SCIENTIFIC COMMITTEE SEVENTH REGULAR SESSION

9-17 August 2011
Pohnpei, Federated States of Micronesia

STOCK ASSESSMENT OF SKIPJACK TUNA IN THE WESTERN AND CENTRAL PACIFIC OCEAN

Simon Hoyle ${ }^{\mathbf{1}}$, Pierre Kleiber ${ }^{2}$, Nick Davies ${ }^{\mathbf{1}}$, Adam Langley ${ }^{3}$, and John Hampton ${ }^{1}$

[^0]
Table of Contents

1 Background. 6
1.1 Biology 6
1.2 Growth 6
1.3 Fisheries 6
1.4 Previous assessments 7
2 Data compilation. 7
2.1 Spatial stratification7
2.2 Temporal stratification 8
2.3 Definition of fisheries 8
2.4 Catch and effort data 8
2.4.1 Catch and effort data updates and structuring 8
2.4.2 CPUE and standardised effort time series 9
2.5 Length-frequency data 11
2.6 Tagging data 12
3 Model description - structural assumptions, parameterisation, and priors 13
3.1 Population dynamics 13
3.1.1 Recruitment 13
3.1.2 Age and growth 14
3.1.3 Movement 14
3.1.4 Natural mortality 14
3.1.5 Initial population 15
3.2 Fishery dynamics 15
3.2.1 Selectivity 15
3.2.2 Catchability 15
3.2.3 Effort variability 15
3.3 Dynamics of tagged fish 15
3.3.1 Tag mixing 15
3.3.2 Tag reporting 16
3.4 Observation models for the data 17
3.5 Principal model runs 17
3.6 Parameter estimation and uncertainty 17
3.7 Stock assessment interpretation methods 18
3.7.1 Fishery impact 18
3.7.2 Yield analysis 18
3.8 Comparison with the 2010 assessment 19
3.9 Sensitivity analyses 19
4 Results 20
4.1 Run sequence 20
4.2 Development model series 20
4.2.1 Rerun with new version of MULTIFAN-CL 20
4.2.2 Update catch, effort and size data 20
4.2.3 Adjust size frequency for spill sampling correction 20
4.2.4 New ID/PH fishery structure 20
4.2.5 Add PTTP tag data 21
4.2.6 Change steepness to 0.8 21
4.2.7 Sensitivity analyses 21
4.3 Reference case 21
4.3.1 Fit of the model to the data, and convergence 21
4.3.2 Tag reporting rates 22
4.3.3 Age and growth 22
4.3.4 Selectivity 23
4.3.5 Catchability 23
4.3.6 Effort deviations and fits to exploitable biomass 24
4.3.7 Natural mortality 24
4.3.8 Movement 24
4.3.9 Recruitment 24
4.3.10 Biomass 25
4.3.11 Fishing mortality and the impact of fishing 25
4.3.12 Yield and reference point analysis 26
4.3.13 Sensitivity analyses and structural uncertainty grid 27
4.3.14 Stock status 27
5 Discussion 27
6 Conclusions 29
7 Acknowledgements 31
8 References 32
9 Tables 35
10 Figures 49
11 Appendix A: doitall.skj 106
12 Appendix B: ski.ini 115

Executive summary

This paper presents the 2011 assessment of skipjack tuna in the western and central Pacific Ocean. The assessment uses the stock assessment model and computer software known as MULTIFAN-CL. The skipjack tuna model is age (16 quarterly age-classes) and spatially structured. The catch, effort, size composition, and tagging data used in the model are grouped into 18 fisheries (a change from the 17 fisheries used in the 2010 assessment) and quarterly time periods from 1972 through 2010.
The current assessment incorporates a number of changes from the 2010 assessment, including:

1. Updated catch, effort, and size data;
2. A revised standardised effort series for each region based on a new GLM analysis of catch and effort data from the Japanese distant-water pole-and-line fishery.
3. Adjustment of size frequency data based on observer sampling of skipjack, bigeye, and yellowfin size and species compositions, and adjustment for grab-sampling bias.
4. Changes to the modelling of the Philippines and Indonesia purse seine fisheries. These fisheries are separated into fishing activity in archipelagic waters, and fishing outside archipelagic waters to the east of longitude $125^{\circ} \mathrm{E}$. Purse seine effort to the east of $125^{\circ} \mathrm{E}$ is included in the main associated purse seine fishery, apart from domestically-based vessels which are included in a new PI-ID domestic purse seine fishery.
5. Inclusion of tag releases and recoveries from the recent SPC-PTTP tagging programmes, which increases tagging data in the assessment by 50%.
6. Steepness, a parameter defining the shape of the stock recruitment relationship, was changed from 0.75 to 0.8 in the reference case, with alternative values of 0.65 and 0.95 included in sensitivity analyses.
7. Growth parameters were fixed at their values estimated in 2010.

In addition to these changes, a large suite of additional models were run to aid the development of the final "reference case" model. This reference case model is used as an example for presenting model diagnostics, but the most appropriate model run(s) upon which to base management advice will be determined by the Scientific Committee. The sensitivity of the reference model to key assumptions (i.e. regarding the stock recruitment relationship, the catch per unit effort time series, the purse seine catch and size data, the growth model, and the PTTP tagging data) were explored via sensitivity analyses. The results of these analyses should also be considered when developing management advice.
A number of trends in key data inputs were noted as particularly influential for the assessment results.
The large tagging data set, and associated information on tag reporting rates, is relatively informative regarding stock size. The relative sizes of fish caught in different regions are also indicative of trends in total mortality, mediated though growth, catch, and movement rates. The assessment is therefore very dependent on the growth model.
For the northern region, there was little contrast in the Japanese pole and line CPUE time-series. However, both the southern region Japanese pole and line CPUE time series showed increases early in the time series and declines at the end, with greater decline in region 2.
Overall, the main assessment results and conclusions are as follows.

1. Estimates of natural mortality are strongly age-specific, with higher rates estimated for younger skipjack.
2. The model estimates significant seasonal movements between the western and eastern equatorial regions. The performance of the fishery in the eastern region has been shown to be strongly influenced by the prevailing environmental conditions with higher stock abundance and/or availability associated with El Niño conditions (Lehodey et al. 1997). This is likely to be at least
partly attributable to an eastward displacement of the skipjack biomass due to the prevailing oceanographic conditions, although this dynamic cannot be captured by the parameterisation of movement in the current model.
3. Recruitment showed an upward shift in the mid-1980s and is estimated to have remained at a higher level since that time. This change in estimated recruitment is driven in the model by the CPUE data, and also by the tagging data, given the relative tag return rates from the SSAP and the RTTP tagging programmes. Recruitment in the eastern equatorial region is more variable with recent peaks in recruitment occurring in 1998 and 2004-2005 following strong El Niño events around those times. Conversely, the lower recruitment in 2001-2003 followed a period of sustained La Nina conditions. Recent recruitment is estimated to be at a high level, but is poorly determined due to limited observations from the fishery.
4. The biomass trends are driven largely by recruitment and fishing mortality. The highest biomass estimates for the model period occurred in 1998-2001 and in 2005-2007, immediately following periods of sustained high recruitment within the eastern equatorial region (region 3).
5. The biomass trajectory is influenced by the underlying assumptions regarding the treatment of the various fishery-specific catch and effort data sets within the model. The Japanese pole-and-line fisheries are all assumed to have constant catchability, with any temporal trend in efficiency assumed to have been accounted for by the standardization of the effort series. The CPUE trends are influential regarding the general trend in both recruitment and total biomass over the model period. In all regions there is a relatively good fit to the observed CPUE data, with some deterioration when PTTP tagging data are introduced.
6. The model also incorporates a considerable amount of tagging data that provides information concerning absolute stock size during the main tag recovery periods. Including the PTTP tagging data in the model resulted in higher estimates of recent biomass and MSY. Initial analyses of the data suggest some conflict with inferences from the CPUE time series about trends in abundance. Further work on both data sources is recommended.
7. Within the equatorial region, fishing mortality increased throughout the model period and is estimated to be highest in the western region in the most recent years. The impact of fishing is predicted to have reduced recent biomass by about 47% in the western equatorial region and 21% in the eastern region. For the entire stock, the depletion is estimated to be approximately 35%.
8. The principal conclusions are that skipjack is currently exploited at a moderate level relative to its biological potential. Furthermore, the estimates of $F_{\text {current }} / \widetilde{F}_{M S Y}$ and $B_{\text {current }} / \widetilde{B}_{M S Y}$ indicate that overfishing of skipjack is not occurring in the WCPO, nor is the stock in an overfished state. These conclusions appear relatively robust, at least within the statistical uncertainty of the current assessment. Fishing pressure and recruitment variability, influenced by environmental conditions, will continue to be the primary influences on stock size and fishery performance.
9. For the model assumptions investigated, there was only moderate variation in the estimates of stock status. The most influential assumptions involved steepness and growth. There are insufficient data to estimate steepness reliably within the assessment model and many of the key management quantities are strongly influenced by the values assumed. Growth and its variation in space, through time, and among individuals is not well understood. However, only a limited range of assumptions was investigated in this assessment, and as a result the true level of uncertainty is likely to be under-estimated. A range of other assumptions in the model should be investigated either internally or through directed research. Further studies are required to refine our estimates of growth and reproductive potential, including spatio-temporal variation; to examine in detail the time-series of size frequency data from the fisheries, which may lead to refinement in the structure of the fisheries included in the model; to consider size-based selectivity processes in the assessment model; to continue to improve the accuracy of the catch estimates from a number of key fisheries; to refine the methods used to adjust catch and size data in the purse seine fisheries; to refine the methodology and data sets used to derive CPUE abundance indices from the pole and line fishery; to refine approaches to integrate the recent tag release/recapture data into the
assessment model; and to develop more formal and rigorous methods for prioritizing the many available research options.
10. Based on estimates of $F_{\text {current }} / \tilde{F}_{M S Y}$ and $B_{\text {current }} / \widetilde{B}_{M S Y}$ from the reference model and associated sensitivity grid, it is concluded that overfishing of skipjack is not occurring in the WCPO, nor is the stock in an overfished state. These conclusions appear relatively robust, at least within the statistical uncertainty of the current assessment. Although the current (20062009) level of exploitation is below that which would provide the maximum sustainable yield, recent catches have increased strongly and the mean catch for 2006-2009 of 1.5 million tonnes is equivalent to the estimated MSY at an assumed steepness of 0.8 , but below the grid median estimate of 1.9 million tonnes. Maintenance of this level of catch would be expected to decrease the spawning stock size towards MSY levels if recruitment remains near its long-term average level. Fishing mortality and recruitment variability, influenced by environmental conditions, will both continue to affect stock size and fishery performance.

1 Background

1.1 Biology

Surface-schooling, adult skipjack tuna (Katsuwonus pelamis) (greater than 40 cm fork length, FL) are commonly found in tropical and subtropical waters of the Pacific Ocean (

Figure 1). Skipjack in the western and central Pacific Ocean (WCPO) are considered a single stock for assessment purposes (Wild and Hampton 1994). In the western Pacific, warm, poleward-flowing currents near northern Japan and southern Australia seasonally extend their distribution to $40^{\circ} \mathrm{N}$ and $40^{\circ} \mathrm{S}$. These limits roughly correspond to the $20^{\circ} \mathrm{C}$ surface isotherm. A substantial amount of information on skipjack movement is available from tagging programmes. In general, skipjack movement is highly variable (Sibert et al. 1999) but is thought to be influenced by large-scale oceanographic variability (Lehodey et al. 1997).

Estimates of natural mortality rate have been obtained using a size-structured tag attrition model (Hampton 2000), which indicated that natural mortality was substantially larger for small skipjack ($21-30 \mathrm{~cm} \mathrm{FL}, M=0.8 \mathrm{mo}^{-1}$) than larger skipjack ($51-70 \mathrm{~cm} \mathrm{FL}, M=0.12-0.15 \mathrm{mo}^{-1}$). The longest period at liberty for a tagged skipjack was 4.5 years. Skipjack tuna reach sexual maturity at about 40 cm FL.

1.2 Growth

Skipjack growth is rapid compared to yellowfin and bigeye tuna. In the Pacific, approximate age estimates from counting daily rings on otoliths suggest that growth may vary between areas. At 150, 200, 300 and 400 days, fork lengths (FLs) of $30,33,40$, and 46 cm were estimated for fish sampled mostly in the north Pacific (Tanabe et al. 2003), but growth estimates were faster (42, 47, 55, and 60
cm) for fish sampled close to the equator (Leroy 2000). Growth has been found to vary spatially in the eastern Pacific (Maunder 2001) and in the Atlantic (Gaertner et al. 2008), based on analyses of tagging data.

1.3 Fisheries

Skipjack tuna, the largest component of tuna fisheries throughout the WCPO, are harvested with a wide variety of gear types. Fisheries can be classified into the Japan distant-water and offshore pole-and-line fleets, domestic pole-and-line fleets based in island countries, artisanal fleets based in the Philippines, eastern Indonesia and the Pacific Islands, and distant-water and Pacific-Island-based purse seine fleets.

The Japanese distant-water and offshore pole-and-line fleets operate over a large region in the WCPO ((

Figure 1). A domestic pole-and-line fishery occurred in PNG from 1970 to 1985 and active fisheries have occurred in Fiji and the Solomon Islands since 1974 and 1971, respectively.

A variety of gear types (e.g. gillnet, hook and line, longline, purse seine, ring net, pole-and-line and unclassified) capture skipjack in the Philippines and Indonesia. Small but locally important artisanal fisheries for skipjack and other tuna (using mainly trolling and traditional methods) also occur in many of the Pacific Islands.

Purse seine fleets usually operate in equatorial waters from $10^{\circ} \mathrm{N}$ to $10^{\circ} \mathrm{S}$; although a Japan offshore purse seine fleet operates in the temperate North Pacific. The distant-water fleets from Japan, Korea, Taiwan and the USA capture most of the skipjack in the WCPO, although catches by fleets flagged to or chartered by Pacific Island countries have increased considerably in recent years. The purse seine
fishery is usually classified by set type categories - sets on floating objects such as logs and fish aggregation devices (FADs), which are termed "associated sets" and sets on free-swimming schools, termed "unassociated sets". These different set types have somewhat different spatial distributions, catch per unit effort (CPUE) and catch different sizes of skipjack and other tuna.

The combined distribution of skipjack catch by these fleets shows tropical (mainly purse seine) and temperate (Japan-based pole-and-line and purse seine) components (

Figure 1).

Skipjack tuna catches in the WCPO increased steadily after 1970, more than doubling during the 1980s. The catch was relatively stable during the early 1990 s , approaching $1,000,000 \mathrm{mt}$ per annum. Catches increased again from the late 1990s and reached 1.6 million mt ${ }^{4}$ in 2009 (Figure 2). Pole-andline fleets, primarily Japanese, initially dominated the fishery, with the catch peaking at $380,000 \mathrm{mt}$ in 1984, but the relative importance of this fishery has declined steadily for economic reasons. Annual skipjack tuna catches increased during the 1980s due to growth in the international purse-seine fleet, combined with increased catches by domestic fleets from the Philippines and Indonesia (which have made up to $20-25 \%$ of the total skipjack tuna catch in WCPO in recent years).

Historically, most of the catch has been taken from the western equatorial region (region 2) (Figure 3). During the 1990s, annual catches from this region fluctuated about $500,000-800,000 \mathrm{mt}$ before increasing sharply to approximately $1,200,000 \mathrm{mt}$ in 2007-2009 (Figure 3). Since the late 1990s, there

[^1]has been a large increase in the purse-seine fishery in the eastern equatorial region of the WCPO (region 3), although catches from this region have been highly variable among years. From 2005-2009 the average catch in region 2 was $407,000 \mathrm{mt}$ in the associated fishery and $276,000 \mathrm{mt}$ in the unassociated fishery, while in region 3 the average was $145,000 \mathrm{mt}$ in the associated fishery and $108,000 \mathrm{mt}$ in the unassociated fishery.

Uncertainty remains regarding the accuracy of the purse-seine catch, since catches reported on logsheets may over-estimate actual catch levels (Lawson 2009 and 2010, Lawson \& Sharples 2011). In recent years, the purse seine catch history has been corrected for the over-reporting of skipjack and under-reporting of yellowfin+bigeye on logsheets (Hampton and Williams 2011) and for the selection bias in grab samples (spill-sample corrected purse seine estimates). This work used observer sampling data to estimate the SKJ/YFT/BET species composition, while the S_BEST method used the sampling data to estimate the YFT/BET species composition. These corrected catches represent the primary catch data incorporated in the stock assessment and are the basis of quoted catch estimates in this paper unless otherwise noted. For the last decade, the corrected annual catch estimates are lower than the uncorrected catch, depending on the component of the purse seine fishery (Figure 6). The higher, uncorrected catches (S_BEST) were incorporated in the stock assessment as an alternative catch scenario.

1.4 Previous assessments

Since 2000, stock assessments of the western and central Pacific skipjack stock have been undertaken using MULTIFAN-CL (Fournier et al. 1998;Bigelow et al. 2000;Hampton and Fournier 2001a;Hampton 2002;Langley et al. 2003a;Langley et al. 2005;Langley and Hampton 2008;Hoyle et al. 2010). This paper updates the previous assessments and investigates sensitivities to assumptions regarding the various data sets incorporated in the analysis.

2 Data compilation

Data used in the MULTIFAN-CL skipjack assessment consist of catch, effort and length-frequency data for the fisheries defined in the analysis, and tag-recapture data. The details of these data and their stratification are described below.

2.1 Spatial stratification

The geographical area considered in the assessment corresponds to the western and central Pacific Ocean Ocean from $45^{\circ} \mathrm{N}$ to $20^{\circ} \mathrm{S}$ and from oceanic waters adjacent to the east Asian coast to $150^{\circ} \mathrm{W}$. The assessment model area comprises three regions (

Figure 1), with a single region north of 20 N , and two equatorial regions $20^{\circ} \mathrm{S}$ to $20^{\circ} \mathrm{N}$, with the western equatorial region from $120^{\circ} \mathrm{E}$ to $170^{\circ} \mathrm{E}$, and eastern equatorial from $170^{\circ} \mathrm{E}$ to $150^{\circ} \mathrm{W}$. The southern regions are similar to the bigeye and yellowfin tuna regional structure, the difference being the inclusion of $10^{\circ} \mathrm{S}$ to $20^{\circ} \mathrm{S}$ in the skipjack regions. The assessment area covers practically the entire skipjack fishery in the WCPO, with the exception of relatively minor catches south of $20^{\circ} \mathrm{S}$.

2.2 Temporal stratification

The time period covered by the assessment is 1972-2010. Within this period, data were compiled into quarters (Jan-Mar, Apr-Jun, Jul-Sep, Oct-Dec).

2.3 Definition of fisheries

MULTIFAN-CL requires the definition of "fisheries" that consist of relatively homogeneous fishing units. Ideally, the fisheries so defined will have selectivity and catchability characteristics that do not vary greatly over time and space, although in the case of catchability some allowance can be made for time-series variation. For most pelagic fisheries assessments, fisheries defined according to gear type, fishing method and region will usually suffice.
For this analysis, pole-and-line fishing activity was stratified by national fleet and region. The Japanese pole-and-line fleet in non-equatorial regions was further stratified by distant-water and offshore categories because of the different operational characteristics of these component fleets. Equatorial purse seine fishing activity was aggregated over all nationalities, but stratified by region and set type, in order to sufficiently capture the variability in fishing operations. Set types were grouped into associated (log, FAD, whale, dolphin, and unknown set types) and unassociated (school) sets.
Size frequency data on skipjack catches from a long history of Japanese research longline cruises in the WCPO were also available for this analysis; therefore, a research longline fishery was defined to hold these data.
Two changes were made to the fishery definitions from the 2010 assessment. The first was to alter the definitions of the associated and unassociated purse seine fisheries to match those used in the bigeye and yellowfin stock assessments. The small number of sets with unknown set type and sets on whales and whale sharks were included in the associated fishery rather than the unassociated.

The second significant change was the restructuring of the purse-seine fisheries from the Philippines and Indonesian fleets. In previous assessments, these fisheries were included as a component of the Philippines and Indonesian domestic fisheries (PH DOM 2 and ID DOM 2). However, newly available data revealed differences in the spatial distribution of the purse seine catch and the length composition of the associated catch relative to the other gear types, which warranted the additional resolution of these fisheries. The Philippines and Indonesian internationally-based industrial purseseine fishery operating to the east of $125^{\circ} \mathrm{E}$ longitude is included within the generic purse seine fisheries within region 3 (PS ASS 2 and PS UNS 2), while the purse seine fisheries operating within the national archipelagic waters were retained within the respective domestic fisheries (PH DOM 2 or

ID DOM 2). A new fishery was defined for the domestically-based purse-seine fisheries that operate beyond the national archipelagic waters and to the east of $125^{\circ} \mathrm{E}$ longitude (PHID DOM PS 2).

Overall, 18 fisheries were defined in the analysis (Table 1) compared to the 17 fisheries defined in the 2010 assessment.

2.4 Catch and effort data

2.4.1 Catch and effort data updates and structuring

Catch and effort data were compiled by year and quarter according to the fisheries defined above. The catches of all fisheries, with the exception of the research longline fishery, were expressed in weight of fish. Research longline catches, which are very small and set at a nominal level, were expressed in numbers of fish. In all cases, catches were raised, as appropriate, to represent the total retained catches by area/time strata. Discarded catches were not included in the analysis. Total catches from 2010 are not considered complete due to late or incomplete reporting of catches from a number of the purseseine fleets.

Catches in the northern region are highly seasonal, as are the domestic pole-and-line fisheries operating in the regions 2 and 3. A number of significant trends in the fisheries have occurred over the model period, specifically.

- The development of the Japanese off-shore purse-seine fishery in region 1 since the mid-1990s (Figure 5);
- The virtual cessation of the domestic pole-and-line fisheries in Papua New Guinea and Fiji and the recent low catches from the Solomon Islands fishery;
- The general decline in the Japanese distant-water pole-and-line fisheries in the equatorial regions, particularly region 3 ;
- The development of the equatorial purse-seine fisheries from the mid-1970s and the widespread use of FADs since the mid-1990s, allowing an expansion of the purse-seine fishery in region 3;
- Large changes in the purse seine fleet composition (originally only US) and increasing size and efficiency of the fleet.
- The steady increase in catch for the domestic fisheries of Indonesia and the Philippines.

As outlined in Section1.3, two alternative sets of purse-seine catch data were used in the assessment. The first set consisted of uncorrected catches extracted from the OFP database of reported catches aggregated by 1° latitude, 1° longitude, month and flag. Recent studies have shown that these catch estimates are likely to over-estimate the actual catch of yellowfin due to inaccurate reporting of the species catch composition on logsheets (Hampton and Williams 2011) and biases in the observer sampling procedures (grab sampling) (Lawson 2009;Lawson 2010;Lawson and Sharples 2011). To address these biases, the catch data were corrected using a three-species disaggregation of the total purse seine catch using observer sampling data corrected for selection bias of grab sampling using the results of paired grab and spill samples. This resulted in lower estimates of skipjack catch, particularly from associated sets (Table 2,). Uncertainty remains regarding these new estimates; however, on balance, the corrected catches are considered to be more reliable than the uncorrected catches. The corrected catches were used as the principal catch series in the assessment, while the uncorrected catches were incorporated in a sensitivity analysis (see below).
Effort data for the Philippines and Indonesian surface fisheries and research longline fisheries were unavailable. Where effort data are absent, the model directly computes fishing mortality consistent with the observed catch using a Newton-Raphson procedure. CPUE plots for each fishery (apart from those having missing effort, as noted) are shown in Figure 8.

Nominal fishing vessel day was used as the unit of effort for the domestic pole-and-line fisheries of Papua New Guinea, Solomon Islands, and Fiji. For the equatorial purse seine fisheries, fishing day (including searching) was used as the measure of fishing effort.

2.4.2 CPUE and standardised effort time series

Revised standardised effort series for certain fisheries were used in the current assessment. For the Japanese pole-and-line fisheries (offshore (OS) and distant-water (DW)), the revised standardised effort time-series were estimated using General Linear Model (GLM) analyses of operational catch and effort data (Kiyofuji et al. 2011). Separate analyses were conducted for each region, for the distant-water and offshore fleets.

The uncertainty in each pole and line CPUE estimate, by fishery and time, was included in the model by way of a scaled penalty weight for the effort deviations.
The GLM analyses provided three types of year effect, based on the binomial, lognormal offset, and lognormal positive GLMs (Langley et al. 2010). These year effects were modified as follows from the values reported by Langley et al. (2010) and Kiyofuji et al. (2010), to provide two types of abundance indices with standard errors: the delta lognormal, and an index based on the binomial alone.

1. The binomial indices were transformed with the inverse logit function to provide annual indices of daily probability of reporting some catch for a standard vessel, $p(t)=\frac{e^{K+a l p h a_{t}}}{1+e^{K+a l p h a t}}$. The parameter K was adjusted to ensure that the average $p(t)$ was equal to 0.9 in the 1970 's in the equatorial regions (DW indices) and 0.68 in the 1970's and 1980's in the northern region (OS indices). In each case, these average $p(t)$ values were consistent with the observed rates of positive catches.
The lognormal positive year effects were exponentiated to provide indices of catch rate β_{t} for days when fish were caught. The product $I_{t}=p_{t} \beta_{t}$ was the delta lognormal index of abundance.
The coefficient of variation of the delta lognormal CPUE estimates was calculated as follows. Upper and lower 95\% confidence limits were estimated for the binomial and lognormal positive indices, based the 95% CI's of the individual year effects. Conservative upper confidence limits for the delta lognormal were estimated from the product of the binomial and lognormal upper limits, and the same approach was taken for the lower limits. The overall interval was assumed to be symmetrical, with its width the distance between the upper and lower limits. The assumed standard deviation, which is used to assign penalties, was set at $1 / 4$ of the width of the confidence interval.
2. The binomial indices $p(t)$ were transformed with the function $\mathrm{I}_{\mathrm{t}}=-\log \left(1-\mathrm{p}_{\mathrm{t}}\right)$. This transformation is based on the assumption that a single fish in a habitat of certain size has a probability a of being caught by one unit of fishing effort exerted within that habitat. Then with one unit of effort, the probability that 1 fish escapes from fishing is $(1-a)$.
If we assume that captures (and escapes) are independent of each other5 we have for an abundance of N fish, the probability N that fish escape from fishing is $(1-a)^{\mathrm{N}}$.

Therefore, the probability that at least 1 fish is caught is $1-(1-a)^{N}$.
Now the probability that at least one fish is caught with one unit of effort at a particular time t is exactly the probability $\mathrm{p}(\mathrm{t})$ that is estimated by the binary GLM. So we have

$$
\mathrm{p}(\mathrm{t})=1-(1-\mathrm{a})^{\mathrm{N}(\mathrm{t})}
$$

which leads to

$$
\mathrm{N}(\mathrm{t})=\frac{\log (1-\mathrm{p}(\mathrm{t}))}{\log (1-\mathrm{a})}
$$

where $\log (1-a)$ is a constant less than zero (since a is less than 1$)$. Therefore $I_{N}(t)=$ $-\log (1-p(t))$ is an index of abundance.

[^2]The standard deviations of the transformed indices of abundance were assumed to be the same as the standard deviations of the individual year effects in the binomial GLM.

The delta lognormal index of abundance was used in the reference case, and the alternative index was applied as a sensitivity analysis and as part of the grid. Both sets of indices are shown in Figure 6, along with the corresponding indices from 2010. Ratios of the 2011 indices divided by the 2010 indices show a step-change increase after 1984 in the 2011 indices for regions 2 and 3 (Figure 7).
For the northern pole and line fishery, indices were generally only available for quarters 2 and 3 . Comparatively little fishing occurs in the first and fourth quarters, due to lack of available skipjack. An additional index value of $1 / 10^{\text {th }}$ of the mean CPUE was added to the first quarter of each year in the northern Japanese offshore pole and line fishery (region 1), to reflect the lack of available fish and to inform the model about relative availability.

Regional scaling factors were not applied to the CPUE estimates from the different regions. Pole and line catchabilities were estimated independently, so that the relative regional weightings were estimated by the model.

2.5 Length-frequency data

Available length-frequency data for each of the defined fisheries were compiled into $542-\mathrm{cm}$ size classes ($2-4 \mathrm{~cm}$ to $108-110 \mathrm{~cm}$). Length-frequency observations consisted of the actual number of skipjack measured in each fishery/quarter. A graphical representation of the availability of length samples is provided in Figure 9.

Length data from the Japanese coastal purse-seine and pole-and-line fleets were provided by National Research Institute of Far Seas Fisheries (NRIFSF).

For the equatorial purse-seine fleet, length data have been collected from a variety of port sampling and observer programmes since the mid-1980s. Most of the early data is sourced from the U.S. National Marine Fisheries Service (NMFS) port sampling programme for U.S. purse seiners in Pago Pago, American Samoa and the US purse-seine multilateral treaty observer programme, managed by the Forum Fisheries Agency. Since the early 1990s, Pacific Island national port sampling and observer programmes on other purse seine fleets have provided additional data.
The length frequency data collected by observers are susceptible to bias due to the grab sampling procedure (Lawson 2011). For the current assessment, a length-based correction factor was applied to the length frequency samples to correct for this source of bias. The bias correction resulted in a decline, on average, in the overall average length of the fish in the length samples from both the associated and unassociated purse-seine fisheries (PS ASS and UNASS, 2 and 3) (Lawson 2011, Figure 2). Insufficient data were available to correct the length samples from the period before 1996 and hence these data were excluded from the current assessment.

Some fisheries have not been consistently sampled at the same levels over time (Figure 9). Also, for some years, it was not possible to discriminate samples for the Japanese offshore fleet from those of the Japanese distant-water fleets in the northern region. The samples were therefore assigned to one fleet in each region, but the selectivity coefficients for these fisheries were grouped so that they were, in effect, estimated from the same length-frequency data.
Size composition data for the Philippines domestic fisheries were collected by a sampling programme conducted in the Philippines in 1993-94 and augmented with data from the 1980s and from 1995. In addition, data collected during 1997-2006 from under the National Stock Assessment Project (NSAP) were included in the current assessment. Despite the large catch taken by the Indonesian domestic fishery, only limited length samples from the mid 1980s are available for the fishery. Few usable size data were available for the PH-ID domestic purse seine fishery in region 2, and this fishery's selectivity was linked to the associated purse seine fishery in region 2.

The most consistently sampled fisheries were the Japanese pole-and-line fisheries, the equatorial purse-seine fisheries and the longline fisheries. The pole-and-line fisheries in the northern region generally catch smaller fish than the equatorial fisheries (regions 2 and 3), (Figure 10). Over the
model period, there was a general increase in the length of fish sampled from the pole-and-line fisheries in regions 1 and 2, while no systematic trend in the size composition was evident in region 3 (Figure 10).

There appear to be spatial patterns in the sizes of skipjack available (Hoyle, Kleiber, Davies, Harley, and Hampton 2010, Appendix 2). Some of the size trends that are apparent in some fisheries appear at least partly due to changes in sampling location. To reduce the effects of these size changes on the model, the weight (effective sample size) of all length frequency data was reduced by 50%.

Longline fisheries principally catch large skipjack, within the $50-90$ length range (Figure 10). There is an indication of an increase in the length of skipjack caught over the last decade, some of which appears to be due to movement of fishing location.

The equatorial purse-seine fisheries all catch skipjack of a similar size, with the exception that fish from school (unassociated) sets are generally larger than fish caught from associated (log and FAD) sets in both region 2 and 3 (Figure 11). Purse seine data were based on analyses of observer sampling data (Lawson 2011). For region 2, there was a gradual decline in the size of fish caught by both associated and unassociated sets types from the mid 1980s to recent, while there was no systematic trend in the size composition from the region 3 purse-seine fisheries (Figure 11). Given the strong patterns in the purse seine data, and the contributions of multiple fleets, the effective sample sizes of all purse seine data was down-weighted by 80%. In future this problem might be resolved by applying spatial size stratification (Hoyle and Langley 2011).
Size data from the Philippines domestic fishery showed very strong temporal variation, with periods of large and small sizes. Such large size variations most likely reflect sampling from different fisheries with different selectivities, which will cause problems for a length-based model that assumes constant selectivity. The size data were down-weighted to $1 / 25^{\text {th }}$ of the previous level, equivalent to a sample size of 2 fish. This left enough weight in the likelihood for the model to estimate average selectivity, but reduced the risk of imposing bias on estimates of total mortality.

2.6 Tagging data

A large amount of tagging data was available for incorporation into the assessment. The data used consisted of the OFP's Skipjack Survey and Assessment Project (SSAP) carried out during 1977-80, the Regional Tuna Tagging Project (RTTP) during 1989-92 and in-country projects in the Solomon Islands (1989-90), Kiribati (1991), Fiji (1992) and the Philippines (1992). Tagging data from regular Japanese research cruises were available for the period 1988-2009. Tagging data from the Pacific Tuna Tagging Programme (PTTP) were available for the period 2006-2011.

Japanese tags released in all regions were used in the analysis. This is in contrast to assessments before 2010, when Japanese tag releases south of $15^{\circ} \mathrm{N}$ were not included in the assessment because of suspected atypical tag reporting rates of these tags compared to the SPC tags. New functionality was added to MULTIFAN-CL in 2010 that permitted different reporting rates to be estimated by release group and fishery.

Tag release and recovery data from the PTTP tagging programme 2006-09 were also included in the assessment. The effects of adding these data were examined in a sensitivity analysis.

Tags were released using standard tuna tagging equipment and techniques by trained scientists and scientific observers. Tags have been returned mostly from purse seine vessels and processing and unloading facilities throughout the Asia-Pacific region.

For incorporation into the assessment, tag releases were stratified by release region, time period of release (quarter) and the same size classes used to stratify the length-frequency data. A total of 415,424 releases were classified into 191 tag release groups (Table 3). Release groups from 2010 and 2011 were excluded because many recaptures from these release groups within the model period are yet to be reported. The returns from each size-class of each tag release group (36,731 tag returns in total) were then classified by recapture fishery and recapture time period (quarter).

Most of the tag releases occurred within regions 2 and 3 during 1977-80, 1989-92, and 2006-09 by tagging programmes administered by SPC (Figure 12). There were also tag releases by Japanese research programmes in the two regions during 1988-2008. Tagging in region 1 was almost exclusively conducted by Japanese research programmes (Figure 12).

The total tag recoveries were dominated by recoveries from those fisheries operating in regions 2 and 3, principally the purse-seine fisheries, the domestic and distant-water pole-and-line fisheries, and the domestic fisheries in the Philippines and Indonesia (Table 3). For these two regions, most of the recoveries were from releases in the same region, although there was some transfer of tags between the two regions, particularly from region 2 to region 3 (Figure 13). Region 1 also received tags from region 2 (Figure 13). Of tags released in region 2 that were recaptured in region 1, most were recaptured in quarters 1 and 4 (Figure 14).

The length at recovery of tagged fish was broadly comparable to the length composition of the main method fishery operating in each region (Figure 15). Fish tagged in region 2 and recovered in region 1 were generally larger than recoveries of fish tagged and recaptured in region 1 (Figure 15). Similarly, fish tagged in region 3 and recovered in region 2 were generally larger than fish tagged and recaptured in region 2; and vice versa for fish tagged in region 2 and recovered in region 3.

Most of the tag recoveries occurred either within the same quarter as the release occurred or within the subsequent six-month period, and very few recoveries occurred beyond 2 years after release (Figure 16). There was a higher level of mixing of tags between regions the longer the tags were at liberty, although for region 2 to region 1 the initial rate of transfer appears to be relatively high (Figure 16).

Because tag returns by purse seiners were often not accompanied by information concerning the set type, tag return data were aggregated across set types for the purse seine fisheries in each region. The population dynamics model was in turn configured to predict equivalent estimated tag recaptures by these grouped fisheries.

3 Model description - structural assumptions, parameterisation, and priors

As with any model, various structural assumptions have been made in the skipjack model. Such assumptions are always a trade-off to some extent between the need, on the one hand, to keep the parameterization as simple as possible, and on the other, to allow sufficient flexibility so that important characteristics of the fisheries and population are captured in the model.

The model can be considered to consist of several components, (i) the dynamics of the fish population; (ii) the fishery dynamics; (iii) the dynamics of tagged fish; (iv) observation models for the data; (v) parameter estimation procedure; and (vi) stock assessment interpretations. Detailed technical descriptions of components (i) - (iv) are given in Hampton and Fournier (2001b) and Kleiber et al. (2003). The main structural assumptions used in the skipjack model are discussed below and are summarised for convenience in Table 5. In addition, we describe the procedures followed for estimating the parameters of the model and the way in which stock assessment conclusions are drawn using a series of reference points.

3.1 Population dynamics

The model partitions the population into three spatial regions and 16 quarterly age-classes. The last age-class comprises a "plus group" in which mortality and other characteristics are assumed to be constant. For the purpose of computing the spawning biomass, we assume a fixed maturity schedule occurring at age-class 3 . The population is "monitored" in the model at quarterly time steps, extending through a time window of 1952-2010. The main population dynamics processes are as follows:

3.1.1 Recruitment

"Recruitment" in terms of the MULTIFAN-CL model is the appearance of age-class 1 fish (i.e. fish averaging 10 cm given the current growth curve) in the population. The results presented in this report
were derived using four recruitments per year, which are assumed to occur at the start of each quarter. This is used as an approximation to continuous recruitment.
Recruitment was allowed to vary independently between each of the three MFCL model regions. The proportion of total recruitment occurring in each region was initially set relative to the variation in recruitment predictions from Lehodey (2001) and then estimated during the later phases of the fitting procedure.
The time-series variation in spatially-aggregated recruitment was somewhat constrained by a lognormal prior.

Spatially-aggregated recruitment was assumed to have a weak relationship with the parental biomass via a Beverton and Holt stock-recruitment relationship (SRR). The SRR was incorporated mainly so that a yield analysis could be undertaken for stock assessment purposes. We therefore opted to apply a relatively weak penalty for deviation from the SRR so that it would have only a slight effect on the recruitment and other model estimates (see Hampton and Fournier 2001c, Appendix D).
The steepness (h) of the stock-recruitment relationship is defined as the ratio of the equilibrium recruitment produced by 20% of the equilibrium unexploited spawning biomass to that produced by the equilibrium unexploited spawning biomass (Mace and Doonan 1988;Francis 1992;Maunder et al. 2003). A formal derivation of the SRR parameterization and the contribution of the steepness prior to the log-likelihood are given in Hampton and Fournier (2001c). It is rare for stock assessment models to reliably estimate steepness. Steepness was therefore fixed at a value of 0.8 , consistent with other WCPFC tuna stock assessments, and based on conclusions of review of steepness values for tunas (Harley 2011). Alternative steepness values of 0.65 and 0.95 were examined as sensitivity analyses and as part of the grid. The recommendations of the PAW also included a model option that estimated the value of steepness internally in the model. In this case, a beta-distributed prior was assumed on steepness of the SRR with a lower bound at 0.2 , a mode $=0.85$, and standard deviation $=0.16$ (equivalent to previous assessments).

3.1.2 Age and growth

The standard assumptions made concerning age and growth in the MULTIFAN-CL model are (i) the lengths-at-age are assumed to be normally distributed for each age-class; (ii) the mean lengths at age are assumed to follow a von Bertalanffy growth curve; (iii) the standard deviations of length for each age-class are assumed to be a linear function of the mean length-at-age. For any specific model, it is necessary to assume the number of significant age-classes in the exploited population, with the last age-class being defined as a "plus group", i.e. all fish of the designated age and older. This is a common assumption for any age-structured model. For the results presented here, 16 quarterly ageclasses have been assumed. Growth was not estimated in the model, except for one sensitivity analysis.
The onset of sexual maturity was assumed to occur at age-class 3 ($6-9$ months of age). The adult component of the population was defined as the 3-16 age classes. Unlike in Thunnus species, sex ratio does not appear to vary with size for skipjack. Maturity and fecundity at size were not included in the maturity parameter, so in this assessment the term 'spawning biomass' refers to the biomass of adult fish, rather than spawning potential as in the yellowfin, bigeye, and albacore stock assessments.

3.1.3 Movement

Movement was assumed to be time invariant and to occur instantaneously at the beginning of each quarter between regions sharing a common boundary. Note however that fish can move between noncontiguous regions in a single time step due to the "implicit transition" computational algorithm employed (see Hampton and Fournier 2001c;Kleiber et al. 2003 for details). Movement is parameterised as the proportion of fish in a given region that move to the adjacent region. For ageindependent movement, there are two transfer coefficients for each boundary between the regions, with movement possible in both directions. We allowed each of these coefficients to be age-dependent in a simple linear fashion, enabling the rate of movement across the region boundary to increase or
decrease as a log-linear function with age. Four seasonal movements were allowed, each with their own movement coefficients.

A prior of 0.1 is assumed for all movement coefficients, inferring a relatively high mixing rate between regions. A small penalty is applied to deviations from the prior.

3.1.4 Natural mortality

Natural mortality was estimated and assumed to be age-specific, but invariant over time and region. Penalties on the first difference, second difference, and deviations from the mean were applied to restrict the age-specific variability to a certain extent.

3.1.5 Initial population

The population age structure in the initial time period in each region is determined as a function of the average total mortality during the first 20 quarters and the average recruitment in quarters $2-20$ in each region. This assumption avoids having to treat the initial age structure, which is generally poorly determined, as independent parameters in the model.

3.2 Fishery dynamics

3.2.1 Selectivity

Selectivity is fishery-specific and was assumed to be time-invariant. Selectivity coefficients have a range of $0-1$, and for the research longline fisheries were assumed to increase with age and to remain at the maximum once attained. In the past, selectivities for all Japanese pole-and-line fisheries were constrained to be equal. Two Japanese pole-and-line selectivity curves were estimated: one for region 1 and one for the equatorial fisheries. Selectivity for the Philippines-Indonesia domestic oceanic purse seine fishery was shared with the region 2 equatorial purse seine fishery, due to lack of available size data for the former fishery. Selectivities for all other fisheries were independently estimated.

The selectivities at age were estimated using a cubic spline parameterisation. Each selectivity function was parameterised with five nodes allowing considerable flexibility in the functional form while minimising the number of parameters required to be estimated. The coefficients for the last two ageclasses, for which the mean lengths are very similar, are constrained to be equal for all fisheries.

3.2.2 Catchability

Annual average catchability was held constant over time for all the Japanese offshore and distantwater pole-and-line fisheries and the Japanese offshore purse-seine fishery. In initial runs it was assumed to be equivalent for the three principal pole-and-line fisheries. For all other fisheries for which effort data were available, catchability was allowed to vary over time (akin to a random walk). Random walk steps were taken every two years, and the deviations were constrained by a prior distribution of mean zero and CV (on the log scale) of 0.7.
Catchability was allowed to vary seasonally for all fisheries, with the exception of the Philippines and Indonesian archipelagic fisheries, and research longline fisheries.

3.2.3 Effort variability

Effort deviations, constrained by prior distributions of zero mean, were used to model the random variation in the effort - fishing mortality relationship. For all fisheries except the Japanese pole and line fisheries with standardized CPUE, we set the prior variance at a high level (equivalent to a CV of about 0.7 on the \log scale), to allow the effort deviations to account for fluctuations in the catch caused by variation in real effort. For the fisheries with standardized CPUE, the variance was set at the level estimated in the data standardization.

3.3 Dynamics of tagged fish

3.3.1 Tag mixing

In general, the population dynamics of the tagged and untagged populations are governed by the same model structures and parameters. An obvious exception to this is recruitment, which for the tagged population is simply the release of tagged fish. Implicitly, we assume that the probability of recapturing a given tagged fish is the same as the probability of catching any given untagged fish in the same region. For this assumption to be valid, either the distribution of fishing effort must be random with respect to tagged and untagged fish and/or the tagged fish must be randomly mixed with the untagged fish. The former condition is unlikely to be met because fishing effort is almost never randomly distributed in space. The second condition is also unlikely to be met soon after release because of insufficient time for mixing to take place. Depending on the disposition of fishing effort in relation to tag release sites, the probability of capture of tagged fish soon after release may be different to that for the untagged fish. It is therefore desirable to designate one or more time periods after release as "pre-mixed" and compute fishing mortality for the tagged fish based on the actual recaptures, corrected for tag reporting (see below), rather than use fishing mortalities based on the general population parameters. This in effect desensitises the likelihood function to tag recaptures in the pre-mixed periods while correctly discounting the tagged population for the recaptures that occurred.
We assume that tagged skipjack gradually mix with the untagged population at the region level and that this mixing process is complete by the end of the first quarter after release.

3.3.2 Tag reporting

In principal, tag-reporting rates can be estimated internally within the model. In practice, experience has shown that independent information on tag-reporting rates for at least some fisheries tends to be required for reasonably precise estimates to be obtained. We provided reporting rate priors for all fisheries that reflect our prior opinion regarding the reporting rate and the confidence we have in that opinion. Tag reporting rates were estimated separately by fishery group and tagging programme.

Assessments before 2010 assumed fishery specific reporting rates that were constant over time. This assumption was reasonable when most of the tag data were associated with a single tagging programme. However, tag reporting rates may vary considerably between tagging programmes as the composition and operation of individual fisheries change. The inclusion of the tagging data from the PTTP required fishery tag reporting rates specific to the individual tagging programmes. This flexibility in the estimation of tag reporting rates has been accommodated in recent developments to MFCL.
Tags in MULTIFAN-CL are grouped into tag release groups, which represent the tags released by quarter x region x tagging programme strata. The new approach permits individual reporting rate parameters to be estimated for each release group for each fishery. This, however, would require too many parameters to be estimated, so parameters were shared among specified release groups and fisheries, as follows:
a. Reporting rates were grouped for all Japanese fisheries, as in previous assessments.
b. Equatorial purse seine fisheries within each region shared reporting rates. This is a change from last year when purse seine reporting rates were shared across regions. The change was motivated by the observation that the purse seine fisheries are made up of flags with different reporting rates, and different flags fish to a different extent in each region.
c. The Papua New Guinea, Solomon Islands, and Fiji Islands pole and line fisheries, and the Philippines and Indonesia domestic fisheries each had their own reporting rate parameters. The Philippines domestic fisheries reporting rate was shared with the Philippines-Indonesia oceanic purse seine fishery.

For each fishery or group of fisheries, separate reporting rates were estimated for a) Japanese tagging programmes, b) the SSAP tagging programme, c) the RTTP tagging programme, and c) the PTTP
tagging programme. This differentiation is made because reporting rates among these programmes may have differed because of variation in the levels of publicity, fleet cooperation and resources devoted to tag recovery.

While the model has the capacity to estimate tag-reporting rates, we used a penalised likelihood approach to assign prior distributions (similar to Bayesian priors) to the release-group and fisheryspecific reporting rates.
Relatively informative priors were provided for reporting rates for the RTTP and PTTP purse seine fisheries, as independent estimates of reporting rates for these fisheries were available from tagseeding experiments and other information (Hampton 1997;Hoyle 2011). The external estimates of reporting rate for the purse-seine fisheries were modified by the estimates of average tag loss and tagger-specific mortality of tagged fish. The proportions of tag returns that were provided with sufficient information to allow them to be classified to the various fisheries and time periods in the model were also incorporated into the reporting rate priors (Hoyle 2011). For the various Japanese pole-and-line fisheries, we have no auxiliary information with which to estimate reporting rates, so relatively uninformative priors were used for these fisheries - the reporting rates were essentially independently estimated by the model. For tags released within a tagging program, reporting rates were assumed to be constant through time.

3.4 Observation models for the data

Three data components contribute to the log-likelihood function - the total catch data, the lengthfrequency data and the tagging data. The observed total catch data were assumed to be unbiased and relatively precise, with the SD of residuals on the \log scale being 0.07 .
The probability distributions for the length-frequency proportions were assumed to be approximated by robust normal distributions, with the variance determined by the sample size and the observed proportion. The effective sample size is assumed to be, at most, 0.025 times the actual sample size, which is limited to a maximum of 1000 . This assumption recognises that length-frequency samples are not truly random and that even very large samples (greater than 1000) taken from a particular fishery in a quarter would have a variance equivalent to a random sample of 25 fish. Reasons for this reduction from the effective sample size of 50 fish used in previous skipjack assessments are discussed in section 2.5 on length frequency data.
A log-likelihood component for the tag data was computed using a negative binomial distribution in which fishery-specific variance parameters were estimated from the data. The negative binomial is preferred over the more commonly used Poisson distribution because tagging data often exhibit more variability than can be attributed by the Poisson. We have employed a parameterization of the variance parameters such that as they approach infinity, the negative binomial approaches the Poisson. Therefore, if the tag return data show high variability (for example, due to contagion or nonindependence of tags), then the negative binomial is able to recognise this. This would then provide a more realistic weighting of the tag return data in the overall log-likelihood and allow the variability to impact the confidence intervals of estimated parameters. A complete derivation and description of the negative binomial likelihood function for tagging data is provided in Hampton and Fournier (2001a) (Appendix C).

3.5 Principal model runs

At a preparatory meeting (Noumea, April 2011), a range of model changes and sensitivity analyses were considered and agreed for the current assessment (SPC-OFP 2011). These analyses included (1) S_BEST purse seine catch estimates (based on logbooks) rather than estimates corrected with analyses of spill sampling data; (2) a range of values for steepness, including estimation of steepness; (3) inclusion of PTTP tagging data; (4) alternative CPUE time series; and (5) alternative growth curves.

These options were considered as sensitivity analyses. Additional changes were made during model development, and the effect of each significant change is presented in the run sequence. Each change is described in Table 6, along with some potential changes that were not carried forward.

In addition, options 1, 2, 4 and 5 were included in a factorial grid, in which all combinations of model options were considered.

3.6 Parameter estimation and uncertainty

The parameters of the model were estimated by maximizing the log-likelihoods of the data plus the log of the probability density functions of the priors and smoothing penalties specified in the model. The maximization was performed by an efficient optimization using exact derivatives with respect to the model parameters. Estimation was conducted in a series of phases, the first of which used arbitrary starting values for most parameters. A bash shell script, doitall.skj, documenting the phased procedure is provided in Appendix A. Some parameters were assigned specified starting values consistent with available biological information. The values of these parameters are provided in the skj.ini file (Appendix B) ${ }^{6}$.
The Hessian matrix computed at the mode of the posterior distribution was used to obtain estimates of the covariance matrix, which was used in combination with the Delta method to compute approximate confidence intervals for parameters of interest.

3.7 Stock assessment interpretation methods

Several ancillary analyses are conducted in order to interpret the results of the model for stock assessment purposes. The methods involved are summarized below and the details can be found in Kleiber et al. (2003). Note that, in each case, these ancillary analyses are completely integrated into the model, and therefore confidence intervals for quantities of interest are available using the HessianDelta approach.

3.7.1 Fishery impact

Many assessments estimate the ratio of recent to initial biomass as an index of fishery depletion. The problem with this approach is that recruitment may vary considerably throughout the time series, and if either the initial or recent biomass estimates (or both) are "non-representative" because of recruitment variability, then the ratio may not measure fishery depletion, but simply reflect recruitment variability.
We approach this problem by computing biomass time series (at the region level) using the estimated model parameters, but assuming that fishing mortality was zero. Because both the real biomass B_{t} and the unexploited biomass $B_{0 t}$ incorporate recruitment variability, their ratio at each time step of the analysis $\frac{B_{t}}{B_{0 t}}$ can be interpreted as an index of fishery depletion. The computation of unexploited biomass includes an adjustment in recruitment to acknowledge the possibility of reduction of recruitment in exploited populations through stock-recruitment effects.

3.7.2 Yield analysis

The yield analysis consists of computing equilibrium catch (or yield) and biomass, conditional on a specified basal level of age-specific fishing mortality $\left(F_{a}\right)$ for the entire model domain, a series of fishing mortality multipliers, fmult, the natural mortality-at-age (M_{a}), the mean weight-at-age (w_{a}) and the SRR parameters α and β. All of these parameters, apart from fmult, which is arbitrarily specified over a range of $0-50$ in increments of 0.1 , are available from the parameter estimates of the model. The maximum yield with respect to frult can easily be determined and is equivalent to the $M S Y$. Similarly the total ($\tilde{B}_{M S Y}$) and adult ($S \tilde{B}_{M S Y}$) biomass at $M S Y$ can also be determined. The ratios of

[^3]the current (or recent average) levels of fishing mortality and biomass to their respective levels at MSY are of interest as reference points. These ratios were also determined for the principal assessment model with alternative values of steepness assumed for the SRR. The confidence intervals of these metrics were estimated using a likelihood profile technique.
For the standard yield analysis, the F_{a} are determined as the average over some recent period of time. In this assessment, we use the average over the period 2006-2009. The last year in which a complete set of catch and effort data is available for all fisheries is 2009. We do not include 2010 in the average as fishing mortality tends to have high uncertainty for the terminal data year of the analysis and the catch and effort data for this terminal year are usually incomplete.
The MSY based reference points were also computed using the average annual F_{a} from each year included in the model (1972-2010). This enabled temporal trends in the reference points to be assessed and a consideration of the differences in MSY levels under historical patterns of age-specific exploitation.

3.8 Comparison with the 2010 assessment

There are six main differences in the input data and structural assumptions of the current assessment compared to the base-case from the 2010 assessment.
i. Fixing the steepness parameter (h) of the SRR at 0.8 in the reference case rather than 0.75 as used in the 2010 assessment.
ii. Update of CPUE indices derived from operational catch and effort data from Japanese pole and line fisheries. The 2011 standardized CPUE indices incorporated vessel identifiers prior to 1984, resulting in some differences in the region-specific CPUE indices (Kiyofuji, Uosaki, and Hoyle 2011).
iii. The correction of the purse-seine length frequency data to account for sampling bias and the exclusion of length data from the fisheries prior to 1996 (bias correction not available) (Lawson 2011).
iv. A revision of the corrected (spill sample) purse-seine fishery catch estimates (Lawson \& Sharples 2011).
v. Refinement to the Philippines and Indonesian fishery definitions, including the definition of a new fishery encompassing the Philippines and Indonesian purse-seine fleets operating east of $125^{\circ} \mathrm{E}$ and outside of archipelagic waters.
vi. Inclusion of the PTTP tagging data.

For comparison to the 2010 stock assessment, a step-wise sequence of models was formulated that modified the 2010 base-case model to sequentially incorporate each of the changes identified above.

3.9 Sensitivity analyses

The sensitivity analyses focused on a number of key model uncertainties. Initially, the sensitivities were examined as a single change to the reference model, and a more comprehensive grid-based (factorial) analysis of the range of sensitivities was undertaken to investigate the interactions between the various sensitivities (see below).

The key uncertainties identified in the current assessment are the assumed level of steepness of the SRR, catch history of the purse-seine fisheries, the CPUE time series, and the growth curve.

The reference model assumed a value of 0.80 for the steepness of the SRR; model sensitivities included alternative values of 0.65 and 0.95 .

As noted above, corrected catches from the purse-seine fisheries (PS ASS, PS UNA $2 \& 3$) are lower than previously reported, principally for the associated fisheries (Figure 4). However, the current estimates are based on limited sampling data and are considered preliminary. The sensitivity of the
model results to the assumed level of purse-seine catch was examined by comparing the reference model results with a model with the purse-seine catches determined using the previous methodology ("S_BEST").

The assessment model was not able to estimate growth consistently, due to the lack of strong length modes in the length frequency data. Growth was therefore fixed at the level estimated in the 2010 stock assessment (Hoyle, Kleiber, Davies, Harley, and Hampton 2010), and two published growth estimates were used as sensitivity analyses. Both alternative growth curves were obtained from daily growth rings on otoliths, the first set from waters near Papua New Guinea (Leroy 2000), and the second set from waters in the western north Pacific, mostly north of 25 N (Tanabe, Kayama, and Ogura 2003). Finally, a run was conducted in which growth was estimated.

The interactions between each of the principal models and the various model sensitivities were assessed by conducting model runs that combined the various model options described above. This represented a grid of 72 combinations of the following factors: purse-seine catch history (corrected or uncorrected catch), the CPUE series (delta lognormal or binomial), the steepness of the SRR (0.65 , 0.80 , or 0.95), the growth model (2010 estimate, Leroy, or Tanabe growth curve), and variability of length at age (2010 estimate or high variance). A separate model was run for each of the combinations in the grid.

4 Results

This section provides a detailed summary of the results from the reference-case assessment. A general summary of the sequential changes made during model development (see Table 6) is also presented.

4.1 Run sequence

The current assessment paper describes a number of model runs. These models can be grouped into 3 main categories:
1.Development series: Models used to help develop the final "reference" model. This series of models shows the impact of each change made to the 2010 base case model in transitioning to the current reference model.

2. The reference model

3. Sensitivity models: Models derived from the sensitivity grid analyses, which explore (via oneoff model structure changes) the sensitivity of key model derived outputs (e.g. biological reference points) to key assumptions in the reference model.

It is the reference model and associated sensitivity analysis models that form the basis of the conclusions regarding skipjack stock status provided in this paper.

4.2 Development model series

A series of figures shows the effects on total biomass and recruitment through time of stepwise changes, beginning with the WCPO model and the data used in the 2008 assessment. Each option is accompanied by its model number from Table 6. Biomass and recruitment trends are presented in Figure 17. Growth was fixed in all models leading up to the reference case.

4.2.1 Rerun with new version of MULTIFAN-CL

A repeat of the 2010 base case using the updated version of MULTIFAN-CL was done to ensure the integrity of the model estimates and to determine the causes of differences, if any existed. Estimates were identical to those obtained in 2010.

4.2.2 Update catch, effort and size data

Updating the data to 2011 had a very large effect on the overall biomass trend (Figure 17), mostly due to the new CPUE time series, exhibiting a large increase in 1984 (Figure 6 and Figure 7). Estimated biomass was higher for the whole time series, but the largest increase occurred after 1984. Recruitment was lower throughout the time series, and natural mortality was lower for young fish than in the preceding model.

4.2.3 Adjust size frequency for spill sampling correction

Changes to the purse seine size data resulted in relatively little change to the biomass and recruitment time series. Growth is fixed and so the changed size data could not affect the growth curve. There was a slight reduction in average estimated biomass.

4.2.4 New ID/PH fishery structure

Changing to the new fishery structure, with changes to the Philippines and Indonesian fisheries, had quite a small effect on the model's biomass trends, with a small increase on average. It had more effect on recruitment, increasing it throughout the time series.

4.2.5 Add PTTP tag data

Adding the PTTP tag data increased average biomass throughout the time series, but particularly during the period of the PTTP, 2006-2010. It also resulted in a change to the trend with continuing decline at the end rather than a late increase.

4.2.6 Change steepness to 0.8

Changing the assumed steepness of the stock recruitment relationship had no effect on either the biomass or recruitment trends.

This model was the reference case.

4.2.7 Sensitivity analyses

Four issues were investigated as part of a sensitivity analysis. These were the use of the S_BEST purse seine catches and size data uncorrected for grab selectivity sampling bias, rather than the spill sampling purse seine catches and corrected size data; alternative CPUE time series; the inclusion of the PTTP tag data; alternative steepness values; and alternate growth curves. More detail on these results is given in later sections.

4.3 Reference case

Detailed results and diagnostics are presented for the reference case. Uncertainties in the reference case model are explored via a sensitivity analysis.

4.3.1 Fit of the model to the data, and convergence

A summary of the fit statistics for the reference case and sensitivity analyses is given in Table 8. Due to differences in the tag and effort data sets, the total likelihood values are not comparable between runs, except for the comparison between the reference case and the growth runs.
The fit of the model to the total catch data by fishery is mostly good (Figure 19), which reflects our assumption that observation errors in the total catch estimates are relatively small. The largest differences occur when tag data are available, because the expected rate of tag returns depends on the size of the catch, and therefore affects the catch likelihood. This is particularly apparent in the purse seine fisheries. There are also some moderately large deviates for the JP PL OS fishery.

For most fisheries, the size composition of individual length samples is consistent with the predicted size composition of the fishery-specific exploitable component of the population (Figure 20). The pole-and-line fisheries tend to catch skipjack within a relatively narrow length range and, for most fisheries there is limited contrast in the size of fish caught over the model period. However, several
fisheries show changes in the sizes of fish caught through time. The two largest fisheries in region 1 , the combined Japanese pole and line fisheries and the Japanese offshore purse seine fishery, caught consistently larger fish from 1995 onwards. Similarly, the region 2 Japanese pole and line fishery caught larger fish than expected after 1995. In contrast to the 2010 assessment, fish size did not trend smaller than expected in the western equatorial purse seine fishery 8 , due to the spill sample size correction.
These temporal trends in the size of fish caught are not reflected in the model dynamics and may indicate changes in the length-based selectivity of skipjack between the two periods (Figure 20). One possible explanation is changes through time in the locations from which samples were obtained, since skipjack sizes are quite significantly area-dependent (Hoyle, Kleiber, Davies, Harley, and Hampton 2010). The average size increases in the region 2 Japanese pole and line fishery at about the time that the fishery moves out of the core skipjack area near the equator.

Similarly, the region 3 research longline fishery caught larger fish than expected after 1995, the region 2 longline fishery caught larger fish after 1980, and the region 1 longline fishery caught smaller fish after 2006. The research longline fishery data are included to inform the model that skipjack can grow to sizes larger than typically encountered by surface gears. However, the model is unable to fit both the large fish before 2006 and the small fish after 2006, which suggests that the fish after 2006 would be better omitted. Sizes are particularly spatially variable in longline size data, and their effect has been down-weighted in the likelihood to reflect the variability in the data. The length samples from the Philippines domestic fishery were highly variable among and within sampling periods (Figure 20 and Figure 21). The observed variation in the length composition is likely to reflect variation in the distribution of sampling effort between the individual fisheries that constitute the Philippines domestic fishery. The effect of these data has also been down-weighted in the likelihood to reflect this variability.

The model accurately predicts the number of short-term tag returns for fish both released and recaptured in region 2, but tends to over-predict recoveries after about 1 year. Recoveries of fish moving from region 1 to region 2, and vice versa, are also over-predicted (Figure 23). Recoveries in region 3 , on the other hand, may be slightly under-predicted for releases in region 2 and region 3.
The fit of the model to the tagging data compiled by calendar date is presented in Figure 24, and in Figure 25 disaggregated by sampling programme. The aggregated fit is good, with low divergence between observed and predicted tag returns. Minor discrepancies are evident when the observed and predicted data are broken down by fishery groups (Figure 26), but these are not significant.
In contrast to previous assessments the Solomon Islands pole-and-line fishery tag returns are well predicted, with observed recoveries close to predicted (Figure 26). This better fit may be due to the greater freedom given to tag reporting rates in this assessment, which allows the model to compensate for different reporting rates between tagging programmes.

4.3.2 Tag reporting rates

Where possible, reporting rates were estimated separately by fishery and by tagging programme. Results are presented here for the Japanese tagging programmes, and for the SPC tagging programmes SSAP, RTTP, and PTTP.

There is considerable variation among fisheries in the estimated tag-reporting rates (Figure 27). The equatorial purse seine fishery reporting rates for SSAP releases were given a weak prior and relatively high reporting rates were estimated, with 0.63 in region 2 and 0.9 in region 3; for RTTP releases the estimates were slightly lower but higher than the prior mean of 0.46 , with 0.58 in region 2 and 0.76 in region 3. For PTTP releases, estimates were only slightly above the priors, with 0.54 versus a prior mean of 0.52 in region 2 and 0.50 against a prior mean of 0.44 in region 3. Estimates for Japanese releases were considerably lower, at 0.18 in region 2 , and 0.03 in region 3 .
For Japanese fisheries, reporting rates for tags released during the SSAP (0.35), the RTTP (0.13), and the PTTP (0.08), were lower than for tags released by Japanese tagging programmes (0.47).

For the Solomon Island and Fiji pole-and-line fisheries, the estimated reporting rates for SPC tags were very high at 0.9 - the upper bound stipulated for all reporting rates. For Japanese tags however, their reporting rates were effectively zero.
The Philippines and Indonesian fisheries had higher reporting rates for tags released during the RTTP (0.65 and 0.56) than for the $\operatorname{SSAP}(0$ and 0$)$ or for Japanese tags (0 and 0). Reporting rates during the PTTP were estimated to be 0.7 and 0.15 .

4.3.3 Age and growth

Attempts to estimate growth were unsuccessful. Depending on the starting point, the model estimated considerably faster growth than in the 2010 stock assessment, but the estimate may have been an unstable local minimum. It also appeared that estimated growth was frequently faster than the current understanding of skipjack growth rates from tagging and otolith studies. Examination of the length frequency data among fisheries revealed a lack of consistent modal progression through time from which to infer growth rates. The purse seine length frequency data have changed considerably with the spill sample size correction, perhaps masking modal progression and resulting in a worse fit to these data.
For the reference case, the growth curve was fixed at the 2010 estimate, to provide consistency. Given the uncertainty about growth, alternative growth curves were investigated. Two estimates for the western and central Pacific were available from the literature, one for the equatorial western Pacific (Leroy 2000) and one for the north western Pacific (Tanabe, Kayama, and Ogura 2003). All three curves are plotted (Figure 28), with the latter two curves offset so that they meet at about 25 cm , the length when significant numbers of skipjack start to occur in the size data.
The 2010 estimated growth rate was faster than determined by Tanabe et al. (2003) from daily otolith increments, and similar to the Leroy estimates up to about 55 cm . Age estimation from daily rings is thought to be effective up to about one year, i.e. a little over 55 cm for the Leroy curve. The discrepancy between the Tanabe length-at-age and the Leroy and model estimates (up to 15 cm) is maintained for older age classes. They suggest that fish "recruit" into the model population (i.e. age class 1) at the second quarter following hatching.

Limited length data are included in the model from the younger age classes in the population, with only the Philippines fishery catching significant numbers of fish in the $20-30 \mathrm{~cm}$ length range and no observations of smaller fish in the sampled catches. Due to problems with variable selectivity through time, the Philippines size data were given low weight in the assessment.

4.3.4 Selectivity

Estimated selectivity functions are generally consistent with expectation (Figure 29). The pole-andline fisheries have high selectivity for age-classes 4-6 and declining selectivity for the older ageclasses, although selectivity increases again for older age classes where numbers are low. The purse seine fisheries select slightly smaller fish, beginning at 3 or 4 quarters of age. The associated purse seine fisheries have high selectivity for age-classes 3-6, while the unassociated purse seine fisheries select mainly ages 4-6. Selectivity of age classes $8-16$ increases with age, which suggests that further investigation of the growth curve is warranted. Few fish remain in the older age classes, which both reduces the impact on model results of patterns that may appear counter-intuitive, and gives the model more freedom to produce them.

The domestic Philippines mixed fishery catches the smallest fish with relatively high selectivity for fish in the 2-3 age-classes, but also maintains some selectivity for older age classes reflecting the presence of some larger fish in the sampled catch. The research longline fisheries have been assumed to have a monotonically increasing selectivity with age.

4.3.5 Catchability

Estimated catchability trends are shown in Figure 30.

Catchability was assumed to be time-invariant for the Japanese offshore pole and line fishery in region 1 and the Japanese distant-water pole-and-line fisheries in regions 2 and 3,(as temporal trends in catchability are assumed to have been removed during the CPUE standardisation process), while temporal trends in catchability were estimated for the remaining fisheries.
Most notably, the model predicts increases in catchability for all of the purse seine fisheries to 1990, a short-term stabilisation or decline (particularly the FAD fisheries in area 2), and then increases, but with a sharp recent increase in region 3 during the 2000s (Figure 30). The most recent data show particularly high catchability for unassociated fisheries, which may be associated with the FAD closure.

Seasonal variability is strong for many of the pole-and-line fisheries, particularly for the Japanese fleets in region 1. This is partly explained by the imposition of a low assumed CPUE in season 1. Lower levels of seasonal variation in catchability are evident in the equatorial fisheries. Note that seasonal variability in CPUE might also be explained by seasonal variability in movement - this alternate hypothesis has not yet been examined in detail.

4.3.6 Effort deviations and fits to exploitable biomass

Time-series plots of effort deviations are useful to see if the catchability assumptions employed are appropriate, i.e. they result in even distributions of effort deviations about zero and no time-series trends. For most of the fisheries temporal trends in the effort deviates are minor (Figure 31), as expected given the flexible estimation of catchability trends. The relative lack of trend in the standardized PL fisheries in all regions indicates moderately low levels of data conflict - the model is able to fit to the information provided in the CPUE time series. This is also apparent in the close relationship between CPUE and exploitable biomass in regions 2 and 3 (Figure 32). In region 1 the model fits the CPUE is seasons 2 and 3, but is not able to fit the artificial season 1 CPUE.

4.3.7 Natural mortality

Natural mortality was estimated to be high for the young age classes (1-4 quarters), and declining steadily with increasing age up to age class 7 (Figure 33). There is a steady increase in estimated natural mortality for the older (9+) age-classes. Lower natural mortality was estimated for quarterly age classes 1 and 2 than for 3 and 4 . This is due to the growth curve including small fish, about which there is little information, and so the age deviates are penalized towards the mean. The relative natural mortality of these age classes has no significant effect on the overall results of the stock assessment as these two initial age-classes do not contribute significantly to the fisheries.

4.3.8 Movement

A representation of the dispersal pattern resulting from the estimated movement parameters is shown in Figure 34. This figure shows the movement of the proportion of four age groups between each region by quarter. The following figure (Figure 35) presents the same information in terms of the biomass of the movement, i.e. taking into account the larger biomasses in the equatorial regions and varying biomass by age class. A small proportion moving from an area with a high population (e.g. region 2) may represent as many fish as a large proportion of fish from a small population (e.g. region 1).

The model estimates high movement coefficients from the northern region 1 to region 2 during quarters 2 and 4 . These movements are high for all age classes, but higher for older age classes in quarter 2, and slightly higher for younger age classes in quarters 1 and 4 . There are also high movement coefficients in the first quarter from region 1 to 3 , and between regions 2 and 3 (Figure 34). Movement coefficients between other regions and at other times are estimated to be small.

The distribution of regional biomass by source region derived from a simulation using the movement coefficients is presented in Figure 36. The simulation indicates that the model estimates a relatively low degree of mixing for region 1, but moderate for regions 2 and 3 . For example, the model estimates that about 70% of the biomass in region 3 is sourced from recruitment within the home region, with another 15% sourced from region 2 and 15% from region 1 . Significant transfer of
biomass is estimated between regions 2 and 3, matching past studies suggesting movement of skipjack biomass between these regions on a seasonal and inter-annual basis (e.g. Lehodey et al., 1997) in response to climate driven oceanographic processes.

The movement of fish from the northern region into region 2 is inconsistent with the observations from the tagging data which tend to show a general northern movement of fish from region 2 into region 1 (see Section 2.6). However, low recapture numbers and poor reporting rate estimates result in very little influence of the tagging data on model estimates for this region. The southern movements from region 1 are also inconsistent with the observations of peak seasonal catch and CPUE from these fisheries during the second and third quarters.

4.3.9 Recruitment

The time-series of recruitment estimates is shown in Figure 37. Overall recruitment is estimated to be distributed throughout the three regions, with similar levels in all three regions. All three regions show seasonal variation. There are temporal trends in recruitment in all regions; for region 1 the recruitment peaks in the late 1990's and then drops, followed by a large peak in 2010. Recruitment in region 2 is variable, increasing strongly in the early 1980's and with a large dip in the mid-1990's (Figure 37). Region 3 shows considerable medium-term variability, with a strong increase in the early 1980 's, and low levels in 2002 and 2008.

The high recruitment in region 1 appears unrealistic, given the prevailing water temperatures, but this is mitigated by the fact that recruitment in MFCL is driven by observations in the fisheries, and in this case fish at the age of recruitment are too small $(10 \mathrm{~cm})$ to be observed. Given that the fish are not observed by the fisheries until well after recruitment, and after considerable movement has occurred, the overall recruitment estimate is more informative and better estimated than the regional recruitment estimates. Relative levels for age class 3 are more in line with expectation.
Overall, recruitment was estimated to be lower during the first decade of the model period (1972-84), and higher subsequently, with recruitment since 200011% above the long-term average (Figure 37). The strong short-term recruitment variability is consistent with our understanding that environmental conditions can have large effects on recruitment. The overall recruitment trends are driven to a large extent by other information in the model, including the CPUE time series, and the numbers of tags returned. As with most fishery stock assessments, there is a high level of uncertainty associated with the model's estimates of recruitment for the last few years.

4.3.10 Biomass

The biomass trajectories by region are presented in Figure 38. Overall, most of the total biomass is within regions 2 and 3 (43% and 48% respectively of the biomass in 2006-2009), and a relatively small proportion of the biomass is within region $1(9 \%)$. The 2010 assessment estimated higher biomass in region 2 than region 3, and 17% of biomass in region 1.

The trend in total biomass is consistent with the trend in overall recruitment, and with the CPUE time series (Kiyofuji, Uosaki, and Hoyle 2011). There is relatively low biomass during the early period, followed by an increase to a higher level of biomass throughout 1984-2000, and declining biomass over the most recent 5 years (Figure 38). In both regions 2 and 3, the average biomass 1986-88 is 59\% higher than the average of 1979-81. These strong trends in WCPO total biomass are largely driven by similar biomass trends in regions 2 and 3 , with region 2 declining slightly more as expected given the higher fishing pressure.

4.3.11 Fishing mortality and the impact of fishing

Quarterly average fishing mortality rates are shown in Figure 40 for each region. Recent fishing mortality rates on both juvenile and adult skipjack are estimated to be seasonally highest within region 1, but highest overall in region 2. Fishing mortality rates in region 2 steadily increased from 1972 to 1990 and remained at that level until about 2005, before increasing significantly in the last 10 years. In region 1, fishing mortality is highly seasonal and overall exploitation rates have been moderate
throughout the model period. Fishing mortality rates in region 3 were low for most of the model period apart from a large increase in 2009.

These trends are reflected in the recent age-specific fishing mortality rates which are highest for age classes 4-6 within region 2 (Figure 41). By comparison, recent fishing mortality rates are slightly lower in region 1 and low in region 3.
For a complex model such as this, it is difficult to readily interpret fishing mortality rates and other parameters to obtain a clear picture of the estimated impact of fishing on the stock. To facilitate this, we have computed total biomass trajectories for the population in each region using the estimated recruitment (modified by the SRR), natural mortality and movement parameters, but assuming that the fishing mortality was zero throughout the time series. Comparison of these biomass trajectories with those incorporating the actual levels of observed historical fishing provides a concise, integrated picture of the impacts of the total fishery on the stock. Biomass trajectories for each region are shown in Figure 42 and the level of stock depletion is presented in Figure 43.

The impact of fishing on the total biomass has been relatively stable for region 1 at about 20 to 30%. It is highest in region 2, where the stock is reduced by 47% of the unfished level in recent years (2006-2009) (Figure 43). For region 3, fishery impacts are estimated to have reduced the total biomass by 21%. For the entire stock, the depletion is estimated to be 35%.

4.3.12 Yield and reference point analysis

The yield analysis consists of computing equilibrium catch (or yield) and biomass, conditional on a specified basal level of age-specific fishing mortality $\left(\mathrm{F}_{\mathrm{a}}\right)$ for the entire model domain, a series of fishing mortality multipliers, Fmult, the natural mortality-at-age (Ma), the mean weight-at-age $\left(\mathrm{w}_{\mathrm{a}}\right)$ and the SRR parameter steepness (h). All of these parameters, apart from Fmult which is arbitrarily specified over a range of $0-50$ in increments of 0.1 , are available from the model as either fixed or estimated parameters. The maximum yield with respect to Fmult can easily be determined and is equivalent to the MSY. Similarly the total and adult biomass at MSY can also be determined. The ratios of the current (or recent average) levels of fishing mortality and biomass to their respective levels at MSY are of interest as reference points. These ratios are also determined and their confidence intervals estimated using a likelihood profile technique.

For the standard yield analysis, the F_{a} are determined as the average over some recent period of time and across regions. In this assessment, we use the average over the period 2006-2009. The last year in which catch and effort data are available for all fisheries is 2010 . We do not include 2010 in the average as fishing mortality tends to have high uncertainty for the terminal data years of the analysis, and the catch and effort data for this terminal year are usually incomplete.

Biomass estimates, yield estimates, and management quantities for the sequence of models runs leading up to the reference case are presented in Table 10. The reference case and the structural uncertainty grid are presented in Table 11. Table 12 presents results for an alternative grid, which includes models with growth fixed at the Tanabe (2003) growth curve.

The stock assessments are uninformative regarding the relationship between spawning biomass and recruitment, and a value of $h=0.8$ was assumed in the reference case (Figure 44). Sensitivity analyses for other values of steepness are presented in Table 13, including an implausible estimated steepness of 0.39 . Model runs from the sensitivity analyses are presented in Table 14, with the SBEST purse catch and size data, alternative (binomial) CPUE time series, the CPUE series from 2010, and a model run without the PTTP tag data. Table 15 has results for 3 alternative approaches to growth, including an estimated growth curve, the Leroy (2000) growth curve, and the Tanabe (2003) growth curve. The alternative fixed growth curves estimate higher MSY and lower $\mathrm{F} / \mathrm{F}_{\mathrm{MSY}}$, while the estimated growth model suggests lower MSY and less optimistic stock condition.

For the reference-case, MSY is estimated to be 1.50 million mt per annum at a level of fishing effort (Fmult) approximately 2.7 times the current level of effort. Because of the extent of extrapolation required to reach the maximum of the yield curve, the estimate of MSY is uncertain. Further, there is little contrast in the estimated yield across a wide range of effort levels (from Fmult 2 to 10)
indicating $F_{M S Y}$ is poorly determined. As a comparison, the estimated MSY for the equatorial model in 2008 was 1.28 million mt per annum, which is not far below the level estimated here. The maximum yield that is projected if the recent 20 year (1990-2009) average recruitment is maintained (i.e. without considering the stock recruitment relationship) is approximately 1.9 million mt per annum. When the stock recruitment relationship is considered, the same run gives maximum yield of 1.7 million mt .

The portion of the yield curve near the current level of F-at-age is flat (Figure 48). Therefore, it might reasonably be expected that, in the absence of further increases in catchability in the purse seine fisheries in particular, CPUE, would, on average, be expected to significantly decline with higher fishing effort than at present.

For the reference-case, levels of equilibrium biomass levels are estimated to be relatively low at $F_{M S Y}\left(S \widetilde{B}_{M S Y} / S \widetilde{B}_{0}=0.27\right.$ and $\left.\widetilde{B}_{M S Y} / \widetilde{B}_{0}=0.30\right)$.

4.3.13 Sensitivity analyses and structural uncertainty grid

Sensitivity to several alternative scenarios was included in a grid, in which all scenarios were interacted with one another. We investigated the effects of each of these alternative scenarios on the ratio-based management indicators $F_{\text {current }} / \tilde{F}_{M S Y}$ (Figure 51), $B_{\text {current }} / B_{m s y}$ (Figure 52), and $S B_{\text {current }} / S B_{\text {msy }}$ (Figure 53).

Steepness had the largest effect on all three management parameters, with higher steepness as expected resulting in a more robust stock and higher MSY. The full array of management parameters for each steepness level is also presented (Table 13).

The CPUE series based on the transformed binomial showed more decline than the delta lognormal indices of abundance. However, using this time series tended to raise the average biomass, which resulted in only slightly lower median estimates of $F_{\text {current }} / \tilde{F}_{M S Y}$, and slightly higher $B_{\text {current }} /$ $B_{m s y}$. However, there was considerable overlap in the range of results. Using the lognormal offset CPUE time series had mixed effects, but again there was considerable overlap in the range of the ratio-based management indicators.
The different time series of purse seine catch had little influence on the ratio-based management parameters.
The distributions of management parameters under the different model structure scenarios are also presented (Figure 54 and

Figure 55). Most of the uncertainty captured by this analysis was contributed by the alternative steepness values. In none of the scenarios did any of the management indicator ratios $F_{\text {current }} / \widetilde{F}_{M S Y}$, $B_{\text {current }} / B_{m s y}$, or $S B_{\text {current }} / S B_{m s y}$ approach 1. The structural uncertainty distribution of MSY ranged from approximately 1.32 million to 2.7 million metric tonnes.

4.3.14 Stock status

Fishing mortality rates tended to be higher during the last decade than for the preceding period, although they remained substantially below the $F_{M S Y}$ level $\left(F_{\text {current }} / \tilde{F}_{M S Y}=0.37\right.$ for the reference case and 0.28 for the grid) (Figure 49 and Figure 50). All runs in the grid estimated $F_{\text {current }}$ to be below $\tilde{F}_{M S Y}$. Therefore, overfishing of skipjack is not occurring. Total biomass remained higher than the $\widetilde{B}_{M S Y}$ level throughout the model period and current total biomass is approximately 82% (and 87% for the grid) of the equilibrium unexploited level (\widetilde{B}_{0}) due to the higher levels of recruitment in recent years ($B_{\text {current }} / \widetilde{B}_{M S Y}=2.68$, or 2.74 for the grid). The probability distribution of $B_{\text {current }} / \widetilde{B}_{M S Y}$, obtained from the structural uncertainty grid, indicates a high degree of uncertainty associated with the MSY-based biomass performance indicators (Table 11). Nonetheless, none of the grid runs indicated that $B_{\text {current }} / \widetilde{B}_{M S Y}$ is close to 1.0 and, on this basis, the stock is not in an overfished state.

However, catches since 2007 are in the vicinity of or slightly exceed the estimated MSY. Therefore, if recent catch levels are maintained or increased, decline in spawning biomass towards the MSY level would be predicted under the estimated dynamics of the reference case model and main sensitivity runs.

5 Discussion

This assessment has estimated that the skipjack stock is not experiencing overfishing, and is not in an over-fished state. Skipjack is a very difficult species to assess, due to its high and variable productivity, which make it difficult to observe the effect of fishing on the population's biomass. Continuous and variable recruitment make it difficult to observe length frequency modes in the size data, and so estimate growth (e.g. Maunder 2011). The WCPO assessment is very reliant on the tagging data to estimate population size, the Japanese pole and line CPUE time series to estimate biomass trend, and assumptions about growth to provide the framework for modelling these data.

A number of significant changes were made to the input data for this assessment. These occurred in three main areas: a) a large quantity of new tagging data has been added, from the PTTP tagging program, which increased the number of tags in the model by 50%, b) the CPUE time series was changed, giving the two equatorial regions significantly different trends, and c) an adjustment was applied to the purse seine length frequency data based on analysis of spill sampling data. It is largely these new data that have changed the stock assessment results.

Despite these changes the major conclusions are largely unchanged, in that the stock is neither overfished nor experiencing overfishing. Estimates of potential biological yield are also consistent with estimates from previous assessments, within the margin of error. The most recent extractions from the stock are approaching those yield levels.

Addition of the PTTP tagging data resulted in a higher estimated MSY level, by 13%, and reduced the $\mathrm{F} / \mathrm{F}_{\mathrm{MSY}}$ by 15%. This large effect is because the information on biomass changes provided by the tagging data does not entirely agree with the CPUE data. There is a downward trend in the effort deviates in regions 2 and 3 during the period of the PTTP data. The model seems to fit the tagging data quite well, but predicts more observations than expected for longer times at liberty in region 2. This suggests that the model may be underestimating the combined total mortality and movement from this region.

The PTTP tagging data required programme-specific reporting rates, because of evidence that reporting rates for individual fisheries have changed through time. In addition, it is clear that different fisheries report tags from different sources at different rates (e.g. Japanese vs SPC administered tagging programmes). The new functionality was added to MULTIFAN-CL in 2010. In this assessment a number of reporting rates were estimated at the parameter boundary. The implications of these limits requires further investigation.
While tagging data show that individual skipjack are capable of undertaking long-distance movements of several thousand kilometres, fine-scale spatial analyses of the tagging data in relation to the distribution of fishing effort suggest some degree of regional-scale stock fidelity (Sibert, Hampton, Fournier, and Bills 1999;Sibert and Hampton 2003). The population-level estimates of dispersal obtained from the current assessment show a moderate level of stock mixing, both between the equatorial and temperate regions, and also east and west. These dispersal rates appear generally consistent with the observations from the tagging data, as well as trends in the catch and effort data. However, the north-south movement dynamics and recruitment distribution appear less realistic. The tagging data suggest a general northern movement of fish from the equatorial regions. The southern movement estimated from the model is likely to be attributable to other structural assumptions.

There are a great many tag releases and, in some regions, tag recoveries, but for many fisheries there is no information available regarding the reporting rates. This leaves the reporting rate prior estimates for the RTTP and PTTP (Hampton 1997;Hoyle 2011) among the most influential information about overall stock size. The model has the flexibility to accommodate moderately different estimates of
stock size, given different reporting rate estimates. Further work on estimating the components of reporting rates, for both the PTTP and the Japanese tagging programmes, and changes to include them in MULTIFAN-CL, is therefore recommended. The PTTP reporting rate estimates are based on tag seeding experiments. A number of development areas have been identified for this work (Hoyle 2011), which is ongoing, and given the influence of the tagging data and the number of reporting rates estimated at the bounds, this is a high priority for the skipjack stock assessment.
The new standardized CPUE time series showed a significant increase in CPUE in about 1984, in both equatorial regions. This change helps to drive a steep biomass increase by almost 60% in a 10 year period. This increase occurred at the same time in both region 2 and region 3, but was not observed in region 1. Investigation of the data used in the CPUE analysis is suggested, since one of the major changes to the analysis this year was the introduction of vessel identity information prior to 1984 for the first time, for regions 2 and 3 only. There may have been changes in catch and effort data collection methods around this time. The change in the time series input to the model from that used in 2010 to the 2011 CPUE series reduced the MSY by 9% but increased the $\mathrm{F} / \mathrm{F}_{\text {MSY }}$ by only 2% (Table 14). It had a substantial effect on the estimated biomass trend.

Adding the spill-sampling corrected sizes to the model reduced the MSY estimate by 6% and increased the $\mathrm{F} / \mathrm{F}_{\text {MSY }}$ by 12% (Table 10 and Table 14), at least when growth rates were fixed. Including these corrected sizes reduced the ability of the model to estimate growth, since the relative sizes of length frequency modes were changed. Further observer collections of spill-sample size data, and work on the methods for modelling the size data correction, are expected, and it is hoped that this work will result in size data that are more informative about growth rates.
The model estimates a reasonably low biomass in the northern region, compared with the level of catch. The artificial quarter 1 CPUE added to the region 1 pole and line fishery may be contributing to this lower biomass. This assumption may be relaxed in future assessments.
There is considerable uncertainty about the growth model. The 2010 estimated growth rate was faster than that estimated from otolith length at age data from the north western Pacific (Tanabe, Kayama, and Ogura 2003), though similar to growth estimates for skipjack from the equatorial Pacific (Leroy 2000), for the sizes of fish that are comprise most of the purse seine catch in region 3. The main difference occurred at large sizes and ages over one year, where daily ring ageing is less reliable and purse seine selectivity may have biased the Leroy growth curve by selecting a higher proportion of slower growing fish at large sizes. Nevertheless, it is clear that the assumed growth curve has a large effect on management parameters (Table 15, Figure 51, Figure 52). The Leroy growth curve increased MSY by 30%, and reduced $\mathrm{F} / \mathrm{F}_{\text {MSY }}$ by 38%, while the Tanabe curve increased MSY by 40% and reduced $\mathrm{F} / \mathrm{F}_{\text {MSY }}$ by 43%.

Both of these otolith-based growth curves show tightly distributed length-at-age, and skipjack daily growth rings are not considered difficult to read up to one year of age, by experienced readers (Bruno Leroy personal communication). Given the supporting evidence for spatial growth variation in the Atlantic (Gaertner, gado de Molina, Ariz, Pianet, and Hallier 2008), and evidence of spatial variation in skipjack size across the Pacific (Hoyle, Kleiber, Davies, Harley, and Hampton 2010, Appendix 2), it seems likely that spatial growth variation is a reality for skipjack. If growth varies spatially, the stock assessment modelling will benefit greatly if we understand the nature of this variation.
Modelling spatial growth variation will require two things: firstly biological work; and secondly development of modelling tools to deal with the variation.
Biological work would involve aging otoliths using daily growth rings from sampling stratified across spatial and temporal sources of variation. This would give us a better understanding of the patterns of spatial size and growth variation and its biological basis. It would also clarify the relative contributions of growth and movement to the observed spatial growth variation, and how patterns vary with age and environmental conditions. Until we understand the biological causes behind the observed dynamics, we are unlikely to be able to model them successfully.
Development work is currently under way to permit MULTIFAN-CL to model sub-stocks with varying growth rates. It may also be possible to accommodate growth variability via the assumed
variability of length at age, or by modelling smaller sub-regions with less variable growth. Identifying the best approach requires considerable model development and simulation work.

6 Conclusions

The major conclusions of the skipjack assessment are similar to those of the last five assessments (Hampton 2002;Langley et al. 2003b;Langley, Hampton, and Ogura 2005;Langley and Hampton 2008;Hoyle, Kleiber, Davies, Harley, and Hampton 2010). The key conclusions are as follows.

1. Estimates of natural mortality are strongly age-specific, with higher rates estimated for younger skipjack.
2. The model estimates significant seasonal movements between the western and eastern equatorial regions. The performance of the fishery in the eastern region has been shown to be strongly influenced by the prevailing environmental conditions with higher stock abundance and/or availability associated with El Niño conditions (Lehodey et al. 1997). This is likely to be at least partly attributable to an eastward displacement of the skipjack biomass due to the prevailing oceanographic conditions, although this dynamic cannot be captured by the parameterisation of movement in the current model.
3. Recruitment showed an upward shift in the mid-1980s and is estimated to have remained at a higher level since that time. This change is driven by the CPUE data, and also by the relative tag return rates from the SSAP and the RTTP tagging programmes. Recruitment in the eastern equatorial region is more variable with recent peaks in recruitment occurring in 1998 and 2004-2005 following strong El Niño events around that time. Conversely, the lower recruitment in 2001-2003 followed a period of sustained La Nina conditions. Recent recruitment is estimated to be at a high level, but is poorly determined due to limited observations from the fishery.
4. The biomass trends are driven largely by recruitment and fishing mortality. The highest biomass estimates for the model period occurred in 1998-2001 and in 2005-2007, immediately following periods of sustained high recruitment within the eastern equatorial region (region 3).
5. The biomass trajectory is influenced by the underlying assumptions regarding the treatment of the various fishery-specific catch and effort data sets within the model. The Japanese pole-and-line fisheries are all assumed to have constant catchability, with any temporal trend in efficiency assumed to have been accounted for by the standardization of the effort series. The CPUE trends are influential regarding the general trend in both recruitment and total biomass over the model period. In all regions there is a relatively good fit to the observed CPUE data, with some deterioration when PTTP tagging data are introduced.
6. The model also incorporates a considerable amount of tagging data that provides information concerning absolute stock size during the main tag recovery period. Including the PTTP tagging data in the model resulted in higher estimates of recent biomass and MSY. Initial analyses of the data suggest some conflict with evidence from the CPUE time series. Further work on both data sources is recommended.
7. Within the equatorial region, fishing mortality increased throughout the model period and is estimated to be highest in the western region in the most recent years. The impact of fishing is predicted to have reduced recent biomass by about 47% in the western equatorial region and 21% in the eastern region. For the entire stock, the depletion is estimated to be approximately 35%.
8. The principal conclusions are that skipjack is currently exploited at a moderate level relative to its biological potential. Furthermore, the estimates of $F_{\text {current }} / \tilde{F}_{M S Y}$ and $B_{\text {current }} / \widetilde{B}_{M S Y}$ indicate that overfishing of skipjack is not occurring in the WCPO, nor is the stock in an overfished state. However, catches since 2007 are in the vicinity of or slightly exceed the estimated MSY. Therefore, if recent catch levels are maintained or increased, decline in spawning biomass towards the MSY level would be predicted under the estimated dynamics of the reference case model and main sensitivity runs. These conclusions appear relatively robust, at least within the statistical uncertainty of the current assessment. Fishing pressure and recruitment variability,
influenced by environmental conditions, will continue to be the primary influences on stock size and fishery performance.
9. For the model assumptions investigated, there was only moderate variation in the estimates of stock status. This suggests that the model is strongly driven by the key input data: catch, CPUE, size data, and the tagging datasets. The most influential assumptions involved steepness and growth. There are insufficient data to estimate steepness reliably within the assessment model and many of the key management quantities are strongly influenced by the values assumed. Growth and its variation in space, through time, and among individuals is not well understood. However, only a limited range of assumptions was investigated in this assessment, and as a result the true level of structural uncertainty was under-estimated.
10. The following research and monitoring tasks are recommended to improve the skipjack tuna assessment.

- Growth investigation: Otolith sampling and daily growth ring reading are recommended as a top priority, to improve the understanding of skipjack growth and its variation spatially, temporally, and among individuals. Otolith sampling may also permit collection of age frequency data from the commercial catch, which would improve current estimates of the population age structure. We also recommend analytical work with MULTIFAN-CL to model fisheries at a smaller spatial and temporal scale, to estimate growth rates from length frequency modes. Analyses of growth increments from the available tagging data may also provide information about spatial and temporal growth variation.
- Analyses of tagging data: continued or increased levels of tag seeding are needed to provide better understanding of the factors affecting reporting rates, and more precise estimates. Reporting rates are very influential since they are directly proportional to biomass and fishing mortality rates.
- Spill sampling work: continued spill and grab sampling data collection is required to improve estimates of size distribution and species composition. Further analytical work is also recommended as a high priority. Currently the spill sampling size adjustments seem to obscure length frequency modes in the size data.
- This and recent skipjack assessments have used standardized CPUE from the Japanese pole and line fisheries as the key index that drives estimated abundance trends. This fishery now makes up less than 4% of the total WCPO skipjack catch, and an even smaller percentage in the main equatorial zone, but remains the only fishery that can provide long-term information on relative biomass levels. We still have a limited understanding of the factors driving the patterns observed in these data. Recent analyses have made significant progress and we encourage further analysis as a high priority. The aim should be to work towards a stable protocol that can be carried forward with little extra cost.
- Research prioritization: given the range of options for further research, a more formal approach to research prioritization would be beneficial. Simulation testing of management strategies is the preferred framework for this kind of prioritization, because it permits direct testing of the benefits of alternative research options for management outcomes. We recommend development of a data simulator that can be used for management strategy evaluation, research prioritization, and simulation testing of stock assessment approaches.
- The purse seine fishery dominates equatorial catches, but progress has been slow in understanding the factors impacting its CPUE. An index of abundance based on this major fishery is desirable, but there are difficulties. Technologies change constantly, catchability increases rapidly, and it is difficult to define the unit of effort when fish aggregating devices are involved. Research in this area would be very rewarding if successful, but is high risk and would be difficult to apply to long term abundance indices.

7 Acknowledgements

We thank the various fisheries agencies, in particular NRIFSF for the provision of the catch, effort and size composition data used in this analysis. We thank participants at the preparatory stock assessment workshop (Noumea, April 2011) for their contributions to the assessment.

8 References

Bigelow, K., Hampton, J., and Fournier, D. Preliminary application of the MULTIFAN-CL model to skipjack tuna in the tropical WCPO. 2000. Working Paper SKJ- 2, 13th Meeting of the Standing Committee on Tuna and Billfish, 5-12 July 2000, Noumea, New Caledonia.
Ref Type: Conference Proceeding
Fournier,D.A., Hampton,J., and Sibert,J.R. 1998. MULTIFAN-CL: a length-based, age-structured model for fisheries stock assessment, with application to South Pacific albacore, Thunnus alalunga. Can.J.Fish.Aquat.Sci. 55: 2105-2116.

Francis,R.I.C.C. 1992. Use of risk analysis to assess fishery management strategies: A case study using orange roughy (Hoplostethus atlanticus) on the Chatham Rise, New Zealand.
Can.J.Fish.Aquat.Sci. 49: 922-930.
Gaertner,D., gado de Molina,A., Ariz,J., Pianet,R., and Hallier,J.P. 2008. Variability of the growth parameters of the skipjack tuna (Katsuwonus pelamis) among areas in the eastern Atlantic: analysis from tagging data within a meta-analysis approach. Aquat.Living Resour. 21: 349-356.

Hampton,J. 1997. Estimates of tag-reporting and tag-shedding rates in a large-scale tuna tagging experiment in the western tropical Pacific Ocean. Fish.Bull. 95: 68-79.

Hampton,J. 2000. Natural mortality rates in tropical tunas: size really does matter.
Can.J.Fish.Aquat.Sci. 57: 1002-1010.
Hampton,J. 2002. Stock assessment of skipjack tuna in the western and central Pacific Ocean. Working Paper 1: 36.

Hampton, J. and Fournier, D. 2001a. Stock assessment of skipjack tuna in the western and central Pacific Ocean [SKJ-1]. SPC, Secretariat of the Pacific Community No. [SKJ-1].

Hampton,J. and Fournier,D. 2001b. Stock assessment of yellowfin tuna in the western and central Pacific Ocean. 14th Meeting of the Standing Committee on Tuna and Billfish, August.

Hampton,J. and Fournier,D.A. 2001c. A spatially disaggregated, length-based, age-structured population model of yellowfin tuna (Thunnus albacares) in the western and central Pacific Ocean. Mar.Freshwat.Res. 52: 937-963.

Hampton, John and Williams, Peter 2011. Analysis of purse seine set type behaviour in 2009 and 2010 . No. WCPFC-SC7-2011/MI-WP-01 .

Harley, S. J. 2011. A preliminary investigation of steepness in tunas based on stock assessment results. No. WCPFC-SC7-2011/IP-08.

Hoyle, S. D. 2011. Tag reporting rate prior distributions for the 2011 bigeye, yellowfin, and skipjack stock assessments. No. WCPFC SC7 SA IP-10.

Hoyle, Simon, Kleiber, Pierre, Davies, Nick, Harley, Shelton, and Hampton, John 2010. Stock assessment of skipjack tuna in the western and central Pacific Ocean. No. WCPFC-SC6-2010/SA-WP-10.

Hoyle, Simon D. and Langley, Adam D. 2011. Spatial size data stratification for length-based stock assessments. Western and Central Pacific Fisheries Commission No. WCPFC-SC7-SA-IP-xx.

Kiyofuji, H, Uosaki, K, and Hoyle, S. 2011. Updated CPUE for skipjack caught by Japanese distant water and offshore pole and line in the western and central Pacific Ocean. No. WCPFC-SC7-2011/SA-IP-13.

Kiyofuji, H, Uosaki, K, Ogura, M, Langley, AD, and Hoyle SD 2010. Standardized CPUE for skipjack caught by Japanese offshore pole and line fishery in the northern region of western and central Pacific Ocean. No. WCPFC Scientific Committee SA-WP-09.

Kleiber, P. M., Hampton, W. J., and Fournier, D. A. 2003. MULTIFAN-CL User's Guide.
Langley,A., Hampton,J., and Ogura,M. 2005. Stock assessment of skipjack tuna in the western and central Pacific Ocean.

Langley, A., Ogura, M., and Hampton, J. Stock assessment of skipjack tuna in the western and central Pacific Ocean. Proceedings on Sixteenth Meeting of the Standing Committee on Tuna and Billfish.Mooloolaba, Qld, Australia . 2003a.
Ref Type: Conference Proceeding
Langley,A., Ogura,M., and Hampton,J. 2003b. Stock assessment of skipjack tuna in the western and central Pacific Ocean. 16th Standing Committee on Tuna and Billfish. Oceanic Fisheries Program, Secretariat of the Pacific Community, Noumea, New Caledonia.

Langley, A. D. and Hampton, J. 2008. Stock assessment of skipjack tuna in the Western and Central Pacific Ocean. Western and Central Pacific Fisheries Commission (WCPFC).

Langley, AD, Uosaki, K, Hoyle, SD, Shono, H, and Ogura, M 2010. A standardized CPUE analysis of the Japanese distant-water skipjack pole-and-line fishery in the western and central Pacific Ocean (WCPO), 1972-2009. No. WCPFC Scientific Committee SA-WP-08.

Lawson, T 2011. Purse-Seine length frequencies corrected for selectivity bias in grab samples collected by observers. No. WCPFC-SC-ST-IP-2.

Lawson, T and Sharples, P 2011. Report on Project 60: Collection and evaluation of purse seine species composition data. No. WCPFC-SC7-ST-WP-3.

Lawson, Timothy. 2009. Selectivity bias in grab samples and other factors affecting the analysis of species composition data collected by observers on purse seiners in theWestern and Central Pacific Ocean. Western and Central Pacific Fisheries Commission No. WCPFC-SC5-2009/ST-WP-03.

Lawson, Timothy. 2010. Update on the estimation of selectivity bias based on paired spill and grab samples collected by observers on purse seiners in theWestern and Central Pacific Ocean. Western and Central Pacific Fisheries Commission No. WCPFC-SC6-2010/ST-WP-02.

Lehodey,P. 2001. The pelagic ecosystem of the tropical Pacific Ocean: dynamic spatial modelling and biological consequences of ENSO. Progress in Oceanography 49: 439-468.

Lehodey,P., Bertignac,M., Hampton,J., Lewis,A., and Picaut,J. 1997. El Ni \pm o Southern Oscillation and tuna in the western Pacific. Nature 389: 715-718.

Leroy, B. Preliminary results on skipjack (Katsuwonus pelamis) growth, SCTB 13 Working Paper, SKJ-1. 13th Meeting of the Standing Committee on Tuna and Billfish. 13. 2000. 5-7-2000. Ref Type: Conference Proceeding

Mace,P.M. and Doonan,I.J. 1988. Biomass and yield estimates for North Chatham Rise orange roughy. 42 p.(Draft report prepared for the Standing Committee on orange roughy.) Unpublished report held in NIWA library. PO Box 14: 901.

Maunder,M.N. 2001. Growth of skipjack tuna (Katsuwonus pelamis) in the eastern Pacific Ocean, as estimated from tagging data. Bulletin.Inter-American Tropical Tuna Commission/Boletin.Comision Interamericana del Atun Tropical.La Jolla CA [Bull.IATTC/Bol.CIAT].Vol. 22 no.

Maunder,M.N. 2011. Updated indicators of stock status for skipjack tuna in the eastern Pacific Ocean. Inter American Tropical Tuna Commission document SAC 0208.

Maunder,M.N., Watters,G.M., and Inter-American Tropical Tuna Commission 2003. A-SCALA: An Age-structured Statistical Catch-at-length Analysis for Assessing Tuna Stocks in the Eastern Pacific Ocean. Inter-American Tropical Tuna Commission.

Sibert,J. and Hampton,J. 2003. Mobility of tropical tunas and the implications for fisheries management. Mar.Policy 27: 87-95.

Sibert,J.R., Hampton,J., Fournier,D.A., and Bills,P.J. 1999. An advection-diffusion-reaction model for the estimation of fish movement parameters from tagging data, with application to skipjack tuna (Katsuwonus pelamis). Can.J.Fish.Aquat.Sci. 56: 925-938.

SPC-OFP 2011. Report from the SPC pre-assessment workshop, Noumea, April 2011. No. WCPFC-SC7-SA-IP-05.

Tanabe, T., Kayama, S., and Ogura, M. Precise age determination of young to adult skipjack tuna (Katsuwonus pelamis) with validation of otolith daily increment. $16^{\text {th }}$ Meeting of the Standing Committee on Tuna and Billfish, 916 July 2003, Mooloolaba, Australia. Working Paper SKJ8. 2003. 2003.

Ref Type: Case

Wild,A. and Hampton,J. 1994. A review of the biology and fisheries for skipjack tuna, Katsuwonus pelamis, in the Pacific Ocean. FAO Fisheries Technical Paper (FAO).

9 Tables

Table 1: Definition of fisheries for the MULTIFAN-CL skipjack analysis. Gears: PL = pole-and-line; PS = purse seine unspecified set type; PS/LOG+FAD = purse seine log or FAD set; PS/SCH = purse seine school set; $\mathrm{LL}=$ longline; $\mathrm{DOM}=$ the range of artisanal gear types operating in the domestic fisheries of Philippines and Indonesia. Flag/fleets: JP/OS = Japan offshore fleet; JP/DW = Japan distant-water fleet; JP/RES = Japan research/training vessel fleet; $\mathrm{PG}=$ Papua New Guinea; $\mathrm{SB}=$ Solomon Islands; $\mathrm{PH}=$ Philippines; $\mathrm{ID}=$ Indonesia; FJ = Fiji; ALL = all nationalities.

Fishery definitions				
Fishery code	Gear	Flag/fleet	Area	Region
1. JPOS PL 1	PL	JP/OS	1	
2. JPDW PL 1	PL	JP/DW	1	
3. JPOS PS 1	PS	JP/OS	1	
4. JP LL 1	LL	JP/RES	1	
5. JPDW PL 2	PL	JP/DW	2	
6. PG PL 2	PL	PG	2	
7. SB PL 2	PL	SB		2
8. PS LOG/FAD 2	PS/LOG+FAD	ALL		2
9. PS SCH 2	PS/SCH	ALL		2
10. PH DOM 2	DOM	PH	Archipelagic	2
11. ID DOM 2	DOM	ID	Archipelagic	2
12. JP LL 2	LL	JP/RES		2
13. JPDW PL 3	PL	JP/DW		3
14. FJ PL 3	PL	FJ		3
15. PS LOG/FAD 3	PS/LOG+FAD	ALL		3
16. PS SCH 3	PS/SCH	ALL		3
17. JP LL 3	LL	JP/RES		
18. PS PH/ID DOM	PS	PHID	Oceanic	2

Table 2: Annual catch by fishery for 2009 and the average for 2005-2009. The two alternative catch histories for the industrial purse-seine fisheries are presented using corrected and uncorrected catches (in brackets).

Fishery	Annual catch (mt)	
	$\begin{array}{r} \text { Avg. } 2005- \\ 2009 \end{array}$	2009
1. JPOS PL 1	35142	22114
2. JPDW PL 1	31078	15294
3. JPOS PS 1	55576	28875
5. JPDW PL 2	17129	12515
6. PG PL 2	0	0
7. SB PL 2	2697	3
8. PS LOG/FAD 2	407265	419301
	(470 660)	(463 610)
. PS SCH 2	275992	268821
	(294 628)	(293 060)
10. PH DOM 2	87694	95515
11. ID DOM 2	67618	70894
13. JPDW PL 3	5172	7664
14. FJ PL 3	0	0
15. PS LOG/FAD 3	145490	241658
	(159 228)	(263 823)
16. PS SCH 3	108112	199018
	(108561)	(196 252)
18. PS PH/ID DOM	204264	226765
Total	1443267	1608479
	(1540 008)	(1697 142)

Table 3. Summary of the number of tag releases and recoveries by region. Recovery data are also apportioned to the fishery of recovery.

Region	Releases		Fishery	Recoveries
1	38,214	1.	JPOS PL 1	957
		2.	JPDW PL 1	114
		3.	JPOS PS 1	878
	4.	JP LL 1	0	
2	289,422	5.	JPDW PL 2	928
		6.	PG PL 2	872
		7.	SB PL 2	1453
		8.	FAD/LOG PS 2	16176
		9.	SCH PS 2	551
		10.	PH DOM 2	1754
		12.	ID DOM 2	3653
	18.	PHID DOM PS 2	8	
		13.	JPDW PL 3	3910
3		14.	FJ PL 3	487
		15.	FAD/LOG PS 3	2631
				SCH PS 3

Table 4: Reporting rate parameters for reference case runs, and priors by fishery and release programme.

RR Parameter	Release programme	Fishery group	Prior	SD	Penalty
1	JP	Dom ID	0.5	0.71	1
2		Dom PH	0.5	0.71	1
3		JP	0.5	0.71	1
4		PLFJ	0.5	0.71	1
5		PLPG	0.5	0.71	1
6		PL SB	0.5	0.71	1
7		PS R2	0.5	0.71	1
8		PS R3	0.5	0.71	1
9	PTTP	Dom ID	0.5	0.71	1
10		Dom PH	0.5	0.71	1
11		JP	0.5	0.71	1
12		PL FJ	0.5	0.71	1
13		PLPG	0.5	0.71	1
14		PL SB	0.5	0.71	1
15		PS R2	0.521	0.12	34
16		PS R3	0.442	0.18	16
17	RTTP	Dom ID	0.5	0.71	1
18		Dom PH	0.5	0.71	1
19		JP	0.5	0.71	1
20		PL FJ	0.5	0.71	1
21		PLPG	0.5	0.71	1
22		PL SB	0.5	0.71	1
23		PS R2	0.457	0.09	66
24		PS R3	0.457	0.09	66
25	SSAP	Dom ID	0.5	0.71	1
26		Dom PH	0.5	0.71	1
27		JP	0.5	0.71	1
28		PLFJ	0.5	0.71	1
29		PLPG	0.5	0.71	1
30		PL SB	0.5	0.71	1
31		PS R2	0.5	0.71	1
32		PS R3	0.5	0.71	1

Table 5. Main structural assumptions used in the reference case model.

Category	Assumption		
Observation model for total catch data	Observation errors small, equivalent to a residual SD on the log scale of 0.07.		
Observation model for			
length-frequency data		\quad	Normal probability distribution of frequencies with variance determined by sample
:---			
size and observed frequency. Effective sample size varies among fisheries, assumed			
at most to be 0.025 times actual sample size with a maximum effective sample size			
of 25.			

Table 6. Run sequence progression from the 2010 model to the reference case.

Run	C/E	Spill catch	Size data	CPUE	ID/PH	tag	Steepness	Growth	Comments
R1	Old	2010	2010	Delta	Old	Old	0.75	2010	2010 data, new MFCL code
R2	New	New	2011	Delta	Old	Old	0.75	2010	Update catch, effort, size data.
R3	New	New	Adj	Delta	Old	Old	0.75	2010	Adjust size frequency for spill
R4	New	New	Adj	Delta	New	Old	0.75	2010	New ID/PH fishery structure
R5	New	New	Adj	Delta	New	PTTP	0.75	2010	Add PTTP tag data
Ref	New	New	Adj	Delta	New	PTTP	0.8	2010	Change steepness to 0.8

Table 7. Characteristics of the sensitivity analyses, as offsets from the reference case.

Run	C/E	Size data	CPUE	ID/ PH	tag	Steepness	Growth	Comments
SB	S_BEST	2011	Delta	New	PTTP	0.8	2010	Without spill sample adjustmt
CP1	New	Adj	Binomial	New	PTTP	0.8	2010	Alternative CPUE time series
Tag	New	Adj	Delta	New	Old	0.8	2010	Without PTTP tag data
ST 0.65	New	Adj	Delta	New	PTTP	0.65	2010	Steepness $=0.65$
ST 0.95	New	Adj	Delta	New	PTTP	0.95	2010	Steepness $=0.95$
ST est	New	Adj	Delta	New	PTTP	Estimated	2010	Estimated steepness = 0.40
Leroy growth	New	Adj	Delta	New	PTTP	0.8	Leroy	Alternative growth model 1
Tanabe growth	New	Adj	Delta	New	PTTP	0.8	Tanabe	Alternative growth model 2
Estimate growth	New	Adj	Delta	New	PTTP	0.8	Estimated	Estimate growth

Table 8. Details of objective function components for the reference case analysis and sensitivity analyses.

Objective function component	Reference case	S_BEST	Binomial CPUE	No PTTP tag data	Leroy growth	Tanabe growth	Estimate growth
Total function value	-89667.2	-100534.7	-90681.9	-94743.8	-87392.6	-86725.8	-91477.8
Total catch log-							
likelihood	83.9	83.2	72.7	64.6	82.2	98.2	77.9
Length frequency							
log-likelihood	-105868.6	-116797.0	-105877.3	-105927.6	-105798.2	-106136.5	-105220.0
Penalties	1530.1	1523.1	546.6	605.0	3077.4	1561.5	643.0
Effort dev penalty	1306.4	1302.5	323.3	423.5	437.5	1331.6	440.9
Tag log-likelihood	14561.0	14629.3	14553.1	10488.7	15221.8	17706.0	13002.8

Table 9. Description of symbols used in the yield analysis.

Symbol	
$F_{\text {current }}$	Average fishing mortality-at-age for 2006-2009
$F_{M S Y}$	Fishing mortality-at-age producing the maximum sustainable yield (MSY)
$\tilde{Y}_{F_{\text {current }}}$	Equilibrium yield at $F_{\text {current }}$
$\tilde{Y}_{F_{M S Y}}$ (or MSY)	Equilibrium yield at $F_{M S Y}$, or maximum sustainable yield
\widetilde{B}_{0}	Equilibrium unexploited total biomass
$\widetilde{B}_{F_{\text {current }}}$	Equilibrium total biomass at $F_{\text {current }}$
$\widetilde{B}_{M S Y}$	Equilibrium total biomass at MSY
$S \tilde{B}_{0}$	Equilibrium unexploited adult biomass
$S \widetilde{B}_{F_{\text {current }}}$	Equilibrium adult biomass at $F_{\text {current }}$
$S \widetilde{B}_{M S Y}$	Equilibrium adult biomass at MSY
$B_{\text {current }}$	Average current (2006-2009) total biomass
$S B_{\text {current }}$	Average current (2006-2009) adult biomass
$B_{\text {current, } F=0}$	Average current (2006-2009) total biomass in the absence of fishing.

Table 10: Estimates of management quantities for the series from R1 (2010 data, new MFCL code), R2 (update catch, effort, size data), R3 (adjust size frequency for spill sampling), R4 (new ID/PH fishery structure), and R5 (add PTTP data). The following model was the reference case in which steepness was changed to 0.8 . For a detailed list of the characteristics of each model run, see Table 6 . The highlighted rows are ratios of comparable quantities at the same point in time (black shading) and ratios of comparable equilibrium quantities (grey shading). Symbols are defined in Table 9.

Management quantity	Units	R1	R2	R3	R4	R5
$\tilde{Y}_{F_{\text {curent }}}$	t per annum	1092000	1096800	1086000	1251600	1124000
$\tilde{Y}_{F_{M S Y}}($ or MSY)	t per annum	1360400	1422400	1407200	1561600	1428400
\tilde{B}_{0}	t	4735000	5399000	5434000	5833000	6190000
$\tilde{B}_{F_{\text {curent }}}$	t	2617000	3146000	3165000	3288000	3560000
$\widetilde{B}_{M S Y}$	t	1463000	1706000	1715000	1866000	1962000
$S \widetilde{B}_{0}$	t	4398000	5111000	5131000	5460000	5828000
$S \widetilde{B}_{F_{\text {current }}}$	t	2304000	2877000	2881000	2940000	3222000
$S \tilde{B}_{M S Y}$	t	1189000	1469000	1465000	1559000	1664000
$B_{\text {current }}$	t	3524942	3998283	4040475	4375220	5018960
$S B_{\text {current }}$	t	3157757	3704831	3725314	3968103	4595407
$B_{\text {current }, F=0}$	t	5627154	5938275	6007608	6656906	7677354
$B_{\text {current }} / \widetilde{B}_{0}$		0.74	0.74	0.74	0.75	0.81
$B_{\text {current }} / \widetilde{B}_{M S Y}$		2.41	2.34	2.36	2.34	2.56
$B_{\text {current }} / B_{\text {current }, F=0}$		0.63	0.67	0.67	0.66	0.65
$S B_{\text {current }} / S \widetilde{B}_{0}$		0.72	0.72	0.73	0.73	0.79
$S B_{\text {current }} / S \widetilde{B}_{M S Y}$		2.66	2.52	2.54	2.55	2.76
$S B_{\text {latest }} / S \tilde{B}_{M S Y}$		2.25	2.27	2.28	2.40	2.07
$\tilde{B}_{F_{\text {curent }}} / \widetilde{B}_{0}$		0.55	0.58	0.58	0.56	0.58
$S \tilde{B}_{F_{\text {current }}} / S \tilde{B}_{0}$		0.52	0.56	0.56	0.54	0.55
$\widetilde{B}_{M S Y} / \widetilde{B}_{0}$		0.31	0.32	0.32	0.32	0.32
$S \tilde{B}_{M S Y} / S \tilde{B}_{0}$		0.27	0.29	0.29	0.29	0.29
$F_{\text {current }} / \tilde{F}_{M S Y}$		0.35	0.39	0.39	0.41	0.42
Fmult		2.84	2.59	2.55	2.42	2.41
$\widetilde{B}_{F_{\text {current }}} / \widetilde{B}_{M S Y}$		1.79	1.84	1.85	1.76	1.81
$S \widetilde{B}_{F_{\text {current }}} / S \widetilde{B}_{M S Y}$		1.94	1.96	1.97	1.89	1.94
$\tilde{Y}_{F_{\text {current }}} / M S Y$		0.80	0.77	0.77	0.80	0.79

Table 11. Estimates of management quantities for the reference-case and the uncertainty grid. The highlighted rows are ratios of comparable quantities at the same point in time (black shading) and ratios of comparable equilibrium quantities (grey shading). Symbols are defined in Table 9.

Management quantity	Units	Reference case	Grid median	Grid 5\%	Grid 95\%
$\tilde{Y}_{F_{\text {current }}}$	t per annum	1136000	1186750	1108760	1262160
$\tilde{Y}_{F_{M S Y}}($ or MSY)	t per annum	1503600	1839533	1320540	2716140
\tilde{B}_{0}	t	6147000	6329833	5802700	6835450
$\tilde{B}_{F_{\text {current }}}$	t	3598000	3985365	3703450	4361750
$\widetilde{B}_{M S Y}$	t	1869000	1982125	1642400	2344900
$S \widetilde{B}_{0}$	t	5787000	5486292	4512450	6487900
$S \widetilde{B}_{F_{\text {current }}}$	t	3256000	3187167	2684800	3696850
$S \tilde{B}_{M S Y}$	t	1564000	1309030	541085	2058800
$B_{\text {current }}$	t	5018049	5484087	5132529	5841256
$S B_{\text {current }}$	t	4594557	4486938	3618165	5394979
$B_{\text {current }, F=0}$	t	7676608	7851073	6996743	8708943
$B_{\text {current }} / \tilde{B}_{0}$		0.82	0.87	0.80	0.94
$B_{\text {current }} / \tilde{B}_{M S Y}$		2.68	2.81	2.34	3.31
$B_{\text {current }} / B_{\text {current }, F=0}$		0.65	0.70	0.65	0.75
$S B_{\text {current }} / S \widetilde{S}_{0}$		0.79	0.82	0.78	0.86
$S B_{\text {current }} / S \widetilde{B}_{M S Y}$		2.94	3.89	2.48	7.06
$S B_{\text {latest }} / S \tilde{B}_{M S Y}$		2.21	2.83	1.89	4.96
$\tilde{B}_{F_{\text {current }}} / \widetilde{B}_{0}$		0.59	0.63	0.55	0.71
$S \tilde{B}_{F_{\text {curent }}} / S \tilde{B}_{0}$		0.56	0.58	0.53	0.63
$\widetilde{B}_{M S Y} / \widetilde{B}_{0}$		0.30	0.31	0.26	0.37
$S \widetilde{B}_{M S Y} / S \tilde{B}_{0}$		0.27	0.23	0.12	0.32
$F_{\text {current }} / \tilde{F}_{M S Y}$		0.37	0.30	0.09	0.52
Fmult		2.71	4.45	1.92	11.17
$\tilde{B}_{F_{\text {current }}} / \tilde{B}_{M S Y}$		1.93	2.05	1.62	2.50
$S \widetilde{B}_{F_{\text {current }}} / S \widetilde{B}_{M S Y}$		2.08	2.80	1.69	5.24
$\tilde{Y}_{F_{\text {current }}} / M S Y$		0.76	0.67	0.46	0.85

Table 12: Estimates of management quantities for the reference-case and the uncertainty grid with the Tanabe growth curve included. The highlighted rows are ratios of comparable quantities at the same point in time (black shading) and ratios of comparable equilibrium quantities (grey shading). Symbols are defined in Table 9.

Management quantity	Units	Reference case	Grid median	Grid 5\%	Grid 95\%
$\tilde{Y}_{F_{\text {curent }}}$	t per annum	1136000	1236614	1118200	1393400
$\tilde{Y}_{F_{M S Y}}($ or MSY)	t per annum	1503600	1941955	1341200	2766600
\tilde{B}_{0}	t	6147000	7058479	5804500	8887500
$\tilde{B}_{F_{\text {current }}}$	t	3598000	4583725	3728500	6058000
$\tilde{B}_{M S Y}$	t	1869000	2291662	1645000	3378000
$S \widetilde{B}_{0}$	t	5787000	5858176	4517500	6981500
$S \widetilde{B}_{F_{\text {current }}}$	t	3256000	3449789	2705000	4258000
$S \tilde{B}_{M S Y}$	t	1564000	1345537	560700	2073500
$B_{\text {current }}$	t	5018049	6147467	5163350	7973433
$S B_{\text {current }}$	t	4594557	4792943	3644855	5924875
$B_{\text {current }, F=0}$	t	7676608	8526574	7027834	10515844
$B_{\text {current }} / \tilde{B}_{0}$		0.82	0.87	0.81	0.93
$B_{\text {current }} / \widetilde{B}_{M S Y}$		2.68	2.74	2.21	3.29
$B_{\text {current }} / B_{\text {current }, F=0}$		0.65	0.72	0.66	0.77
$S B_{\text {current }} / S \widetilde{S}_{0}$		0.79	0.82	0.78	0.85
$S B_{\text {current }} / S \widetilde{B}_{M S Y}$		2.94	4.05	2.53	7.11
$S B_{\text {latest }} / S \tilde{B}_{M S Y}$		2.21	3.23	1.93	6.27
$\tilde{B}_{F_{\text {current }}} / \widetilde{B}_{0}$		0.59	0.65	0.56	0.72
$S \tilde{B}_{F_{\text {curent }}} / S \tilde{B}_{0}$		0.56	0.59	0.54	0.63
$\tilde{B}_{M S Y} / \tilde{B}_{0}$		0.30	0.32	0.26	0.39
$S \tilde{B}_{M S Y} / S \tilde{B}_{0}$		0.27	0.23	0.12	0.32
$F_{\text {current }} / \tilde{F}_{M S Y}$		0.37	0.28	0.08	0.51
Fmult		2.71	5.13	1.95	13.25
$\widetilde{B}_{F_{\text {current }}} / \widetilde{B}_{M S Y}$		1.93	2.04	1.62	2.54
$S \widetilde{B}_{F_{\text {current }}} / S \widetilde{B}_{M S Y}$		2.08	2.95	1.70	5.26
$\tilde{Y}_{F_{\text {current }}} / M S Y$		0.76	0.66	0.46	0.84

Table 13: Estimates of management quantities for the reference-case and three alternative steepness values. The highlighted rows are ratios of comparable quantities at the same point in time (black shading) and ratios of comparable equilibrium quantities (grey shading). Symbols are defined in Table 9

Management quantity	Units	Reference case	Steepness 0.65	Steepness 0.95	Steepness estimated (0.39)
$\tilde{Y}_{F_{\text {curent }}}$	t per annum	1136000	1090400	1174800	886800
$\tilde{Y}_{F_{M S Y}}($ or MSY)	t per annum	1503600	1274000	1818000	886800
\tilde{B}_{0}	t	6147000	6309000	6263000	7274000
$\widetilde{B}_{F_{\text {current }}}$	t	3598000	3455000	3917000	2968000
$\widetilde{B}_{M S Y}$	t	1869000	2164000	1663000	2992000
$S \widetilde{B}_{0}$	t	5787000	5940000	5888000	6841000
$S \widetilde{B}_{F_{\text {current }}}$	t	3256000	3126000	3547000	2688000
$S \tilde{B}_{M S Y}$	t	1564000	1879000	1309000	2711000
$B_{\text {current }}$	t	5018049	5021029	5270072	5297648
$S B_{\text {current }}$	t	4594557	4597375	4826006	4853503
$B_{\text {current }, F=0}$	t	7676608	7679012	7877644	7914337
$B_{\text {current }} / \widetilde{B}_{0}$		0.82	0.80	0.84	0.73
$B_{\text {current }} / \widetilde{B}_{M S Y}$		2.68	2.32	3.17	1.77
$B_{\text {current }} / B_{\text {current }, F=0}$		0.65	0.65	0.67	0.67
$S B_{\text {current }} / S \widetilde{S}_{0}$		0.79	0.77	0.82	0.71
$S B_{\text {current }} / S \widetilde{B}_{M S Y}$		2.94	2.45	3.69	1.79
$S B_{\text {latest }} / S \tilde{B}_{M S Y}$		2.21	1.83	2.82	1.35
$\widetilde{B}_{F_{\text {current }}} / \widetilde{B}_{0}$		0.59	0.55	0.63	0.41
$S \widetilde{B}_{F_{\text {current }}} / S \widetilde{B}_{0}$		0.56	0.53	0.60	0.39
$\widetilde{B}_{M S Y} / \widetilde{B}_{0}$		0.30	0.34	0.27	0.41
$S \tilde{B}_{M S Y} / S \tilde{B}_{0}$		0.27	0.32	0.22	0.40
$F_{\text {current }} / \tilde{F}_{M S Y}$		0.37	0.53	0.22	1.01
Fmult		2.71	1.90	4.46	0.9
$\widetilde{B}_{F_{\text {current }}} / \widetilde{B}_{M S Y}$		1.93	1.60	2.36	0.99
$S \widetilde{B}_{F_{\text {current }}} / S \widetilde{B}_{M S Y}$		2.08	1.66	2.71	0.99
$\tilde{Y}_{F_{\text {current }}} / M S Y$		0.76	0.86	0.65	1.00

Table 14. Estimates of management quantities for the reference-case and three alternative steepness values. The highlighted rows are ratios of comparable quantities at the same point in time (black shading) and ratios of comparable equilibrium quantities (grey shading). Symbols are defined in Table 9.

Management quantity	Units	Reference case	SBEST	Binomial CPUE	2010 CPUE	$\begin{gathered} \text { No PTTP } \\ \text { tags } \end{gathered}$
$\tilde{Y}_{F_{\text {current }}}$	t per annum	1136000	1127600	1190000	1266400	1047600
$\tilde{Y}_{F_{M S Y}}($ or MSY)	t per annum	1503600	1590000	1589200	1645200	1331200
\tilde{B}_{0}	t	6147000	6481000	6453000	5794000	5665000
$\widetilde{B}_{F_{\text {current }}}$	t	3598000	3994000	3808000	3331000	3253000
$\tilde{B}_{M S Y}$	t	1869000	1969000	1965000	1788000	1765000
$S \widetilde{B}_{0}$	t	5787000	6097000	6070000	5423000	5333000
$S \tilde{B}_{F_{\text {current }}}$	t	3256000	3627000	3444000	2979000	2938000
$S \widetilde{B}_{M S Y}$	t	1564000	1642000	1639000	1472000	1481000
$B_{\text {current }}$	t	5018049	5603408	4984619	4374328	4707595
$S B_{\text {current }}$	t	4594557	5145724	4556539	3966881	4285580
$B_{\text {current }, F=0}$	t	7676608	8237140	7627114	6655029	7431594
$B_{\text {current }} / \tilde{B}_{0}$		0.82	0.86	0.77	0.75	0.83
$B_{\text {current }} / \widetilde{B}_{M S Y}$		2.68	2.85	2.54	2.45	2.67
$B_{\text {current }} / B_{\text {current }, F=0}$		0.65	0.68	0.65	0.66	0.63
$S B_{\text {current }} / S \widetilde{S}_{0}$		0.79	0.84	0.75	0.73	0.80
$S B_{\text {current }} / S \widetilde{B}_{M S Y}$		2.94	3.13	2.78	2.69	2.89
$S B_{\text {latest }} / S \tilde{B}_{M S Y}$		2.21	2.30	2.22	2.55	2.08
$\widetilde{B}_{F_{\text {current }}} / \widetilde{B}_{0}$		0.59	0.62	0.59	0.57	0.57
$S \widetilde{B}_{F_{\text {current }}} / S \widetilde{B}_{0}$		0.56	0.59	0.57	0.55	0.55
$\widetilde{B}_{M S Y} / \widetilde{B}_{0}$		0.30	0.30	0.30	0.31	0.31
$S \tilde{B}_{M S Y} / S \tilde{B}_{0}$		0.27	0.27	0.27	0.27	0.28
$F_{\text {current }} / \tilde{F}_{M S Y}$		0.37	0.33	0.36	0.36	0.44
Fmult		2.71	3.04	2.77	2.76	2.30
$\widetilde{B}_{F_{\text {current }}} / \widetilde{B}_{M S Y}$		1.93	2.03	1.94	1.86	1.84
$S \widetilde{B}_{F_{\text {current }}} / S \widetilde{B}_{M S Y}$		2.08	2.21	2.10	2.02	1.98
$\tilde{Y}_{F_{\text {current }}} / M S Y$		0.76	0.71	0.75	0.77	0.79

Table 15. Estimates of management quantities for the reference-case and three alternative steepness values. The highlighted rows are ratios of comparable quantities at the same point in time (black shading) and ratios of comparable equilibrium quantities (grey shading). Symbols are defined in Table 9.

Management quantity	Units	Reference case	Estimate growth	Leroy growth	Tanabe growth
$\tilde{Y}_{F_{\text {current }}}$	$\begin{gathered} \hline \text { t per } \\ \text { annum } \end{gathered}$	1136000	1047600	1204400	1320000
$\tilde{Y}_{F_{M S Y}}($ or MSY)	$\begin{gathered} \text { t per } \\ \text { annum } \end{gathered}$	1503600	1331200	1987200	2100000
\widetilde{B}_{0}	t	6147000	5665000	5885000	8254000
$\tilde{B}_{F_{\text {current }}}$	t	3598000	3253000	3973000	5703000
$\tilde{B}_{M S Y}$	t	1869000	1765000	1914000	2887000
$S \tilde{B}_{0}$	t	5787000	5333000	4580000	6247000
$S \widetilde{B}_{F_{\text {current }}}$	t	3256000	2938000	2730000	3790000
$S \widetilde{B}_{M S Y}$	t	1564000	1481000	902700	1321000
$B_{\text {current }}$	t	5018049	4707595	5171466	7150172
$S B_{\text {current }}$	t	4594557	4285580	3651473	4988878
$B_{\text {current }, F=0}$	t	7676608	7431594	7035800	9405355
$B_{\text {current }} / \widetilde{B}_{0}$		0.82	0.83	0.88	0.87
$B_{\text {current }} / \widetilde{B}_{M S Y}$		2.68	2.67	2.70	2.48
$B_{\text {current }} / B_{\text {current }, F=0}$		0.65	0.63	0.74	0.76
$S B_{\text {current }} / S \widetilde{S}_{0}$		0.79	0.80	0.80	0.80
$S B_{\text {current }} / S \widetilde{B}_{M S Y}$		2.94	2.89	4.05	3.78
$S B_{\text {latest }} / S \tilde{B}_{M S Y}$		2.21	2.08	2.92	3.61
$\widetilde{B}_{F_{\text {current }}} / \widetilde{B}_{0}$		0.59	0.57	0.68	0.69
$S \tilde{B}_{F_{\text {current }}} / S \tilde{B}_{0}$		0.56	0.55	0.60	0.61
$\widetilde{B}_{M S Y} / \widetilde{B}_{0}$		0.30	0.31	0.33	0.35
$S \tilde{B}_{M S Y} / S \widetilde{B}_{0}$		0.27	0.28	0.20	0.21
$F_{\text {current }} / \widetilde{F}_{M S Y}$		0.37	0.44	0.23	0.21
Fmult		2.71	2.30	4.27	4.81
$\tilde{B}_{F_{\text {current }}} / \tilde{B}_{M S Y}$		1.93	1.84	2.08	1.98
$S \widetilde{B}_{F_{\text {current }}} / S \widetilde{B}_{M S Y}$		2.08	1.98	3.02	2.87
$\tilde{Y}_{F_{\text {current }}} / M S Y$		0.76	0.79	0.61	0.63

10 Figures

Figure 1: Distribution of total skipjack catches by method during 1972-2010 in relation to the 3-region spatial stratification used in the MULTIFAN-CL analysis. Method colours: Green, pole-and-line; Orange, purse-seine; Black: handline (small-scale); Gray, other.

Figure 2. Annual skipjack tuna catch in the WCPO by method, 1972-2010.

Figure 3. Annual skipjack tuna catch by region and method, 1972-2010. Region 0 represents WCPO catches outside the area included in the model.

Figure 4: Comparison of S_BEST equatorial purse seine catches (red) with catches adjusted for spill sampling (black), for associated LOG/FAD (left) and unassociated (right) fisheries in regions 2 (above) and 3 (below).

Figure 5. Annual catch by fishery and year. Catches are in thousands of tonnes for all fisheries except the longline (LL) fisheries, where the catches are in thousands of fish.

Figure 6: Catch rate time series from 2010 and 2011, by two different methods (delta lognormal and transformed binomial) for the three Japanese pole and line fisheries (fisheries 1, 5, and 13).

Figure 7: Ratio of CPUE indices estimated in 2011 versus indices estimated in 2010 (i.e. 2011 indices / 2010 indices), by region and index type. Delta lognormal indices are on the left, and binomial indices are on the right.

Figure 8: Annual catch per unit effort by fishery

Figure 9: Number of length measurements by fishery and year. The heavy black line represents the period of operation of the fishery. The histogram bars are proportional to the maximum number of fish measured in a fishery/year (the value presented in the right hand axis).

Figure 10. Proportional length compositions of skipjack from the Japanese pole-and-line and longline fisheries operating in the three MFCL regions (R $1-3$). Samples are aggregated by 5 -year interval. Only region/time length compositions comprised of at least 1,000 fish (PL) or 100 fish (LL) are presented. Vertical dashed lines at the mean overall size for each gear type are provided to aid comparisons.

Figure 11. Proportional length compositions of skipjack from the equatorial purse-seine fisheries in the MFCL regions 2 (left panel) and 3 (right panel). Samples are aggregated by set type (log/FAD (black) and school (red)) and 5 -year interval. Vertical dashed lines at 50 cm for each gear type are provided to aid comparisons.

Figure 12. Number of tag releases by region, year and source of release included within the assessment model. The red represents releases by Japanese research programmes; for releases administered by SPC, the purple represents the SSAP, light blue represents the RTTP, and green represents the PTTP.

Figure 13. Annual number of tag recoveries in each region by region of release.

Quarter 1

Quarter 3

Quarter 2

Quarter 4

Figure 14: Number of tags recovered in each region, by quarter of recovery. The size of the pie represents the number of tags recovered, with the colour of the pie slice indicating the source region: red, green, and blue for regions 1,2 , and 3 respectively.

Figure 15. Number of recoveries at length for each region by region of release.

Figure 16. Number of tag recoveries by period at liberty (quarters) for each region by region of release. The first quarter represents the quarter in which the tags were released.

Figure 17: Effects of a series of model changes on total biomass (left) and recruitment (right). The top figures show stepwise changes from the 2010 model, updating the version of MULTIFAN-CL, adding the new catch, effort, and CPUE data, and adjusting the size data for the spill sampling size correction. The lower figures show the effects of introducing the additional PHID PS fishery, and adding the PTTP data. Changing steepness from 0.75 to 0.8 did not change the trends, so is omitted.

Figure 18: Sensitivity analysis effects on total biomass (left) and recruitment (right). The top figures show the effects of the spill sample size adjustment, the alternate CPUE series, and the 2010 CPUE. The middle figures show the effects of changing steepness, which do not affect biomass or recruitment trends. The lower figures show the results of changing the growth model, and the PTTP tagging data.

Figure 19. Residuals (observed minus predicted) of total catch for each fishery.

Figure 20. A comparison of the observed (red points) and predicted (grey line) median fish length (FL, cm) of skipjack tuna by fishery for the main fisheries with length data. The confidence intervals represent the values encompassed by the 25% and 75% quantiles. Sampling data are aggregated by year and only length samples with a minimum of 30 fish per year are plotted.

Figure 20. Continued.

1 PL JPOS 1

2 PL JPDW 1

3 PS JP 1

4 LL JP 1

5 PL JP 2

6 PL PG 2

7 PL SB 2

10 Dom PH 2

Figure 21: Residuals (observed - predicted proportions) of the fit to the length frequency data. The size of the circle is proportional to the residual; blue circles are positive residuals (i.e. more observations than expected), red circles negative residuals.

11 Dom ID 2

12 LL JP 2

13 PL JPDW 3

14 PL FJ 3

Figure 21 continued...

16 PS UNASSOC 3

Figure 22: Number of observed (points) and predicted (line) tag returns by periods at liberty (quarters).

Figure 23: Number of observed (circles) and predicted (line) tag returns by periods at liberty (quarters), for tags released (from) and recovered (to) by region.

Figure 24. Number of observed (circles) and predicted (lines) tag returns by recapture period (quarter). The red circles represent tags recovered during the mixing period.

Figure 25: Number of observed (black circles) versus predicted (line) tag returns by year, plotted on a log scale. The contributions of each tagging programme are plotted as coloured circles, with SSAP in red, RTTP in green, JP light blue, and PTTP dark blue.

Figure 26: Number of observed (circles) and predicted (lines) tag returns by recapture period (quarter) and fishery. Recoveries in fisheries 8 and 9, fisheries 15 and 16, and fisheries 10 and 18 are combined into tag groups.

Figure 27: Estimated tag-reporting rates by tagging programme and fishery (black circles). The prior mean ± 1.96 SD is also shown for each fishery by the white diamonds and coloured bars.

Figure 28. Estimated growth of skipjack derived from the assessment model. The black line represents the estimated length (FL, cm) at age and the grey areas represent the estimated distribution of length at age. The blue, red, and green lines represent the three alternative growth curves (estimated, Leroy, and Tanabe curves respectively).

Figure 29. Selectivity coefficients, by fishery. All JP PL fisheries were assumed to have common selectivity.

Figure 30. Estimated time-series catchability trends for each fishery.

Figure 31: Effort deviations by time period for each fishery in the WCPO reference-case model. The black line is a loess smoother fitted to the deviations, to indicate the local trend.

PL Region 1

Figure 32. A comparison of pole-and-line exploitable biomass by quarter and region (red line) and the quarterly standardised CPUE indices for the fisheries, each series relative to its mean value.

Figure 33. Estimated natural mortality rate per quarter by age-class. The gray area represents the 95% confidence interval.

Quarter 1

Quarter 3

Quarter 2

Quarter 4

Figure 34. Graphical representation of movement coefficients among the three model regions at the beginning of each quarter. The arrows for each region boundary represent movement probabilities of 4 different age classes ($1,4,8$, and 12 , with oldest age nearest the boundary edge). The maximum bar length represents a quarterly movement coefficient of 0.55 (second quarter, region 1 to 2).

Figure 35: Estimated movements between regions. Movements from the region indicated by the row number to the region indicated by the column number are shown above the line; movements the other way are below the line. Movements by quarter are shown in different colours.

Figure 36: Proportional distribution of total biomass (by weight) in each region (Reg 1-3) apportioned by the source region of the fish. The colour of the home region is presented below the corresponding label on the x axis. The biomass distributions are calculated based on the long-term average distribution of recruitment between regions, estimated movement parameters, and natural mortality. Fishing mortality is not taken into account.

Region 1

Region 3

Region 2

Figure 37. Estimated quarterly recruitment (millions) by region and for the WCPO for the referencecase analysis. The shaded area for the WCPO indicates the approximate 95% confidence intervals.

Region 1

Region 3

Region 2

Figure 38. Estimated annual average total biomass (thousand t) by region and for the WCPO for the reference-case analysis. The shaded areas indicate the approximate 95% confidence intervals.

Region 1

Region 3

Region 2

Figure 39. Estimated annual average adult biomass (thousand t) by region and for the WCPO for the reference-case analysis. The shaded areas indicate the approximate 95% confidence intervals.

Figure 40. Estimated quarterly average fishing mortality rates for juvenile (age classes 1 and 2) (dashed line) and adult age-classes (solid line).

Figure 41. Fishing mortality by age class for the recent (2006-2009) period by region.

Figure 42. Comparison of the estimated biomass trajectories (lower black lines) with biomass trajectories that would have occurred in the absence of fishing (red lines) for each region and for the WCPO as a whole.

Figure 43. Ratios of exploited to unexploited total biomass $\left(B_{t} / B_{0, t}\right)$ for each region and the WCPO.

Figure 44. Spawning biomass - recruitment estimates and the assumed Beverton and Holt stockrecruitment relationship (SRR) incorporating steepness of 0.8 . The shaded area represents approximate 95% confidence bounds.

Figure 45. Predicted equilibrium yield (top) and equilibrium adult and total biomass (bottom) as a function of fishing mortality (reference-case assessment). The shaded areas represent approximate 95% confidence bounds.

Figure 46. A comparison of equilibrium yields (top) and equilibrium adult biomass as a function of fishing mortality for the reference-case (red line) and alternative steepness models. The arrows represent the fishing mortality multiplier to achieve the MSY.

Figure 47: Quarterly time series of MSY related quantities. Top: estimated MSY compared with observed catch by three fishery sectors. Middle: estimated F at MSY (Fmsy) compared with estimated actual fishing mortality by the three fishery sectors. Bottom: estimated ratio of \mathbf{F} to Fmsy.

Fishing mortality multiplier
Figure 48: A comparison of equilibrium yields (top), equilibrium total biomass, and equilibrium adult biomass as a function of fishing mortality for the reference-case (red line) and the model with steepness of 0.95 . The lines mark the current yield and the yield at MSY, and fishing mortality multiplier to achieve the MSY, under each steepness scenario.

Figure 49. Temporal trend in annual stock status, relative to $\mathrm{B}_{\mathrm{MSY}}$ (x -axis) and $\mathrm{F}_{\mathrm{MSY}}$ (y -axis) reference points, for the model period (1972-2010). The colour of the points is graduated from pale (1972) to dark purple (2010). The black circle represents the $\mathrm{B}_{2010} / \mathrm{B}_{\mathrm{MSY}}$ and the $\mathrm{F}_{2010} / \mathrm{F}_{\mathrm{MSY}}$, and the white circle represents the $\mathrm{B}_{2006-2009} /$ $\mathrm{B}_{\text {MSY }}$ and $\mathrm{F}_{2006-2009} / \mathrm{F}_{\text {MSY }}$.

Steepness $=0.95$
Estimated Steepness $=\mathbf{0 . 3 9}$

Figure 50: Temporal trend in annual stock status by assumed steepness value (0.65 to 0.95), relative to $B_{\text {MSY }}$ (x axis) and $\mathrm{F}_{\text {MSY }}$ (y-axis) reference points, for the model period (1972-2010). The colour of the points is graduated from pale (1972) to dark purple (2010). On each plot the black circle represents the $\mathrm{B}_{2010} / \mathrm{B}_{\text {MSY }}$ and the $\mathrm{F}_{2010} / \mathrm{F}_{\mathrm{MSY}}$, and the white circle represents the $\mathrm{B}_{2006-2009} / \mathrm{B}_{\mathrm{MSY}}$ and $\mathrm{F}_{2006-2009} / \mathrm{F}_{\mathrm{MSY}}$.

Figure 51: Box plots showing of the effects of the uncertainty grid scenarios (Spill sample correction, CPUE type, Steepness, growth, and growth variance) on the management parameter Fcurrent / Fmsy.

Figure 52: Box plots showing of the effects of the uncertainty grid scenarios (Spill sample correction, CPUE type, Steepness, growth, and growth variance) on the management parameter SBcurrent / SBmsy.

Figure 53: Box plots showing of the effects of the uncertainty grid scenarios (Spill sample correction, CPUE type, Steepness, growth, and growth variance) on the management parameter Bcurrent / Bmsy.

Figure 54: Box plots showing the distribution of management parameters under the range of values in the uncertainty grid.

Figure 55: Box plots showing the distribution of management parameters under the range of values in the uncertainty grid.

11 Appendix A: doitall.skj

```
#!/bin/sh
cd $_CONDOR_SCRATCH_DIR
export PATH=.:$PATH
export ADTMP1=.
# export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/lib
set
# Apply the recruitment steepness functions changes to the PAR file.
# $1 Name of the PAR file.
# $2 New value.
function recruitmentConstraints {
    if [ -z $1 ]
    then
        echo "Needs filename as argument.";
        exit 1;
    elif [ -z $2 ]
    then
        echo "Needs new value argument.";
        exit 1;
    elif [ -f "$1" ]
    then
# Read line per line.
    while read LINE
    do
# Found the desired header.
        if [ "$LINE" == "# Seasonal growth parameters" ]
        then
                        echo $LINE >> $1.new;
                for ((L=1 ; L < 2 ; L++))
                do
                read LINE;
# Skip blank or comment line.
                                if [[ "$LINE" == "#" || "$LINE" == "" ]]
                        then
                        #echo "Found a matching line "$LINE;
                        L=`expr $L - 1`;
                        echo $LINE >> $1.new;
                        else
                        #echo "Processing line "$LINE;
                        I=0;
                        for VALUE in $LINE
                        do
                I=`expr $I + 1`;
# Change the 29th value.
                if [ $I -eq 29 ]
                then
                                    echo -n $2" " >> $1.new;
                                else
                                echo -n $VALUE" " >> $1.new ;
                            fi
                        done
                        echo "" >> $1.new;
                fi
            done
# Write line AS IS.
            else
                echo $LINE >> $1.new;
            fi
        done < $1;
# Create a backup copie.
            mv $1 $1.bak;
# Move temporary file to target file.
    mv $1.new $1;
    fi;
}
```

```
# Change the recruitment sd in the PAR file.
# $1 Name of the PAR file.
# $2 New value.
function changeSD {
    if [ -z $1 ]
    then
        echo "Needs filename as argument.";
        exit 1;
    elif [ -z $2 ]
    then
        echo "Needs new value argument.";
        exit 1;
    elif [ -f "$1" ]
    then
# Read line per line.
    while read LINE
    do
# Found the desired header.
        if [ "$LINE" == "# Variance parameters" ]
        then
            echo $LINE >> $1.new;
            for ((L=1 ; L < 2 ; L++))
            do
                read LINE;
# Skip blank or comment line.
                if [[ "$LINE" == "#" || "$LINE" == "" ]]
                        then
                        #echo "Found a matching line "$LINE;
                        L=`expr $L - 1`;
                        echo $LINE >> $1.new;
                        else
                        #echo "Processing line "$LINE;
                        I=0;
                        for VALUE in $LINE
                        do
                I=`expr $I + 1`;
# Change the 29th value.
                if [ $I -eq 1 ]
                then
                                    echo -n $2" " >> $1.new;
                                else
                                echo -n $VALUE" " >> $1.new ;
                            fi
                        done
                    echo "" >> $1.new;
                fi
                done
# Write line AS IS.
            else
                echo $LINE >> $1.new;
            fi
        done < $1;
# Create a backup copie.
            mv $1 $1.bak;
# Move temporary file to target file.
            mv $1.new $1;
        fi;
}
    nice $MFCL skj.frq skj.ini 00.par -makepar
# ---------
# PHASE 1
# ---------
    nice $MFCL skj.frq 00.par 01.par -file - <<PHASE1
    1 32 6
# 1 32 1 # routine initial control
# 2 113 1 # estimate initpop/totpop scaling parameter
```

```
    2113 0 # estimate initpop/totpop scaling parameter
    277 1 # use old totpop scaling method
    2 32 1 # and estimate the totpop parameter
    149100 #penalty on recruitment devs
    -9994940
    111 4 # Negative binomial likelihood function for tags
        -999 43 1 # var parameter estimated.
# -99944 1 # all fisheries grouped for estimating tag neg bin var
parameter.
    141 3 # Robust normal likelihood function for LF data
    2 96 12 # Tag are pooled across release groups after 12 periods
    2 4 4 # 4 recruitments per year
    2691 # Use generalized movement model
    2 93 4 # 4 recruitments per year
    294 2 # Use equilibium initial population
    2 }9520 # Use average Z for first 20 periods for equil. init. pop
    173 0 # growth deviates
# Fisheries with non-decreasing selectivity with age
    -4 16 1 # The 3 JP RES LL fisheries assumed to have
    -12 16 1 # non-decreasing selectivity
    -17 16 1
    -8 16 2
    -8 3 15 # selectivity is 0 for ages 15 and 16
    -9 16 2
    -9 3 15 # selectivity is 0 for ages 15 and 16
    -15 16 2
    -15 3 15 # selectivity is 0 for ages 15 and 16
    -16 16 2
    -16 3 15 # selectivity is 0 for ages 15 and 16
# Selectivity grouping, form
    -1 24 1
    -1 57 3
    -1 61 5 # cubic spline selectivity with 5 parameters
    -2 24 1
    -2 57 3
    -2 61 5 # cubic spline selectivity with 5 parameters
    -3 24 2
    -3 57 3
    -3 61 5 # cubic spline selectivity with 5 parameters
    -4 24 3
    -4 57 3
    -4 61 5 # cubic spline selectivity with 5 parameters
    -5 24 4
-5 57 3
-5 61 5 # cubic spline selectivity with 5 parameters
    -6 24 5
-6 57 3
-6 61 5 # cubic spline selectivity with 5 parameters
    -7 24 6
-7 57 3
-7 61 5 # cubic spline selectivity with 5 parameters
    -8 24 7
-8 57 3
-8 61 5 # cubic spline selectivity with 5 parameters
    -9 24 8
-9 57 3
-9 61 5 # cubic spline selectivity with 5 parameters
    -10 24 9
-10 57 3
-10 61 5 # cubic spline selectivity with 5 parameters
    -11 24 10
-11 57 3
-11 61 5 # cubic spline selectivity with 5 parameters
    -12 24 11
-12 57 3
-12 61 5 # cubic spline selectivity with 5 parameters
    -13 244
-1357 3
```

```
    -1361 5 # cubic spline selectivity with 5 parameters
    -14 24 12
    -14 57 3
    -14 61 5 # cubic spline selectivity with 5 parameters
    -15 24 13
    -15 57 3
    -15 61 5 # cubic spline selectivity with 5 parameters
    -16 24 14
    -1657 3
    -16 61 5 # cubic spline selectivity with 5 parameters
    -17 24 15
    -17 57 3
    -17 61 5 # cubic spline selectivity with 5 parameters
    -99926 2 # Use length-based selectivity
# Grouping of fisheries with common catchability
# common catchability for DWPL fleet
    -1 29 1
    -2 29 2
    -5 29 5
    -13 29 13
    -3 29 3
    -4 29 4
    -12 29 12
    -17 29 17
    -6 29 6
    -7 29 7
    -8 29 8
    -9 29 9
    -10 29 10
    -11 29 11
    -14 29 14
    -15 29 15
    -16 29 16
    -1 60 1
    -2 60 2
    -5 60 5
    -13 60 13
    -3 60 3
    -4 60 4
    -12 60 12
    -17 60 17
    -6 60 6
    -7 60 7
    -8 60 8
    -9 60 9
    -10 60 10
    -11 60 11
    -14 60 14
    -15 60 15
    -16 60 16
# Penalties for effort deviations
# Fishery groupings for tag return data
    -1 32 1
    -2 32 2
    -3 32 3
    -4 32 4
    -5 32 5
    -6 32 6
    -7 32 7
    -8 32 8
    -9 32 8
    -10 32 9
    -11 32 10
    -12 32 11
    -13 32 12
    -14 32 13
    -15 32 14
    -16 32 14
```

```
    -17 32 15
# Grouping of fisheries with common tag reporting rate
    -1 34 1
    -2 34 1
    -3 34 1
    -4 34 1
    -5 34 1
    -6 34 2
    -7 34 3
    -8 34 4
    -9 34 4
    -10 34 5
    -11 34 6
    -12 34 1
    -13 34 1
    -14 34 7
    -15 34 4
    -16 34 4
    -17 34 1
# Penalties for tag reporting rate priors
    -1 35 50
    -2 35 50
    -3 35 50
    -4 35 50
-5 35 50
-6 35 100
-7 35 100
-8 35 234
-9 35 234
-10 35 100
-11 35 100
-12 35 50
-13 35 50
-14 35 100
-15 35 234
-16 35 234
-17 35 50
# Tag reporting rate priors (*100)
    -1 36 70
    -2 36 70
    -3 36 70
    -4 36 70
    -5 36 70
-6 36 70
-7 36 70
-8 36 55
-9 36 55
-10 36 80
-11 36 70
    -12 36 70
    -13 36 70
-14 36 70
-15 36 55
-16 36 55
    -17 36 70
-9999 1 1 # Tag returns for first period after release disregarded
-999 33 1 # Estimate tag reporting rates
    1 33 90
    -999 13 -1
    -1 13 10
    -5 13 10
    -13 13 10
    -1 66 1
    -5 66 1
    -13661
    -1 46 1
    -2 46 1
    -3 46 1
```

```
    -4 46 1
    -6 46 1
    -7 46 1
    -8 46 1
    -9461
    -10 46 1
    -11461
    -13 46 1
    -14461
    -1546 1
    -1646 1
    1 12 0
    1 13 0
    1 14 0
    1 15 0
    116 0
    1 184 0
    1 227 0
    2 116 70
    -18 24 7
    -18 29 18
    -18 60 18
    -18 32 10
    -18 34 5
    -18 49 100
    -18 35 100
    -18 36 80
    -18461
    -1857 3
    -1861 5
PHASE1
changeSD 01.par 5.074696
```



```
```



```
#
# ---------
# ---------
# PHASE 2
# PHASE 2
# ---------
# ---------
    nice $MFCL skj.frq 01.par 02.par -file - <<PHASE2
    nice $MFCL skj.frq 01.par 02.par -file - <<PHASE2
        2 32 1 # totpop estimated from this phase
        2 32 1 # totpop estimated from this phase
        1 200 # Sets no. of function evaluations for this phase
        1 200 # Sets no. of function evaluations for this phase
        1 149 100 # Penalty on recruitment devs set to 100/10
        1 149 100 # Penalty on recruitment devs set to 100/10
        1 50-1 # convergence criterion is 1E+1
        1 50-1 # convergence criterion is 1E+1
    2 35 12
    2 35 12
    -3 49 100
    -3 49 100
    -7 49 100
    -7 49 100
    -8 49 100
    -8 49 100
    -9 49 100
    -9 49 100
    -1549100
    -1549100
    -1649 100
    -1649 100
    1 12 0
    1 12 0
    1 13 0
    1 13 0
    1 14 0
    1 14 0
    15 0
    15 0
    116 0
    116 0
    1 173 0
    1 173 0
    1182 100
    1182 100
    1 184 0
    1 184 0
    1 226 0
    1 226 0
    1 227 0
    1 227 0
PHASE2
PHASE2
# ---------
# ---------
recruitmentConstraints 02.par 0.8
```

recruitmentConstraints 02.par 0.8

```
```


PHASE 4

 nice $MFCL skj.frq 02.par 04.par -file - <<PHASE4
 2681 # Estimate movement coefficients
 #1 189 1 # Write graph.frq
 1 190 1 # Write plot.rep
 PHASE4

PHASE 5

 nice $MFCL skj.frq 04.par 05.par -file - <<PHASE5
 PHASE5

PHASE 6

 nice $MFCL skj.frq 05.par 06.par -file - <<PHASE6
 1 400 # Set no. function evaluations for this phase
 2 70 1 # Estimate time-series changes in recruitment distribution
 2 71 1
 2 198 1
 PHASE6

PHASE 7

 nice $MFCL skj.frq 06.par 07.par -file - <<PHASE7
 1 200 # Set no. funtion evaluations for this phase
 -99927 1 \# Estimate seasonal catchability for all fisheries
-10 27 0 \# except for fisheries 16
-11 27 0 \# and 17 which only have annual data
-4 27 0 \# and the 3 LL/RES fisheries
-12 27 0
-17 27 0
PHASE7

PHASE 8

 nice $MFCL skj.frq 07.par 08.par -file - <<PHASE8
 2 82 45 # Prior for average M is 45/100 per quarter
 2 84 2 # Penalty weight
 2331 # Estimate average M
 PHASE8

PHASE 9

 nice $MFCL skj.frq 08.par 09.par -file - <<PHASE9
 1 500 # Set no. function evaluations for this phase

Sets variable catchability, periodicity, and penalty

 # -1 10 1 1 -1 23 23
 # -2 10 1 1 -2 23 23 -2 15 50 # JP DW PL 1
 #-5 10 1 1 -5 23 23 -5 15 50 # JP DW PL 5
 #-13 10 1 -13 23 23 -13 15 50 # JP DW PL 6
 -6 10 1
 -6 23 23
 -6 15 1
 -7 10 1
 -7 23 23
 -7 15 1
 -14 10 1
 -14 23 23
 -14 15 1
 -4 101
 -4 23 23
    ```
```

 -4 15 1
 -12 10 1
 -12 23 23
 -12 15 1
 -17 10 1
 -17 23 23
 -17 15 1
 # -3 10 1 1 -3 23 23 -3 15 50 # JP OS PS 2
 -8 10 1
 -8 23 23
 -8 15 1
 -9 10 1
 -9 23 23
 -9 15 1
 -15 10 1
 -15 23 23
 -15 15 1
 -16 10 1
 -16 23 23
 -16 15 1
 -10 10 1
 -102323
 -10 15 1
 -11 10 1
 -11 23 23
 -11 15 1
 -2 10 1
 -3 10 1
 -2 23 23
 -3 23 23
 -2 15 1
 -3 15 1
 -18 10 1
 -18 15 1
 -18 23 23
 PHASE9

PHASE 10

 nice $MFCL skj.frq 09.par 10.par -file - <<PHASE10
 2881 # Estimate age-dependent movement
 2 89 1
 1 1 200
 -1049500
 PHASE10

PHASE 11

 nice $MFCL skj.frq 10.par 11.par -file - <<PHASE11
 2 73 1 # Estimate age-dependent M
 2 77 50
 PHASE11

PHASE 12

 nice $MFCL skj.frq 11.par 12.par -file - <<PHASE12
 PHASE12

PHASE 13

 nice $MFCL skj.frq 12.par 13.par -file - <<PHASE13
 1182 100
 # Penalty weight for negative growth increments
 PHASE13


```
```


PHASE 14

 nice $MFCL skj.frq 13.par 14.par -file - <<PHASE14
 -99943 1 # Estimate negative binomial variance parameter
 -4 43 0
 -12 43 0
 -17 43 0
 -1 44 1
 -2 44 2
 -3 44 3
 -4 44 4
 -5 44 5
 -6446
 -7 44 7
 -8 44 8
 -9448
 -1044 9
 -1144 10
 -12 44 11
 -13 44 12
 -14 44 13
 -15 44 14
 -16 44 14
 -17 44 15
 -1844 16
 PHASE14

PHASE 15

 nice $MFCL skj.frq 14.par 15.par -file - <<PHASE15
 1 189 1 # Write graph.frq
 2 145 1 # penalty wt. for SRR
 2 146 1 # make SRR parameters active

2 147 0 \# no. time periods for recruitment lag

 2 147 1 # no. time periods for recruitment lag
 2 148 20
 2 155 4 # but not including last 4
 2 149 0 # yield computed in weight
 149 0 # turn off recruitment penalties against mean
 -999 55 1
 2 193 1
 1 50 -2
 PHASE15

PHASE 17

 nice $MFCL skj.frq 15.par 17.par -file - <<PHASE17

Estimate regional distribution of recruitment

 -100000 1 1
 -100000 2 1
 -100000 31
 1 1 3000
 1 1 6000
 1 50 -3
 PHASE17

```

\section*{12 Appendix B: ski.ini}
```


ini version number

1

number of age classes

1 6

tag fish rep

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

```

```

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

```

```

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

```

```

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

```

```

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.46 0.46 0.5 0.5 0.5 0.5 0.5 0.4 0.4 0.46 0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 4 0. 0.46 0.5 0.5 0.5 0.5 0.5 0.46 0.46 0.5 0.5

```

```

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.46 0.46 0.5 0.5 0.5 0.5 0.5 0.46 0.46 0.5 0.5
0.5}00.
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 46 0.46 0.5 0.5 0.5 0.5 0.5 0.5 0.46 0.46 0.5 0.5

```

```

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 4, 0.5 0.46 0.5 0.5 0.5 0.5 0.5 0.46 0.46 0.5 0.5

```


```

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.46 0.46 0.5 0.5 0.5 0.5 0.5 0.46 0.46 0.5 0.5

```



```

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.52 0.52 0.5 0.5 0.5 0.5 0.5 0.44 0.44 0.5 0.5
0.5}00.

```


```

0.5 0.5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 52 0.52 0.5 0.5 0.5 0.5 0.5 0.44 0.44 0.5 0.5

```

```

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.52 0.52 0.5 0.5 0.5 0.5 0.5 0.44 0.44 0.5 0.5

```

```

0.5 0.5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 52 0.52 0.5 0.5 0.5 0.5 0.5 0.44 0.44 0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 52 0.52 0.5 0.5 0.5 0.5 0.5 0.44 0.44 0.5 0.5
0.5}00.
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.5}0.
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

```

```

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

```

```

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

```

```

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.4 4 0.5 0.46 0.5 0.5 0.5 0.5 0.5 0.46 0.46 0.5 0.5

```

```

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 4 0. 0.46 0.5 0.5 0.5 0.5 0.5 0.46 0.46 0.5 0.5
0.5}0.

```


```

0.5 0.5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 52 0.52 0.5 0.5 0.5 0.5 0.5 0.44 0.44 0.5 0.5

```

```

0.5}00.
0.5}0.
0.5}00.
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.5}0.
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.5}0.
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

```
\(\begin{array}{llllllllllllllllllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\) \(\begin{array}{llllllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\) \(\begin{array}{llllllllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\)
 \(\begin{array}{lllllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\) \(\begin{array}{lllllllllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\) \(\begin{array}{llllllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\)
 \(\begin{array}{lllllllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\)

 \(\begin{array}{llllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\) \(\begin{array}{lllllllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\) \(\begin{array}{llllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\)
 \(\begin{array}{lllllllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\)
 \(\begin{array}{llllllllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\) \(\begin{array}{lllllllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\) \(\begin{array}{llllllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\) \(\begin{array}{llllllllllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\) \(\begin{array}{llllllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\) \(\begin{array}{llllllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\)
 \(\begin{array}{lllllllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\)
 \(\begin{array}{llllllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\)
 \(\begin{array}{llllllllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\) \(\begin{array}{llllllllllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\)
 \(\begin{array}{llllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\)
 \(\begin{array}{llllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\)
 \(\begin{array}{lllllllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\)

 0.50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .5 \(\begin{array}{lllllllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\) \(\begin{array}{lllllllllllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\) \(\begin{array}{llllllllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\) \(\begin{array}{lllllllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\) \(\begin{array}{llllllllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\) \(\begin{array}{llllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\) \(\begin{array}{llllllllllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\) \(\begin{array}{llllllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\) \(\begin{array}{lllllllllllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\) \(\begin{array}{llllllllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\)

 \(\begin{array}{llllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\)
 \(\begin{array}{llllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\)
 \(\begin{array}{lllllllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\)

 \(\begin{array}{lllllllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\) \(\begin{array}{llllllllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\) \(\begin{array}{lllllllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\) \(\begin{array}{llllllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\) \(\begin{array}{llllllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\)
 \(\begin{array}{lllllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\) \(\begin{array}{llllllllllllllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\)
 \(\begin{array}{lllllllllllllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\)
\(\begin{array}{llllllllllllllllllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\) \(\begin{array}{llllllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\) \(\begin{array}{llllllllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\)
 \(\begin{array}{lllllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\) \(\begin{array}{lllllllllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\) \(\begin{array}{llllllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\)
 \(\begin{array}{lllllllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\)

 \(\begin{array}{llllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\) \(\begin{array}{lllllllllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\) \(\begin{array}{llllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\)
 \(\begin{array}{lllllllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\)
 \(\begin{array}{llllllllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\) \(\begin{array}{lllllllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\) \(\begin{array}{llllllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\) \(\begin{array}{llllllllllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\) \(\begin{array}{llllllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\) \(\begin{array}{llllllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\)
 \(\begin{array}{lllllllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\)
 \(\begin{array}{llllllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\)
 \(\begin{array}{llllllllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\) \(\begin{array}{llllllllllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\)
 \(\begin{array}{lllllllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\)
 \(\begin{array}{llllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\)
 \(\begin{array}{lllllllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\)

 0.50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .5 \(\begin{array}{lllllllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\) \(\begin{array}{lllllllllllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\) \(\begin{array}{llllllllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\) \(\begin{array}{lllllllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\) \(\begin{array}{llllllllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\) \(\begin{array}{llllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\) \(\begin{array}{llllllllllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\) \(\begin{array}{llllllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\) \(\begin{array}{lllllllllllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\) \(\begin{array}{llllllllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\)

 \(\begin{array}{llllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\)
 \(\begin{array}{llllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\)
 \(\begin{array}{lllllllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\)

 \(\begin{array}{llllllllllllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\) \(\begin{array}{llllllllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\) \(\begin{array}{lllllllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\) \(\begin{array}{llllllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\) \(\begin{array}{llllllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\)
 \(\begin{array}{lllllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\) \(\begin{array}{lllllllllllllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\) \(\begin{array}{llllllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\) \(\begin{array}{lllllllllllllllllllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}\)
```


tag fish rep group flags

1 1 1 1 1 1 1 2 2 3
1}1
1
1
1}1
1
1
1
1
9}9999999 10 11 12 12 13 14 9 9 9 15 15 16 16 16 9 13

```

```

9}9999999010 11 12 12 13 14 9 9 9 15 15 16 16 9 13

```

```

9}9
9}999999 9 10 11 12 12 13 14 9 9 9 15 15 16 16 9 13

```

```

9}9999999 10 11 12 12 13 14 9 9 9 15 15 16 16 16 9 13
9}9999999 10 11 12 12 13 14 9 9 9 15 16 16 9 13
9
9}99999 9 10 11 12 12 13 14 99 9 15 16 16 9 13

```


```

17}1
17}1
17}171717 17 17 18 19 20 20 21 22 17 17 23 24 24 17 21
17}17717 17 17 18 19 20 20 21 22 17 17 23 24 24 17 21,
17}1
17}1
17 17 17 17 17 18 19 20 20 21 22 17 17 23 24 24 17 21
17}1
17}17
17}1
17}17717 17 17 18 19 20 20 21 22 17 17 23 24 24 17 21,
17}17717 17 17 18 199 20 20 21 22 17 17 17 23 24 24 17 21
17}1
1
1

```

```

1
1
1
1}1
1}1
1

```

```

9

```

```

9
9}999999910 11 12 12 13 14 9 9 9 15 16 16 9 13
9
17}17717 17 17 18 19 20 20 21 22 17 17 23 24 24 17 21
17}1
17}1
25}22
25}25
25}22
25}25

```

```

25}255\mp@code{25
25 25 25 25 25 26 27 28 28 29 30 25 25 31 32 32 25 29
25

```

```

25}22
25}25
25}22
25}22
25 25 25 25 25 26 27 28 28 29 30 25 25 31 32 32 25 29

```





```

1

```

```

1
1
1
1
1 1
1

```

```

1
1
1
1
1
1
1
1
1
1
1}1
1
1
1
1
1
1
1 1
1

```

```

1
1}1
1
1
1
1
1
1
1 1
1
1}1
1
1
1
1
1
1
1 1.11rlllllllllllllllllll
1

```

```

1
1}11\mp@code{1
1
1}11\mp@code{1
1
1

tag_fish_rep target

50 50-50 50 50 50 50 50 50 50 50 50 50 50 50 50 50
50}500505050 50 50 50 50 50 50 50 50 50 50 50 50 50 50
50}50050 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50
50}50050 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50
50}550 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50
50}505050 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50
50}550 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50
50}50050 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50
50}550 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50
50}50050 50 50 50 50 46 46 50 50 50 50 50 46 46 50 50
50}50505050 50 50 50 46 46 50 50 50 50 50 46 46 50 50

```






```


The von Bertalanffy parameters

Initial lower bound upper bound

ML1

10 10 30

ML2

88.317 60 100

K (per year)

0.1965 0.05 0.4

Length-weight parameters

8.6386e-06 3.2174

sv(29)

0.75

Generic SD of length at age

5.0747 1 9

Length-dependent SD

0.56558 0 3

The number of mean constraints

0

```
```


[^0]: ${ }^{1}$ Oceanic Fisheries Programme, Secretariat of the Pacific Community (SPC-OFP), Noumea, New Caledonia.
 ${ }^{2}$ Pacific Fisheries Science Center, US National Marine Fisheries Service.
 ${ }^{3}$ Concultant, SPC-OFP

[^1]: ${ }^{4}$ Catch levels referred to in this paper are relevant to the reference case assessment run, which incorporated purse seine catches that were revised according to the results of recent spill sampling trials (Lawson 2010). These catches are somewhat less than the unadjusted catches reported for example in Williams and Terawasi (2011).

[^2]: ${ }^{5}$ Of course independence is not a good assumption for schooling fish, but in that case we consider catch of schools rather than catch of individual fish. N will then be the abundance of schools, which is proportional to the abundance of individuals.

[^3]: ${ }^{6}$ Details of elements of the doitall and .ini files as well as other input files that structure a MULTIFAN-CL run are given in Kleiber et al. (2003).

