Western and
Central Pacific

f‘_:‘ Fisheries

Commission

SCIENTIFIC COMMITTEE
TENTH REGULAR SESSION
Majuro, Republic of the Marshall Islands
6-14 August 2014

Relationship between abundance and range size in longline target species

WCPFC-SC10-2014/MI-WP-06

Laura Tremblay-Boyer!, Shelton Harley?, and Graham Pilling?

IPhD candidate, Fisheries Centre/Biodiversity Research Centre, University of British Columbia
2Qceanic Fisheries Program, Secretariat of the Pacific Communities



1 Executive summary

Changes in the spatial distribution of fish stocks is often ignored when considering the health
of a population or examining the impacts of alternative fishery management strategies. Yet,
reductions in the distribution of species with declines in abundance are evident across a
diverse range of species, including birds, insects, mammals and fish. This phenomenon is
particularly important for fisheries management where some stakeholders have limited abil-
ity to adapt to such effects, and would be acutely relevant to western and central Pacific
Tuna fisheries, locally-based domestic fleets and the many artisanal and small-scale fishers.

Here, we first take an empirical approach to determine how abundance and spatial dis-
tribution of seven key tunas and billfish are related over a period of more than 50 years.
We then create a simulation model of a spatially structured population to investigate the
mechanisms that could drive the patterns observed in the empirical data.

We found that there was a positive relationship between abundance and range for all of
the studied species, and that this relationship became more pronounced when focusing on
areas of high local density. Simulation modelling highlighted that local densities of exploited
mobile populations may not be related to local fishing mortalities when habitat quality varies
within the stock range. In addition, the link between population abundance and range size is
accentuated when individuals preferentially migrate to regions of high habitat quality within
the range, especially if those areas are under heavier fishing pressure than habitats of lesser
quality.

These findings reinforce the need for the inclusion of spatial dynamics in the consideration
of target and limit reference points for mobile pelagics. Future work should more formally
quantify the long-term population consequences of ignoring spatial population dynamics in
fisheries management, as well as determine the potential of non-CPUE data sources to further
elucidate the ecological mechanisms at play in the redistribution of population abundance
under uneven spatial fishing mortality.

2 Introduction

Fisheries management often focuses on reference points derived from indicators of stock
biomass or fishing intensity. Changes in the spatial extent of stocks are rarely assessed, but
have potentially important management consequences. Dynamics in spatial occupancy could
mean that some stakeholders get disproportionately affected by changes in stock biomass at
the regional-level, even if the overall stock is at healthy levels. This is especially relevant to
fisheries where stakeholders have access to limited areas within the stock range, such as the
western and central Pacific tuna fisheries. In addition, dynamics in spatial occupancy can
bias CPUE time-series by driving unaccounted for spatial changes in fleet dynamics (Car-



ruthers et al., 2010; McKechnie et al., 2013) or by inflating CPUE indices in ways that are
hard to standardize against (e.g. Rose and Kulka 1999).

A positive relationship between some metric of population abundance and geographic
extent has been observed across many different species groups (fish, Fisher and Frank, 2004;
Frisk et al., 2011; marine mammals, Hall et al., 2010; primates, Harcourt et al., 2005; birds,
Blackburn et al., 1998; insects, Conrad et al., 2001; Sileshi et al., 2009; see Borregaard and
Rahbek, 2010 for a review). This relationship is hard to document in practice because it
requires detailed long-term series of both abundance and spatial extent for the population
of interest (Zuckerberg et al., 2009). It appears logical, however, that such a relationship
would exist as we know, by definition, that the species’ range must be more extensive at high
population abundance (Fig 1, blue point) than when the species is extinct (with a range size
equal to zero) (Fig 1, red point). We refer to the trajectory between those two points as the
range-abundance relationship (RAR)?, and the shape it takes has key management implica-
tions for fisheries. For instance, the standing biomass of marine species fished at sustainable
rates is typically expected to be close to 40% of the unexploited biomass, so range size at
Byrsy could be unchanged compared to that at By or have declined significantly (see Fig 1)
depending on the shape taken by the RAR for the exploited species.

Mobility has been hypothesized by many authors to be a factor that should increase the
strength of range-abundance relationships (Gaston and Blackburn, 2003). A related hypoth-
esis is called ‘density-dependent habitat selection’ (DDHS, MacCall, 1990, derived from the
Ideal Free Distribution cf. Fretwell and Lucas, 1969), whereby mobile individuals specifically
select for higher quality habitat as defined by both intrinsic environmental characteristics
(e.g. temperature, food, etc.) and the density of conspecifics, i.e. an ‘effective’ habitat qual-
ity. Under DDHS, high conspecific density increases competition for resources and reduces
the effective habitat quality as perceived by individuals. Fishing could thus increase effective
habitat quality in certain regions on the short-term by reducing competition for resources
via the removal of competing individuals. The increased growth resulting from a reduction
in population biomass is at the core of modern fisheries management, and DDHS; in effect,
proposes a mechanism for that phenomenon to be enacted spatially.

Many species (Brown, 1984, but see Sagarin et al., 2006) experience higher habitat qual-
ity towards the middle of their range. It could thus be expected from DDHS that if range
declines with biomass, the distribution of large pelagics should shift away from areas of lower
quality (range ‘edge’) towards areas of higher quality (range ‘core’). However, the spatial
pattern of fisheries mortality in the Pacific could make it hard to discern this phenomenon
from CPUE data since, for tropical tunas and billfish, fishing effort tends to be much more
intensive in high quality habitat (the western equatorial zone) then in the range edges (high

3The intraspecific abundance-occupancy relationship (AOR) is the technical term used in the ecological
literature to refer to this concept, but because it tends to refers to mean density rather than total population
abundance, we use the general term range-abundance relationship here to avoid confusion.



latitudes), such that the observed pattern of biomass change might not fit direct predictions
from DDHS.

As part of the WCPFC Scientific Committee research plan (project 67; WCPFC 2013),
this paper presents two independent approaches to explore relationships between range and
abundance and spatial population dynamics in Pacific large pelagics. We first modelled
the spatial distribution of seven longline target species based on 5x5 degree CPUE data
to assess the relationship between abundance and spatial occupancy of stocks (section 3).
Then, recognizing that multiple dynamics are at play in the generation of spatial patterns
of abundance throughout the range, we simulated spatial population dynamics for mobile
species to gain a better understanding of how core-edge habitat dynamics would be expected
to affect local stock response to fishing, as well as identify conditions under which RARs can
emerge (section 4).

3 Assessing range-abundance relationships from long-
line CPUE data

3.1 Methods
3.1.1 Description of datasets

1. We used monthly catch-and-effort aggregated 5x5 data (catch in individuals and effort
in hooks) for the three main longline fleets operating in the Pacific: Japan, Korea and
Chinese Taipei. We focused our analysis on the following longline target species: yel-
lowfin tuna ( Thunnus albacares), bigeye tuna ( Thunnus obesus), albacore tuna ( Thun-
nus alalunga), striped marlin (Kajikia audaz), black marlin (Makaira indica), blue
marlin (Makaira nigricans), and Indo-Pacific sailfish (Istiophorus platypterus). These
species are all tropical except for albacore tuna and striped marlin which are temper-
ate. Given sparse fleet and spatial coverage before 1960, data before that year were
not included in the analysis.

2. A dataset of candidate explanatory oceanography variables was built. Monthly oceanog-
raphy data from the Simple Ocean Data Assimilation (SODA) were selected based
on their long-term temporal coverage (http://www.atmos.umd.edu/~ocean/, Car-
ton and Giese 2008).* Temperature (at 25 meters and 215 meters), salinity (at 25
meters and 215 meters) and sea surface height data were spatially aggregated to
match the CPUE dataset by averaging observations over 5 degree cells. Monthly
values for the Southern Oscillation Index (SOI) since 1950 were obtained from the

4We note that the model results for bigeye tuna use an older version of the oceanography database which
was based on the GODAS oceanography model, but that we are in the process of updating it. The SODA
dataset is now preferred because of its longer temporal coverage, but qualitative trends in model results
remained the same for all species for which the switch in oceanography database was succesful.



Climate Analysis Section of the National Center for Atmospheric Research (http:
//www.cgd.ucar.edu/cas/catalog/climind/soi.html).

3.1.2 CPUE model

To assess changes in range size, we need an index of abundance that covers the entirety of the
species’ range. We used spatial and temporal splines (GAM) to model relative abundance
on a 5x5 grid based on fishery and oceanography variables (see below). This statistical
approach is essentially a hybrid between a typical fisheries CPUE standardization (Maunder
and Punt, 2004) and a GAM-based species distribution model (Elith and Leathwick, 2009).
The advantage of using splines is that the relationship of catch over space and time need
not be linear or a complicated polynomial. The use of oceanographic variables provides
additional explanatory power to predict abundance in cells where there is no fishing. The
rationale of the approach is similar to that underlying the work in McKechnie et al. (2013),
but here we are interested in modelling the geographic distribution of large pelagics rather
than generating a single area-weighted abundance index.

Out of a set of candidate oceanography variables, we identified for each species the top
two variables that explained on their own the highest proportion of variation, while being
uncorrelated with each other (Pearson p < 0.3). The selected variables were used along
with year, quarter, fisheries fleet and cell location (5x5 degree stratum) to predict CPUE
using a semi-parametric approach implemented with the mgcv package in R (Wood, 2006; R
Core Team, 2014). One of the key aspects of the model was an interaction between space
and time. This interaction is key to capturing contrasting trends in abundance change in
different parts of the range. Model selection was performed by defining a set of candidate
models with (i) different combinations of oceanography variables and (ii) different structures
for the interaction between space, time and fisheries fleet. The best model was selected
to (1) maximize predictive power, (2) minimize temporal and spatial patterns in residuals,
(3) minimize GCV (an index related to AIC) and (4) produce satisfactory diagnostics as
assessed by the following plots: binned residuals (histogram, BR vs fitted), residuals vs
explanatory variables, residual map for spatial autocorrelation, spatial variogram of resid-
uals. The top-ranking model for each species was used to predict CPUE from 1960-2010
for each cell in the Pacific for the three fleets used in the analysis. The CPUE indices were
then averaged over fleets to produce a fleet-standardized index of abundance by cell and time.

We used both a log-normal and a delta log-normal approach to model CPUE, and re-
tained for each species the one that performed better in terms of model diagnostics. For all
species but the striped marlin, model diagnostics were better for the delta approach. See
the appendix for a more detailed overview of model structure by species.



3.1.3 Estimation of range size

In order to estimate range size over time, predictions of relative abundance need to be
converted to a time-series of presence-and-absences over cells, that is, we need to define a
species-specific ‘detection threshold’ below which the species would be considered absent for
the purposes of this analysis. The value of the detection threshold is expected to affect
measured patterns of range change so we measured range size under low, medium and high
detection thresholds. The low threshold tracks changes over time in the total distribution
conservatively (as even cells with extremely low relative abundance are considered to be part
of the range), while the high threshold tracks the changes in areas of high density within
the range. These thresholds need to be species-specific as some of the study species are
more common than others, such that a high detection threshold for a given species (e.g.
blue marlin) might be a low detection threshold for another (e.g. albacore). To maintain a
consistent methodology across species, we calculated thresholds based on the second year of
lowest estimated total abundance for each species®. A year of low abundance was picked as
a baseline to define the threshold levels so that we could track changes in range size for all
years in the study time period: if the species is present under the defined threshold in a low
abundance year, it should, by definition, also meet that threshold somewhere in the range in
a year of higher abundance. For this year of low abundance, the 10th, 50th and 90th quantiles
of cell-wise abundance were used as low, medium and high detection thresholds, respectively.

For each species-specific threshold level, range size was measured as the number of 5x5
cells in any given year where the species was present under the stated abundance threshold.
The unit of area is degree?, which overemphasizes cells in high latitudes, but our main goal
here is to observe relative changes in occupancy over the range, not derive absolute measures
of range size.

Relative abundance was calculated by summing predicted abundance across cells. We
note that this is not a measure of absolute abundance. A comparison of estimated changes
in abundance with stock assessments is included in Table 1.

3.2 Results/Discussion
3.2.1 Relationship between abundance and range size

Our abundance and range estimates were derived from CPUE which is notable for resulting
in biases in abundance over time (Harley et al., 2001; Walters, 2003; Hampton et al., 2005).
We thus focus our interpretation of the model’s results on qualitative trends and the shape
of the relationship between relative abundance and range size, intead of making statements
about absolute changes in abundance or range size. Relationship between abundance and

5We picked the second lowest year to avoid extreme values in the year of lowest abundance, but the exact
year chosen for the ‘low abundance’ years had no impact on qualitative trends.



range size for each of the seven study species were assessed from a model of spatial abun-
dance for 1960-2010, as described in section 3.1. Except for albacore, predicted declines in
relative abundance based on 5x5 CPUE data were comparable (within 15%) to those mod-
elled in overlapping study periods of stock assessments (see Table 1), though black marlin
and sailfish lacked conclusive stock assessments.

There were important declines in areas of high occupancy for both tuna and billfish since
1960, except for blue marlin (Figure 2, regions in dark red show cell abundances greater or
equal to the 95" quantile of individual cell abundances predicted for the entire time-series).
The distribution appears to contract towards distinct zones. These zones either consist of a
single one around the equator (yellowfin and bigeye tuna), or one or two zones in sub-tropical
latitudes (albacore tuna, striped marlin, black marlin, sailfish). Albacore tuna, which is the
one species for which two distinct stocks have been identified in the Pacific (Montes et al.,
2012), had important declines in spatial extent in the northern portion of its range only.
Our methodology does not allow for the identification of causal mechanisms behind the ob-
served changes, but fishing is a likely candidate, as all of these species have been directly or
indirectly targeted by industrial fisheries at some point in the last 50 years and are currently
under active management. The latest Pacific bigeye tuna assessment (Harley et al., 2014),
for instance, estimates that the reduction in spawning potential from fishing has increased
steadily since the 1960s to a level of more than 80% in the last few years. Long-term climatic
cycles such as the Pacific Decadal Oscillation also have the potential to drive important fluc-
tuations in population abundance following 15-25 years cycles or longer (Mantua and Hare,
2002; Chavez et al., 2003). Lastly, climate change is another likely candidate via changes
in habitat conditions (e.g. ocean temperature). However, the latest modelling work on this
question (Lehodey et al., 2010; Hazen et al., 2012) predicts a long-term shift in habitat that
does not match the observed contraction.

Predicted relationships between abundance and range size were positive for all seven
species (Figure 3). When a low detection threshold was used, the shape of the relationship
was flat because cells retain a ‘presence’ status even though actual abundance is quite low
(e.g. a ‘low’ detection threshold for yellowfin was 3 individuals per 100000 hooks or one fish
for every 10 typical longline sets). Under such thresholds little change in measured range size
occurs even if abundance decline in the cell has been steep and that the observed ‘presence’
may not be ecologically or commercially relevant. Using a higher detection threshold allows
us to track changes in range size for areas where the species is more commonly present.
For all three species of tuna, striped and blue marlin, the relationship is positive for high
and medium detection thresholds. For yellowfin and bigeye tuna it is roughly positively
linear, while for albacore, striped marlin and blue marlin it is positive but saturates at high
abundances. For black marlin and sailfish range size is independent from abundance at high
abundances, but declines quickly at lower values. Total abundance declines predicted for
these two species were very steep (Table 1).



When we look at the number of cells that meet a minimum density value over time (Figure
4), compact zones of really high abundance are indicated by long tails in the distribution
while thicker tails correspond to more even spread in abundance over the range. For instance,
in Figure 4, cell count declines sharply from the first bin (i.e. the low density bin) for striped
marlin, black marlin and sailfish, less steeply for albacore tuna, yellowfin tuna, and the
decline is more gradual for bigeye tuna and blue marlin. When long tails disappear first as
abundance declines, areas of high abundance tend not to be maintained even when declines
in overall abundance are low. This was especially visible for albacore tuna and yellowfin
tuna. Comparatively, bigeye tuna and blue marlin had areas of high abundance distributed
over a larger proportion of the range (thick tails) and the disappearance of high density cells
was more gradual.

3.2.2 Impact of mobility on measured RAR

One of the challenges in assessing empirically the effect of mobility on RARs is to obtain
a measure of dispersal ability that can be used to compare between species (Gaston and
Blackburn, 2003; Paradis et al., 1998). We did not attempt this in the current paper, but
used population structure from genetics as a proxy instead. Albacore tuna, striped marlin
and sailfish have the most pronounced regional structure of our focus species (Montes et al.,
2012; Graves and McDowell, 2003) — indicating that they might tend to disperse less far than
yellowfin, bigeye tuna, blue marlin and black marlin. There were however no obvious trend
between this coarse metric of dispersal and the measured RARs for our study species. On the
other hand no obvious time-lags were seen between changes in abundance and range extent,
unlike for other less mobile species (Conrad et al., 2001), though no extensive analyses were
undertaken to further verify this. It could be that the high mobility of large pelagics results
in individuals regularly sampling a high proportion of their habitat such that equilibrium
between abundance and range size is reached faster because of the high mixing rate within
the range. This is explored further in the simulation work of Section 4.

3.2.3 Implications for management:

The status of stocks is often managed by estimating/modelling their current population
dynamics, deriving a range of indicators, and comparing these to thresholds pre-defined by
stakeholders as “acceptable” (e.g. compared to Fjssy or spawning biomass at MSY'). Declines
in range concurrent with biomass could bias estimates of stock abundance as CPUE indices
usually implicitly assume that the spatial distribution of stocks is constant for the time
spanned by the stock assessment (Swain and Sinclair, 1994). Biomass and fishing mortality
indicators, while useful at the overall stock level, ignore features of fish populations that can
impact stakeholders, for instance their spatial distribution. A change in the space occupied
by a stock can affect fleets differentially depending on how mobile they are. In the Pacific
for instance, domestic fleets may not have the same ability to track shifting stocks compared
to distant-water fleets. In parallel, for stocks that cover multiple EEZs, like those of tuna



and billfish, a contraction of the geographic range of target species could overtly affect some
countries more than others even if overall stock levels are considered acceptable, because
regional management systems are such that stakeholders can only legally access part of a
species’ distribution.

3.2.4 Caveats:

1. CPUE is not proportional to abundance The nature of CPUE data is such that it is often
not proportional to abundance (Harley et al., 2001). CPUE can change for reasons indepen-
dent of abundance, for instance if targeting for a given species is increased. This happened in
the Pacific in the 1970s, when many longline industrial fleets started setting hooks deeper to
increase the probability of catching deep-dwelling species like bigeye tuna (Ward and Hind-
marsh, 2007). In the current case we used catch-and-effort data aggregated at a 5 degree
resolution to maximize spatial and temporal coverage. This precluded us from explicitly
accounting for changes in targeting since the variables used to predict targeting behaviour
typically act at the much smaller scale of individual vessels (e.g. Hoyle et al. 2014). In order
to minimize the effects of targeting while maintaining the wide spatial and temporal cover-
age afforded by the 5x5 coarser resolution CPUE data, we derived our indices of abundance
from multiple fleets with different targeting practices over space and time, such that a single
fleet’s evolving targeting strategy should not drive the overall trend in abundance estimates
in a cell. We also used oceanography data to predict rates of CPUE — in effect running
a species distribution model with abundance data (Howard et al., 2014). This allowed us
to fill gaps in the CPUE data so that behaviour in non-fished /sampled cells was explicitly
modelled (Walters, 2003). We note, also, that many of the issues in CPUE data are parallel
to the ones found in terrestrial biodiversity data used in studies of the geographic range,
for instance spatial bias towards large cities and road, and highly diverse areas (Reddy and
Dévalos, 2003; Dennis and Thomas, 2000).

it. CPUEFE for target vs bycatch species: Two of the RARs for which the relationship is un-
changing except at very low biomasses (black marlin and sailfish) were observed for billfish
species which are typically not targeted by industrial longline fisheries, and for which really
high declines in abundance between 1960-2010 were predicted from the model (Table 1).
Catches for bycatch species are not as well reported as main target species, and this can pre-
clude the production of conclusive stock assessments in some instances (e.g. sailfish, Hinton
and Maunder, 2013). Because of the high uncertainty in the input indices of abundance,
RARs derived here for these species should be interpreted with caution.



4 Simulation of spatial dynamics for mobile species
with changing habitat quality throughout the range

4.1 Methods

We used a spatial model with a grid layout where each cell has 8 neighbour cells (see Figure
5) and periodic boundaries®. Local populations dynamics in each cell follow a logistic model,
that is, for each cell two main parameters are defined, the carrying capacity K and the per
capita growth rate r. Local abundance at the next time step is then a function of abundance
at the previous timestep, the expected population growth given how close abundance is to
the carrying capacity, and fishery catches:

N,
Nt_;r_l:Nt—{—NtX?ﬂX(l—?t)—FtNt (1)

It is useful to break down the logistic part as it performs two roles: adding individu-
als (growth, reproduction, rg thereafter) and removing individuals (natural mortality, ry,
thereafter).

N,
Nt+1:Nt+NtXTG_NtXTMX_?tJ—f—"- (2)
growth mortality

In the geographic range of a species we would expect growth and mortality rates to
change throughout the range, and not necessarily jointly. As a simple example, reproduc-
tion by mobile animals might only occur in certain parts of the range, while mortality would
be expected to occur throughout the range.

The rg parameter allows us to introduce ‘core’, high quality habitats and ‘edge’, lower
quality habitats in the model if r¢ is set to higher values in designated core cells (see Figure
5). If rps is set to the same value throughout the range, the lower r¢ in edge cells results
in slower growth for individuals in those cells, as well as a lower equilibrium biomass. This
is representative of what is observed for many Pacific pelagics, which are only found in the
edges of their range during the summer.

To add movement between cells we need to account for immigration and emigration:
N,
Nt+1:Nt+Nter—Nt><7‘M><—?t—FtNmLIt—Et (3)

Immigration and emigration (dispersal) are often modelled as constant rates but in reality
these rates are likely to be affected by both intrinsic factors like population density, and
extrinsic factors like habitat quality. As a result we used various approaches to model
dispersal rates and present these as scenarios:

When boundaries are periodic, cells at one edge of the grid send individuals to cells at opposite edges.
This allows for a continuous distribution of neighbours versus reflecting boundaries where cells at the edge
send back individuals to themselves.
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1. No dispersal: Individuals do not move between cells. We know that this is not true
for large pelagics but it serves as a useful baseline scenario to investigate whether and
how within-stock mobility can change the predicted effects of fishing;

2. Constant dispersal, no choice: Individuals emigrate from their natal cell at a constant
rate and move to neighbour cells in equal proportions (D,.s is set to 0 in equation 4
below);

3. Constant dispersal, preferential movement: Individuals emigrate from their natal cell
at a constant rate, but they preferentially move to the neighbour cells where their
effective growth is expected to be higher. Effective growth is a function of habitat
quality as represented by rg and density in the target cell N/K (see growth part of
equation 2). The proportion of emigrating individuals that goes to a given neighbour
cell Pn; is defined as:

(rgi x 2y Pores

N=8
Dypref
E Pn;
i=1

Note: We also modelled emigration from natal cell as a density-dependent process but as
qualitative results were not impacted by this feature we only present scenarios 1 to 3.

Fishery mortality was implemented as a factor relative to population growth, since in
logistic population models MSY occurs at 0.5rg. Low, medium and high fishing mortalities
are then defined as below, equal to and greater than Fj;gy, respectively. When there is
population structure, the value of r¢ in the core is being used to set the fishing mortality
throughout the range. 7

Simulations were run as follows: populations in all cells are allowed to reach equilib-
rium, and then fishing mortality is applied to cells based on pre-defined scenarios: (i) even
throughout the range; (ii) on core cells only; (iii) on edge cells only. Once all cell populations
have reached equilibrium local biomass under fishing, final equilibrium biomass values are
extracted and used in scenario comparison. Qualitative trends in results were the same for
grids of width 5 to 50 so we present results for a 5x5 for ease of interpretation.

4.2 Results and discussion

The simulation model of spatial population dynamics explored different scenarios of fishing
mortality over the range and three scenarios of mobility: no movement between cells (base-
line), even emigration between cells (migrating individuals spread evenly between neigh-
bours), and preferred emigration between cells (migrating individuals preferentially move to
cells with high effective quality, see Methods).

7This means that if TG edge < TG,core, @ fishing mortality equal to Fissy in the core will be high for edge
cells as their Fy gy is lower than that of core cells.
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4.2.1 No habitat structure, r is the same in the core and in the edges

When there is no spatial structure in habitat quality or fishing mortality, individuals cells
reach the same equilibrium abundance independent of whether emigration occurs or not
(Figure 6, top row).

If fishing mortality is present in the core only (Figure 6, middle row), core biomass will
be lower compared to that of the edges, but if emigration is allowed individuals from the
edges will migrate to the core, compensating for the decline in abundance due to fishing —
even more so under preferential emigration. This is because fishing in the core reduces the
N/K ratio in core cells, making effective habitat quality higher (since there is less compe-
tition) and individuals from edges will preferentially migrate to a core cell rather than an
edge cell. In both emigration scenarios, even though the edges are not being fished, their
residing biomass declines since they are now sending part of their biomass towards the core.

If fishing mortality is present in the edges only (Figure 6, bottom row), the opposite
phenomenon occurs whereby biomass declines more in the edges than in the core. Core cells
biomass still declines despite the absence of fishing, because core individuals are moving
towards edge cells.

4.2.2 Core-edge habitat structure, rs is higher in the core than in the edges,
mortality r,; is constant throughout the range

When we add core-edge habitat structure (Figure 7) with a higher rg in the core, and a
fishing mortality set to Fjsgy derived from core rg values, equilibrium biomass for edge
populations are lower than for core populations (simulating differences in habitat quality).
When fishing is applied evenly throughout the range (top row), core populations have lower
equilibrium biomass when there is dispersal between cells, although that decline is somewhat
compensated when dispersal is preferential, as individuals from the edges move in greater
proportions towards core cells since they have a better balance of rg and N/K.

When only the core is being fished and there is movement between cells (Figure 7, middle
row), the decline in the core will be lower when movement is preferential towards better habi-
tat and edge cells will experience a decline in biomass even though they are not being fished
themselves. A similar phenomenon occurs when only edge cells are being fished (Figure 7,
bottom row), as individuals from core cells will move towards the edges since the lowered
N/K will improve their effective habitat quality — but the decline in abundance for core cells
will be minimal since the lower r4 of edge cells does not make them very attractive, even if
competition is lower from a reduced N from fishing.

See Figure 8 for a summary of equilibrium fished biomass for the two dispersal scenarios
compared to the no-dispersal baseline scenario.

12



4.2.3 Shape of the relationship between population abundance and range size

The relationships between population abundance and range size under the two dispersal
scenarios were computed by calculating range extent (number of cells with N > 0.05K) and
total population abundance (Figure 9). When there is no habitat structure in the range (core
and edge have the same habitat quality), range size is unrelated to population abundance,
except for very small values when the population is expanding at the start of the simulation.
Because habitat quality is the same, the dispersal scenario has no effect on the measured
RAR. As the difference in habitat quality between the core and the edges is gradually in-
creased (Figure 9, left to right, top to bottom), the RAR starts to become increasingly linear,
but this behaviour is much more pronounced under the scenario of preferential dispersal to-
wards cells of higher quality.

5 Conclusion

We used 5x5 aggregated CPUE longline data from multiple fleets to derive range-abundance
relationships for a set of seven target longline species. These relationships were positive for
all species but became more pronounced when focusing on areas of higher mean density (high
detection thresholds). The simulation model highlighted that such relationships are likely
to emerge under relatively simple dispersal conditions as long as growth rate varies within
the range — individuals only need to disperse between cells — but that the phenomenon is
amplified if individuals preferentially move to high quality habitats. Furthermore, fishing
over the range of a species where habitat quality is uneven, as is the case for large pelagics, can
result in shifting patterns of dispersal between core and edge areas. These patterns might
be possible to observe from otolith microchemistry, but the samples would have to come
from periods of contrasting population abundance. Further work will aim to more formally
quantify the long-term population consequences of ignoring spatial population dynamics in
fisheries management, as well as determine the potential of non-CPUE data sources to further
elucidate the ecological mechanisms at play in the redistribution of population abundance
under uneven spatial fishing mortality.
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7 Figures
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Figure 1: Diagram showing different shapes for the relationship between abundance and
range size, and the size of the range at B,,,, given these different shapes.
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Sailfish (Istiophorus platypterus)

Figure 2: Predicted relative abundance (CPUE) over time for a set of seven target longline
species (in rows). Predictions were made from a GAM oceanography model that included
Japanese, Korean and Taiwanese longline CPUE data. Relative abundance within each
species is shown for years from 1960 to 2010 in 10 years increments (in columns), going from
dark blue (very low abundance, < 2.5 quantile of cell abundances predicted over the length
of the time-series) to dark red (very high abundance, > 95 quantile).
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Figure 3: Range size as a function of low (beige), medium (light blue) or high (dark blue)
detection thresholds for decades between 1970 and 2010. Threshold values were selected by
species based on the second year of lowest abundance as described in the Methods.
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Table 1: Comparison of relative trends in abundance from fitted 5x5 CPUE in the current

study with recent stock assessment predictions when available

Species Predicted % of Stock assessment*
biomass left,
study
Yellowfin tuna 18.2% 23.8% of adult biomass left, 1960-2010,
(Davies et al., 2014)
Bigeye tuna 29.6% 21.4% of adult biomass left, 1960-2010,
(Harley et al., 2014)
Albacore, south 25.5% ~54.5% left, 1960-2012, (Hoyle et al., 2012)
of equator
Albacore, north 17% ~ 90% left, 1970-2010, (ISC Albacore Work-
of 10N ing Group, 2011)
Striped marlin, 13.7% ~31.6% of unfished biomass, (Davies et al.,
South-west Pa- 2012)
cific
Blue marlin 60.4%, 1960-2010, 63.6%, 1971-2011, stock biomass left, (Bill-
92.6%, 1970-2010 fish Working Group, 2013)
Black marlin 6.2% No stock assessment
Indo-Pacific sail-  4.9% Unconclusive stock assessment, (Hinton and

fish

*

specified

matching years,

Maunder, 2013)

baseline or reference scenario and total biomass used unless otherwise
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v/ Preferential dispersal scenario

. High quality, core cells

. Low quality, edge cells

No preference dispersal
scenario

.

Figure 5: Sample cell layout with core-edge habitat structure (core cells in reds have higher
habitat quality, edge cells in blues have lower habitat quality). Under the no preference
dispersal scenario (bottom right), emigrating individuals move to all 8 neighbour cells in
equal proportions. Under the prefered dispersal scenario (top left), emigrating individuals
move to the 8 neighbour cells with a heavier proportion towards high quality cells (here the
‘quality’ depends on the cell habitat type only (colour), but in the model it is a function of
cell quality and conspecific density).
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Even habitat structure
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Figure 6: Time-series of population abundance given an even structure of habitat quality in
the range. Three different patterns of fishing mortality in the range are shown: even fishing
mortality throughout the range (top), fishing mortality in the core only (middle), fishing
mortality in the edges only (bottom). The resulting trends in population abundance are
shown for three dispersal scenarios: no dispersal (left), even emigration to all neighbours
(middle), preferred emigration to neighbours with higher quality habitat, as defined by r¢
and the density of conspecifics. Core cells are in reds, edge cells are in blues, but their rg
parameter is set to the same value; the start of fishing is indicated with a dashed line.
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Core—edge habitat structure
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Figure 7: Time-series of population abundance given a core-edge habitat quality structure
in the range. Three different patterns of fishing mortality in the range are shown: even
fishing mortality throughout the range (top), fishing mortality in the core only (middle),
fishing mortality in the edges only (bottom). The resulting trends in population abundance
are shown for three dispersal scenarios: no dispersal (left), even emigration to all neighbours
(middle), preferred emigration to neighbours with higher quality habitat, as defined by r¢
and the density of conspecifics. Core, high quality cells are in reds, edge, low quality cells
are in blues; the start of fishing is indicated with a dashed line.
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to the baseline no-dispersal scenario, for core cells (red) and edge cells (blue).
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Figure 9: Range-abundance relationship under two dispersal scenarios: even movement
throughout the range (grey points); preferential movement towards cells with better effective
habitat (blue points).
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8 Appendix

Description of semi-additive GAM models with oceanography vari-
ables

For each species two error distributions were tested to predict CPUE, and the one that performed
the best in terms of model diagnostics was retained. In the first instance CPUE was modelled as
log-normal with a small constant added so that the natural logarithm can be taken (¢ = 0.01):

In(CPUE +¢) =

f(year, quarter, lon, lat, oceanography variable 1, oceanography variable 2) + intercept + €

where f is a semi-parametric additive predictor.

In the second instance a delta-lognormal (hurdle) model was used in which the probability of
obtaining a positive catch and the catch rate when catch is non-zero are modelled separately.

w, =0
P == 1S, 90 ©

w is the probability of obtaining zero catch and is modelled using a binomial distribution with
a logit or clog-log link. f(y) is the catch rate when catch is non-zero and it is modelled using a
log-normal distribution with an identity link (but no constant added, ¢ = 0). In both cases we
used the same model structure to estimate the binomial and positive components in the model as in
equation 5. This assumes that the same explanatory variables drive the occurrence of positive catch
rates and their magnitude, although the relative importance of these variables may vary between
the binomial and positive component.
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Table 2: Final model structure retained for each species

Species Model type Binomial link Model structure*

Albacore tuna DeltaLN Logit s(temp215,by=as.factor(yybi),k=20)

+ s(salt025,k=20,by=as.factor(yy5i))
+ as.factor(flag)*as.factor(dec) +
as.factor(qtr) 4+  s(lond,latd, k=80) +
s(yy, by=as.factor(latd),k=12)

Bigeye tuna DeltaLN Logit s(temp215,by=as.factor(yy5i),k=20)

+ s(salt215,k=20,by=as.factor(yy5i))
+ as.factor(flag)*as.factor(dec) +
as.factor(qtr) +  s(lond,latd,k=80) +
s(yy, by=as.factor(latd),k=12)

Yellowfin tuna DeltaLLN Logit s(temp025,salt215,by=as.factor(yyb5i),
k=30) + as.factor(flag)*as.factor(dec) +
as.factor(qtr) + s(lond,latd,k=80) + s(yy,
by=as.factor(latd), k=12)

Striped marlin Log-normal — s(salt215, k = 15) + s(temp025, k = 15) +
s(lond, latd, k = 40) + qtr + flag * dec +
s(yy, by = as.factor(latd), k = 15)

Blue marlin DeltaLN Logit s(temp215,by=as.factor(yybi),k=20)

+ s(salt025,k=20,by=as.factor(yy5i))
+ as.factor(flag)*as.factor(yyb5i) +
as.factor(qtr) +  s(lond,latd k=80) +
s(yy,by=as.factor(latd) ,k=12)

Black marlin DeltaLN Logit s(temp215,k=20) + s(salt025,k=20)
+ as.factor(flag)*as.factor(dec) +
as.factor(qtr) +  s(lond,latd k=30) +
s(yy, by=as.factor(latd),k=15)

Indo-Pacific sailfish DeltalLN Clog-log s(temp025, salt215,  by=as.factor(yybi),

k=30) + as.factor(flag)*as.factor(dec) +
as.factor(qtr) + s(lond,latd,k=80) + s(yy,
by=as.factor(latd),k=12)

*Variable abbreviations: tempX, saltX are temperature and salinity at X meters, respectively; yy,

yybi, dec are year, 5 year interval, and decade; qtr is quarter; flag is fisheries fleet; lond and latd are

longitude and latitude 5x5 degree cell; s(...) indicates a spline was fitted, with k being a parameter

controlling the spline flexibility.
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