Project 35: Bigeye Biology \& WCPFC Tuna Tissue Bank

WCPFC-SC11-2015/SA-WP-01

S.Nicol ${ }^{1}$, J Farley ${ }^{2}$, B. Muller ${ }^{3}$, C.Sanchez ${ }^{1}$, F. Roupsard ${ }^{1}$, N. Tavaga 4^{4}, B. Phillips ${ }^{5}$, T. Usu ${ }^{6}$, K. Sisior ${ }^{7}$

[^0]
Executive Summary

Key Points for SC11

1. Procedures for granting access to the WCPFC tuna tissue bank by third parties have been drafted and are ready to be reviewed, revised and adopted by SC11.
2. The European Union through its contribution to WCPFC via its work programme for implementing the European Maritime and Fisheries Fund provided Euro 00,000 to establish the tissue bank. These resources were made accessible in 2015 and will be fully utilised by the end of the 2015 calendar year. The annual cost of supporting the tissue bank now that it is established is USD80,000. The SC11 will need to decide if it will continue with this initiative and provide an annual budget of USD80,000 commencing 2016. This comprises USD55,000 for tissue bank coordination and training for samplers and USD25,000 for sampling fees and freight.
3. Observer training targets have been exceeded. Over 5% of active senior observers contributing to the WCPFC Regional Observer Programme have been trained in biological sampling methods and procedures. WCPFC Regional Observer Programme training standards have been prepared and adopted.
4. Web-based tool for WCPFC CCMs and external parties to query the WCPFC Tuna Tissue Bank have been developed and continuously improved. The web database is currently accessed by over $\mathbf{1 5 5 0}$ unique users from all over the world.

5. The holdings of the tissue bank are itemised in the Table below. The sampling targets for the EU specified project have been achieved for the tuna species

| Species | Quantity | | Hard-parts | | Reproduction | Multi-purpose | | Diet | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | Target* * | Curated | Otoliths | Spines | Gonads | Blood | Muscle | Liver | Fin | Stomach |
| Bigeye | 1000 | 2959 | 1698 | 203 | 1824 | 97 | 2353 | 1362 | 10 | 1499 |
| Yellowfin | 500 | 6081 | 2211 | 494 | 2434 | 131 | 4899 | 3694 | 79 | 4006 |
| Skipjack | 500 | 4936 | 684 | 374 | 558 | 110 | 3892 | 3664 | 72 | 3853 |
| Albacore | 500 | 2220 | 503 | 25 | 385 | 40 | 1211 | 996 | | 1171 |
| Swordfish | 100 | 94 | 3 | 11 | 18 | 12 | 84 | 77 | | 91 |
| Striped Marlin | 100 | 82 | | 31 | | 4 | 45 | 40 | | 46 |
| Wahoo | | 329 | 28 | | 4 | | 287 | 251 | | 292 |
| Mahi Mahi | | 308 | | | | 17 | 276 | 214 | | 283 |
| Rainbow runner | | 328 | | | | | 320 | 253 | | 324 |
| Other\# | | 2242 | 51 | 82 | 2 | 33 | 1257 | 944 | | 1276 |

[^1]oilfish, short-finned and long-finned mako sharks, snake mackerel, pomfrets, trevallies, blue chub, oceanic white-tip shark, filefishes, batfishes, fangtooth, devil ray, sandbar shark, sergent major, tiger shark, alfonsinos, amberjack, anchovies, bigeye thresher shark, bronze whaler shark, bull shark, unicornfish, crocodile shark, flying gurnards, gemfish, hammerhead sharks, reef sharks and squids.
6. Australia has provided access to their quarantine and sample storage infrastructure through CSIRO. To date this has been an in kind contribution to the operation of the tissue bank however the longer term capability of CSIRO to provide this service as an in kind contribution is unknown.
7. The tissue bank is already accessed by the Science Services Provider for WCPFC and ten other organisations
8. SC10 scheduled bigeye growth analyses for 2015 and 2016. No resources were approved for this analysis in 2015. An indicative budget of USD50000 was set for 2016.

1 Background

The Western and Central Pacific Fisheries Commission (WCPFC) identified that information gaps in key biological parameters are reducing the reliability of current assessments and management measures for several large pelagic fish stocks in the Western and Central Pacific Ocean (WCPO). Recent analyses have demonstrated important spatial and temporal differences in the age, growth and reproductive biology's of tunas and billfishes which exert considerable influence on the estimation of fisheries reference points. To reduce these uncertainties they have prioritised the work programme of its scientific committee to undertake stock-wide studies on the age, growth and reproductive biology's of tunas and billfishes. This work programme commenced with the implementation of WCPFC Project 35 to collect otolith and gonad samples from bigeye tuna over their entire range in the WCPO.

This has subsequently been expanded to include the collection of other tissues (stomach, liver, muscle, spine, fin and blood) to create a complete tissue bank for WCPO tuna and billfishes. This expansion provides a resource for WCPFC to utilise a broad range of scientific methods such as genetic, isotope, trace element, fatty acid and stomach content to report upon trophic changes, tuna movement, stock provenance, food safety that assist with other aspects of the WCPFC-SC work programme. The largest impediment to implementing the WCPFC-SC work programme is often the lack of stock-wide samples for analyses. The establishment of the tissue bank removes this obstacle. It also generates greater efficiency for the observers involved in the collection as they are able to process fewer fish as the multiple tissue samples can come from the same individual. Additionally it adds analytical power as direct correlation between estimated parameters can be made at the level of the individual.

The European Union via implementation of its work programme for the European Maritime and Fisheries Fund has provided the financial resources to include yellowfin, skipjack, albacore, striped marlin and swordfish in the tissue bank.

The objective of this EU project is the development of a harmonised system of biological data collection and analysis in the WCPFC Convention Area. The specific objectives are:
(i) To establish a biological sampling network covering the whole WCPFC Convention Area through the participants to the WCPFC Regional Observer Programme (ROP) as indicated by 5% of active senior observer trained in biological sampling methods and procedures. The most critical steps to achieving this objective are the training and mobilisation of the sub-regional and national fisheries observer programmes. The WCPFC currently requires 100% observer coverage of purse seine trips and 5% of longline trips. The observer programmes provide the most cost effective method to collect the necessary samples with appropriate spatial and temporal coverage.
(ii) To establish a collection of stock-wide tuna and billfish hard part, gonad and soft tissue samples for analyses of age, growth and reproductive parameters collaboration with fisheries science institutes. Once collections have been established national and international fisheries research institutes can access these collections to undertake the necessary analyses to estimate spatial and temporal explicit age, growth and reproductive parameters for use in stock assessments.

The investment in training standards and initial investment in collection is also expected to establish biological sampling as a ROP observer core duty ensuring that the repository continues to develop without further external investment. The establishment of the repositories will also provide efficiency for relevant research organizations capable of undertaking laboratory analyses on tuna biology. These organizations would be able to focus all their attention to laboratory and data analyses. The guarantee of sample availability will also remove considerable risks for donor organizations that may fund these analyses and provide opportunities for cost savings through post-graduate research studies.

2 Infrastructure Development

The tissue bank has long-term storage facilities at SPC Headquarters in Noumea, New Caledonia and at CSIRO, Brisbane, Australia. These facilities are currently being provided in kind to the project by both organisations. Numerous short-term/staging storage facilities in the key ports of the WCPO have been established (see Table 2.1).

A central feature of the repository infrastructure is a relational database that catalogues the samples. Specific information includes sample number; all tissues that were collected from that individual; the condition of these samples; species and its measurements; all information on where each sample comes from and how and when it was collected; who collected the sample; the location(s) where it is currently stored, how it was transported and who transported it to its current location. Meta-data about the fishing/sampling trip that the sample came from is also included. A third aspect of the database catalogues the analysis of the samples. This includes a description of the laboratory analyses, WCPFC project number and the primary information derived from these analyses (e.g. sample weights, analyses performed and resulting estimates (e.g. age, reproductive status, chemical composition, etc) and who undertook the analyses and their contact details. Subject to the approval of the data dissemination protocols by the Scientific Committee of the WCPFC it is expected all data will be available to institutions or organizations responsible for providing scientific advice in fisheries through the web-accessible component of the database.

Table 2.1. Locations and storage capacity for the WCPFC Tuna Tissue Bank

Port	Country	Freezer Capacity	Comment
Noro	Solomon Islands	$15 \mathrm{~m}^{3}$ Blast freezer ($-30^{\circ} \mathrm{C}$)	Soltai
Honiara	Solomon Islands	$0.7 \mathrm{~m}^{3}\left(-18^{\circ} \mathrm{C}\right)$	Min. Fisheries and Marine Resources
Port Moresby	Papua New Guinea	$0.7 \mathrm{~m}^{3}\left(-18^{\circ} \mathrm{C}\right)$	National Fisheries Authority
Kavieng	Papua New Guinea	$0.7 \mathrm{~m}^{3}\left(-18^{\circ} \mathrm{C}\right)$	National Fisheries College
Rabaul	Papua New Guinea	$0.7 \mathrm{~m}^{3}\left(-18^{\circ} \mathrm{C}\right)$	National Fisheries Authority
Lae	Papua New Guinea	$0.7 \mathrm{~m}^{3}\left(-18^{\circ} \mathrm{C}\right)$	National Fisheries Authority
Madang	Papua New Guinea	$0.7 \mathrm{~m}^{3}\left(-18^{\circ} \mathrm{C}\right)$	National Fisheries Authority
Wewak	Papua New Guinea	$0.7 \mathrm{~m}^{3}\left(-18^{\circ} \mathrm{C}\right)$	National Fisheries Authority
Koror	Palau	$0.1 \mathrm{~m}^{3}\left(-18^{\circ} \mathrm{C}\right)$	Natural Resources, Environment, Tourism
General Santos	Philippines	$\begin{aligned} & 0.21 \mathrm{~m}^{3}\left(-18^{\circ} \mathrm{C}\right) \\ & 15 \mathrm{~m}^{3} \text { Blast Freezer }\left(-30^{\circ} \mathrm{C}\right) \end{aligned}$	Bureau of Fisheries and Aquatic Resources Well Delight Network Corporation
Kaohsiung	Chinese Taipei	$0.7 \mathrm{~m}^{3}\left(-18^{\circ} \mathrm{C}\right)$	Sun Yat-Sen University
Yaizu	Japan	$15 \mathrm{~m}^{3}\left(-18^{\circ} \mathrm{C}\right)$	National Research Institute of Far Seas Fisheries, Shimizu
Pohnpei	Federated States of Micronesia	$0.7 \mathrm{~m}^{3}\left(-18^{\circ} \mathrm{C}\right)$	Min. Resources and Development
Majuro	Marshall Islands	$\begin{aligned} & 0.7 \mathrm{~m}^{3}\left(-18^{\circ} \mathrm{C}\right) \\ & 15 \mathrm{~m}^{3} \text { Blast Freezer }\left(-30^{\circ} \mathrm{C}\right) \\ & 15 \mathrm{~m}^{3} \text { Blast Freezer }\left(-30^{\circ} \mathrm{C}\right) \\ & \hline \end{aligned}$	Marshall Is.Marine Resources Authority Marshall Islands Fishing Venture Pan Pacific Foods cold storage
Honolulu	USA	$10 \mathrm{~m}^{3}\left(-18^{\circ} \mathrm{C}\right)$	NOAA
Aiwo	Nauru	$0.15 \mathrm{~m}^{3}\left(-18^{\circ} \mathrm{C}\right)$	Fisheries and Marine Resources Authority
Tarawa	Kiribati	$15 \mathrm{~m}^{3}$ Blast Freezer ($-30^{\circ} \mathrm{C}$)	Kiribati Fish Limited
Papeete	Polynesie francais	$0.7 \mathrm{~m}^{3}\left(-18^{\circ} \mathrm{C}\right)$	Ressources marine et minieres
Pago Pago	American Samoa	$0.5 \mathrm{~m}^{3}\left(-18^{\circ} \mathrm{C}\right)$	Min. Marine and Wildlife Resources
Apia	Samoa	$0.5 \mathrm{~m}^{3}\left(-18^{\circ} \mathrm{C}\right)$	Min. Agriculture and Fisheries
Suva	Fiji	$0.7 \mathrm{~m}^{3}\left(-18^{\circ} \mathrm{C}\right)$	Min. Fisheries and Forests
Port Villa	Vanuatu	$0.2 \mathrm{~m}^{3}\left(-18^{\circ} \mathrm{C}\right)$	Min. Agriculture, Livestock, Forestry, Fisheries Biosecurity
Noumea	Nouvelle Caledonie	$5 \mathrm{~m}^{3}\left(-18^{\circ} \mathrm{C}\right)$	SPC
Brisbane	Australia	$20 \mathrm{~m}^{3}$ Blast Freezer $\left(-30^{\circ} \mathrm{C}\right)$	CSIRO

To simplify the sampling numbering system as much as possible the WCPFC ROP Observers are issued with biological sampling kits that include sample tags that are already numbered (see Figure
2.1). The database tracks the distribution of kits and sample tags allowing the coordinators of the repository to ascertain the status of sampling supplies allocated to each ROP Observer and to ensure that regional observer offices have sufficient stock to replenish observer supplies.

Figure 2.1. Photos of the cable tie tag that is issued to observers with unique numbers on them.
Biological sampling kits contain data sheets, pencils, knives, saws, cutters, cable tags, sample jars and bags, and instructions (see Figure 2.2 and Appendix 1 for Instructions Sheet)

Figure 2.2. Examples of the equipment and supplied provided to observers in the biological sampling kits.

3 Observer Training Standards

Standards for training of observers in biological sampling have been prepared and submitted for acceptance into the PIRFO training standards. A training manual has also been prepared (see Appendix 2).

PIRFO Draft Competency Standards

PIRFO 3-6.05 Evidence and Assessment Guide

```
Context and Method of assessment
Assessment is to be conducted at the workplace or in a simulated workplace environment.
The following assessment methods are suggested:
- practical exercises
- written or oral short answer testing
- observation of practical demonstration.
Resources for assessment may include:
- fish samples
- sampling protocols specified by the Regional Observer Program
```


Underpinning knowledge

```
Candidates are required to demonstrate general knowledge of sampling programs in place regionally in Pacific fisheries and the roles of fisheries observers in relation to these sampling programs.
Candidates need to be able to correctly identify the internal organs of fish species that are the target of these sampling programs
```

Learning Outcome	Evidence Guide
1. Demonstrate knowledge of established sampling programs employed in regional Pacific tuna fisheries	Candidates should be ware of port sampling initiatives and the type of information collected in such programs. They should also be aware of regional tagging programs and the ways in which information from tagging programs is used
2. Show awareness of fisheries observer roles and tasks in relation to regional sampling programs	Candidates should be familiar with the roles of fisheries observers in relation to sampling programs. This includes: the requirements for fish tag reporting and recording t sampling programs for stomach contents collection otilith and other hard part identification and removal tissue sampling. Candidates should also demonstrate an understanding of the
importance of sampling program protocols and accurate record	
keeping.	

Practical skills

The essential skills a person needs to perform work to the required standard include:

- The ability to correctly dissect selected species and remove selected body parts
- The ability to record data and store samples in accordance with agreed protocols

Literacy skills used for:

- Interpretation of information about sampling programs
- Collection of data and information
- Accurate completion of forms

Numeracy skills used for:

- Recording data

Critical aspects of evidence

Assessment must confirm an ability to:

- Record the information required for a tagging or sampling program
- Correctly identify the sex of selected species of fish
- Dissect a fish to identify and remove key organs

Assessment must confirm awareness of:

- The main sampling and tagging programs of Pacific fisheries
- How sampling and tagging information is used and why it is important
- Characteristics of key intemal body parts of selected species

4 Observer Training

Senior observers that remain active in the WCPFC ROP and within National Programs have been identified and provided with training in biological sampling, including fish hard part extraction, tissue sampling, gonad sampling and data recording. Training has also included sample handling and transportation. A total of 419 Observers have been trained which exceeds the target of 5%. This provides a sufficient number of observers for the collection of samples over the spatial domain of the WCPO and ensures that observers can be deployed on the appropriate vessel trips to implement a variety sampling strategies to meet WCPFC-SC requirements. Table 4.1 provides a summary of the observer training by nationality.

Table 4.1 Summary of observers trained in biological sampling by nationality

Country	Nb of OBS	Country	Nb of OBS
Cook Islands	3	Papua New Guinea	69
Fiji	31	Palau	12
Federated States of Micronesia	48	Solomon Islands	52
Kiribati	47	Chinese Taipei	33
Marshall Islands	39	Tonga	13
Nauru	9	Tuvalu	9
Nouvelle Caledonie	1	Vanuatu	25
Polynesie francais	5	Samoa	23

5 Sample Collections

Samples are being collected by national "at sea" and "port" observers across the WCPO. Observers are collecting to a strategy that minimizes the number of samples per set and maximizes sampling across sets and trips to avoid confounding of samples. Opportunistic sampling on scientific cruises has also been undertaken.

The provisional total WCPFC tissue bank holdings for 2015 were 19,579 individuals (Table 5.1). This comprised 6,081 yellowfin, 4,936 skipjack, 2,959 bigeye, 2,220 albacore, 94 swordfish and 82 striped marlin. The table below summarises the tissue samples per species. These figures do not include samples waiting cataloguing. The quantity and details of these samples has not yet been verified due to the extended length of some observer trips or their requirement to complete consecutive trips and the biological sampling information not yet submitted by the observer.
Table 5.1. Summary of the holdings in the WCPFC Tuna Tissue Bank

| Species | Quantity | | Hard-parts | | Reproduction | | Multi-purpose | | Diet | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | Target* | Curated | Otoliths | Spines | Gonads | Blood | Muscle | Liver | Fin | Stomach |
| Bigeye | 1000 | 2959 | 1698 | 203 | 1824 | 97 | 2353 | 1362 | 10 | 1499 |
| Yellowfin | 500 | 6081 | 2211 | 494 | 2434 | 131 | 4899 | 3694 | 79 | 4006 |
| Skipjack | 500 | 4936 | 684 | 374 | 558 | 110 | 3892 | 3664 | 72 | 3853 |
| Albacore | 500 | 2220 | 503 | 25 | 385 | 40 | 1211 | 996 | | 1171 |
| Swordfish | 100 | 94 | 3 | 11 | 18 | 12 | 84 | 77 | | 91 |
| Striped Marlin | 100 | 82 | | 31 | | 4 | 45 | 40 | | 46 |
| Wahoo | | 329 | 28 | | 4 | | 287 | 251 | | 292 |
| Mahi Mahi | | 308 | | | | 17 | 276 | 214 | | 283 |
| Rainbow runner | | 328 | | | | | 320 | 253 | | 324 |
| Other\# | | 2242 | 51 | 82 | 2 | 33 | 1257 | 944 | | 1276 |

*as specified in the agreement with the European Maritime and Fisheries Fund
\#includes lancetfishes, kawakawa, blue marlin, frigate and bullet tuna, moonfish, black marlin, escolar, spearfish, barracudas, mackerel scad, triggerfishes, blue shark, pelagic stingray, manta ray, silky shark, sailfish, Spanish mackerel, oilfish, short-finned and long-finned mako sharks, snake mackerel, pomfrets, trevallies, blue chub, oceanic white-tip shark, filefishes, batfishes, fangtooth, devil ray, sandbar shark, sergent major, tiger shark, alfonsinos, amberjack, anchovies, bigeye thresher shark, bronze whaler shark, bull shark, unicornfish, crocodile shark, flying gurnards, gemfish, hammerhead sharks, reef sharks and squids.

5.1 Bigeye

The distribution of bigeye samples by tissue type is provided in Figure 5.1.1. The rate of sampling of bigeye from the central Pacific region is low. The sampling for stomach, liver and muscle is distributed more broadly across the WCPO than otolith and gonad sampling. The length frequency by tissue type is provided in Figure 5.1.2 and bigeye sampling by gear in Figure 5.1.3.

Figure 5.1.1. Distribution of bigeye: A. otolith samples (top left panel); B. gonad samples (top right panel); C. muscle samples (bottom left panel); and D. stomach and liver samples (bottom right panel).

A. otoliths

C. muscle

B. gonads

D. stomach and liver

Figure 5.1.2. Length frequency of bigeye individuals sampled for: A. otolith samples (top left panel); B. gonad samples (top right panel); C. muscle samples (bottom left panel); and D. stomach and liver samples (bottom right panel).

Figure 5.1.3. The percentage of bigeye individuals sampled by capture gear.

5.2 Yellowfin

The distribution of yellowfin samples by tissue type is provided in Figure 5.2.1. The rate of sampling of yellowfin from the central Pacific region is low. The sampling for stomach, liver and muscle is distributed more broadly across the WCPO than otolith and gonad sampling. The length frequency by tissue type is provided in Figure 5.2.2 and yellowfin sampling by gear in Figure 5.2.3.

Figure 5.2.1. Distribution of yellowfin: A. otolith samples (top left panel); B. gonad samples (top right panel); C. muscle samples (bottom left panel); and D. stomach and liver samples (bottom right panel).

Figure 5.2.2. Length frequency of yellowfin individuals sampled for: A. otolith samples (top left panel); B. gonad samples (top right panel); C. muscle samples (bottom left panel); and D. stomach and liver samples (bottom right panel).

Figure 5.2.3. The percentage of yellowfin individuals sampled by capture gear.

5.3 Skipjack

The distribution of skipjack samples by tissue type is provided in Figure 5.3.1. The rate of sampling of skipjack from the central Pacific region is low. The sampling for stomach, liver and muscle is distributed more broadly across the WCPO than otolith and gonad sampling. The length frequency by tissue type is provided in Figure 5.3.2 and skipjack sampling by gear in Figure 5.3.3.

Figure 5.3.1. Distribution of skipjack: A. otolith samples (top left panel); B. gonad samples (top right panel); C. muscle samples (bottom left panel); and D. stomach and liver samples (bottom right panel).

A. otoliths

C. muscle

B. gonads

D. stomach and liver

Figure 5.3.2. Length frequency of skipjack individuals sampled for: A. otolith samples (top left panel); B. gonad samples (top right panel); C. muscle samples (bottom left panel); and D. stomach and liver samples (bottom right panel).

Figure 5.3.3. The percentage of skipjack individuals sampled by capture gear.

5.4 Albacore

The distribution of albacore samples by tissue type is provided in Figure 5.4.1. The rate of sampling of albacore from the south central Pacific region is low. The sampling for stomach, liver and muscle is distributed more broadly across the WCPO than otolith and gonad sampling. The length frequency by tissue type is provided in Figure 5.4.2 and albacore sampling by gear in Figure 5.4.3.

Figure 5.4.1. Distribution of albacore: A. otolith samples (top left panel); B. gonad samples (top right panel); C. muscle samples (bottom left panel); and D. stomach and liver samples (bottom right panel).

Figure 5.4.2. Length frequency of albacore individuals sampled for: A. otolith samples (top left panel); B. gonad samples (top right panel); C. muscle samples (bottom left panel); and D. stomach and liver samples (bottom right panel).

Figure 5.4.3. The percentage of albacore individuals sampled by capture gear.

5.5 Swordfish

The distribution of swordfish samples by tissue type is provided in Figure 5.5.1. The length frequency by tissue type is provided in Figure 5.5.2. All swordfish have been sampled from individuals caught on longline gear.

Figure 5.5.1. Distribution of swordfish: A. muscle samples (left panel); and B. stomach and liver samples (right panel)

Figure 5.5.1. Length frequency of swordfish individuals sampled for muscle (left panel) and stomach and liver (right panel).

5.6 Striped Marlin

The distribution of striped marlin samples by tissue type is provided in Figure 5.6.1. The length frequency by tissue type is provided in Figure 5.6.2. All striped marlin have been sampled from individuals caught on longline gear, except for 3 individuals that were caught by purse-seine gear.

Figure 5.6.1. Distribution of striped marlin: A. muscle samples (left panel); and B. stomach and liver samples (right panel)
A. muscle

B. stomach and liver

Figure 5.6.1. Length frequency of striped marlin individuals sampled for muscle (left panel) and stomach and liver (right panel).

6 Tissue Bank Access

6.1 WCPFC Tissue Bank Access Protocols

Making samples available to third party organisations for analyses maybe an option that the Scientific Committee pursues to fast track the analyses. The following protocols for accessing the tissue bank for subsequent laboratory and data analyses by third party organisations has been drafted for adoption by the WCPFC-SC. A further purpose of the protocols is to define a process for occasion when two or more organisation or WCPFC projects request access to the same samples at the same time.

Background

1. The WCPFC has established a tissue bank of biological samples collected from pelagic species in the WCPO for the purposes of life history studies to advance fisheries management in the WCPO. The bank contains otoliths, spines, gonads, liver, muscle, stomach and blood from tuna, billfish and other pelagic species.
2. The purpose of this document is to specify the rules for scientific researchers to access these samples for the purpose of scientific study.

Rules and Procedures
3. Applications to access samples from the tissue bank must include:
a. Project Name and Objectives
b. WCPFC Scientific Committee Project Number or recommendation if these exist
c. Specification of the samples to be withdrawn from the bank (number, type, species, any location/sex/date limits, etc.)
d. The methods for processing and analyses
e. Past contributions to the tissue bank by researcher or CCM
f. Intended collaborations
g. Timelines and intended outcomes and reporting
4. It will be a requirement of the researcher or CCM to provide an annual report to WCPFC's Scientific Committee on progress of the study. This must include documentation of raw and analysed results, however this does not imply a requirement for this data to be publicly available. The report must follow WCPFC standards and must include method description and meta data. All data will become publicly available 5 years after WCPFC Secretariat determines the project analyses are complete or at WCPFC's discretion.
5. Where sample size is small for particular spatial or temporal sectors, consideration may be given to the sequencing of analyses such that those which involve the samples being destroyed or modified are undertaken last. For example otolith weight and morphometric analyses may be prioritised before sectioning, which may be prioritised before chemical analyses.
6. Where the analyses involves the preparation of secondary products such as sectioned otoliths and histological slides these products are to be provided to the WCPFC at the completion of the study for future comparative reference and study.
7. Researchers or CCM's must acknowledge the WCPFC tissue bank in any publication of results from the study undertaken.
8. The selection and approval of projects will be determined by a "Biological Sampling" subcommittee of the WCPFC Scientific Committee. Membership of this committee will include: WCPFC Science Manager (or delegate), WCPFC Scientific Services Provider, WCPFC SC Stock Status Convener (or delegate), WCPFC SC Ecosystems and Bycatch Mitigation Convener (or delegate), WCPFC SC Research Committee Chair (or delegate). This committee may meet within the margins of WCPFC meetings or electronically. This sub-
committee will prepare and submit a summary of their decision on each project proposal to the WCFPC Executive Director. The project approval process will consider, inter alia, the following:
a. Preferential access to the tissue bank will be given to researchers or WCPFC CCM's who have contributed samples to the collection.
b. Preferential access to the tissue bank will be given to collaborative projects with priority to those where the collaboration includes several WCPFC CCMs.
c. Priority will be given to request that are part of the WCPFC Scientific Committee's research and work plan and those projects whose spatial scale is regional in preference to local.
d. Past participation with those who acknowledge the source of the samples and provide interim products as required above given priority.
9. Once approval for access to samples from the tissue bank has been provided by the "Biological Sampling" sub-committee the researcher/CCM will enter into a formal agreement with the Secretariat of the WCPFC that will specify access requirements, reporting and any data confidentiality that the WCPFC may require.
10. A reasonable fee may be charged for the cost associated with preparing the samples for shipping and cost recovery for freight or transport agent fees.

6.2 Web Accessibility

Web-based tools have been drafted to allow WCPFC members to track the collection of samples. These include interactive maps where the user can obtain information on the number, type, species and length classes of samples collected from particular EEZ and high seas areas (see Figure 6.2.1). An on-line query system is also included to allow more detailed information on each sample to be viewed (e.g. date and location of sample and types of samples taken from the individual, sample quality; see Figure 6.2.1). The web tool is currently available from http://www.spc.int/tagging/webtagging/BioDaSys/BioDaSys/Samples.

Figure 6.2.1 Web query tool for the WCPFC Tuna Tissue Bank
The on-line query tool has been accessed by over 1550 unique users from all over the world. The vast majority since February 2015.

6.3 Tissue Bank Projects/Requests

Table 6.3.1 outlines the projects that are currently accessing the tissue bank for WCPFC work.
Table 6.3.1. List of projects that have previously or currently access the WCPFC Tuna Bank.

Project Description	Samples Used	Technique	Organisation	$\begin{aligned} & \text { WCPFC-SC } \\ & \text { Project No } \end{aligned}$
Age and Growth				
Bigeye Growth Curves	Otolith	Ageing	SPC CSIRO Sun Yat-Sen University	35
Albacore Growth Curves	Otolith	Ageing	$\begin{array}{r} \text { SPC } \\ \text { CSIRO } \end{array}$	39
Swordfish Growth Curves	Otolith/Spines	Ageing	CSIRO	71
Reproductive Biology				
Bigeye Maturity Ogives	Gonads	Histology	SPC CSIRO	35
Albacore Maturity Ogives	Gonads	Histology	$\begin{array}{r} \text { SPC } \\ \text { CSIRO } \end{array}$	39
Albacore Reproductive Biology	Gonads	Histology	$\begin{array}{r} \text { SPC } \\ \text { CSIRO } \end{array}$	39
Trophic dynamics				
Ecosystem Effects of Fishing	Stomach Muscle Survey	Diet Analyses DNA metabarcoding Taxonomy Fatty Acid	SPC University Canberra Curtin University CSIRO	37, 46
FAD impacts on trophic dynamics	Muscle Liver	Isotope	SPC University Southampton	37
Ecosystem and species Biogeography	Stomach	Diet Analyses	$\begin{array}{r} \text { SPC } \\ \text { University of Tokyo } \end{array}$	TBP
PNG Long-term Climate Monitoring	Stomach e-DNA	Diet Analyses DNA metabarcoding	$\begin{array}{r} \text { SPC } \\ \text { University Canberra } \\ \text { Curtin University } \end{array}$	TBP
SEAPODYM	Stomach e-DNA	Diet Analyses DNA metabarcoding	SPC University Canberra Curtin University	62
Movement				
South Pacific Albacore	Otolith	Trace Element	SPC	38
Spatial Variations in concentrations of metal contaminants in food webs of the South Pacific Ocean	Muscle Blood	Isotopes \& Mercury	IRD/SPC	TBP
Stock Provenance				
Indonesia-west Pacific tropical tuna stock structure	Fin	DNA - Microsatellite	CSIRO	TBP
Global tropical tuna stock structure	Fin	DNA - NGS	University Bologna	TBP
Albacore	Muscle	DNA - mitochondrial	AZTI	TBP
Food Safety				
Spatial Variations in concentrations of metal contaminants in food webs of the South Pacific Ocean	Muscle Blood	Mercury Accumulation	IRD/SPC	TBP
Marine plastic pollution and seafood safety	Stomach	Composition	CSIRO	TBP

*TBP = To Be Provided

7 Monitoring, Evaluation and Learning

7.1 Monitoring and Evaluation

The expected result from the project was to establish an ongoing program of biological samples collection that will reduce uncertainties in biological parameters used in stock assessments of tuna and billfish in the WCPO. Table 7.1 provides a summary of the project achievements to date.

Deliverables/Benchmark	Target	Progress
ROP senior observer training	Adopted ROP Training Standards	Drafted
Biological Sampling Network	5\% of senior ROP observers trained and collecting samples	Exceeded
Repository of pre-processed biological samples	1000 bigeye 500 yellowfin 500 skipjack 500 albacore 100 swordfish 100 striped marlin	Exceeded (2959) Exceeded (6081) Exceeded (4936) Exceeded (2220) On track (94) but low otolith/gonad On track (82) but low otolith/gonad
Outcomes		
Tissue bank accessed by Fisheries Researchers to estimate growth curves for tuna and billfish species (by region in case spatial differences are detected)		Analyses for bigeye in 2016 SC budget
Tissue bank accessed by Fisheries Researchers to estimate reproductive output for tuna and billfish species by age class		Analyses for bigeye in 2016 SC budget
Stock Assessment Scientists accessing results stored on tissue bank to include in stock assessment models		Data accessed for 2015 South Pacific albacore assessment and 2015 Pacific wide bigeye assessment.
Repository accessed by Fisheries Researchers to estimate other parameters of interest for the WCPFC		Tissue bank accessed by 10 different research organisations

7.2 Learning

The project has developed the capacity within the National and sub-regional observer programs to implement the biological sampling needs of the Scientific Committee and the existing infrastructure is providing sufficient capacity to coordinate the placement of observers the resources. The timeframe needed for National and sub-regional observer programs to fully participate in biological sampling activities can take between 12-18 months.
The existing collaborative links between CCMs have been strengthened.
Additional resources are required to assist with coordinating the transfer of samples from the observer to storage facilities.
Ongoing resources are needed to maintain the tissue bank infrastructure.

Appendix 1. Sampling Instructions

How to collect biological samples on longline vessels ?

STEP 1 Place the cable tie with labels around the mouth of the fish, once it is attached gently pull on it to make sure it will hold.

STEP 2 When the fish is gilled and gutted put aside the guts. Cut $4-5 \mathrm{~cm}$ of the liver, about the size of a finger.

STEP 3 Place the liver +1 label inside a small plastic bag.

STEP 4 Cut the stomach away from the digestive system.

STEP 5 Cut the oesophagus as close as possible to the gills.

STEP 6Place the stomach +1 label inside the big plastic bag.

STEP 7Find the gonads of the fish, if it is not with the guts, it is inside the belly of the fish towards the backbone.

STEP \& Remove slowly the gonads. Check inside the fish again to be sure that you collected the entire gonad.

STEP 9 Place the 2 gonads +1 label inside a plastic bag.

STEP 10 Roll up together all the samples
coming from a fish. Store rapidly the samples in a freezer.

STEP 11 Fill-in the biological sampling form. Use comment section if necessary.

How to collect biological samples on purse seine vessels?

STEP 2 Remove the top of the head using a saw or a knife. If needed remove the head of the fish from the rest of the body. Stabilized the head on the floor. Cut straight down on top of the eye.

STEP 3 Place the head towards you. Remove the brain with the back end of the tweezers. Do not forget to use the tweezers in a lateral position.

STEP 4 Remove the membrane around the otoliths, clean and dry them Place them in a vial with the cable label (no need of water, or alcool).

If you cannot remove at least 1 otolith, do not continue to collect other samples. Stop and sample another fish. Remove the cable tie label.

STEP 5 Open the fish's body carefully with the tip of the knife to avoid cutting internal organs.

STEP 6 Cut a $4-5 \mathrm{~cm}$ sample of muscles near the anus or on the back of the fish.

STEP 9 Cut the oesophagus as near as possible from the gills.

If Place the stomach +1 label inside the big plastic bag

STEP 11 Cut a $4-5 \mathrm{~cm}$ sample of liver, place the liver +1 label in side a small plastic bag.

STEP 12 Find the gonads of the fish, if it is not with the guts, it is inside the belly of the fish towards the backbone.

STEP 13 Place the all gonads
+1 label inside a plastic bag. If the gonads are broken put all the pieces together.

STEP 14 Fill-in the biological sampling form. Note in the comment section if the fish was

STEP 15 Roll up together all the samples coming from a fish. Store rapidly the samples in a freezer. Keep the otoliths in your cabin with other vials

Appendix 2. Observer Training Module for Biological Sampling

Training Guidelines for Delivering: Biological sampling, Tag Recovery and Tag Seeding Competency Units

The Biological Sampling, Tag Recovery and Tag Seeding are competency units part of the Pacific Island Regional Fisheries Observer Certification and Training Standards

Secretariat of the Pacific Community
Oceanic Fisheries Programme
BP D5-98 848 Noumea CEDEX
New Caledonia
Tel: +687262000
Fax: +6872638 18
Web sites:
www.spc.int/oceanfish
http://www.spc.int/oceanfish/en/ofpsection/fisheries-monitoring/observers

All rights reserved SPC August 2015

Contents

INTRODUCTION 1
TRAINING PREPARATION 1
Theory teaching 1
Practical teaching 2
Equipment Check list4
A. THEORY COMPONENT 7

1. PowerPoint presentations 7
1.A General biological sampling 7
1.B Tagging projects 7
1.C Trophic dynamics project Error! Bookmark not defined.
1.D Tag seeding project 8
1.E The bigeye and yellowfin tuna growth and reproduction study Error! Bookmark not defined.
2. Training in filling in forms 8
2.A Biological sampling form scenarios 8
2.B Tag recovery form scenarios 9
2.C Tag seeding log release form scenarios 10
3. Review 10
B. PRACTICAL COMPONENT 11
4. Labelling and storing fish and samples 12
4.A Cable-tie labelling 12
4.B Storing stomach, muscles, liver, gonads and dorsal spine 12
4.C Storing otoliths 13
5. Extraction of stomach, muscle, liver, gonads and dorsal spine for sampling 13
5.A Gilling and gutting techniques 13
5.B Stomach sampling 14
5.C Liver sampling 14
5.D Muscle sampling 14
5.E Gonads sampling 14
5.F Dorsal spine sampling 14
6. Sex determination 15
7. Extraction of otoliths 15
7.A Saw method 15
7.B Cutters method 15
7.C Drilling method 16
8. Tagging 16
8.A Conventional tagging 16
8.B Tag seeding deployment 16
8.C Tag removal technique 17
9. Callipers 17
10. Tools maintenance 17
C. SKILLS ASSESSMENT MODULES 18
11. Not scored assessment 18
11.A Biological sampling assessment 18
11.B Tagging project assessment 20
12. Final assessment 21
12.A The biological sampling assessment 21
12.B Tagging project assessment 22
13. Reassessment 22
13.A Biological sampling assessment 22
13.B Tagging project assessment 22
14. Marking assessments 23
14.A Biological sampling assessments 23
14.B Tagging project assessments 24
14.C Revision of assessment results 24
15. Training Feedback to SPC 24
15.A Writing a report 24
16. B Training schedule 25
15.C Assessments 25

Introduction

The purpose of these guidelines is to provide advice and a training plan to deliver the biological sampling and tagging project modules to Pacific Islands Regional Fisheries Observers (PIRFOs) during national, regional and sub-regional training workshops. This document is your guide to:
i. training PIRFOs in theoretical and practical techniques: (1) collecting biological samples from tuna and bycatch species, (2) reporting tag recoveries and (3) secretly deploying seeded-tags.
ii. scheduling training according to the modules available and the projects undertaken by the Secretariat of the Pacific Community.
iii. assessing the trainees' understanding and ability to carry out these tasks with a view to award a certificate of competency.

Training preparation

The biological sampling and tagging training is part of the overall observer course run by the lead trainer, as a team you need to discuss the schedule for delivery with him or her. You should inform the lead trainer that your schedule is based on the maximum number of fish being available. This part of the preparation needs to be done at least a few weeks in advance of the training.
The training schedule starts with the classroom sessions and then moves on to the practical work. For each activity on the schedule, refer to the relevant module in this guide for information.
You need to organise the teaching documents needed. These include the PowerPoint presentations, the printed biological sampling and tagging guides, the forms, the scenarios and the assessments. You will need to check where the most practical place to print these documents is, or who could do it for you.
The preparation for practical training, including obtaining fish heads and whole fish, securing a place to work and having the right tools, is described below. This is important and you should be prepared well in advance.
The materials needed for both theory and practical sessions are listed in the equipment check list below. It is very important that you uses this check list (print it) to make sure that nothing is forgotten (particularly in terms of transporting and organising materials).

Theory teaching

Make sure that a laptop computer with MS Office is available to deliver the PowerPoint presentations. Generally, if you don't have a personal laptop, one of the other trainers might have one that you could borrow. Check in advance that the laptop will not be wanted at the same time as you want it.
Before starting a presentation:

- load the presentation onto the computer and make sure it works properly;
- make sure that the computer can be plugged into the video projector and that it works (focus and size);
- check that the videos work properly (that you have the right player) with the presentations and that slides' animations run smoothly.
- have the folder containing the videos ready so you can play the appropriate video when the slide "video" comes up. Make sure the videos illustrating the sampling techniques can be played on the computer being used.

Practical teaching

The practical teaching is dependent on the number of fish heads and whole fish which can be obtained. One of your responsibilities is to organise with the issues relevant to the practical well in advance.

- Finding a training area for the practical which:
- is sheltered from the sun and rain;
- has a power plug;
- has a water supply, drains, access to a hose and can be easily cleaned;
- is located so the work does not cause any inconvenience to others.
- has a quiet environment to facilitate teaching guidance
- Organising the collection of enough fish heads and whole fish.
- Make contact with fishing companies and staff of local fisheries authorities at least 1 month ahead of time.
- In some countries it is difficult to find fish for the training; you may need to pay for the heads and/or fish. If this is the case, you should ask for receipts and file a reimbursement claim after the training.
- Organise a freezing facility to store the fish heads and whole fish. Freezers are available with fisheries contacts at:

NORMA (Pohnpei); MIMRA (Majuro); Koror (Palau); Suva (Fiji) ; FTC Tarawa (Kiribati) and NFC Kavieng (PNG)

- The number of heads you need depends on how many trainees attend the training. Always try to get more heads than you need to allow the trainees to get plenty of practice.
You will need a minimum of one head per trainee for each of the three methods for otolith extraction plus one for yourself. For example: if you have 12 trainees you will need 13 small heads, 13 medium heads and 13 large heads $=39$ heads. Try to get 60 !
- The drilling method requires large tuna heads
- The cutters method requires medium heads
- The saw method requires small heads

Table showing the head size required to train for each method. Note that the saw method can be used on any size head really, but the bigger ones should always be kept for practicing the cutters and drilling methods.

Head size for (extraction method)	Head Length		UF Length	
	$\underline{\text { Min }}$	$\underline{\text { Max }}$	$\underline{\text { Min }}$	$\underline{\text { Max }}$
Large (Drill)	30 cm	$\underline{40 \mathrm{~cm}}$	96 cm	128 cm
Medium (Cutters)	25 cm	35 cm	80 cm	112 cm
Small (Saw)	20 cm	25 cm	64 cm	80 cm

IMPORTANT:

There are a few ways to obtain fish heads and whole fish, either from a purse seiner, a long liner or from a processing plant.

- If the head is obtained from a whole fish given by a purse seiner then time should be allocated to remove the heads and gill them so they ready to be used for practice. Trainees are not expected to do this preparatory work, especially if there is a lot of fish. If you can't to do it yourself or don't have the time, you can ask or even contract someone to do it.
- When getting your fish heads from a processing plant, ensure that they are cut correctly so that the otic capsules are not damaged. To ensure this, at leasr the first three vertebrae (back bones) must be included with the head. You must make absolutely sure that this message is understood. You could give pictures to the people who are providing the heads so that they are aware of what you need. If you are not collecting the heads yourself, make sure that you check the heads that are collected in good time to resolve any problems or, if you cannot be there yourself, get somebody who knows what is required to check.
- One whole fish per trainee is sufficient. When asking for whole fish, tell the provider that the fish MUST NOT BE gilled and gutted.
- Allow time before the practical for the heads/fish to defrost. On the day before the practical, take them out of the freezer and leave them to defrost overnight.
- Use some large rice bags to place the fish/heads in so that there are not too many flies around. Make sure the bags are placed somewhere where dogs cannot reach them.
- When in contact with local fisheries staff, never assume everything is going to be all right. Even if someone tells you: No problems; we can do it, keep reminding them until you can see for yourself that the heads and fish have been placed in a freezer or that there is a vessel scheduled to unload heads/fish that can be used for the training.
- If necessary, ask your contacts to think about getting fish from the market, or you can do so when on site if no heads/fish are stored in advance.
- Organise extraction tools
- Carry your own biological sampling training kit (and keep it clean and in working order).
- If you do not have a drill of your own, arrange for one to be lent to you in the country you will be travelling to. Organise this in advance.
- Make an inventory of your tools after every training session to make sure they are all there and in working order.
- When you arrive in the country, buy a can of spraying lubricant, such as WD40, to spray the tools after each practical. Note: You will not be allowed to transport these aerosol cans on the plane for security reasons.
- You also need to plan when the practical will take place. Once you know this, let the trainees know and advise them to wear old clothes that day as they will probably get dirty.

Equipment Check list

The check list allows you to make sure you have all the equipment needed for delivering the theory and practical sessions. Print a copy of this list and write OK when you have gathered the equipment or organised it. The list is based on 15 trainees attending, which is generally the maximum. If there are more than 15 trainees, increase the number of items. If there are fewer than 15 trainees, bring back any items you did not use for the next training.

Items	Quantities for 15 trainees	Check OK
Extracting equipment		
Knife	3	
Saw	3	
Nail removers	3	
Side cutters/pliers	3	
Tweezers	3	
Power drill	1	
Drill tightner (if not provided with drill)	1	
Drill hole saw 38 mm	1	
Drill hole saw 44 mm	1	
Extension cord	1	
Power adaptor	1	
Sampling equipment		
Cable-tie labels (with 5 labels)	50	
Small bags	20	
Medium bags	40	
Large bags	20	
Vials	16	
absorbent paper	1 roll	
Water container	1	
Tagging equipment		
Seeding tags	25	
Tag seeding applicator	1	
Conventional tag	16	
Conventional tag applicator	1	
Teaching equipment		
General biological sampling presentation	1	
Trophic dynamics presentation	1	
YFT/BET reproductive biology presentation	1	
Tagging project presentation	1	
Tag seeding presentation	1	
Tagging project review	1	
Biological sampling review	1	
Biological sampling guide (printed)	16	
Biological sampling forms (printed)(scenario and practical)	32	
Biological sampling teaching cards (paper fish)	18	
Tag recovery manual (printed)	16	
Tag seeding guide (printed)	16	
Tag recovery scenarios (printed)-3 scenarios	16	
Tag recovery scenarios \#1 correction	16	
Tag recovery scenarios \#2 correction	18	

Tag recovery scenarios \#3 correction	18	
Tag recovery forms (for scenario) (printed)	50	
Tag seeding scenarios (printed)-2 scenarios	35	
Tag seeding scenarios (printed)-corrections	3	
Tag seeding logsheet (printed)	35	
Tag recovery envelopes	20	
Tagging posters-English	20	
Assessment equipment		
Biological sampling assessment \# 1 (printed)	18	
Biological sampling assessment \# (printed)	10	
Biological sampling assessment corrections \#1 (printed)	3	
Biological sampling assessment corrections \#2 (Printed)	3	
Assessment equipment		
Tagging project assessment \# 1 (printed)	18	
Tagging project assessment \# 2 (printed)	10	
Tagging project assessment corrections \#1 (printed)	3	
Tagging project assessment corrections \#2 (printed)	3	
Hardware equipment		
USB stick	1	
Stationery		
Red pen for correcting	1	
Large black permanent marker	1	
Highlighter pens	1	
Notebook for report	1	
plastic sleeves for attaching document on esky (if samples)	2	
Transport equipment		
Gel packs	10	
Duct tape	2	
Esky/cooler	1	
Permits for samples collection	3	
AQIS import permit	3	
NC import permit	3	
CSIRO letter	3	
SPC letter (certificate of origin)		
Keep frozen sign	3	

A. Theory Component

1. PowerPoint presentations

The PowerPoint presentations are the main tools used to deliver the information about established scientific programmes. There is a general presentation, which provides knowledge of the techniques used in biological sampling. Tow presentations illustrate the tagging projects. Finally, two review presentations are used as refresher before the final assessments.
Some presentations are linked to videos.
Equipment shown in the PowerPoint slides can be passed around for the trainees to look at (e.g. cable-ties, tags, forms).

To ensure you have the attention of the trainees throughout the session, give them a break at some stage. Judge their level of attention to decide when a break is appropriate.
Before the start of each presentation as well as during the presentation, encourage trainees to ask questions.

1.A General biological sampling

This presentation is an overview of biological sampling standards. It will take about one and a half hours to present.
The general biological sampling presentation shows why biological samples are needed and how they are used. Most importantly, this presentation describes how the samples are collected and how the data are recorded.
Some of the slides in this presentation are animated so that trainees are taken step by step through various protocols.
The videos linked to this presentation are:

- otolith sampling
- saw technique
- cutters technique
- drilling technique
- dorsal spine sampling
- removal of the first dorsal spine.

1.B Tagging projects

Before the presentation, distribute the tag recovery forms and the tagging posters to the trainees.

This presentation shows SPC's tagging projects.
It covers the background of the tagging projects, the type of tags used and the recovery forms. Pay particular attention to the recovery form and be sure that all the data fields are explained step by step. It is recommended that you refer to Tag recovery manual for fishing vessels /carriers and to the page related to each subject. While the trainees listen to the presentation they can match the information with the manual.

This presentation will take about one and a half hours.
There is only one video linked to this presentation. It shows tagging action on a pole and line vessel.

1.C Tag seeding project

This presentation is about SPC's tag seeding project. It will take about one hour to present. The presentation describes the tag seeding experience and explains its implication for the tagging project. Information is provided on the deployment of tags on board purse seiners and how to fill in the tag seeding log form.

2. Training in filling in forms

The trainees will practise filling in the various forms used to record data associated with biological sampling and tagging by means of scenarios, both in class and during practical sessions.
Tell the trainees that they should make sure to fill in the forms correctly, as you will assess them and then hand them back to the trainees with feedback on how well the forms were completed. Remind the trainees that the information needs to be written clearly.
For the tagging scenarios, if a white board is not provided for the training you can project the correct version of the forms with the video projector.

2.A Biological sampling form scenarios

This scenario is done as a group and is interactive. The objective is to familiarise trainees with filling in the biological sampling form (BS form).
This scenario is done after the general biological sampling presentation and should take about 25 minutes.
Refer to the instructions below for a detailed delivery

Bigeye tuna; caught at 13 h 03 ; label \# B1001; length 110 cm UF; Male. Samples needed for reproductive biology studies. and assessment method.
Instructions:

1. Briefly mention the samples needed for the two projects: trophic dynamics (stomach, muscle and liver) and the reproductive biology studies (gonads, otoliths and spines).
2. Remind the trainees about the abbreviation for sex (Male-M, Female-F, Inderterminate-I and Unknown-U).
3. After showing the trainees how to fill in the BS form, randomly distribute the 'paper fishes' and one BS form to each trainee.
4. Open the animated slide where details of each fish will appear.
5. The generic information for this sampling is:

- Observer name: The name of the trainee
- trip \#: JSM 1100
- Vessel name: Pacific Sunrise
- Gear type: Longline
- Start of trip date: $12 / 03 / 11$
- End of trip date: 25/03/11;
- page 1 of 1 .

6. In turn, ask each trainee to call out the details of each paper fish he/she has.

For example: It is a BET caught at 01.03 pm, the label number is B1001, it measures 110 cm UF, and it is a male. Samples taken were: stomach, muscle, liver. The muscle sample was taken from the anal region.
Note: All muscle samples should be taken from the anus, unless the fish is kept for consumption by the crew.
For the sake of this scenario, all the otoliths are sampled in port.
7. While the trainee is calling out the details of his/her fish, the other trainees fill in the information across one row.
8. Then everyone has to fill the samples that need to be collected on the BSF (muscle, liver...)
9. The trainee gives his answer.
10. Click on the slide and the details will appear.
11. Ask all the trainees to check their data and correct any mistakes.

NB: If the fish is not retained for crew consumption, then muscle should be taken from the anus region.

Emphasise that the form needs to be completed in full.

12. At the end of this training exercise, collect all the forms and assess them.

- Check that all the information has been filled in and is correct.
- Circle anything that is incorrect in pencil.

13. The next day or in the afternoon of the same day (depending on when the training was done) hand back the forms to the trainees and point out their mistakes.

2.B Tag recovery form scenarios

There are three tag recovery form scenarios that are done individually but corrected as a group.
The objective is to give the trainees practice in filling in a recovery form when a tag is found on board a vessel. There are three scenarios with different levels of information and different situations on board fishing vessels.
The trainees read the scenarios and look for all the details that can be used to fill in the tag recovery form. Some scenarios have more information than others. This reflects the reality in the field, where sometimes there is no information at all.
This session will take about one and a half hours. Allow 15 to 20 minutes for trainees to read and complete each scenario and ten minutes to review the answers together.

Distribute the three tag recovery scenarios (printed on one back to back page) along with three tag recovery forms which include a map (printed on three back to back pages).
Instruct the trainees to read one scenario at a time and complete one tag recovery form at a time. When they have finished the first scenario, ask them to wait for the correction before working on the next scenario. While the trainees are completing the forms, you can assist some of them individually if you think they need help.
Once they have finished entering the information for the first scenario, ask a volunteer to give his answer, write the answers on a white board, correct them if necessary and explain each answer. Do the same with the two other scenarios.

2.C Tag seeding \log release form scenarios

There are two tag seeding scenarios which are done individually but corrected as a group. The objective of this session is show the trainee how to fill a tag seeding log form when an observer is assigned to deploy tags onboard a purse seiner.
The idea is that the trainees read through the scenarios and look for all the details which can be used to fill in the tag seeding log form.
This will take about 45 minutes. Allow 15 minutes for trainees to read and complete each scenario and five to ten minutes to review the answers together.
Distribute the scenarios and the two tag seeding log forms.
Tell the trainees to read the first scenario and fill in the form. Then ask a volunteer to give his/her answers, write them on the white board, correct them if necessary and explain each answer. The trainees can then work on the second scenario and this will be reviewed in the same way.

3. Review

Two presentations are used for reviewing the theoretical component of the training.

- Biological sampling review presentation
- Tagging project review presentation

These two presentations allow the trainees to refresh their skills in order to be ready for the assessment. The review should be presented either a few hours before or the day before each assessment. Encourage the trainees to take notes where appropriate and advise them to read their guides as well.

B. Practical component

The following sections provide advice on how to organise the practical teaching. It starts with sessions on labelling, storing and packing samples. Then you will demonstrate the techniques involved in taking samples from a fish and how to do tag seeding. The trainees practise the techniques on the fish, following your step by step instructions.
Tell trainees how they will be assessed. When they finish one set of instructions, they should show you what they have done so you can assess it using the assessment checklist (see section 11. Not scored assessment) and give feedback.
The practical sessions are really useful for trainees to get a feel for biological sampling. These sessions should be interactive. You can ask questions to motivate the group and stimulate interaction.
Once you have seen that the trainees are able to deploy seeded tags, they are ready to start taking samples from a whole fish. Tell them to tag seed the fish before they start gilling and gutting it, and to let you know when they have done this before proceeding to the next step. You can thus assess each trainee on their ability to deploy a seeded tag (see assessment details).
Tell the trainees that after they have collected the samples, they are to remove the conventional and/or seeded tag from their fish. You will assess them on their ability to do this correctly.
After collecting samples from three or four fish, the trainees should place the rolled up samples in the freezer, or on a bucket of ice, or in the shade. This should be done as soon as possible so that the samples are not damaged by the heat.

The biological sampling form

Hand out one biological sampling form to each trainee. Explain that they will use the same form to write the details of each fish during each practical session. Tell them how to fill it in correctly: their name, a trip number (e.g. TUNA 1105), the gear type from which the fish for the practical came, the start date of the practical (beginning of week) and end date of the practical (end of the week).
At the first practical session, write the date and time, and let them know the position of the training place (estimate or make one up if necessary).
Then, for each fish, they write down the label number, the species code, the length, the sex and write Y or N in the boxes for the types of samples collected.
At the start of each practical, they, write a new date and time and the new details for the different fish. Repeat for as many practicals or fish.
Ask the trainees to use the Comments column as much as possible, e.g. broken otoliths, only one gonad, broken gonads, tag number. Remind them that if they are onboard a longliner, they must note the tag number on the LL4.
Collect the biological sampling forms at the end of each practical. Check them and give them back at the start of the next practical session with your feedback.

4. Labelling and storing fish and samples

This section provides a guide to demonstrating the use of appropriate storing bags and vials for each kind of sample.
Remind the trainees that each fish is identified by a unique identification number. This means that every sample from the same fish has the same label number.
It is very important that all the samples have a label and that the labelling is done correctly to ensure there is no confusion.

4.A Cable-tie labelling

Demonstrate how to place the cable-tie around the mouth of the fish and make
 sure it will hold by gently pulling on it. Once the cable-tie is placed, the tear-off labels can then be used to label each sample collected. The tear-off labels are removed one at a time when a sample is placed inside a bag and needs to be labelled.
Explain why the cable-tie is placed around the mouth of the fish - when fish are landed on board and selected for sampling, placing a cable-tie around the mouth of each fish allows us to identify them. Also, otoliths cannot always be collected on board at the same time as the organs. The cable-tie will allow port samplers to identify fish that have been sampled on board from which the otoliths still need to be extracted.
The cable tie is only removed at the end, when all the internal organs have been sampled and labeled and the otoliths have been extracted and cleaned and placed inside the vial. Then the stem of the cable tie can be cut off and placed inside the vial to label the otoliths.

4.B Storing stomach, muscles, liver, gonads and dorsal spine

Demonstrate which bags are used for each kind of sample. Tell the trainees that they will need to adapt to the situation. For example, if the gonads are very big, they will need to use a large bag.
Demonstrate how to place the label inside the sampling bag at the top so that the sample does not cover the label. This allows us to read the label number when inventorying the samples later on, especially when they are frozen and bloody. When the samples have been placed in their bags, place the largest bag on the bottom and stack the other ones on top of it. Then roll all the bags up into one package. Insist on the rule that the sample bags should not be placed inside each other. Packaging and storing samples is an important aspect of this work, as the samples are no use if they become damaged.
 Also, when samples are received for analysis, it is much easier to do an inventory if they are well packed. As with the correct way of labelling, all these steps will ensure efficient processing of the samples and, in turn, faster payment or reward. What happens on an actual fishing trip is that, at the end of the trip, all samples are placed in a large solid plastic bag (or a rice bag) and the observer needs to inform the observer coordinator or the debriefer that there are some samples that must be stored in a freezer. Once the observer gets back to shore, it is his/her responsibility to make sure the samples are stored in the right place and to make sure the data are attached with the samples and to make copies of or scan the data. The coordinator or the

debriefer will be there to assist, but it is not their principal task.
If the observer follows all these steps, then the samples will be shipped to the place of analysis rapidly and payment will follow soon after.)

4.C Storing otoliths

Once the otoliths have been removed, clean and dry them, and place them in a vial. The vials are kept separate and do not need to be frozen. (When they go on a fishing trip, the trainees can keep the vials in a large plastic bag and keep this bag with them. At the end of the trip, the bag can be handed to the observer coordinator who will organise shipment.)
Demonstrate how to place the otoliths inside a vial and how to cut the stem of the cable-tie that is around the mouth of the fish and place it inside the vial. It has the same identification number as the other samples. Use the side cutters or a knife. Also explain how the stem can be cut to fit into a smaller vial.
Tell the trainees that this is done only after all the other internal organ samples
 have been collected and labelled.

5. Extraction of stomach, muscle, liver, gonads and dorsal spine for sampling

5.A Gilling and gutting techniques

First, remind the trainees what was presented during the general biological sampling
PowerPoint presentation; that there are two ways of gilling and gutting tuna:

- on a purse seiner: the internal organs of the fish can be accessed by cutting the ventral surface of the fish. This must be done carefully so as not to damage the organs. Explain how to use the tip of the knife to do this. As the sampled fish will generally not be placed back inside the well, this technique can be used and performed by the observer on board.
- on a long line: the crew will generally gill and gut the fish in such a way that all internal organs are removed in one block attached to the gills. This method allows them to keep the ventral surface closed and the fish remains in good shape for marketing.

After explaining this, you have two options, depending on how many fish you have for demonstration. If you have two fish, you can demonstrate the two techniques, one on each fish. First demonstrate the
 ventral surface cutting method to the trainees. This will allow them to see how the internal organs are positioned. This information is useful as they will later be examined on a picture showing the internal arrangement. Also when they sample the internal organs during the practical, the trainees

will be using this method. Second, demonstrate how to gill and gut a fish as it would be done on a long liner. This will allow trainees to visualise how the internal organs are positioned using this technique
If you have only one fish, first demonstrate how to gill and gut a fish using the ventral surface cutting technique (as it would be done by an observer on board a purse seiner), then cut the gills from the mouth and remove the whole lot and place everything on the table or floor, which illustrates the long liner gill and gutting technique.

5.B Stomach sampling

Demonstrate how to identify the stomach and how to detach it from the digestive system and the oesophagus (as close as possible to the gills) using a knife. Explain that sometimes prey might fall out of the stomach and that it should be picked up and placed inside the sampling bag. In such a situation, a comment should also be provided on the form.

5.C Liver sampling

Demonstrate how to identify the liver and how to cut a sample of it (2 cm by 2 cm).

5.D Muscle sampling

On a long liner: the muscle sample can be taken around the anus area. Cut a piece of muscle next to the hole that was made during the gilling and gutting of the fish.
On a purse seiner: if the fish is going to be eaten by the crew or discarded, the observer can ask the fishing master or the captain for permission to take a sample of muscle from the back of the fish. Samples taken from this site are better as there are fewer nerves and tendons, which allows for better analysis. The same could be done for fish with a similar fate on a long liner.

However, reiterate that permission from the captain or the fishing master should always be gained before taking samples from the back.
Demonstrate how to cut a sample of muscle from the back and from the anus (2 cm by 2 cm). Demonstrate how to remove the skin from the samples.

5.E Gonads sampling

The gonads are sometimes stuck inside
 the body cavity near the backbone when the fish is gilled and gutted. The observer therefore needs to place his hand inside to remove them gently.
Demonstrate how to identify the gonads of a fish and how to remove them without damaging them.

5.F Dorsal spine sampling

Demonstrate how to identify the first dorsal spine of the fish and how to remove it. This technique is very easy and minimum harm is done to the fish. Once the dorsal spine has been
removed, it is placed inside the bag with the gonads. Emphasise that the spine should placed carefully so it does not pierce the bag.

6. Sex determination

Demonstrate how to visually determine the sex of a fish by looking at the gonads. Ovaries (female-F) are orange in appearance and grainy if cut. Testes (male-M) are whitish in appearance and tubular if cut.
Demonstrate how to perform the rolling test to determine the sex. Place one gonad between the index finger and thumb and try to roll it. If it rolls, it is a female. Male gonads do not roll; they may even break.
If the sex of the fish cannot be determined either by looking or feeling, the sex is said to be indeterminate, noted with an
 'I' on the data form. This can happen when the gonads are small and immature.
If the gonads are simply not seen (perhaps thrown away before you could access them) then the sex is noted as unknown, 'U'.

7. Extraction of otoliths

The extraction of otoliths is an important part of the practical teaching as the technique takes practice. There are three techniques, depending on the type vessel and the species - its size and whether it needs to be kept in good condition or not. Different sized fish are used for this training. Once the otoliths have been extracted, the trainees need to remove the membrane surrounding the otoliths, clean the otoliths using some water and dry them using a piece of cloth. The otoliths are then placed inside the vial with the stem of the cable-tie.

7.A Saw method

The saw method consist of removing the top of the head to directly access the otic capsules.
Demonstrate how to use this technique using a medium size fish first. Later on (depending on the availability of fish) small and large size fish can also be used.
This is a destructive technique and is generally used only when the fish is loined in a factory or if it is going to be
 eaten by the crew or discarded.

7.B Cutters method

The cutters method is a non-destructive technique and consists of accessing the otic capsule by removing bones pieces at the base of the brain, between the brain and the start of the vertebral column.
Demonstrate how to use this technique using a medium size fish. Emphasise that it is important to place the tweezers in a lateral position to reach the otoliths to avoid pushing them inside the otic capsule.

7.C Drilling method

The drilling method is also non-destructive and can be used on large fish. As this method involves the use of a power tool, explain to the trainees that they should be careful when using the drill as well as when plugging in the power cord (especially in places where there is water).
Demonstrate how to use this technique on large and medium size fishes. Once the cores have been extracted from the fish, insist on the fact that the drill must be unplugged before
 removing the cores from the saw.

8. Tagging

Before the trainees' whole fish sampling practical, secretly tag some fish with conventional tags (approximately five fish out of fifteen) so that the trainees are made familiar with tags when they start the sampling.
Ask them not to remove the tag until the fish has been completely sampled.

8.A Conventional tagging

Show the trainees where a conventional tag is found on a tuna (behind the second dorsal fin on an angle).
Observers on board fishing vessels are not involved in conventional tagging, so there is no need to demonstrate how to deploy these tags. The trainees just need to know where a conventional tag can be found.
In a real case situation, if a tag is found on a fish and the fish is to be sampled, remind the trainees that they must complete the tag recovery form, and also write the tag number on the biological sampling form and on the LL-4 form if on board a longliner.

8.B Tag seeding deployment

Demonstrate to the trainees where a seeded tag is deployed on a tuna (behind the second dorsal fin on an angle). Also show them how to double tag a fish.
If you have done tag seeding previously, share your experience with the trainees. Tell them where the best place to do it is, the best time, how you reacted when a crew member saw you, and how you dealt with a seeded tag that had been found the same day or during the same trip by the crew.
Remind them about the tag seeding log form.

8.C Tag removal technique

Demonstrate how to remove a conventional tag as well as a seeded tag. Insist on the fact that the anchor must also be removed completely. Also, the fish should not be damaged during this process.
Mention that while removing the tag it may break. If this happens, it is very important is to remove the whole tag, including the anchor, and to give all the pieces to the tag recovery officer or make a note on the tag recovery form.

9. Callipers

If the use of callipers has not been demonstrated yet, demonstrate how to use them to measure a fish If it is a tuna, UF measurement should be demonstrated. If it is a sword fish or shark, other measurements should be demonstrated (LF and TL).
Tell the trainees to round down to the nearest centimetre when recording measurements. Ask them to show you how they measure a fish and assess them on this task.

10. Tools maintenance

Tool maintenance is important. Make sure the tools are washed and dried after each use. A spraying lubricant can be used to prevent rust formation. Tools are to be used for the sampling only and should not be used for any other purpose. If an observer is asked to do some sampling, he or she will be provided with a kit which must be returned afterwards.

C. Skills assessment modules

Assessing the trainees' skills is done in two ways:

- Not scored, ongoing assessment,

During the practical, the trainees' abilities to fill in forms and to carry out various methods of sampling are assessed (not scored) while they are working, using a checklist. This allows you to give the trainees instant feedback.

The checklist should be printed according to the schedule of the biological sampling training. During each practical, use the checklist to formally assess the trainees. Each skill required during each practical is listed. During the practical the trainer should check on each trainee or group of trainees (they can work in pairs during the practical sessions) and check all the assessment criteria. Use the notation 'A' for 'able' and ' U ' for 'unable'. You will see that some skills are repeated in the checklist. This allows you to check each time a practical is performed that the abilities are formally assessed. In some practicals, identical protocols need to be followed by the trainees; the check list allows you to assess the trainee's consistency in fulfilling the tasks.

- Final assessment

There are two final assessments, one for the biological sampling and one for the tagging project. These scored assessments should be planned in advance so the trainees have enough time to prepare. They are closed book assessments. For trainees who fail to reach 75% during the first assessment, a second assessment is available and can be provided.

11. Not scored assessment

Use the assessing checklist table (second tab in the BS_and_tagging_training_schedule final excel file) to assess the trainees during the scenarios and the practical sessions.

11.A Biological sampling assessment

Cable-tie label

The trainer must check that each cable-tie label placed by the trainee is not going to fall off by pulling on the cable.
This is checked before the trainee starts to take samples.
Able: the cable-tie label is placed in the appropriate area and the label is firmly attached to the fish.
Unable: the cable-tie label is inappropriately placed and/or the label is not firmly attached to the fish.

Labelling and storing and samples

Stomach, muscle, liver, gonads and dorsal spine samples

Able: Each sample from the same fish has the same identification number; the samples have been placed in the appropriate bag with the label; the labels are placed
at the top of the bag and the number can be clearly read; once sampling is finished, the bags are sealed, placed on top of each other and rolled into a neat package.
Unable: Possible errors: Some samples have not been placed in the appropriate bag; some bags have no labels; the labels have different numbers; the labels are covered by the samples and the numbers cannot be read; the bags are placed inside each other; the bags are not sealed; the bags are stacked randomly in an untidy fashion.

Otoliths IMPORTANT: (Remove the otoliths from the vial to check their quality)

Able: the membrane is removed from the otoliths and is rinsed in water or in the mouth; no remaining blood or membrane is seen on the otoliths; the otoliths are dried before being stored in a vial; the label has been collected from the stem of the cabletie around the mouth of the fish; if other biological samples have been collected, the label number is the same as that of the other samples.
Unable: fails to demonstrate any or all of the steps above.

Gilling and gutting techniques

Assess trainees' ability to correctly gut the fish and identify the organs without extracting the samples.

Able: fish is gutted without damaging the internal organ; organs are identified correctly
Unable: internal organs have been damaged by the knife; mistakes are made in identification

Stomach, muscle, liver, gonads and dorsal spine sampling

Assess trainees' ability to correctly sample the five organs.
Able: Trainee has correctly identified each organ; used the appropriate removal
techniques; sampled in appropriate quantities:

- removing the stomach as close as possible to the gills (and picking up prey if some has fallen out - the comments section should be filled in)
- removing a small muscle sample around $2 \times 2 \mathrm{~cm}\left(4-5 \mathrm{~cm}^{2}\right)$ and removing the skin
- removing a small piece of liver around $2 \times 2 \mathrm{~cm}\left(4-5 \mathrm{~cm}^{2}\right)$
- removing both gonads (if they are broken, it should be noted in the comments section)
- removing the first dorsal spine without damaging the fish muscles

Unable: Trainee fails to demonstrate any or all of the above.

Sex determination

Assess trainees' ability to correctly identify the sex of a fish.
Able: Trainee correctly identifies the sex of the fish visually or by using the Rolling test Trainee demonstrates understanding of what to write if sex cannot be determined (I).
Unable: Trainee fails to identify the sex or writes an inappropriate letter if sex cannot be determined (I).

Otoliths extraction

Assess trainees' ability to correctly extract otoliths from a fish using the following methods.

Saw method

Able: cut above the eye is straight, not too deep or too shallow; the otic capsule is exposed and the otoliths are extracted.
Unable: cut is not straight, too deep or too shallow; the otic capsule is either not exposed enough or damaged; the otoliths are not extracted.

Cutters method

Able: bone material is removed appropriately with the cutters to expose the otic capsule; tweezers are used in a parallel way; the otoliths are extracted.
Unable: the bone material is removed too fast or too deep and the otic capsule is destroyed; wrong use of cutters; wrong use of tweezers; the otoliths are not extracted.

Drilling method

Able: safety precautions are taken; angle and depth of drilling is correct; the otoliths are extracted.
Unable: safety precautions are not taken; angle and depth of drilling is inappropriate; the otoliths are not extracted.

Data recording

Each trainee is provided with a biological sampling form and is asked to write all details of the fish and samples for each practical and for each scenario during the theory teaching. At the end of the practical the trainer collects the form to assess the trainees' abilities.
Assess trainees' ability to correctly record data.
Able: all fields of the biological sampling form are filled in correctly; use of comments where appropriate; writing is readable; the label number included with the samples (including inside the vial) is the same as the one written on the BS form.
Unable: one or more fields of the biological sampling form are not filled in correctly; no use of comments where appropriate; writing is unreadable; the label number included with the samples (including inside the vial) is not the same as the one written on the BS form.

11.B Tagging project assessment

Tag implementation

The trainer must check that the anchorage of the tag is properly done by gently pulling on the tag.
Assess trainees' ability to correctly deploy seeded tags:
Able: seeded tag is inserted behind the second dorsal fin with the appropriate angle and at the right depth for anchorage.
Unable: tag is placed elsewhere than behind the second dorsal fin and the deployment angle and depth are not appropriate for anchorage.

Tag removal

Assess trainees' ability to correctly remove tags:
Able: tags are completely removed (including anchor) and the fish is not too damaged in the process.
Unable: tag is broken or the anchor remains inside flesh or the fish is damaged during removal.

Biological sampling form

This assessment is done during the practical where fish were secretly tagged and trainees are meant to notice the tags and record the tag number in the comments column of the biological sampling form.
Assess trainees' ability to record tag number:
Able: tag number is recorder in the comments column with the word 'tag' in front of it.
Unable: tag number is not recorded or the word 'tag' is not placed in front of the number.

Tag recovery form

At the end of the scenario practical the trainer collects the forms to formally assess the trainees' abilities. Formal assessment is done to check that the trainees follow the instructions and corrections given by the trainer:

Able: all fields of the form are filled in correctly: use of comments where appropriate; writing is readable.
Unable: one or more fields of the tag recovery form are not filled in correctly; no use of comments where appropriate; writing is unreadable.

Using calipers to measure a fish

Assess the trainees' ability to use the callipers to record the length of a fish.
Able: the callipers are used appropriately (for tuna, UF measurement is taken) and measurement is correct (rounded down to the nearest centimetre).
Unable: the callipers are not used correctly (e.g. the total length is measured for tuna) and/or the measurement is incorrect (e.g. rounded up and/or simply incorrect).

12. Final assessment

The final assessments are closed book assessments and you should keep an eye on the trainees. Do not staple the pages together, and ask the trainees to write their name at the top of each page. Tell them to spend more time on the questions that carry more marks. When the trainees hand in their assessments, staple the pages together and verify that the trainee's name is written on all the pages.

12. A The biological sampling assessment

BS_assessment_number1_final

Print this document double-sided and in colour. Do not staple the assessment as the trainees will need to work on the biological sampling form and the LL-4 form example.

The biological sampling assessment has three major parts.

1. Questions to evaluate the trainees' understanding of the scientific projects and the required biological samples
2. Tuna anatomy pictures to evaluate their understanding of the internal anatomy of a tuna
3. A scenario to evaluate their ability to record data efficiently.

The trainer should explain to the trainees how the assessment is set up. Rapidly go through the questions (e.g. this question relates to the type of samples needed) and explain that, for the pictures, the trainees must write the name of the organ at the base of the arrow pointing towards it. For the scenario, go through the basic idea with them. Remind them to read all the questions with care as some of the answers are provided in the questions. It should take the trainer about five minutes to explain how the assessment is set out.
The time needed to complete the assessment is around $\mathbf{1}$ hour and 15 minutes - Maximum 1 hour and 20 minutes.

12.B Tagging project assessment

The final tagging project assessment is a closed book assessment and you should keep an eye on the trainees.

Observer_Training_Assessment\#1_Tagging project

Print this document, double-sided and in black and white. Do not staple the assessment as the trainees will need to work on the tag recovery form and the tag seeding form while they read the instructions on the first page of the assessment.
The tagging project assessment biological sampling assessment has three major parts.

1. Questions to evaluate the trainees' understanding of the tagging project and the tag seeding project
2. A tag recovery scenario to evaluate their ability to record data efficiently on the tag recovery form
3. A tag seeding scenario to evaluate their ability to record data efficiently on the tag seeding \log form.

Rapidly go through the questions and, for the scenario, go through the basic idea with them. Remind them to read all the questions with care as some of the answers are provided in the questions.
The time needed to complete the assessment is around $\mathbf{1}$ hour - Maximum $\mathbf{1}$ hour and $\mathbf{1 5}$ minutes.

13. Reassessment

For trainees who failed to reach 75% during the first assessment, there is a second assessment which is slightly different from the first one.

13.A Biological sampling assessment

BS_assessment_number2_final

Print this document double-sided and in colour. Do not staple the assessment as the trainees will need to work on the biological sampling form and the LL-4 form example.

13.B Tagging project assessment

Observer_Training_Assessment\#2_Tagging project

Print this document double-sided and in black and white.

14. Marking assessments

It takes at least eight minutes to mark one assessment, so it is up to you to figure out how much time is needed to correct all assessments. During the first tagging assessment, you can start correcting the first biological sampling assessment. The same can be done for the reassessment.
All the correct answers have been written on separate documents for both tagging and biological sampling. Print these documents and use them as support while marking the trainees' assessments.
Use a red pen for corrections.
If the answer is correct, place a tick next to it and write the score obtained in the box next to the question.
If the answer is incorrect, place a cross next to the answer and, in a few words, provide the correct answer or circle the correct choice.
The final score is obtained by adding all the marks and converting them to a percentage. If some trainees undertake the second assessment, the final score will the higher of the two scores obtained for each assessment.
After you have corrected both assessments, use the BS and Tagging project Assessments
scores table Excel spreadsheet to enter the final marks the trainees have received.
The first two lines of the table have examples. Delete those examples when you have understood how to fill in the results.
Write the location of where the training took place as well as the training dates (eg. Pohnpei, April $4^{\text {th }}$ to April $8^{\text {th }} 2011$).
The table is divided into several parts.

1. The names of the trainees appear on the left (first name and family name).
2. The scores obtained for the biological sampling assessment are divided as follows.
a. Scores obtained for question 1 to 15 (number of marks)
b. Scores obtained for the biological sampling scenario (number of marks)
c. Final score (as a percentage)

If some trainees failed to reach 75% in the first assessment, they need to take the second assessment and the scores obtained are also reported on the table.
3. The scores obtained for the tagging project assessment are divided as follows.
a. Scores obtained for question 1 to 4 and 6 to 8 (number of marks)
b. Scores obtained for the tag recovery scenario (number of marks)
c. Scores obtained for the tag seeding scenario (number of marks)
d. Final score (as a percentage)

If some trainees failed to reach 75% during the first assessment, they need to take the second assessment and the scores obtained are also reported on the table.
For each trainee and assessment, in the columns headed Final Scores (\%), highlight in green the scores above 75% and in red the ones below 75%.

14. A Biological sampling assessments

Questions 1 to 15 can earn the trainee up to 74 marks. The biological sampling scenario can earn him or her up to 286 marks.

Add up all the marks to get a TOTAL mark out of 357 marks.
Convert the TOTAL score to a percentage. E.g. a trainee scored 285 marks in total. Multiply $285 \times 100=28500$ and divide this result by $357: 28500 / 357=79.8 \%$. This is the FINAL score.
The pass mark is 75%.
For correcting the biological sampling assessment, refer to the following document:
BS_Assessment_1_corrections_final.

14.B Tagging project assessments

Questions 1 to 4 and 6 to 8 can earn the trainee up to 35 marks. The tag recovery scenario can earn him or her up to 52 marks, and the tag seeding scenario up to 26 marks. Add up all the trainee's marks to get a TOTAL mark out of 113 marks.
Convert the TOTAL score to a percentage. E.g. a trainee scored 103 marks in total. Multiply $103 \times 100=10300$ and divide this result by $113: 10300 / 113=91.16 \%$. This is the FINAL score.

The pass mark is 75%.
For correcting the tagging project assessment, refer to the following document:

Observer_Training_Assessment\#1_Tagging project correction.

14. C Revision of assessment results

Once you have corrected all the assessments, give the trainees their test papers back and spend some time on pointing out the major mistakes made by trainees. This is a good time for them to ask questions and for you to answer them.
Present the correct answers using the video projector; each correct answer should be read and explained by the trainer.

15. Training Feedback to SPC

After training is finished, the trainers must provide detailed feedback on how the training was undertaken to Caroline Sanchez and Malo Hosken.
The aim of the feedback is:

- to keep a record of which trainees are more capable than others to perform biological sampling and tag seeding (for future reference if biological sampling and tag seeding need to be undertaken by the observers);
- to be able to improve the delivery of biological sampling and tagging modules;
- to provide you with advice and recommendations if needed.

15. A Writing a report

At the end of each day, take the time to write a 200 word narrative. This includes:

- difficulties that you may have encountered (e.g. difficulty in obtaining fish or a place to work, difficulty in demonstrating some of the techniques, difficulty in keeping to the schedule, difficulty in correcting the assessment, difficulty with some trainees.).
- Initiatives you have taken and believe have allowed to improve the delivery of the practical or the in class theory teaching.
- Relevant comments such as trainees' attendance (trainees which did not attend, etc).

15. B Training schedule
 BS_and_tagging_training_schedule.xlsx

The training schedule is a list of the modules you will teach, in an appropriate order. Each module has a number that corresponds to a section in this guideline. Before the training starts, print the table and use it as a reference during the theory teaching and practical training. Before doing each activity in the schedule, refer to the module in this guide to remind yourself what needs to be done.
For each module, you need to note the date when you covered it. Fill in the Date Done column in the schedule.
You can enter the information into the electronic file or, if you write it on the paper version, scan all the pages and send them.

15.C Assessments

Scan and send the checklist table used for assessing the trainees' ability to perform each task. Complete the electronic version of the score table, the one specific to the BS and tagging assessments. If no computer is available, ask someone to lend you theirs and send it by email.

NOTES:

\qquad
..............
\qquad
..............
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
.............
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
..............
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
..............

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
..............
\qquad
..............
...
..............

Secretariat of the Pacific Community

Oceanic Fisheries Programme
Ecosystem Monitoring and Analysis section
BP D5 - 98848 Noumea CEDEX
New Caledonia
Tel: +687262000
Fax: +6872638 18
Web site:
www.spc.int/oceanfish
http://www.spc.int/oceanfish/en/ofpsection/fisheries-monitoring/observers

Contact details:
francoisr@spc.int
carolines@spc.int

SECRETARIAT OF THE PACIFIC COMMUNITY

All rights reserved 2015

[^0]: ${ }^{1}$ Secretariat of the Pacific Community, Noumea, New Caledonia
 ${ }^{2}$ CSIRO Oceans and Atmosphere, Hobart, Australia
 ${ }^{3}$ Marshall Islands Marine Resources Authority, Majuro, Marshall Islands
 ${ }^{4}$ Ministry of Fisheries and Forests, Suva, Fiji Islands
 ${ }^{5}$ Department of Resources and Development, Pohnpei, Federated States of Micronesia
 ${ }^{6}$ National Fisheries Authority, Port Moresby, Papua New Guinea
 ${ }^{7}$ Ministry of Natural Resources, Environment and Tourism, Koro, Palau

[^1]: *as specified in the agreement with the European Maritime and Fisheries Fund
 \#includes lancetfishes, kawakawa, blue marlin, frigate and bullet tuna, moonfish, black marlin, escolar, spearfish,
 barracudas, mackerel scad, triggerfishes, blue shark, pelagic stingray, manta ray, silky shark, sailfish, Spanish mackerel,

