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ABSTRACT 

Catch rates and catches of blue shark, mako sharks, oceanic whitetip shark, silky shark and thresher 

sharks in longline fisheries and oceanic whitetip shark and silky shark in purse-seine fisheries of the 

Western and Central Pacific Ocean were estimated using observer data. Catch rates were predicted 

with Delta-Lognormal models fitted to longline observer data collected during 1991–2011 and 

purse-seine observer data collected during 1994–2011. The covariates latitude and longitude were 

parameterised as a two-dimensional spline and heat maps were used to depict the effect of latitude 

and longitude on predicted catch rates. Parametric bootstraps were used to determine confidence 

intervals for the estimates of catch rates and catches. Generalised Estimating Equations were used 

to examine correlation and dispersion in longline catch rates. Trends in the estimates of annual 

catch rates and catches are discussed in Clarke (2011) along with other indicators of the status of 

shark populations. 

INTRODUCTION 

Under the Agreement for the Provision of Scientific Services to the Commission, the SPC Oceanic 

Fisheries Programme (OFP) has been contracted by WCPFC to conduct statistical analyses to 

estimate catches of non-target species; the primary data that the OFP uses to estimate catches of 

non-target species are collected by observers onboard the fishing vessels. This paper presents recent 

developments in the methods for estimating longline and purse-seine catches of non-target species 

from observer data and their application to five of the WCPFC’s key shark species and genera: blue 

shark (Prionace glauca), silky shark (Carcharhinus falciformis), oceanic whitetip shark 

(Carcharhinus longimanus), mako sharks (Isurus spp.) and thresher sharks (Alopias spp.). 
1
 These 

                                                 

1
 At its Seventh Regular Session in December 2010, the WCPFC adopted CMM 2010–07, Conservation and 

Management Measure for Sharks, in which the key shark species and genera are identified as blue shark, silky shark, 

oceanic whitetip shark, mako sharks, thresher sharks, porbeagle shark (Lamna nasus), and the following hammerhead 
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five species and genera are also the focus of the WCPFC Shark Research Plan (Clarke & Harley 

2010). 

Coverage of Longline Observer Data Held by the OFP 

Table 1 presents the coverage of longline effort in the WCPFC Statistical Area (Figure 1) by 

observer data held by the OFP. Coverage from 1992 to 2009 has been 0.87%. Coverage of the 

distant-water longline fleets (other than the Japanese fleet fishing in the waters of Australia and 

New Zealand) by data held by the OFP is less than 0.1%; coverage of the Japanese fleet fishing in 

the waters of Australia and New Zealand has been 5.1% and 35.5% respectively. Coverage of the 

Hawaiian longline fleet has been 6.5%, while coverage of the New Zealand domestic fleet has been 

3.6%. Coverage of the offshore longline fleets targeting yellowfin and bigeye, and albacore, have 

been 0.8% and 1.0% respectively. Coverage has thus been highly variable, ranging from negligible 

to moderate. 

In addition to the negligible coverage for the distant-water fleets, the lack of consistent coverage 

through time for the Japanese fleet fishing in the Australian Fishing Zone (AFZ), due to the 

termination of fishing in 1998, and the Hawaiian fleet, due to the lack of data provided to SPC since 

2004, has been problematic. Observer data covering the Hawaiian fleet from 2010 onwards may 

soon be provided to the WCPFC. 

Figure 1.   WCPFC Statistical Area 

 

                                                                                                                                                                  

sharks: winghead (Eusphyra blochii), scalloped (Sphyrna corona), great (Sphyrna mokarran) and smooth (Sphyrna 

zygaena). 
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Table 1. Coverage of longline fishing effort by observer data held by the SPC Oceanic 

Fisheries Programme, by sector 

 

The geographic coverage of the longline observer data is summarised in Figure 2 and Appendix 

Figure A1. The coverage is dominated primarily by the Hawaiian fleet, but also the Japanese fleet 

fishing in the AFZ and the Japanese and New Zealand fleets fishing in the waters of New Zealand. 

Large areas in the WCPFC Statistical Area — to the west of 130°E, the northwest and the southeast 

— have not been covered by observer data, which complicates the estimation of catch rates and 

catches of sharks and other non-target species. 

Year

Australia: 

Japanese 

Fleet

Distant-

Water     

Albacore

Distant-

Water      

Yellowfin & 

Bigeye

Hawaii

New 

Zealand: 

Domestic 

Fleet

New 

Zealand: 

Japanese 

Fleet

Offshore       

Albacore

Offshore       

Tropical
Total

1992 17.124 0.000 0.000 0.000 0.530 6.225 0.000 0.083 0.574

1993 16.013 0.000 0.000 0.000 0.000 31.440 0.000 0.276 0.872

1994 10.149 0.000 0.000 4.330 0.555 46.101 0.000 0.309 0.681

1995 6.434 0.000 0.028 4.140 2.611 88.792 0.685 0.256 0.593

1996 8.793 0.264 0.000 5.043 4.846 0.000 1.126 0.269 0.644

1997 5.491 0.000 0.000 3.531 5.258 81.322 0.597 0.971 0.867

1998 0.732 0.165 0.061 3.991 3.534 46.710 0.392 0.675 0.658

1999 0.000 0.070 0.000 3.166 0.412 84.144 0.416 0.466 0.516

2000 0.000 0.000 0.018 8.695 0.206 76.290 0.166 0.660 0.664

2001 0.000 0.000 0.000 15.152 3.106 65.801 0.084 0.107 0.866

2002 0.000 0.000 0.185 23.897 1.441 100.000 0.529 1.371 1.630

2003 0.000 0.000 0.027 21.505 6.343 47.162 0.826 1.209 1.671

2004 0.000 0.000 0.000 16.522 13.133 0.000 1.067 1.049 1.361

2005 0.000 0.000 0.261 0.000 2.768 51.348 1.512 1.081 0.650

2006 0.000 0.000 0.296 0.000 2.258 100.000 1.943 1.287 0.872

2007 0.000 0.000 0.170 0.000 4.226 63.908 1.584 1.031 0.751

2008 0.000 0.000 0.000 0.000 4.073 16.017 1.348 0.849 0.597

2009 0.000 0.000 0.000 0.000 0.000 0.000 1.165 0.331 0.443

Total 5.083 0.027 0.061 6.456 3.569 35.510 1.034 0.763 0.868
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Figure 2.  Distribution of longline hooks set and hooks observed in the WCPFC Statistical 

Area, excluding Indonesia and the Philippines, 1992–2009 
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Coverage of Purse-Seine Observer Data Held by the OFP 

Table 2 presents the coverage of purse-seine effort in the WCPFC Statistical Area by observer data 

held by the OFP, excluding the domestic fleets of Indonesia and the Philippines. Coverage from 

1995 to 2010 has been 11.05%. The coverage of sets on unassociated and associated school has 

been similar, 10.03% and 12.01% respectively. 

The geographic coverage of the purse-seine observer data is summarised in Figure 3 and Appendix 

Figure A2. The coverage is dominated by the United States fleet from 1994 to 2001. In 2002, 

coverage of the Papua New Guinea fleet increased considerably and has remained high. In 2003, 

coverage under the FSM Arrangement increased. In 2010, observer coverage in the region increased 

to 100% as required by the WCPFC Conservation and Management Measure 2008–01; however, 

coverage of the data held by the OFP and available for analysis was only 21.6% due to lags in the 

provision and processing of the observer data. While coverage has not been representative in terms 

of the flag states prior to 2010, it has generally been much more representative in terms of the 

geographic distribution of fishing effort than for the longline fishery, since most purse-seine fishing 

takes place in a much smaller area than the area fished by longliners. 
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Table 2. Coverage of purse-seine fishing effort by observer data held by the SPC Oceanic 

Fisheries Programme 

 

Figure 3. Distribution of purse-seine days fished and days observed in the WCPFC 

Statistical Area, 1994–2010, excluding the domestic fleets of Indonesia and the 

Philippines 
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Year
Unassociated 

Schools

Associated 

Schools
Total

1995 4.16 2.83 3.56

1996 6.21 5.16 5.64

1997 5.65 6.45 6.13

1998 6.54 7.92 7.22

1999 2.46 4.27 3.62

2000 2.44 7.30 4.95

2001 5.07 7.40 6.13

2002 7.51 13.03 10.25

2003 7.92 13.72 10.83

2004 11.10 16.01 14.34

2005 12.03 18.86 15.51

2006 12.04 18.21 15.65

2007 10.79 15.37 13.07

2008 13.19 14.09 13.64

2009 17.71 11.60 14.51

2010 20.23 24.39 21.61

Total 10.03 12.01 11.05
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METHOD 

The primary objective of this study was to estimate the catches of key shark species in the longline 

and purse-seine tuna fisheries in the WCPFC Statistical Area using observer data. The catches were 

estimated as the product of known longline and purse-seine effort in the region and catch rates 

predicted from models fit to observer data. Longline effort data held by the OFP are stratified by 5° 

latitude by 5° longitude (5x5), month and hooks between floats (HBF, a proxy for depth). Purse-

seine effort data are stratified by 1° latitude by 1° longitude (1x1), month and school association. 

A secondary objective was to standardise catch per unit of effort (CPUE); however, there are 

important differences between that objective and the estimation of catches. When estimating 

catches, nominal catch rates must be predicted by the model for all strata covered by the effort data, 

including those strata that are not covered by the observer data. For example, while there are broad 

geographic areas in the region that have not been covered by longline observer data, effort data 

exist for those areas and therefore the nominal catch rates must be predicted by the model so that 

the catches can be estimated. 

Also, the covariates (independent variables) used in the model must be available both in the 

observer data, so that the model parameters can be fit, and in the effort data, so that the nominal 

catch rates can be predicted. Thus, certain covariates that are available in the observer data, but 

which are not available in the effort data — such as the type of bait used by a longliner or the use of 

a helicopter by a purse seiner — cannot be included in the model. 

When standardising CPUE, however, there is no need to predict nominal catch rates; hence, there is 

no concern about strata not being covered by the observer data. 
2
 And all covariates available in the 

observer data can be used to fit the model, including those that may not be available in the effort 

data. 

This distinction has implications for the manner in which the covariates are parameterised in the 

model. When estimating catches, the covariates must be parameterised such that once the model has 

been fit to the observer data, it can then be used to predict nominal catch rates in strata not covered 

by the observer data. The use of splines in this regard is discussed below. 

Another important difference is that when the objective is to estimate catches, the focus is on 

predicting nominal catch rates using the values of the covariates for each stratum of the effort data. 

                                                 

2
 That is, no concern apart from the general question of whether the observer data are representative of the fishery. 
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In contrast, when standardising CPUE, the values of all covariates except year are set to fixed 

values and then the model is used to predict CPUE for all values of year. The values to which the 

other covariates are fixed are arbitrary, although, if a covariate is continuous, it is good practice to 

use values in the middle of the covariate’s range. 

Though not the primary objective of this study, catch rates standardised for year will still be 

examined. 

Structure of the Delta-Lognormal Model of CPUE 

The catches of non-target species are often zero and under these circumstances, Delta-Lognormal 

(DLN) models of catch rates are appropriate. 
3
 As mentioned above, when estimating catches, the 

covariates must be parameterised such that once the model has been fit to the observer data, it can 

then be used to predict nominal catch rates in strata not covered by the observer data. For longline, 

nominal catch rates must be predicted for strata of time period, geographic area and HBF. For 

purse-seine, they must be predicted for strata of time period, geographic area and school 

association. Stratifying the observer data at a relatively high level of resolution of time and area, 

such as 5x5 by month or 10x10 by quarter, and modelling the time-area strata as categorical 

variables, is not appropriate, since there will be strata in which fishing took place that are not 

covered by the observer data and for which catch rates cannot be predicted. Stratifying the observer 

data at a low resolution of geographic area — such as five or six broad areas that together cover the 

entire WCPFC Statistical Area, which are typically used for tuna stock assessments — would allow 

the prediction of catch rates for areas not covered at a higher resolution by the observer data, but at 

the cost of loss of precision in the predicted catch rates. 

Rather than parameterising the covariates as categorical variables, a solution to this problem is to 

model the relationship between the response (dependent variable) and a covariate as a piecewise 

polynomial, also termed a spline. In a piecewise polynomial, the range of values of a covariate is 

separated into regions and the effect of each value of the covariate within a region is modelled as a 

polynomial (Chambers & Hastie 1992). The advantage of splines is that this highly nonlinear 

relationship can be transformed into a linear relationship between the response and the values of the 

basis functions determined for each value of the covariates. See the appendix for notes on the use of 

basis functions. 

                                                 

3
 Other model structures — such as Zero-Inflated Lognormal, Tweedy or Quasi-Poisson models — are also appropriate; 

however, the choice of model structure is probably less important to this analysis than the use of splines, and the other 

model structures were not examined in this study. 
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In the splines used below, the degree of the polynomials, d, in each region into which the range of 

the covariate has been divided is fixed at three — thus cubic splines — and the regions are usually 

quantiles. When using R functions to determine the basis values, such as bs for B-splines or ns for 

natural splines, the number of quantiles is usually specified by the number of knots, k, such that 

there are k + 1 quantiles or regions; that is, k = 0 results in one quantile of 100%, k = 1 in two 

quantiles of 50%, k = 2 in three quantiles of 33.3%, etc. The number of knots, and thus quantiles, is 

usually determined by choosing the number that minimises a model selection criterion, such as the 

Bayesian Information Criterion (BIC, Schwarz 1978). 

The structure of the DLN model of CPUE is given by 

 1 2(...) (...)CPUE F F  (2) 

where 1F  is the probability that the catch rate in a stratum is positive and 2F  is the catch rate in a 

stratum if the catch rate is positive, and (...)  stands for whatever  covariates that 1F  and  2F  might 

depend on (and which may differ); 1F  is usually referred to as the logistic part, and 2F  to the 

lognormal part, of the DLN model. 

For the logistic part, the observed values of the response are assigned to be 1 if the catch rate in the 

stratum is positive and 0 otherwise; they are thus binomial random variables. Predictions of 1F  are 

only meaningful if they lie within [0,1]; however, this restriction is not incorporated in a simple 

linear regression of the observed values of the dependent variable on the basis functions of a spline. 

To ensure that the predicted values of 1F  lie within [0,1], a generalised linear model (GLM) with a 

logit link function — the logistic regression model — is used to estimate the regression coefficients. 

The logit link is given by: 

 ln
1

 (3) 

where μ is the mean of a binomial random variable, which, in this case, is the probability that the 

catch rate in a stratum is positive. We express 1F  in terms of the logit link as follows: 

 (...)

(...)

1
1

(...)
e

e
F . (4) 

Expressing η(...) as a function of the basis functions of splines and regression coefficients, we have 
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V

i

DF

j

iijij

i

xB
1 1

0 )((...)  (5) 

where V is the number of covariates in the model; iDF  is the number of degrees of freedom of the 

spline for the i
th

 covariate; )( iij xB  are the values of the basis functions for the i
th

 covariate,
 ix , and 

0
 and 

ij
 are the regression coefficients. 

For the lognormal part, the regression coefficients are estimated with a simple linear regression of 

the natural logarithm of CPUE on the basis functions. Expressing 2F  in terms of log CPUE, we 

have 

 

2

ln (...)
2

2 (...)
S

CPUE

F e . (6) 

where S
2
 is the residual variance of the linear regression. The expected value of the exponent of a 

normal random variable of mean zero and variance 
2
 is 2

2

e ; to remove this bias, we include 

2

2S

e
 in equation (6). 

Finally, expressing ln[CPUE] as a function of the basis functions of splines and regression 

coefficients, we have 

 0

1 1

ln (...) ( )
iDFV

ij ij i

i j

CPUE B x  (7) 

where ln[CPUE] is the natural log of CPUE in strata for which CPUE is positive, and the primes in 

the right-hand side of equation (7) indicate that the number of covariates, degrees of freedom, 

values of basis functions and regression coefficients are for the lognormal part of the DLN model. 

Estimation of Catches in the WCPFC Statistical Area and Confidence Intervals 

Longline catches were estimated using effort data covering the WCPFC Statistical Area, east of 

130°E, stratified by year, month, 5x5 and two categories of HBF: shallow (< 10 HBF) and deep (≥ 

10 HBF). Purse-seine catches were estimated using effort data covering the area from 20°N to 20°S 

and 130°E to 150°W, stratified by year, month, areas of 2° of latitude and 5° of longlitude, and 

school association (unassociated and associated). For each stratum of effort data, nominal CPUE 

was predicted with the DLN model fitted to the observer data. Catches for each stratum were 
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estimated as the product of the predicted CPUE and the known effort. Estimates of annual catches 

were determined by summing the estimated catches over strata and grouping by year. 

Confidence intervals for estimates of catches were constructed through the use of multinomial 

normal distributions of the regression coefficients; this technique is sometimes called a parametric 

bootstrap. Multinomial distributions for each of the logistic and lognormal models were 

parameterised with mean vectors equal to the point estimates of the regression coefficients, and 

covariance matrices determined from the correlation matrices and the standard error vectors. The 

multinomial distributions were used to generate 1000 sets of the regression coefficients for each of 

the logistic and lognormal models. When predicting CPUE for each stratum of effort, the 1000 sets 

of regression coefficients were used to generate 1000 estimates of CPUE for each stratum, which in 

turn were used to generate 1000 estimates of the catch for each stratum by multiplying by the 

known effort for the stratum. Summing the catches over strata and grouping by year for each set 

resulted in 1000 estimates of the catch for each year. The median of the 1000 estimates was used as 

the point estimate of the catch rate and annual catch. Confidence intervals for estimates of catch 

rates and annual catches were taken to be the 2.5% and 97.5% quantiles of the 1000 estimates. 

APPLICATION TO LONGLINE 

Definition of Replicates and Responses 

For longline, the response in the logistic part of the DLN model of CPUE is 1 or 0 depending on 

whether the catch rate during a trip was positive or zero, while the reponse for the lognormal part is 

the the natural logarithm of the average catch rate in units of number of sharks per hundred hooks 

during a trip. Trips were used as the replicate, rather than longline sets, since sets tend not to be 

independent of one another; sets made during a fishing trip tend to catch similar species at similar 

rates because they usually occur within similar strata of time period, geographic area and depth, and 

therefore do not provide much additional information to the average catch rate for the trip. 

Longline trips may also lack independence, but to a lesser degree than sets. The lack of 

independence among trips in the various longline sectors listed in Table 2 below were briefly 

examined with General Estimating Equations (GEE, Liang & Zeger 1986), which allow for 

correlation among the observations within sectors. 

At the time of the analysis, there were a total of 3,405 longline trips from 1991 to 2011 in the 

observer database. Only trips during which at least five sets were made, and at least 2000 hooks 

were set, were used in the analyses; 286 trips were not used for this reason. There were 61 trips for 
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which shark or swordfish was suspected of being the target species on the basis of the catch 

composition; these trips were not used since the shark catch rates may not be representative of the 

vast majority of longline effort. Table 3 presents the number of trips by year and sector; data 

covering a total of 3,058 trips were used. The Hawaiian fleet represents 42.1% of the total number 

of trips, followed by the offshore sectors targeting yellowfin and bigeye in tropical waters, 20.2%, 

and albacore in sub-tropical and temperate waters, 19.6%. No observer data are available for the 

domestic fisheries of Indonesia, the Philippines and Chinese Taipei; observer data covering the 

domestic longline fleet of Australia have not yet been imported into the OFP observer database. 

Table 3. Number of trips taken by observers on longliners in the WCPO and used in the 

analysis 

 

Year

Australia: 

Japanese 

Fleet

Distant-

Water     

Albacore

Distant-

Water      

Yellowfin 

& Bigeye

Hawaii

New 

Zealand: 

Domestic 

Fleet

New 

Zealand: 

Japanese 

Fleet

Offshore       

Albacore

Offshore       

Yellowfin 

& Bigeye

Total

1991 56 0 0 0 0 3 0 0 59

1992 54 0 0 0 2 6 0 1 63

1993 74 0 0 0 0 17 0 8 99

1994 54 0 0 45 1 7 0 18 125

1995 32 0 1 42 3 8 7 22 115

1996 28 1 0 50 5 0 11 15 110

1997 25 0 0 33 6 8 6 37 115

1998 2 2 1 44 9 5 5 31 99

1999 0 1 0 35 2 6 11 24 79

2000 0 0 1 98 3 4 5 31 142

2001 0 0 0 202 18 4 4 7 235

2002 0 0 2 273 9 4 27 73 388

2003 0 0 1 259 5 4 42 55 366

2004 0 0 0 205 14 0 50 59 328

2005 0 0 4 0 9 2 52 40 107

2006 0 0 3 0 10 3 62 76 154

2007 0 0 1 0 14 3 47 68 133

2008 0 0 0 0 15 2 72 31 120

2009 0 0 0 0 0 0 104 20 124

2010 0 0 0 0 0 0 88 3 91

2011 0 0 0 0 0 0 6 0 6

Total 325 4 14 1,286 125 86 599 619 3,058

% 10.63% 0.13% 0.46% 42.05% 4.09% 2.81% 19.59% 20.24% 100.00%
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The replicates were screened to eliminate outliers, with the definition of outliers determined by 

inspection. Table 4 presents the level of CPUE that defines the outliers, the number of trips for 

which CPUE was greater than or equal to the level, the percentage of trips that were screened for 

outliers and the number of trips remaining and used in the analyses. 

Table 4. Level of longline CPUE (sharks per hundred hooks) defining outliers and the 

number of outliers out of a total of 3,058 trips 

 

Parameterisation of the Covariates 

For each trip, the covariates were assigned as follows. The latitude and longitude assigned to the 

trip were the average latitude and longitude of the locations of the sets, weighted by the number of 

hooks per set. Most trips were of less than one month in duration; the month during which the 

largest number of days on which a set was made was assigned as the year and month for the trip. 

The number of hooks between floats for the trip was calculated as the average number of hooks 

between floats per set, weighted by the number of hooks per set. The catch rate for the trip was 

calculated as the total number of sharks caught divided by the total number of hooks set and 

expressed as the number of sharks per 100 hooks. 

Year and month 

In the exploratory phase of the analysis, year was initially parameterised as a spline and various 

attempts were made to parameterise month in order to incorporate seasonality into the model. If the 

analysis was confined to either the northern hemisphere or the southern hemisphere, parameterising 

month as a spline would suffice to capture any seasonality in catch rates; however, when both the 

northern and southern hemispheres are included in the analysis, month will not have the same effect 

and other approaches must be considered. 

Species or Group Level of CPUE
Number of 

Outlier Trips
% of Total

Trips      

Remaining

Blue Shark 2.00 44 1.44% 3,014

Mako Sharks 0.20 18 0.59% 3,040

Oceanic Whitetip Shark 0.25 13 0.43% 3,045

Silky Shark 0.40 28 0.92% 3,030

Thresher Sharks 0.20 28 0.92% 3,030
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In the first attempt, month was parameterised as two variables: (i) a spline of month nested within 

the northern hemisphere and (ii) a spline of month nested within the southern hemisphere. The 

degrees of freedom of the splines was set to three. The values of the basis functions for each of the 

two variables are the same, except that the values for month nested in the northern hemisphere are 

set to zero for trips in the southern hemisphere and the values for month nested in the southern 

hemisphere are set to zero for trips in the northern hemisphere. However, the results showed that 

month parameterised in this way was confounded with latitude, such that the effect of latitude on 

predicted CPUE was jagged and not smooth at the equator. 

A second attempt was made by parameterising month as one variable that had positive values in the 

northern hemisphere and negative values in the southern hemisphere, e.g., January–December 

ranged from 1 to 12 in the northern hemisphere and from –1 to –12 in the southern hemisphere. The 

values of the basis functions were determined with a knot at zero, such that a separate cubic spline 

would be fit in each hemisphere. Again, however, the effect of latitude on predicted CPUE was 

jagged and not smooth at the equator. 

In the third attempt, the effect of month was forced to be symmetrical in the northern and southern 

hemispheres by parameterising month in the southern hemisphere as ( month + 5 ) modula 12 + 1. 

Thus January in the northern hemisphere is 1, while January in the southern hemisphere is 7; 

February in the north is 2, while February in the south is 8, etc. Again, the effect of latitude was 

jagged. 

The conclusion, perhaps to have been expected, is that the structure of the model is such that 

seasonality is confounded with latitude and cannot be separated. Therefore, rather than including 

month as a separate variable, it was decided to include year and month in a single variable as year + 

( month - 0.5 ) / 12, and parameterise the combined year_month variable as a spline. Thus January 

1992 is 1992.004, February 1992 is 1992.125, etc. While no longer modelling seasonality, this 

parameterisation allows month to be used to more precisely model time trends in CPUE. 

Latitude and longitude 

In the exploratory phase, latitude and longitude were first parameterised as univariate splines; that 

is, latitude was parameterised as a spline and longitude was parameterised as a separate spline. 

However, the results of this parameterisation were unreasonable and suggested that latitude and 

longitude were confounded in the data for the fleets with the greatest coverage. The data covering 

the Japanese fleet in the Australian Fishing Zone, which range from 145°E to 160°E, are primarily 

south of 25°S. The data covering the fleets in New Zealand, which range further to the east, from 
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165°E to 180°, are primarily south of 30°S. The data covering the Hawaiian fleet, which range still 

further to the east, from 180° to 150°W, are primarily north of 15°N. While not a major fleet in 

terms of coverage, but the only fleet operating in its longitudinal band, the data covering the French 

Polynesian fleet, which range from 150°W to 140°W, are primarily from 10°S to 20°S. Thus the 

observer data are concentrated at certain latitudes consistently across the region, from west to east. 

To eliminate this problem, longitude was constrained to be a linear variable, rather than a spline, 

given that latitude is more important in terms of explaining variation in shark CPUE. The results 

were reasonable and the effect of latitude on predicted CPUE correctly reflected our knowledge 

about the distribution of the key shark species, with the latitude effect for tropical sharks (oceanic 

whitetip shark and silky shark) being high in the tropics and lower at higher latitudes, and the 

converse true for the other sharks (blue shark, mako sharks and thresher sharks). 

However, this paramerisation does not account for interactions between latitude and longitude, 

which are known to be important. Therefore, latitude and longitude were finally parameterised as a 

multivariate spline; that is, latitude and longitude were considered as a single variable, lat_lon, 

having two dimensions, i.e., a surface. This is somewhat similar to parameterising latitude and 

longitude as categorical variables, such as 5x5 areas, which can be thought of as a two-dimensional 

step function, except that the multivariate spline is continuous and thus allows much greater 

precision, as will be seen below in the maps of the lat_lon effect on predicted CPUE. 

Hooks between floats 

Hooks between floats (HBF), a proxy for depth, was parameterised as a spline. During the 

exploratory phase, it was not found necessary to consider alternative parameterisations. 

Degrees of Freedom for the DLN Models 

A search was conducted over values of the degrees of freedom of each covariate to identify the 

combination of degrees of freedom that minimised the BIC for each of the logistic and lognormal 

parts of the DLN. Table 5 presents statistics on the DLN models that were subsequently used to 

predict shark CPUE. The total number of trips and the number of trips with a positive catch are 

shown in the columns on the left-hand side, while the number of degrees of freedom of splines and 

deviance explained are shown on the right-hand side. Variables for which the degrees of freedom 

that minimised the BIC is one were included in the model as a linear variable and not as a spline; 

variables for which the degrees of freedom is zero were not included in the model. The deviance 

explained by each variable in isolation of the other variables is given under each variable; the 

deviance explained by all variables together is given under Total. 
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For blue sharks, of the 3,014 trips used in the analysis, 2,456 or 81.5% had positive catch rates. This 

value is much higher than for the other key shark species, which ranged from 58.6% for mako 

sharks down to 31.3% for silky sharks. 

Table 5. Statistics on DLN models of longline CPUE for key shark species and genera 

 

Residuals 

The residuals for the lognormal part of the DLN model of blue shark CPUE are plotted in Figure 4; 

each residual represents one trip. The residuals tend not to exhibit lack of fit. This is typical of these 

models and plots of residuals will not be shown further. 

Figure 4. Plots of residuals for the lognormal part of the DLN model of blue shark CPUE 

for longline 
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Effects of the Covariates on Predicted CPUE 

The effect of each covariate on predictions of catch rates from the DLN model was examined by 

fixing the other covariates at a pre-determined value and varying the covariate being examined. 

(See the appendix for an explanation of how the basis functions were determined for the 

predictions.) For example, to examine the effect of year_month on CPUE, the other independent 

variables — latitude, longitude and HBF — were held at fixed values, while CPUE was predicted 

for values over the range of year_month. The fixed value for latitude was set to zero (the equator); 

the fixed value for longitude was set to 180; and the fixed value for HBF was set to 10. When 

examining the effects of the other covariates, the fixed value for year_month was set to 2000 + ( 6 – 

0.5 ) / 12 = 2000.458, i.e. June 2000. 

Latitude and longitude 

To examine the effect of latitude and longitude, the variables year_month and HBF were held at 

their fixed values, while CPUE was predicted for the central point of all 1x1 grids in the lat_lon 

surface. The values of predicted CPUE were plotted for each 1x1 grid in the heat maps shown in 

Figure 5. In a heat map, the colour red indicates low values, white indicates high values and yellow 

indicates intermediate values. The scale of the contours is approximately logarithmic, rather than 

linear, to highlight the differences at small values of CPUE. 

The two heat maps in the top row of Figure 5 are for the two species with higher catch rates in 

tropical waters: oceanic whitetip shark and silky shark. Catch rates for oceanic whitetip sharks are 

centred between 10°S and 20°S and appear to have an asymmetric, northwest to southeast, 

distribution. Catch rates for silky sharks are centred on about the equator and have a more 

symmetric distribution. 

The heat maps in the second and third rows of Figure 5 are for three species and genera with higher 

catch rates in sub-tropical and temperate waters: blue sharks, thresher sharks and mako sharks. 

Catch rates for blue sharks appear to be high in both the northern and southern hemispheres. The 

high values north of 40°N are the result of result of large observed catches during a small number of 

trips by Hawaiian longliners; since there are few data for those latitudes, they have considerable 

influence on the lat_lon surface. 

Catch rates for thresher sharks appear to be higher in the northern hemisphere. The observer data 

are dominated by bigeye threshers (Alopias superciliosus) and common threshers (Alopias 

vulpinus), while pelagic threshers (Alopias pelagicus) are less common. Catch rates for mako sharks 

are higher in the southern hemisphere. This group is overwhelmingly dominated by the shortfin 
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makos (Isurus oxyrinchus)
4
; longfin makos (Isurus paucus) may inhabit tropical waters to a greater 

extent than shortfin makos 

Figure 5. Effect of latitude and longitude on catch rates (sharks per 100 hooks) of key shark 

species and genera 

 Oceanic Whitetip Shark Silky Sharks 

 

Blue Shark 

 

                                                 

4
 Also, longfin makos may potentially be mis-identified as shortfin makos. 
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Figure 5 (continued) 

 Thresher Sharks Mako Sharks 

  

Hooks between floats 

To examine the effect of hooks between floats, the variables year_month, latitude and longitude 

were held at their fixed values, while CPUE was predicted for 400 equally spaced values of hooks 

between floats ranging from the minimum to the maximum observed values; the mean of the 

predictions was then subtracted from the predictions to show the relative effect. The values of 

predicted CPUE are shown in Figure 6, with 95% confidence intervals. The decline in CPUE with 

depth is particularly steep for the tropical species, oceanic whitetip and silky sharks. 

Figure 6. Effect of hooks between floats on catch rates of key shark species and genera 

 Oceanic Whitetip Shark Silky Sharks 
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Figure 6 (continued) 

Blue Shark 

 

 Thresher Sharks Mako Sharks 

 

Year and month 

To examine the effect of year_month, hooks between floats, latitude and longitude were held at 

their fixed values, while CPUE was predicted for 400 equally spaced values of year_month ranging 

from the minimum to the maximum observed values; the mean of the predictions was then 

subtracted from the predictions to show the relative effect. The values of predicted CPUE are shown 

in Figure 7, with 95% confidence intervals. For thresher sharks, year_month was not included in 

either the logistic or lognormal parts of the DLN model and so there is no effect. 
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Figure 7. Effect of year_month on longline catch rates of key shark species and genera 

 Oceanic Whitetip Shark Silky Sharks 

 

 Blue Shark  Mako Sharks 

  

The interpretation of the year_month effect as an index of population abundance is complicated by 

(i) under-reporting of sharks by observers, reporting ―sharks‖ without recording the species or 

genus, and possibly errors in species identification, in the early years of the time series, (ii) 

operational changes in the fishery, and (iii) possible targeting of sharks. 

During the period 1992–1994, the quality of observer data collected in the region was less than in 

subsequent years. Under the South Pacific Regional Tuna Resource Assessment and Monitoring 

Project (SPRTRAMP), which was implemented by SPC in 1995, the training of observers improved 

considerably and the debriefing of observers was introduced. The complete lack of silky sharks in 

the observed catch during 1992–1993 and a low observed catch in 1994 (see also Table 5 and 

Figure 8 below) are due to reporting errors, and such errors may have affected the estimates of catch 

rates of other shark species early in the time series. 

The following operation changes in longline fishing are known to have affected shark catch rates 

(Clarke et al. 2010): 
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 Japan longline fishing in the AFZ ceased in 1997. 

 A trip limit for sharks was imposed in Australia in 2000. 

 Shark finning was banned in Hawaii in 2000. 

 The shallow set longline fishery in Hawaii was closed from 2001 to 2004. 

 The use of wire traces generally has declined since 2004. 

 Wire traces were banned in Australia in 2005. 

Targeting of sharks by the Japanese offshore and distant-water longline fleet (LLL) in the North 

Pacific was examined by Clarke et al. (2011). They conclude that the ―[c]alculation of concentration 

indices for the LLL fleet provides some evidence for increasing targeting of blue sharks, and 

perhaps makos, within the main longline fishing grounds in the North Pacific (i.e. Region 1) since 

the late 1990s. Other information on total catches and catch rates (nominal and standardized), as 

well as indications from target species information recorded on logsheets, are consistent with this 

trend.‖ While the logsheet data covering the Japanese longline fleet in the North Pacific that were 

examined by Clarke et al. (2011) were not available for this analysis, observer data covering the 

Japanese fleet in the AFZ in the 1990s were included (Table 1). The increases in standardised 

(Figure 7) and nominal catch rates (Figure 8) for blue shark during the mid-1990s — and, to a lesser 

extent, for mako sharks — may therefore be due to increased targeting by Japanese vessels fishing 

in the AFZ and the subsequent decline in blue shark catch rates shown in Figures 7 and 8 may be 

due, in part, to the decrease in the amount of observer data covering the Japanese longline fleet, 

following its cessation of fishing in the AFZ in 1997. 

Estimates of Shark Catch Rates and Catches 

Shark catches were estimated from longline effort data stratified by year, month, 5x5 area and two 

categories of hooks between floats: shallow (< 10 HBF) and deep (≥ 10 HBF). The effort data cover 

the WCPFC Statistical Area, east of 130°E; catches by the fleets of Indonesia and the Philippines 

were ignored because no observer data nor effort data are available for these fleets. Table 6 presents 

annual shark catches estimated using the method described above, while Figure 8 shows plots of the 

time series of estimates of annual catch rates and catches, with 95% confidence intervals. The point 

estimate of each annual catch in Figure 8 is the median of the set of 1000 parametric bootstrap 

estimates of the annual catch (see Method), while each catch rate is the median of the set of 1000 

estimates of the annual catch divided by the known annual effort. The estimates of catch rates are 

thus nominal and so differ from the plots in Figure 7. 
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Table 6. Estimates of longline shark catches (thousands of sharks) in the WCPFC Statistical 

Area east of 130°E 

 

Figure 8. Estimates of longline catch rates (left) and catches (right) of sharks in the 

WCPFC Statistical Area east of 130°E 

 

1992 39 0 1,351 58 86 1,534

1993 85 0 1,333 64 71 1,552

1994 184 16 1,662 70 75 2,007

1995 236 161 2,350 75 73 2,896

1996 196 140 3,050 68 72 3,527

1997 186 135 3,587 57 76 4,040

1998 249 165 4,049 62 90 4,615

1999 223 167 3,683 74 100 4,247

2000 186 163 2,124 70 91 2,635

2001 122 149 1,033 71 84 1,459

2002 110 142 627 80 79 1,038

2003 88 97 574 76 74 909

2004 100 103 639 75 65 983

2005 74 114 671 71 55 985

2006 46 133 642 64 47 932

2007 51 167 672 72 44 1,006

2008 55 185 588 71 47 946

2009 53 189 358 61 53 715

Average 127 124 1,611 69 71 2,001
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Figure 8 (continued) 
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Figure 8 (continued) 

 

As discussed above, the accuracy of the estimates of catch rates shown in Figure 8 may be affected 

by reporting errors early in the time series, particularly for silky sharks, and possibly by the 

targeting of sharks. The trends in estimates of annual catch rates and catches are discussed in Clarke 

(2011) along with other indicators of the status of shark populations. 

The time series of estimates of shark catches depend on longline effort; Figure 8 shows longline 

effort east of 130°E, excluding the fleets of Indonesia and the Philippines. Since peaking in 2004, 

longline effort in the region has declined. 

Figure 9. Longline effort in the WCPFC Statistical Area east of 130°E 
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Application of Generalised Estimating Equations (GEE) 

Generalised Estimating Equations are a general method for analysing data collected in clusters 

where observations within a cluster may be correlated and observations in separate clusters are 

independent. The geeglm function in the R package geepack (Halekoh et al. 2006) was used to 

apply GEEs to the logistic and lognormal parts of the DLN models of shark catch rates for longline 

trips described above. The clusters were defined as the eight longline sectors listed in Table 2. 

Four working correlation structures are available in geeglm: (i) independence, in which the 

observations within a cluster are independent; (ii) exchangeable, in which all observations in a 

cluster have the same correlation; (iii) ar1, in which the correlations are auto-regressive; and (iv) 

unstructured, in which the correlation between each and every pair of observations in a cluster is 

distinct. The exchangeable correlation structure was used for both the logistic and lognormal parts 

of the DLN models of shark catch rates. 

With the exchangeable correlation structure, the correlation of observations within sectors is the 

same for each sector and is estimated by the correlation parameter alpha. To examine the effect of 

the covariates on the estimate of the correlation within sectors, geeglm was first used to fit the 

response variables of the logistic and lognormal parts of the DLN models with only the intercept as 

a predictor, without the covariates; it was then used to fit the response variables with the full 

models, i.e., with the covariates parameterised as splines as listed in Table 5. The estimates of the 

correlation parameter alpha for the logistic and the lognormal responses are presented in Table 7 for 

both cases. With only the intercept, the estimates of correlation parameters are all small to moderate 

positive values, as might be expected, with the exception of the lognormal response for oceanic 

whitetip, which was much smaller than the others. With the full models, the estimates of alpha are 

all negligible. These results indicate that the full models capture all of the correlation among the 

responses and suggest that the use of the catch rate per trip as replicates in the DLN models is 

appropriate; however, it is not clear why the sign of the correlations for the full models are all 

negative. 
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Table 7. Estimates of the correlation parameter alpha for the logistic and lognormal 

responses of DLN models of shark catch rates 

 

GEEs also allow for overdispersion, i.e., a higher variance in the response variable than that 

assumed by the probability distribution used to model the response. Overdispersion is estimated in 

geeglm by the scale parameter, with values greater than 1.0 indicating overdispersion; estimates of 

the scale parameter for the full DLN models of shark catch rates are given in Table 8. 

Overdispersion is considerable for blue shark and thresher sharks, indicating that the variances of 

the estimates of the DLN parameters for these species from standard GLMs are being under-

estimated. 

Table 8. Estimates of the scale parameter for the logistic and lognormal parts of DLN 

models of shark catch rates 

 

Overdispersion is accounted for by geeglm when estimating the covariance matrix of the estimates 

of the model parameter with the sandwich variance estimate (Halekoh et al. 2006). The results of 

using sandwich variance estimates for the parameters of the logistic and lognormal parts of the full 

DLN model of blue shark catch rates are shown in Figures 10 and 11. For GEEs with the 

independent or exchangeable correlation structures, it is always the case that the model parameter 

Logistic Lognormal Logistic Lognormal

Blue Shark 0.0813 0.2641 -0.0011 -0.0015

Mako Sharks 0.1375 0.1067 -0.0010 -0.0023

Oceanic Whitetip 0.0709 0.0122 -0.0010 -0.0022

Silky Shark 0.2758 0.4408 -0.0011 -0.0024

Thresher Sharks 0.0751 0.3340 -0.0007 -0.0017

Intercept Only Full Model

Species 

Species Logistic Lognormal

Blue Shark 1.0855 1.2247

Mako Sharks 0.9849 0.6062

Oceanic Whitetip 1.1328 0.9841

Silky Shark 0.8780 0.9397

Thresher Sharks 1.1615 1.4521
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estimates are no different from a standard GLM; hence the point estimates of the effects of 

year_month and hooks between floats in Figure 9 are no different from those for blue shark shown 

in Figures 5 and 6, while the point estimates of the catch rates and catches in Figure 10 are no 

different from those for blue shark shown in Figure 7. However, in each of the plots shown in 

Figures 10 and 11, the 95% confidence intervals are much greater than for the standard GLM. 

Figure 10. Effect of year_month and hooks between floats on blue catch rates determined 

with Generalized Estimating Equations 

 Year_month  Hooks between floats 

 

Figure 11. Estimates of longline catch rates (left) and catches (right) of blue shark in the 

WCPFC Statistical Area east of 130°E determined from Generalised Estimating 

Equations 
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APPLICATION TO PURSE-SEINE 

Definition of Replicates and Responses 

For purse seine, the response variable in the logistic part of the DLN model of CPUE is 1 or 0 

depending on whether the catch rate in a stratum of trip and school association was positive or zero, 

while the reponse for the lognormal part is the natural logarithm of the average catch rate in units of 

number of sharks per day fished or searched in a stratum of trip and school association. If all sets 

were on schools of the same association (unassociated or associated), an observed trip will have one 

stratum of trip and school association; otherwise, it will have two. 

Only observed trips with at least five days fished or searched and for which information regarding 

the school associations was available were used. Table 9 presents the number of strata of purse-

seine observer trip and school association (unassociated or associated) covered by data held by the 

OFP and used in the analysis. There are 4,460 strata from 1994 to 2011, including 2,004 (45%) 

strata of unassociated schools and 2,456 (55%) of associated schools. 

Purse-seine catches were estimated only for oceanic whitetip shark and silky shark because the 

number of strata with positive catches was insufficient to estimate the DLN parameters for the other 

key shark species and genera. The numbers of strata with positive catches for blue shark, thresher 

sharks and mako sharks were 39, 64 and 79 respectively. 
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Table 9. Number of strata of purse-seine trip and school association covered by data held 

by the OFP and used in the analysis 

 

The replicates were screened to eliminate outliers, with the definition of outliers determined by 

inspection. Table 10 presents the level of CPUE that defines the outliers, the number of strata for 

which CPUE was greater than or equal to the level, the percentage of strata that were screened for 

outliers and the number of strata remaining and used in the analyses. 

Year
Unassociated    

Schools

Associated     

Schools
Total

1994 14 11 25

1995 32 30 62

1996 52 57 109

1997 48 62 110

1998 78 84 162

1999 18 50 68

2000 32 54 86

2001 56 70 126

2002 82 126 208

2003 90 142 232

2004 139 219 358

2005 166 245 411

2006 199 261 460

2007 179 253 432

2008 184 216 400

2009 240 226 466

2010 392 347 739

2011 3 3 6

Total 2,004 2,456 4,460

% 44.93% 55.07% 100.00%
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Table 10. Level of purse-seine CPUE (sharks per day) defining outliers and the number of 

outliers out of a total of 4,460 strata 

 

Parameterisation of the Covariates 

The number of days fished or searched per trip was allocated to the strata of unassociated and 

associated schools in proportion to the number of unassociated and associated schools fished during 

the trip. For each stratum of trip and school association, the independent variables were assigned as 

follows. The month during which the largest number of days were fished was assigned as the year 

and month for the stratum. The latitude and longitude assigned to each stratum were the average 

latitude and longitude of the locations of the sets. The catch rate for each stratum of trip and school 

association was calculated as the total number of sharks caught divided by the total number of days 

fished per stratum. As for longline, year and month were included as year + ( month – 0.5 ) / 12 and 

parameterised as a spline, while latitude and longitude were parameterised as a two-dimensional 

spline. 

Degrees of Freedom for the DLN Models 

A search was conducted over values of the degrees of freedom of each covariate to identify the 

combination of degrees of freedom that minimised the BIC for each of the logistic and lognormal 

parts of the DLN. Table 11 presents statistics on the DLN models that were subsequently used to 

predict shark CPUE. The total number of trips and the number of trips with a positive catch are 

shown in the columns on the left-hand side, while the number of degrees of freedom of splines and 

deviance explained are shown on the right-hand side. Variables for which the degrees of freedom 

that minimised the BIC is one were included in the model as a linear variable and not as a spline. 

The deviance explained by each variable in isolation of the other variables is given under each 

variable; the deviance explained by all variables together is given under Total. 

The number of trip – association strata with non-zero catches was much greater for silky shark than 

for oceanic whitetip shark, 58.4% of all strata compared to 11.6%. The deviance explained for both 

species was considerably less than for the models of longline CPUE. For oceanic whitetip, none of 

the covariates explained more than 10% of the deviance, while for silky shark, only school 

association explained more than 10% of the deviance. The covariate lat_lon explained much less of 

Species or Group Level of CPUE
Number of 

Outlier Strata
% of Total

Strata      

Remaining

Oceanic Whitetip Shark 3.0 28 0.63% 4,432

Silky Shark 22.0 19 0.43% 4,441
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the deviance than in the DLN models of longline CPUE, perhaps because purse-seine catch rates 

vary less than longline catch rates within the areas covered by the respective observer data. 

Table 11. Statistics on DLN models of purse-seine CPUE for two key shark species 

 

Effects of the Covariates on Predicted CPUE 

The effect of year_month and lat_lon on predictions of catch rates from the DLN model was 

examined by fixing the other covariates at a pre-determined value and varying the covariate being 

examined. As for longline, the fixed value for latitude was set to zero (the equator); the fixed value 

for longitude was set to 180; the fixed value for year_month was set to 2000.458, i.e. June 2000; 

and the fixed value of school association was associated. 

Latitude and longitude 

Figure 12 shows the CPUE heat maps for oceanic whitetip caught by purse seiners (top) and 

compares it to the heat map for longliners (bottom) for the same area. The two heat maps are 

somewhat similar, with high CPUE in the southeast part of the area and a diagonal axis from the 

northwest to the southeast. However, the heat map for purse seine also shows high CPUE in the 

northwest part of the area. 

Figure 13 shows similar heat maps for silky shark. The heat maps are less similar than for oceanic 

whitetip, with the heat map for purse seine showing relatively high CPUE in the northeast part of 

the area. 

The lack of symmetry and the edge effects in the purse-seine heat maps for both species suggest 

that they may be less informative than for longline, an observation that is consistent with the low 

level of deviance explained by the lat_lon covariate in the DLN models of purse-seine catch rates, 

compared to longline. 

All
Non-

Zero
%

Degrees of 

Freedom

Deviance 

Explained

Degrees of 

Freedom

Deviance 

Explained

Degrees of 

Freedom

Deviance 

Explained

Degrees of 

Freedom

Deviance 

Explained

Logistic 5 5.7% 12 5.2% 1 1.6% 18 12.2%

Lognormal 1 6.5% 10 3.2% 1 6.0% 12 13.7%

Logistic 3 5.9% 10 3.3% 1 10.5% 14 18.4%

Lognormal 3 0.7% 10 3.8% 1 22.3% 14 27.6%

School Association Total

Oceanic Whitetip 

Shark
4,432 516 11.6%

Species

Observed Strata

Model

Year + Month Latitude x Longitude

Silky Shark 4,441 2,595 58.4%
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Figure 12. Effect of latitude and longitude on catch rates of oceanic whitetip shark 

Purse seine (sharks per day) 

 

Longline (sharks per 100 hooks) 
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Figure 13. Effect of latitude and longitude on catch rates of silky shark 

Purse seine (sharks per day) 

 

Longline (sharks per 100 hooks) 

 

Year and month 

To examine the effect of year_month, latitude, longitude and school association were held at their 
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from the predictions to show the relative effect. The values of predicted CPUE are shown in 

Figure 15, with 95% confidence intervals. 

Figure 14. Effect of year_month on purse-seine catch rates of two key shark species 

 Oceanic Whitetip Shark Silky Shark 

 

As for longline, the interpretation of the year_month effect as an index of population abundance is 

complicated by reporting errors in the early years of the time series. 

Estimates of Shark Catch Rates and Catches 

Shark catches were estimated from purse-seine effort data stratified by year, month, areas of 2° of 

latitude and 5° of longlitude, and school association (unassociated and associated). The effort data 

cover the area from 20°S to 20°N and 130°E to 210°W. Table 12 presents annual catch estimates, 

while Figure 16 shows plots of the time series of estimates of annual catch rates and catches, with 

95% confidence intervals. As for longline, the point estimates are the median of the 1000 

parametric bootstrap estimates and the catch rates in Figure 16 are nominal, rather than 

standardised, and so differ from the plots in Figure 15. 



 35 

Table 12. Estimates of purse-seine catches (number of sharks) of two key shark species in the 

area from 20°S to 20°N and 130°E to 210°W 

 

Figure 15. Estimates of purse-seine catch rates (left) and catches (right) of two key shark 

species in the area from 20°S to 20°N and 130°E to 210°W 

 

1995 997 23,800 24,797

1996 2,492 24,561 27,053

1997 3,677 28,102 31,779

1998 4,065 27,422 31,486

1999 4,302 35,172 39,474

2000 3,556 31,358 34,914

2001 3,003 35,069 38,072

2002 2,740 43,042 45,782

2003 2,076 56,544 58,620

2004 1,938 84,679 86,617

2005 1,747 78,976 80,723

2006 1,585 81,454 83,039

2007 1,392 78,999 80,391

2008 1,128 78,904 80,033

2009 711 69,790 70,501

2010 864 47,861 48,726

Average 2,267 51,608 53,875

% 4.21% 95.79% 100.00%
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Figure 16 (continued) 

 

As discussed above, the accuracy of the estimates of catch rates shown in Figure 16 may be affected 

by reporting errors early in the time series. The trends in oceanic whitetip catch rates and catches by 

purse seiners are similar to those for longline, while the trends for silky sharks are quite different 

than for longline. The trends in estimates of annual catch rates and catches are discussed in Clarke 

(2011) along with other indicators of the status of shark populations. 

The time series of estimates of shark catches depend on purse-seine effort, which is shown in 

Figure 17. 

Figure 16. Purse-seine effort from 20°S to 20°N and 130°E to 210°W 
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Figure A1. Distribution of longline hooks set and hooks observed in the WCPFC Statistical 

Area, excluding the fleets of Indonesia and the Philippines 
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Figure A1 (continued) 
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Figure A1 (continued) 
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Figure A1 (continued) 
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Figure A1 (continued) 
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Figure A1 (continued) 
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Figure A2. Distribution of purse-seine days fished (left) and days observed (right) in the 

Western and Central Pacific Ocean, excluding the domestic fleets of Indonesia 

and the Philippines 
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Figure A2 (continued) 
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Figure A2 (continued) 
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Figure A2 (continued) 
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Figure A2 (continued) 
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APPENDIX.  NOTES ON THE USE OF BASIS FUNCTIONS 

Calculation of Basis Functions 

The piecewise polynomial at a value x of a covariate is represented by 

 )()(
10 xBxf j

DF

j j . (A1) 

where f(x) is the effect on the response variable of a value x of the covariate; DF is the degrees of 

freedom, which is equal to the number of knots plus the degree of the polynomial, k + d; )(xB j
 are 

the values of the basis functions and 
0
 and 

j
 are the regression coefficients estimated in the 

DLN models. 

For a spline of degree  d  with  k  knots  (i.e., k + 1 quantiles), there are  k + d  basis functions if an 

intercept is excluded in the spline (and k + d + 1 basis functions if it is included). The i 
th

 basis 

function )(xBi  of a cubic spline (d = 3) is defined recursively with de Boor’s algorithm as follows: 

 xNxB dii ,)( , i = 1, k + d (A2) 

where 

 10, )( iii xxxIxN  (A3) 

 )()()( 1,1

11

1

1,, xN
xx

xx
xN

xx

xx
xN ji

iji

ji

ji

iji

i
ji  (A4) 

where ix  and 1ix  are the knots defining the range of the i
 th

 quantile. First, the 0,iN are calculated 

as either 0 or 1 depending on whether the value of  x  lies in the i
 th

 quantile. Then the 1,iN  are 

calculated. Then the 2,iN . When using cubic splines, the values of the basis functions at x, )(xBi ,  

are the 3,iN . 

For example, a call to the bs function in the splines package in R, which generates the B-spline
5
 

basis matrix for a polynomial spline, with df = 7 and intercept = FALSE will result in a matrix with 

length( x ) rows, i.e., one for each value of x, and seven columns, one for each basis function value. 

                                                 

5
 Short for ―basis spline‖ 

http://en.wikipedia.org/wiki/De_Boor_algorithm
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This is because bs anchors the B-spline basis by adding d + 1 lower boundary knots and d + 1 

upper boundary knots, where the lower and upper boundary knots are equal to the minimum and 

maximum values of x respectively (unless specified otherwise). In a cubic spline without an 

intercept, a call to bs with df = 7 implies 7 – d = 4 inner knots. With an additional d + 1 = 4 lower 

boundary knots and d + 1 = 4 upper boundary knots, there are a total of 3 + 4 + 4 = 12 knots. When 

starting with 12 knots, it can be shown that there are 12 – ( d + 1 ) = 8 functions of 3,iN , and when 

there is no intercept, bs deletes 3,1N , leaving 7 basis functions. The formula for determining the 

number of basis functions is therefore df – d + ( d + 1 ) * 2 – ( d + 1 ) – 1, which is equal to df. 

Predictions with DLN models using splines 

Predictions with DLN models using splines must take account of the fact that the values of the basis 

functions for a spline of a particular covariate depend on the entire set of values of the variable (see 

Chambers & Hastie 1992, pages 108, 241 and 288). This is because the basis functions depend on 

the knots, i.e., the values of  x  that define the ranges of the quantiles. If one set of values of  x  is 

used to determine the basis functions when fitting the DLN model and another set is used when 

predicting values of CPUE with the parameter estimates from the fitted model, the predicted values 

of CPUE will not make sense. 

A common approach to prediction with splines is to combine the set of values of  x  used to fit the 

model and the set of values used to predict with the model, and then determine the basis functions 

using the combined set of data (see Chambers & Hastie 1992, page 289). However, this method will 

not be appropriate if the number of values used for predictions is large and they are not similarly 

distributed to the values used to fit the model, since the knots for the combined set of values may be 

quite different from the set of values used to fit the model. 

A better approach is to proceed as before, first determining the basis functions using only the set of 

values used to fit the DLN model. Then, when predicting values of CPUE with the parameter 

estimates from the fitted DLN model, the basis functions are determined in one of three ways. First, 

if the value of  x  used for a prediction was also used for fitting the model, then the basis functions 

are simply those used when fitting the model and, thus, are already available. Second, if the value of  

x  was not used for fitting the model, then the basis functions are determined from the bs object in R 

using the predict function; that is, the basis functions used for prediction are determined by 

interpolation of those used to fit the model. Finally, if a value of  x  used for prediction is beyond 

the range of values used to fit the model, then, usually, the basis functions are set to those of the 

minimum or maximum values used to fit the model, as appropriate, rather than using the predict 
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function. For the multivariate lat_lon surface, however, it was found that more reasonable results 

were obtained by using predict for all values of latitude and longitude not used to fit the model; this 

is because the lat_lon effect on CPUE is generally well behaved, with the contours of CPUE in 

latitudes and longitudes beyond the range of those covered by the observer data being consistent 

with those that were. 
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