisheries management. In addition, it will provide valuable 
information to explore through further statistical analyses the relationship between catch rates 
and environmental variables.   

Methods 

A potential improvement for SEAPODYM is the inclusion of an adjusted CPUE with spatial-
temporal structure to be used in the fitting process. The development of this new index 
included only catch and effort data from fisheries targeting albacore in the region defined by 
the coordinates 59.75 ○ latitude south, 9.75○ latitude north, 142.25○ longitude east, and 
111.75○ longitude west. This information was taken from operational logsheet data of vessels 
from distant-water fleets (Korea, Japan and Taiwan) landing at the two major canneries (Pago 



Pago, American Samoa and Levuka, Fiji) and data from domestic fleets (American Samoa, 
Cook Islands, Fiji, French Polynesia, New Caledonia, Tonga and Western Samoa)  provided 
to the Secretariat of the Pacific Community. The first data base included information of 
532,262 sets corresponding to 9588 trips and 1398 vessels from 1960 to 2007 (Bigelow and 
Hoyle, 2009). The domestic fleet data series included information of 408,637 fishing sets; 
thus the complete initial information included 940,899 sets from 1960 to 2010 containing 
information such as the flag identification, trip identification, set identification, date, 
geographical coordinates, number of organisms caught of each tuna species, number of hooks 
(effort), captain, crew, etc. A total of 2581 fishing boats operated targeting albacore from 
1960 to 2007, being the Taiwanese the biggest fleet (Table 1). The information about the 
number of trips and sets for the domestic fleets is shown in Table 2. The spatial distribution 
of catch for the domestic, the Japanese, the Korean and the Taiwanese fleets is shown in 
Figure 1.  

Previous studies (Bigelow and Hoyle, 2008, 2009) suggested the possibility that the 
catchability for albacore could have changed when the Taiwanese fleet switched targeting to 
bigeye tuna. Also spatial changes in the fishery, the use of deeper longline gear and higher 
catch rates of bigeye tuna are also believed to have contributed to a change in catchability. 
Cluster analysis has been used to remove this bias through separating the catch and effort 
data according to target species (Bigelow and Hoyle, 2009).  We applied the same approach 
in this study.  The first step for building the new adjusted CPUE with special-temporal 
structure was the identification of the South Pacific fleets (distant-waters and domestic) 
targeting albacore with cluster analysis on species composition for albacore, bigeye and 
yellowfin tuna. Cluster analysis was implemented in the statistical package R (version 2.10.0 
for Linux 64). Longline sets with zero tuna catch were removed because they are 
uninformative in the cluster analysis (Bigelow and Hoyle, 2009). We assumed that within a 
trip, targeting did not change; therefore, the cluster analysis was made by trip instead of by 
set (Appendix A).  

In particular, two clustering routines (hcluster from the package amap and clara from 
the package cluster) were used in the analysis. It is important to point out that the hcluster 
routine is a mixture of routines dist and clust from the package cluster. The hcluster routine 
produced dendrograms for determining the appropriate number of clusters (species targeting) 
represented in the data. For the Pago-Pago data we took advantage of the experience of 
previous analysis (Bigelow and Hoyle, 2008), where they took in account the change of 
targeting in the Taiwanese fleet, we also defined two periods of time (1990 – 1998 and 1999-
2007) to describe the number of clusters (Bigelow and Hoyle, 2009). For the domestic fleet 
information, we were more cautious and we decided to carry out the analysis in periods of 
time of three and four years, depending on the amount of information.  

The second clustering routine (clara) was used to partition the data sets into 
appropriate number of clusters as determined by the dendrograms. The long line gear set up 
for targeting albacore also catches yellowfin tuna because these two species are found at the 
same deep and are attracted by the same bait. Therefore, depending on the season, sometimes 
boats targeting albacore catch mostly yellowfin tuna (Ashley Williams, personal 
communication, Secretariat of the Pacific Community). Therefore the criterion used for 
defining a fishery targeting albacore was the sum of the proportion of these two species, if the 
sum was less than 80% we defined that fishery as not targeting albacore. 

Once we had identified the fisheries targeting albacore. We built a file with the 
information from the Pago-Pago and the domestic fleets data base, including the entire Japan 



and Korean time series and the albacore clusters for Taiwanese fisheries targeting this species 
(Table 3). The fisheries from domestic fleets excluded from this file are shown below (Table 
4). The data included in the file was:  flag identification, trip identification, number of 
albacore caught, number of tuna caught, year and quarter of the set, effort (number of hooks), 
month of the set, boat identification, latitude registered, longitude registered, superficial 
temperature, latitude aggregated by five degrees, longitude aggregated by five degrees, 
weight associated to each fishing trip, and cluster information. To avoid bias, we eliminated 
from the information those boats operating four or less quarters (Bigelow and Hoyle, 2008, 
2009). Therefore the information was reduced to a total of 788,982 records of fishing sets. 
Contrary to the CPUE standardization for albacore in MFCL, we did not allocate the data into 
four regions. We used the whole region to take advantage of the SEAPODYM spatial 
structure that allows predicting the albacore migration patterns and zooming at the exclusive 
economical zone (EEZ). 

Previous work (Bigelow and Hoyle, 2008; Bigelow and Hoyle, 2009) tested several 
generalized linear models containing different types of predictor variables and selected the 
following model also used in the present analysis: 

ε++++= idvessellonglatlatmonthquarteryearEC _5*5*_)/ln( 3  

Where the response variable is the natural logarithm of CPUE, C is the catch, E the effort. 
The predictor variables were all considered as factors and lat represented the local latitude 
and lat5 and long5 represented the latitude and longitude aggregated at 5 degrees resolution. 
Because the individual sets within a trip are often highly correlated, each set was weighted by 

the factor ( tripbysetsofnumber/1 ).   

It is important to point out that a standardized CPUE is comprised of the 
exponentiated year_quarter coefficients. In our case, we did not use this approach, instead, 
we extracted the exponentiated parameter estimate of the vessel factor and used it as a 
correction factor for the fishing effort. The correction factors have a great variation with 
some extreme values; therefore, we decided to use only those values that were in the 95% 
confidence interval of the correction factor (µ±1.96σ).Instead of erasing the information 
outside this interval, we decided to replace those values with the corresponding upper and 
lower limits of the 95% confidence interval.  The corrected effort was estimated multiplying 
the registered effort by the correction factor. The adjusted CPUE (number of albacore per 
1000 hooks) with spatial structure was calculated aggregating the corrected effort and the 
albacore catch by flag id, year, month and geographical coordinates (one degree resolution) 
in a pivot table in Excel 2007. The aggregation of this information reduced the file size to 
183,954 records. 

For comparison purposes, a nominal and an adjusted CPUE with temporal structure 
were built aggregating catch and effort by year. The temporal trend of the albacore nominal 
CPUE was estimated dividing the total catch (number) divided by the total number of hooks 
aggregated by year using all information from Pago Pago and the domestic fleets. For 
building the adjusted CPUE with temporal trend, the catch and the corrected effort from the 
total information file were aggregated by year using a pivot table in Excel 2007. 

Results 

In the area defined for this analysis, the total annual albacore catch from distant-
waters and domestic fleets presented a first period increase from 1960-1967. From 1968 to 



1974, catches were stable around 1.0x106 albacore. From 1974 to 2000 most of the annual 
catches were smaller than one million tuna. In the last period (2001-2008) we observed a 
period of increased catch with an important decrease in the last two years (Figure 2). 
Concerning the effort, after an initial period of increase (1960-1967) the effort varied 
between 18.7 and 55.6 millions of hook from 1968 to 2001. In the last period of time an 
important increase in effort was observed between 100 and 150 millions of hooks (Figure 2).  

Regarding the results from the cluster analysis for identifying targeting, as mentioned, 
the entire Korean and Japanese fleets were assumed targeting albacore during the whole 
period of time. In agreement with Bigelow and Hoyle (2009), we defined two periods of time 
for the Taiwanese data defining: 1989-1998 and 1999-2010. For the first period of time, we 
assumed that the fishery targeted albacore; in the second period, results suggested the 
existence of two clusters targeting albacore and one targeting big eye tuna (Table 3). 

The cluster analysis for the domestic fleet information was more complicated. During 
different periods of time, for the majority of the national fleets (American Samoa, French 
Polynesia, New Caledonia, Tonga and Western Samoa), two clusters targeting albacore were 
found as shown below (Figure 3). In the case of Cook Islands, in some periods of time, 
clusters targeting albacore were found; however, three clusters did not target albacore. 
Similarly, for Fiji two clusters were found targeting big eye (Table 4). The information 
targeting big eye was excluded in the final file used in the generalized linear model used to 
standardize the CPUE. 

GLM results suggested the model explained 50.6% of the variability observed in the 
logged CPUE.  The predictor variable explaining most of the variability was the factor year-
month associated to the fishing set (18.9%). The vessel factor also explained an important 
amount of variation (10.2%) and the cubic latitude explained 8.8% of the observed 
variability. The remaining predictor variables explained less than 5% of the variability 
observed (Table 5). 

A total of 1866 parameters (coefficients) were estimated; in particular, for the vessel 
factor, out of 1421 parameter estimates, 1142 estimates were significant (p-value < 0.05). As 
mentioned, the effort correction factor was defined as the exponential of the vessel factor 
estimate and their average was1.39 with a standard deviation of 0.69; therefore, the lower 
limit of the 95% confidence interval was 0.02807 and the upper limit was 2.743597. It is 
important to point out that extreme values of the correction factor would increase or decrease 
the nominal effort to levels that could be considered abnormal. Therefore, we considered that 
a minimum of 0.25 was reasonable because it would increase the effort by a factor of four. 
Out of 788574 correction factors, only 2757 were smaller than 0.25 and 18826 were larger 
than the upper limit; thus, we decided that instead of erasing those values, we would assign 
them the corresponding values from the limits of the 95% confidence interval. The original 
correction factor distribution is shown below (Figure 4). As seen, the majority of the 
correction factors are larger than one. Therefore, the overall effect of the effort correction 
factor was to increase the effort (Figure 5a) and consequently the adjusted CPUE was 
reduced (Figure 5b).  

These results were confirmed when the temporal annual trend of nominal and adjusted 
CPUE were compared.  Both indices had their higher values at the beginning of the series; 
the nominal CPUE for years 1960 and 1961 were 214 and 204 albacore/1000 hooks 
respectively. The adjusted CPUE values for the same years were 64 albacore/1000 hooks.  
Both indices presented a decreasing CPUE trend for the period 1960 to 1975. From 1976 to 



2009 the CPUE values were stable oscillating between 9 and 22 albacore/1000 hooks for the 
adjusted CPUE and 12 and 29 albacore for the nominal CPUE. In general, the nominal CPUE 
was larger than the adjusted CPUE, suggesting that the effect of correcting effort by vessel 
probably reduces the overall catch rate estimate (Figure 6). Finally the spatial distribution of 
the mean adjusted CPUE is shown below (Figure 7). As shown higher values are found in the 
south of the region defined. 

Discussion 

Indices of abundance have played an important role in fisheries management and are 
commonly used to tune stock assessment models. Fishery independent indices are costly or 
difficult to collect and in most situations stock assessment fitting is carried out with fishery-
dependent data (Maunder and Punt, 2004). In tuna fisheries, an index of relative abundance 
(catch per unit effort, CPUE) has been used for management or for fitting single-species 
stock assessment models. This approach is based on different statistical techniques to 
standardize the index and remove the effects of several factors and possible change of 
targeting with the aim of detecting trends over time in abundance. Therefore, most of 
standardized CPUE for tuna species include only temporal trend of abundance (Chang et al., 
2011; Hsieh et al., 2008; Hazing et al. 2008). To our knowledge, a relative index of 
abundance with temporal-spatially structure has not been built for any tuna species using 
standardization methods.  Consequently, existing indices are not particularly useful for 
population models with high resolution spatial structure such as SEAPODYM.  In this work 
we built an index with this characteristic that will help to improve SEAPODYM data fitting 
and the overall model performance.   

Using CPUE as an index of abundance depends on being able to adjust (i.e. remove) 
the impact on catch rates of changes over time of factors other than abundance.  This 
objective is generally achieved through regression methods (Maunder and Punt, 2004; Ortiz 
and Arocha, 2004). In addition, given the requirement to standardize the catch and effort data 
of a species caught in a multi-species fishery, it seems desirable to use only the effort that 
was directed at that species (Maunder and Punt, 2004). In our case we have been able to 
include only catch and effort data of fisheries targeting albacore in the south Pacific through 
cluster analysis. It is important to point out that due to the amount of data we had to include 
in the analysis, instead of the typical clust subroutine, we used the hcluster routine that is a 
mixture of routines dist and clust from the package cluster with the advantage of not storing 
the distant matrix; therefore, it uses less memory and carried out the calculations faster 
(Lucas and Jasson, 2006). This approach reduced significantly the amount of time used in the 
cluster analysis.   

We were able to remove the impact of factors other than abundance through the 
generalized linear model. Regression diagnostic statistic suggested an acceptable 
performance of the GLM model and an agreement with the error structure assumed.  In 
contrast to previous approaches where the exponentiated year-month coefficients were used 
as the relative index of abundance, in our case we used the exponentiated vessel coefficient. 
This allowed us to be able to adjust the effort data is such a way that 100 hooks of a particular 
vessel are equivalent to 100 hooks of any vessel from the distant-waters and domestic fleets. 
The overall effect of the effort correction factor was to increase the effort and reduce the 
adjusted CPUE. This was also confirmed in the comparison of the temporal annual trend of 
nominal and adjusted CPUE.  A similar tendency was found also for yellowfin tuna in 
Taiwanese purse seine fishery in the western Pacific from 1988 to 1997 and in yellowfin tuna 
for the Taiwanese offshore longline fishery in the western Pacific from 1988 to 1997 where 



the standardized CPUE was smaller than the nominal CPUE (Sun and Yeh, 1998).   The 
general tendencies found for the mean CPUE agreed with those reported previously.  Murray 
(1993) commented that the Taiwanese longline CPUE is highest and most variable south of 
20 °S.  Similar results were also found by Hsueh-Jung  et al. (1998) when they explored the 
relationship between El Niño/Southern oscillation and the south Pacific albacore. 

Even if CPUE is standardized appropriately, the resulting index of relative abundance, 
in isolation, provides limited information for management advice or about the effect of 
fishing (Maunder at al., 2006). In general, integrated stock assessment model shows that raw 
CPUE data from longline vessels for tuna can be misleading if not interpreted in the context 
of other data, biological information, and population dynamics theory (Hampton et al., 2005). 
Therefore it is recommendable to use the index in a broader framework. In particular, 
SEAPODYM offers the opportunity of including this adjusted CPUE data in a framework 
used to integrate biological and ecological knowledge of tuna species and their responses to 
fishing pressure. This model is characterized by its spatial structure that allows providing 
additional information, not available from the current single-species stock assessment used in 
the south Pacific. Examples of this information include the tuna migration patterns, spatially-
distributed biomass estimates at ocean and EEZ level, spawning habitat index and larvae 
distribution maps etc. Therefore, it is ideal the inclusion of an adjusted CPUE in the model 
that could potentially improve the overall SEAPODYM performance. It is important to 
mention that our access to operational level data allowed us building for the first time a 
relative index of abundance with spatial distribution for albacore in the south pacific at one 
degree of resolution. Finally, this index has potential for providing valuable information to 
explore, through further statistical analyses, the relationship between catch rates and 
environmental variables, including the potential influence of ENSO events in the spatial 
distribution of catch, effort, abundance and recruitment.   
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Table 1. Fishing vessels by flag operating in the South Pacific from 1960 to 2010. 

Fleet Number of boats 

Japan 182 

Korea 503 

Taiwan 713 

American Samoa 111 

Cook Islands 88 

Fiji 228 

New Caledonia 44 

French Polynesia 144 

Tonga 60 

Vanuatu 84 

Western Samoa 424 

Total 2581 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2. Number of fishing trips and sets from domestic fleets operating in the South Pacific 
(1979 - 2010). 

Year A. Sam. Cook I. Fiji FP Tonga Vanuatu W. Samoa 

1979 0 0 0 0 1/96 0  

1980 0 0 0 0 0 0  

1981 0 0 0 0 0 0  

1982 0 0 0 0 5/155 0  

1983 0 0 0 0 6/147 0  

1984 0 0 0 0 3/105 0  

1985 0 0 0 0 3/70 0  

1986 0 0 0 0 3/122 1/51  

1987 0 0 0 0 5/196 1/52  

1988 0 0 0 0 10/173 0  

1989 0 0 9/153 0 9/198 0  

1990 0 0 14/429 0 11/164 0  

1991 0 0 29/616 0 9/153 0  

1992 0 0 213/1453 45/569 6/195 0  

1993 0 0 111/1263 23/157 1/57 0 29/81 

1994 0 28/144 393/2472 327/1480 21/415 0 11/29 

1995 0 72/368 389/2528 575/2714 0 8/125 0 

1996 40/526 31/130 181/1365 624/2675 17/70 28/420 0 

1997 119/1534 1/2 469/3529 703/3521 60/318 8/234 0 

1998 156/1754 0 570/4710 790/4051 41/331 2/93 4310/4476 

1999 155/2105 0 508/4357 738/4784 92/508 1/41 4095/5820 

2000 245/2810 0 774/6836 734/5053 202/1242 13/351 656/1107 

2001 430/4799 6/18 1123/9960 738/4734 290/1844 25/781 774/1075 

2002 514/6901 132/865 1556/14359 659/4799 257/2517 101/3065 855/1756 

2003 424/6220 450/3114 1543/16617 889/6847 239/2561 143/3149 498/2179 

2004 321/4824 453/3834 1282/17438 886/7705 148/1341 211/8945 466/2003 

2005 43/488 295/3708 1582/21143 673/6642 169/1428 218/8950 247/1163 

2006 0 275/3508 1016/14325 694/6431 201/1590 163/9634 480/1406 

2007 0 219/2767 630/10296 652/5638 210/1555 157/7928 526/1619 

2008 5/165 166/2406 142/2094 611/5499 172/1164 146/7226 181/970 

2009 7/251 141/2087 3/87 601/5128 102/593 199/8597 414/1768 

2010 4/90 23/240 0 0 24/118 23/458 248/1121 

Trips 2463 2292 12537 10962 2317 1448 13790 

Sets 32467 23191 136030 78427 19426 60100 26573 

 

 

 

 



Table 3. Taiwanese Fisheries targeting albacore  in the South Pacific during the period 1999-

2007; bet_perc – average percentage of big eye  found in tuna catch, yft_perc - – average 

percentage of yellowfin tuna, alb_perc - average percentage of albacore found. 

Cluster    bet_perc yft_perc alb_perc 

1 0.007355507 0.008378652 0.9842658 

2 0.058588762 0.175125337 0.7662859 

3 0.464638051 0.355813285 0.1795487 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 4. Cook Island and Fiji Fisheries not targeting albacore (based on cluster analysis 

results) in the South Pacific; bet_perc – average percentage of big eye  found in tuna catch, 

yft_perc - – average percentage of yellowfin tuna found in tuna catch, alb_perc - average 

percentage of albacore found in tuna catch. 

Country Period Cluster bet_perc yft_perc alb_perc 

Cook Islands 1994-1998 1 0.219 0.352 0.429 

“ 2003-2006 3 0.350 0.392 0.258 

“ 2007-2010 3 0.246 0.426 0.328 

Fiji 1989-1991 1 0.236 0.395 0.369 

“ 1992-1994 2 0.220 0.400 0.382 

 

 

 

 

 

 



  

  

Figure 1. Spatial distribution of albacore catch in the south Pacific, domestic fleets – 
American Samoa, Cook Islands, Fiji, French Polynesia, New Caledonia, Tonga and Western 
Samoa. 

 



 

Figure 2. Annual albacore catch and effort in the south Pacific. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

Figure 3. Number of clusters found for: a) American Samoa (199-2010), b) French Polynesia 

(1999-2010), c) New Caledonia (1999-2010) and d) Western Samoa (1993-1998). 



 

Figure 4. Frequency distribution for the effort correction factors used to estimate the adjusted 

CPUE with spatial structure in the South Pacific Ocean. 

 

 



                                                                                             a)  

 

                                                                                             b)  

 

Figure 5. Histograms: a) effort (gray bars) and corrected effort (diagonal stripes), b) nominal 

CPUE (gray bars), adjusted CPUE (diagonal stripes).  

 

 

 

 

 

 



 

Figure 6. Comparison of the temporal trend of the nominal and the standardized CPUE for 

the albacore fishery in the South Pacific. 

 

 

 

 

 



 

Figure 7. Spatial distribution of the albacore mean adjusted CPUE in the South Pacific. 

 

 

 

 

 

 

 

 

 

 



Appendix A 

This appendix shows the code used to build an object that is easier to manage for the cluster 
analysis by trip. The file df.RData contains the information from the domestic fleets 

load("df.RData") 

In particular applying the function tapply helps to calculate the total number of individuals of 
each species (albacore, bigeye and yellowfin) and the total number of tuna by trip 

test4<-

cbind(tapply(df$bet_n,df$trip_id,sum),tapply(df$yft_n,df$trip_id,sum),tapply(df$alb_n,df$trip_id,sum),tapply(

df$tuna_n,df$trip_id,sum)) 

 

The following line helps avoiding the "atomic vector error" when calculating the species 
composition: 

test4=as.data.frame(test4) 

Adding the column names: 

colnames(test4)<-c("bet_n","yft_n","alb_n","tuna_n") 

Calculating the species composition 

test4$bet_perc<-test4$bet_n/test4$tuna_n 

test4$yft_perc<-test4$yft_n/test4$tuna_n 

test4$alb_perc<-test4$alb_n/test4$tuna_n 

 

Checking…. 

names(test4) 

test4[1:5,] 

 

building an equivalent trip_id with the same length as size composition: 

trip_id<-tapply(df$trip_id,df$trip_id,mean) 

The following line is magic...it adds the trip_id information to the data set test4:  

test4<-cbind(test4,trip_id) 

Checking: 

names(test4) 

test4[1:5,] 

 

The following lines add the flag_id and the ret_year information to the data set test4. Colum 
8 in test4 is trip_id, column 1 in fd is trip_id and column 4 in df is flag_id 

test4$flag_id<-df[match(test4[,8],df[,1]),4] 

test4$ret_year<-df[match(test4[,8],df[,1]),107]  # check the agreement for columns 107 coud be 106 or 108 

test4_backup<-test4 

 

Erasing extra info not needed in cluster calculations 



test4$alb_n<-NULL 

test4$bet_n<-NULL 

test4$yft_n<-NULL 

test4$tuna_n<-NULL 

 

 Placing the tuna_n in the last column 

test4$tuna_n<-test4_backup$tuna_n 

Checking 

test4[1,] 

summary(test4$flag_id) 

 

First step for the cluster analysis: 

install.packages("amap")   

library(amap) 

df_clust<-test4 

 

Methodology applied to New Caledonia. This methodology can be applied to different 
periods of time depending on the characteristics of the IPCT information. 

In this line we select the information from New Caledonia and we only include the data 
different from zaro 

newjunk3NC<-df_clust[df_clust$flag_id=="NC" & df_clust$tuna_n!=0,] 

summary(newjunk3NC$ret_year) 

dim(newjunk3NC$ret_year) 

#[1] 4375   10 

 

Here we select for the first period of time: 

newjunk5NCprev<-newjunk3NC[newjunk3NC$ret_year>=1990 & newjunk3NC$ret_year<1999,] 

dim(newjunk5NCprev) 

#[1] 428  10 

 

This line carries out the cluster analysis using a subroutine from the amap package: 

fitNCprev<-hcluster(newjunk5NCprev[4:6],method="euclidean") 

This line provides the plot of the clusters so we can appreciate the number of different 
targeting: 

plot(fitNCprev,labels=FALSE,hang =-1,main="dendrogram NC 1990-1998") 

groups<-cutree(fitNCprev,k=2) 

rect.hclust(fitNCprev,k=2,border="red") 

dev.off() 

 

The last code could be adapted for each IPTC taking in account the number of periods of time 
according to suspected change of targeting. The second step in building the cluster analysis is 
the use of the clara subroutine for partitioning the data sets into the appropriate number of 
clusters as determined by dendrograms. 

load("df.RData") 

library(cluster) 

DF<-test4 



dim(DF) 

#[1] 49581     7 

junk3FP<-DF[DF$flag_id=="PF" & DF$tuna_n!=0,] 

dim(junk3FP) 

 

 Applying the methodology for French Polynesia: 

Includes only data from the first period of time 1990-1999 

junk5FPprev<-junk3FP[junk3FP$ret_year>=1990 & junk3FP$ret_year<1999,] 

dim(junk5FPprev) 

 

includes only the data necessary to make the clara analysis avoiding memory waste 

junk4FPprev <- junk5FPprev[,c("bet_perc","yft_perc","alb_perc","ret_year","trip_id")] 

dim(junk4FPprev) 

#[1] 3068    5 

 

It uses clara with two groups, result from the dendrograms 

claraFPprev<-clara(junk4FPprev[1:3],2) 

junkFPprev<-aggregate(claraFPprev$data, by=list(claraFPprev$clustering),FUN=mean) 

junkFPprev 

# Group.1   bet_perc  yft_perc  alb_perc 

#1       1 0.07912053 0.0855782 0.8353013 

#2       2 0.10105452 0.5295291 0.3694164 

junk2FPprev <- table(claraFPprev$clustering) 

junk2FPprev 

#   1    2  

#2473  595 

 

Pasting the cluster information 

junk5FPprev <- cbind(junk4FPprev,claraFPprev$clustering) 

dim(junk5FPprev) 

names(junk5FPprev) 

#[1] "bet_perc"               "yft_perc"               "alb_perc"               

#[4] "ret_year"               "trip_id"                "claraFPprev$clustering" 

 

Changing the name for clustering 

names(junk5FPprev)[6] <- "clustering" 

names(junk5FPprev) 

#[1] "bet_perc"   "yft_perc"   "alb_perc"   "ret_year"   "trip_id"    

#[6] "clustering" 

 

This procedure is repeated for all IPTC. More information can be found in penguin: 

Z/R/R_script_for_clara_run.txt 

After all countries have been done, we need to use the equivalent to the following code 

junk<-
rbind(junk5FPprev,junk5FPpost,junk5NCprev,junk5NCpost,junk5ASprev,junk5ASpost,junk5WSprev,junk5WS
post,junk5FJprev,junk5FJpost,junk5TOprev,junk5TOpost,junk5CKprev,junk5CKpost) 



However we will do the instructions step by step to exclude those clusters not targeting 
albacore: 

junk<-

rbind(junk5FPprev,junk5FPpost,junk5NCprev,junk5NCpost,junk5ASprev,junk5ASpost,junk5WSprev,junk5WSpo

st) 

dim(junk$flag_id) 

#[1] 31312     6 

junk<-rbind(junk,junk5TOprev,junk5TOprev2,junk5TOprev3) 

dim(junk) 

#[1] 33746     6 

 

For Cook Islands the cluster 1 for the period 1994-1998 will not be included in future 
analysis; therefore that information has to be excluded: 

dim(junk5CKprev) 

#[1] 129   6 

junk5CK<-junk5CKprev[junk5CKprev$clustering=="2",] 

dim(junk5CK) 

#[1] 60  6 

#Same thing for the cluster 3 of the period 2003 - 2006 

dim(junk5CKprev3) 

#[1] 1399    6 

junk5CKb<-junk5CKprev3[junk5CKprev3$clustering!="3" ,] 

dim(junk5CKb) 

#[1] 962   6 

 

Same thing for the cluster 3 for Cook Island from 2007 – 2010: 

dim(junk5CKprev4) 

#[1] 528   6 

junk5CKc<-junk5CKprev4[junk5CKprev4$clustering!="3" ,] 

dim(junk5CKc) 

#[1] 423   6 

 

We have to add to junk junk5CK, junk5CKb and junk5CKc and junk5CKprev2 

junk<-rbind(junk,junk5CK, junk5CKprev2, junk5CKb, junk5CKc) 

dim(junk) 

#[1] 35323     6 

 

For Fiji, clusters 1 from the period 1989-1991 and cluster 2 from 1992-1994 will be 
excluded: 

dim(junk5FJprev) 

#[1] 45  6 

junk5FJa<-junk5FJprev[junk5FJprev$clustering=="2",] 

dim(junk5FJa) 

#[1] 26  6 

dim(junk5FJprev2) 

#[1] 714   6 

junk5FJb<-junk5FJprev2[junk5FJprev2$clustering=="1",] 

dim(junk5FJb) 

#[1] 371   6 

 



Now paste junk5FJa and junk5FJb to junk together with the rest of the FJ cluster results 

dim(junk) 

#[1] 35323     6 

junk<-rbind(junk,junk5FJa,junk5FJb,junk5FJprev3,junk5FJprev4,junk5FJprev5,junk5FJprev6,junk5FJprev7) 

dim(junk) 

#[1] 47126     6 

 

The next step is pasting the cluster information to the original file df,  matching the trip_ id 
information: 

names(junk) 

#[1] "bet_perc"   "yft_perc"   "alb_perc"   "ret_year"   "trip_id"    

#[6] "clustering" 

 

For back up a csv file a RData were created: 

write.csv(junk,file="junk.csv") 

save(junk,file="junk.RData") 

Next step is incorporating the cluster information to the file df: 

names(df) 

df$cluster<-junk[match(df[,1],junk[,5]),6] 

dim(df) 

#[1] 408637    114 

#cleaning df 

df$dup_t<- NULL 

df$dup_r<- NULL 

dim(df) 

[1] 408637    112 

#atot <- df[(df$ret_year<1999 | (df$ret_year>=1999 & df$cluster<3)),] 

atot <- df[df$cluster<3,] 

dim(atot) 

[1] 408568    112 

 

Getting rid of the NA's 

atot1<-atot[atot$cluster==1,] 

dim(atot1) 

#[1] 292513    112 

 

summary(atot1$cluster) 

#   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's  

#      1       1       1       1       1       1   66928  

 

atot1<-atot1[na.omit(atot1$cluster),] 

summary(atot1$cluster) 

# Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  

#      1       1       1       1       1       1  

atot2<-atot[atot$cluster==2,] 

dim(atot2) 

#[1] 182983    112 

summary(atot2$cluster) 

# Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's  

#      2       2       2       2       2       2   66928  

 

atot2<-atot2[na.omit(atot2$cluster),] 



dim(atot2) 

#[1] 116055    112 

 

summary(atot2$cluster) 

# Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  

#      2       2       2       2       2       2  

 

atot<-rbind(atot1,atot2) 

dim(atot) 

# [1] 341640    112 

 

Saving atot in R format 
 
save(atot,file="atot.RData") 

 

For carrying out the GLM analysis, it is needed to paste the files from the Pago-Pago (pl) and 
the domestic fleet (df). After the previous analysis these two files already contain the cluster 
information. 

load("pl.RData") 

dim(pl) 

#[1] 532262    112 

 

The dimensions from the two files (df and pl) have to match to paste them. In the file df the 
column 3 correspond to dup_t, similarly there is another column called dup_r. We need to 
erase this information: 

df$dup_t<-NULL 

 

Erasing dup_r 
 

df$dup_r<-NULL 

dim(pl) 

[1] 532262    112 

dim(df) 

[1] 408637    112 

 

Although the matrices have the same dimension (number of columns), the order in both  files 
is not the same, as shown: 

names(pl) 

#[106] "ret_year"           "ret_month"          "ret_day"            

#[109] "cluster"            "tmp"                "sets_per_trip"      

#[112] "wt" 

names(df) 

#[106] "ret_year"           "ret_month"          "ret_day"            

#[109] "tmp"                "sets_per_trip"      "wt"                 

#[112] "cluster"     

 

To solve this problem we need saving the contents of the column 109 from the file pl, then 
we need to erase column 109 and paste the information from the back up in the last column. 

 



cluster_backup<-pl$cluster 

length(cluster_backup) 

#[1] 532262 

summary(cluster_backup) 

#      Min.    1st Qu.     Median       Mean    3rd Qu.       Max.       NA's  

#     1.000      1.000      1.000      1.344      2.000      3.000 501256.000  

pl$cluster<-NULL  

dim(pl) 

$[1] 532262    111 

pl<-cbind(pl,cluster_backup) 

dim(pl) 

#[1] 532262    112 

names(pl) 

#[109] "tmp"                "sets_per_trip"      "wt"                 

#[112] "cluster_backup"  

 

Changing the name of last column: 
 
colnames(pl)[112]<-"cluster" 

names(pl) 

#[109] "tmp"                "sets_per_trip"      "wt"                 

#[112] "cluster" 

 

Paste them in a new file: 

cpueSP<-rbind(pl,df) 

dim(cpueSP) 

#[1] 940899    112 

write.csv(cpueSP,file="cpueSP.csv") 

save(cpueSP,file="cpueSP.RData") 

 

Building the input file for the GLM: 

Getting rid of the non-targeting from Taiwan: 

a_tot <- cpueSP[(cpueSP$ret_year<1999 | (cpueSP$ret_year>=1999 & cpueSP$cluster<3)),] 

Selecting the data for the GLM 

a_tot <- 

a_tot[,c("flag_id",trip_id","alb_n","tuna_n","set_yrqtr","hook","set_mon","boat_id","lat.loc","lon.loc","temp",

"flag_id","reg","lat5","lon5","wt","cluster")] 

dim(a_tot) 

summary(a_tot$cluster) 

save(a_tot, file="a_tot.RData”) 

 

Filter for active boats: 

for (vessyrs in c(3)) {   

    a <- tapply(a_tot$boat_id,list(a_tot$boat_id,a_tot$set_yr),length) 

    a1 <- apply(is.na(a[,])=="FALSE",1,sum) 

    a1 <- a1[a1>vessyrs] 

    activeboats <- c(as.numeric(names(a1))) 

    activeboats <- unique(activeboats) 

    a <- a_tot[a_tot$boat_id %in% activeboats,] 

} 



a$latlong<-paste(a$lat5,a$lon5) 

save(a, file="a_tot.RData”) 

 

GLM model: 

model_test_tot <- glm(log((alb_n+0.5)/hook) ~ 

as.factor(set_yrqtr)+as.factor(set_mon)*poly(lat.loc,degree=3)+as.factor(lat5)*as.factor(lon5)+as.factor(boat_i

d), data=a_tot, weights=a_tot$wt) 

hist(model_test_tot$residuals, density = 12,xlab="Residuals",main=NULL) 

 savePlot(file="Residuals_tot.jpg",type="jpeg") 

 hist(model_test_tot$residuals, density = 12,xlab="Residuals",main=NULL,freq=FALSE) 

 savePlot(file="Residuals_tot_density.jpg",type="jpeg") 

plot(model_test_tot$fitted.values,model_test_tot$residuals,xlab="Fitted values",ylab="Residuals", 

main=NULL) 

 savePlot(file="Residuals_fitted_tot.jpg",type="jpeg") 

plot(model_test_tot$fitted.values,sqrt(abs(model_test_tot$residuals)), xlab="Fitted 

values",ylab="sqrt(abs(residuals))",main=NULL) 

savePlot(file="Residuals_sqrt_abs_fitted_tot.jpg",type="jpeg") 

plot(model_test_tot$fitted.values,model_test_tot$y,xlab="Fitted values",ylab="ln(CPUE)", main=NULL) 

savePlot(file="lnCPUE_fitted_tot.jpg",type="jpeg") 

summary_model_test_tot<summary(model_test_tot) 

save(summary_model_test_tot, file=”summary_model_test_tot.RData”) 

 

New R session:  
 
load(“summary_model_test_tot.RData”) 

coef<-summary_model_test_tot$coefficients 

write.csv(coef,file=”coeff_tot.cvs”) 

 

Open the file coeff_tot.cvs in Excel and erase all information not needed. 
 
 

load(“a_tot.Rdata”) 

coeff<-read.csv("coeff_tot.csv, header=TRUE) 

a_tot$boat_est<-coeff[match(a_tot[,8],coeff[,1]),2] 

write.csv<-(a_tot, file="CPUE_SP_raw_tot.csv) 

 

Open the file “CPUE_SP_raw_tot.csv” in Excel and get rid of NA’s for the coefficients. The 
total number of records is  788574 after cleaning NA (408). The average correction factor is: 
1.385834 and the standard deviation is 0.692736; therefore the inferior limit of the 95% 
confidence interval is 0.02807 and the superior limit is 2.743597. All values smaller to the 
inferior limit were set equal to 0.25 and the values greater than the superior bound were set at 
2.75.  The new corrected effort was effort*correction factor.  The aggregation to one degree 
and five degrees were done in Excel with pivot tables. The corresponding files are: 
STD_CPUE.csv and STD_CPUE_IRD.csv. The pivot table does  not fill the empty spaces. 
This was done in Visual Basic with the following code: 
 
Option Explicit 

  

Sub relleno() 

  

Dim i As Integer, temporal1 As Double, salvar As Double 

  

For i = 1 To 23614 



temporal1 = Sheets("CPUE").Range("c4").Rows(i) 

  

If (temporal1 <> 0) Then 

salvar = temporal1 

Else 

Sheets("CPUE").Range("c4").Rows(i) = salvar 

End If 

Next 

End Sub 

 
 
Adapt the code, check the number of data so instead of defining i as integer, it is defined as 
long.  The R script for the figure is: 
 
##all data 

 

library(maps) 

library(mapproj) 

library(mapdata) 

library(RColorBrewer) 

 

datnew <- read.csv("STD_CPUE_fig.csv",header=T, sep=",") 

eez <- read.table("eznew2.txt", sep="", header=F) 

 

##does smmooth/filled contours 

  

filled.contour.adl <- function (x = seq(0, 1, len = nrow(z)), y = seq(0, 1, len = ncol(z)), 

    z, xlim = range(x, finite = TRUE), ylim = range(y, finite = TRUE), 

    zlim = range(z, finite = TRUE), levels = pretty(zlim, nlevels), 

    nlevels = 20, color.palette = cm.colors, col = color.palette(length(levels) - 

        1), plot.title, plot.axes, key.title, key.axes, asp = NA, 

    xaxs = "i", yaxs = "i", las = 1, axes = FALSE, frame.plot = axes, 

    ...) 

{ 

    if (missing(z)) { 

        if (!missing(x)) { 

            if (is.list(x)) { 

                z <- x$z 

                y <- x$y 

                x <- x$x 

            } 

            else { 

                z <- x 

                x <- seq(0, 1, len = nrow(z)) 

            } 

        } 

        else stop("no 'z' matrix specified") 

    } 

    else if (is.list(x)) { 

        y <- x$y 

        x <- x$x 

    } 

    if (any(diff(x) <= 0) || any(diff(y) <= 0)) 

        stop("increasing 'x' and 'y' values expected") 

    #mar.orig <- (par.orig <- par(c("mar", "las", "mfrow")))$mar 

    #on.exit(par(par.orig)) 



    #w <- (3 + mar.orig[2]) * par("csi") * 2.54 

    #layout(matrix(c(2, 1), nc = 2), widths = c(1, lcm(w))) 

    plot.new() 

    plot.window(xlim, ylim, "", xaxs = xaxs, yaxs = yaxs, asp = asp) 

    if (!is.matrix(z) || nrow(z) <= 1 || ncol(z) <= 1) 

        stop("no proper 'z' matrix specified") 

    if (!is.double(z)) 

        storage.mode(z) <- "double" 

    .Internal(filledcontour(as.double(x), as.double(y), z, as.double(levels), 

        col = col)) 

    if (missing(plot.axes)) { 

        if (axes) { 

            title(main = "", xlab = "", ylab = "") 

            Axis(x, side = 1) 

            Axis(y, side = 2) 

        } 

    } 

  

} 

  

 

############################################# 

## do plotting 

  

par(mfrow=c(1,1), mar=c(0,2,0.5,1), omi=c(0.4,0,0,0)) 

dat2 <- tapply(datnew$cpue, list(datnew$long, datnew$lat), mean) 

catchsum <- round(sum(dat2, na.rm=T),1) 

longlabs <- sort(unique(datnew$long)) 

lat <- sort(unique(datnew$lat)) 

a <- length(pretty(dat2,9)) 

cols <- rev(brewer.pal(a-1, "RdYlBu")) 

 

plot(1,1, yaxt="n", xaxt="n", type="n", xlim=c(140,275), ylim=c(-50,0)) 

lines(eez[,1], eez[,2], col=1) 

filled.contour.adl(longlabs, lat, dat2, zlim=range(dat2, na.rm=T), col=cols, yaxt="n", xaxt="n", nlevel=a, 

xlim=c(140,275), ylim=c(-45,0)) 

map('world2Hires',  yaxt="n", xaxt="n", add=T, resolution=1) 

map('world2Hires',  region = c("Korea", "Fiji", "Vanuatu", "Malaysia", "Australia", "Indonesia", "Papua New 

Guinea", "China", "Philippines", "Solomon Islands","Cook Islands", "French Polynesia", "Samoa", "American 

Samoa", "New Caledonia","New Zealand", "Tonga","Nauru", "Tuvalu","Line Islands"), fill=T, add=T, yaxt="n", 

xaxt="n", col="light grey") 

symbols(datnew$long, datnew$lat, datnew$cpue/500, add=T, inches=FALSE, bg=1, fg="black", lwd=2, 

yaxt="n", xaxt="n") 

lines(eez[,1], eez[,2], col="black", lwd=2.5) 

box(lwd=3) 

text(260, -7, "Avg. Adj. CPUE", xpd=NA, cex=1.25) 

text(260, -9, " Catch/1000 hooks", xpd=NA, cex=1.25)  

axis(1, at=c(140, 150,160,170,180,190,200,210,220,230,240,250,260,270,280,290), labels=F) 

axis(1, at=c(140,160,180,200,220,240,260,280), labels=c("140E", "160E", "180", "160W", "140W","120W", 

"100W", "80W" ), cex.axis=0.75) 

axis(2, at=c(-50,-45,-40,-35,-30,-25,-20,-15, -10,-5), labels=F) 

axis(2, at=c(-50,-40,-30,-20,-10), labels=c("50S","40S", "30S", "20S", "10S"), cex.axis=0.75) 

 

##do legend 

y <- lat[2] 

yint <- 3 

x1 <- 260 



x2 <- x1+5 

for (i in 1:length(cols)){ 

polygon(c(x2,x2,x1,x1), c(y,y+yint,y+yint,y), xpd=NA, col=cols[i]) 

y <- y+yint 

} 

ymin <- min(pretty(dat2,8)) 

ymin 

ymax <- max(pretty(dat2,8)) 

ymax 

yint2 <- ((length(cols))*yint)/(ymax-ymin) 

labs <- pretty(dat2,8) 

labs <- labs[labs > ymin & labs < ymax] 

loc <- lat[2]+(labs-ymin)*yint2                                  

text(rep(x2+4, length(loc)), loc, labs, xpd=NA, cex=0.85) 

text(x1+2, 28, "CPUE index", xpd=NA, cex=1.25, adj=0) 

 

savePlot(file="STD_CPUE_mean.jpg",type="jpeg") 

 
 

 

 
 
 

 

 

 




