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On	 the	 potential	 of	 identifying	 FAD‐
association	in	purse	seine	catches	on	the	
basis	of	catch	sampling	

S.R.	Hare,	S.	J.	Harley	and	J.	Hampton	
Oceanic	Fisheries	Programme,	SPC	

Abstract 
In	this	study,	we	investigate	the	potential	of	accurately	identifying	whether	individual	purse	seine	
sets	 can	 be	 identified	 as	 captured	 in	 association	with	 a	 Fish	 Aggregation	 Device	 (FAD)	 or	 as	 an	
unassociated	 (FAD‐free)	 set,	 on	 the	 basis	 of	 catch	 sampling.	 	 The	 target	 tuna	 catch	 and	 length	
compositions	and	bycatch	amounts	were	analyzed	from	more	than	50,000	purse	seine	sets	sampled	
by	on	board	observers	who	had,	in	addition	to	collecting	the	sampling	data,	also	identified	the	sets	
as	either	“associated”	or	“unassociated”.			The	tuna	data	are	derived	from	observer	“grab	samples”	
which	are,	on	average,	number	about	65	fish	per	purse	seine	set.		Bycatch	data	are	estimated	total	
amounts	per	set	and	are	not	determined	by	standard	sampling.	
	
Methods	 from	 the	general	 category	of	Classification	and	Regression	Tree	 (CART)	modelling	were	
determined	most	 appropriate	 for	 the	 analysis	 and	 intended	 use	 of	 results.	 	 An	 attraction	 of	 the	
simplest	of	the	CART	methods	is	that	it	lends	itself	to	establishing	a	set	of	clearly‐labelled	rules	that	
can	be	 routinely	used	 to	estimate	whether	a	 sampled	purse	 seine	 set	was	 likely	an	associated	or	
unassociated	 set	 type.	 	 Classification	models	were	developed	based	on	2007‐2011	observer	data	
and	 tested	 for	 misclassification	 error	 rates	 on	 2012	 data.	 	 Models	 were	 developed	 for	 the	 full	
dataset	as	well	as	seasonal	and	regional	breakdowns.		Two	sets	of	models	were	developed	for	each	
analysis	–	“tuna‐only”	and	“with	bycatch”,	the	difference	being	the	allowance	of	bycatch	species	as	
potential	classification	variables.	
		
Two	 types	 of	 misclassification	 errors	 (MCE)	 are	 possible:	 unassociated	 sets	 misidentified	 as	
associated	(termed	false	positive	or	Type	I)	and	associated	sets	identified	as	associated	sets	(false	
negative	or	Type‐II	error).		A	third	error	measure,	overall	MCE,	is	a	weighted	average	of	Type	I	and	
Type	II	error.		While	all	three	error	types	are	of	interest,	the	Type	II	error	rate	is	of	most	concern	in	
a	 conservation	 context.	 	 The	 initial	 tuna‐only	 CART	 models	 had	 MCE	 rates	 of	 17‐29%	 with	 an	
average	 of	 23%.	 	 Inclusion	 of	 bycatch	 lowered	 error	 rates	 by	 4‐12%	 to	 around	 14‐20%	with	 an	
average	of	16.5%.	 	The	appearance	of	a	spatial	pattern	in	the	MCE	rates,	with	higher	Type	I	error	
rates	 in	 the	 west,	 motivated	 exploration	 of	 MCE	 rate	 improvement	 by	 analyzing	 seasonal	 and	
regional	 data	 subsets.	 	 Disaggregating	 the	 data	 by	 season	 or	 region	 generally	 yielded	 modest	
improvement	 in	 classification	 accuracy,	 decreasing	 relative	 MCE	 rates	 2‐10%.	 	 An	 exceptional	
classification	result	was	achieved	in	an	eastern	region	bycatch	model	where	MCEs	rate	of	less	than	
10%	were	achieved.	
	
An	 extension	 to	 the	 CART	methodology,	 termed	 “Bagging	 Predictors”,	 which	 employs	 bootstrap	
sampling	to	create	multiple	classification	tree	models,	was	investigated	to	see	if	MCE	rates	could	be	
furthered	lowered.		The	downside	to	this	method	is	that	it	is	not	“field	applicable”	and	requires	use	
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of	 an	 interactive	 computer	 program.	 	 We	 found	 that	 the	 computer	 intensive	 bagging	 method	
provided	an	overall	8‐18%	decrease	in	MCE	rates,	a	marginal	level	of	improvement	over	the	much	
simpler	methods.		Further,	the	decrease	in	MCE	rates	was	not	uniform	across	seasons	or	regions.	
	
We	 conducted	 an	 analysis	 on	 a	 particular	 subset	 of	 the	 purse	 seine	 data,	 i.e.,	 sets	 classified	 as	
unassociated	during	 the	FAD‐closure	periods	of	2009‐2012.	 	The	 intent	was	 to	determine	 if	MCE	
rates	of	these	particular	sets	were	greater	than	the	MCE	rates	found	in	the	more	general	analysis.				
Reassuringly,	MCE	rates	of	unassociated	sets	during	the	FAD	closure	period	were	found	to	be	equal,	
or	even	a	bit	lower	than,	MCE	rates	in	the	broader	analyses.	
	
We	conclude	with	a	general	discussion	of	potential	operational	practices	that	would	help	achieve,	
or	 make	 especially	 challenging,	 classification	 results	 equal	 or	 better	 than	 those	 we	 obtained.	
Specifically,	 removal/onboard	 consumption	 of	 bycatch	 and/or	 mixing	 of	 sets	 prior	 to	 sampling	
would	 contaminate	 individual	 sets,	 which	 formed	 the	 basis	 of	 our	 model	 classification	 rules.	
Treatment	of	bycatch	varies	 across	 time,	 fleets,	 and	unloading	ports.	The	 classification	 rules	 that	
included	bycatch	indicated	that	perhaps	as	little	as	a	single	fish	in	a	set	(that	might	contain	over	30	
mt	 of	 total	 tuna	 and	 bycatch)	would	 be	 sufficient	 to	 have	 a	 set	 assigned	 as	 associated.	 This	 has	
implications	for	any	independent	sampling	scheme.	

Introduction 
Purse	 seine	 catches	 are	 generally	 categorized	 as	 either	 “unassociated”	 or	 “associated”	 with	 fish	
aggregation	 devices	 (FADs).	 	 Purse	 seine	 fishing,	 specifically	 targeting	 skipjack	 (Katsuwonus	
pelamis),	yellowfin	(Thunnus	albacares)	and	bigeye	(Thunnus	obesus)	tunas,	has	grown	substantially	
over	 the	 past	 three	 decades	 in	 the	 Western	 and	 Central	 Pacific	 (WCP),	 increasing	 from	 around	
100,000	mt	 in	1980	 to	nearly	1.8	million	mt	 in	2012	(Harley	et	 al.	2014).	 	Unassociated,	or	 free‐
school,	fishing	accounted	for	the	majority	of	purse	seine	catches	up	until	the	mid‐1990s;	since	that	
time	catches	have	been	near	evenly	split	between	unassociated	and	associated	sets.	
	
Concerns	over	 the	 composition	of	 catches	associated	with	FAD‐fishing	have	 led	 to	 recent	 calls	 to	
regulate	FAD‐fishing,	either	via	regulatory	actions	(Fontenau	et	al.	2013),	or	educating	consumers	
(WWF	 20111).	 	 As	 part	 of	 the	 increasing	 consumer	 scrutiny	 related	 to	 seafood	 sustainability,	
increasing	 numbers	 of	 sea	 food	 purchasers	 seek	 tuna	 that	 have	 been	 certified	 to	 be	 free	 school	
caught2.	In	general,	FAD‐associated	catches	contain	a	greater	array	of	bycatch	species	and	typically	
smaller	sized	fish	than	unassociated	schools	(Dagorn	et	al.	2012).	 	A	FAD‐closure	period,	covering	
the	months	of	July,	August	and	September,	has	been	instituted	annually	since	2009	by	the	Western	
and	 Central	 Pacific	 Fisheries	 Commission,	 the	 international	 body	 responsible	 for	management	 of	
the	WCP	tuna	fisheries.			
	
All	 purse	 seine	 vessels	 operating	 in	 territorial	waters	 of	 nations	within	 the	WCP	 are	 required	 to	
complete	 vessel	 logs	 for	 every	 set,	 including	 classifying	 sets	 as	 unassociated	 or	 associated.				
Observers	 also	 routinely	 record	 set	 association	 for	 every	 set	while	 aboard	 a	 vessel.	 	Despite	 this	
duplicate	 recording	 of	 set	 type,	 there	 remains	 demand	 for	 an	 independent	 determination	 of	 set	
type.		Such	a	determination	might	be	useful	both	in	retrospective	analyses	–	for	example,	historical	
purse	 seine	 sets	 from	 vessels	 not	 carrying	 an	 observer	 and,	 for	 future	 use,	 in	 case	 of	 observer	
absence	or	verification	of	observer	set	type	determination	to	satisfy	FAD‐free	adherence	concerns.		
It	 is	 this	 final	 point	 that	may	 be	 of	most	 concern	 going	 forward.	 	 	 Fishing	 on	 FADs	 is,	 generally,	

                                                 
1 http://awsassets.panda.org/downloads/tuna_fad_position_november_2011_.pdf 
2 e.g., http://iga.com.au/support/about-iga/sustainability/ 
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speaking	a	more	dependable	method	of	locating	and	catching	tuna,	however	insistence	on	FAD‐free	
fish,	 and	 consumer	 willingness	 to	 pay	 a	 premium,	 has	 the	 potential	 to	 create	 an	 incentive	 to	
misreport	set	type.	 	Additionally,	observer	determination	of	set	type	might	be	either	purposefully	
or	inadvertently	incorrect,	e.g.,	the	observer	might	be	unaware	that	a	set	is	associated	with	a	FAD,	
given	that	FADs	can	be	objects	as	small	as	pieces	of	rope	or	floating	garbage	bags.	
	
In	 this	 report,	we	 investigate	 the	 potential	 of	 using	 observer	 sampling	 of	 purse	 seine	 catches	 to	
determine	 set	 association.	 	 The	 method	 looks	 for	 consistent	 differences	 in	 the	 relative	 species	
composition	and	mean	length	of	the	tuna	catches	and,	optionally,	the	amount	and	species	of	bycatch	
present	in	the	set.		Observer	data	are	used	to	“train”	the	models	and	these	models	are	then	applied	
to	test	data	that	were	not	used	in	model	fitting.		For	the	purposes	of	model	development,	historical	
observer	set	type	classification	is	taken	as	“truth”.		We	feel	this	to	be	valid	both	because	much	of	the	
data	was	collected	during	periods	when	there	was	little	incentive	to	misreport	set	association,	and	
the	 number	 of	 observed	 sets	 is	 in	 the	 tens	 of	 thousands	 which	 would	 tend	 to	 override	
contamination	 from,	 presumably,	 a	 small	 number	 of	 irregular	 reports.	 	 The	 initial	 methodology	
attempts	to	develop	classification	methods	that	could	be	deployed	“in	the	field”,	i.e.,	utilizes	simple	
rules.		We	then	extend	the	methodology	allowing	for	more	complex	models	that	would	require	use	
of	 an	 interactive	 computer	 program.	 	 Finally,	 we	 use	 the	methodology	 to	more	 closely	 examine	
purse	seine	sets	during	the	FAD‐closure	periods.	

Materials and methods 
The	data	used	in	this	analysis	come	from	the	Secretariat	of	the	Pacific	Community	(SPC)	maintained	
observer	database	which	contains	observations	on	purse	seine	operations	dating	from	1993	to	the	
present.	 	 The	 database	 from	 which	 these	 data	 were	 extracted	 represents	 a	 filtered,	 quality‐
controlled,	 subset	 of	 the	 total	 database.	 	 Additionally,	 this	 analysis	 is	 restricted	 to	 observed	 sets	
with	 both	 recorded	 target	 tuna	 catch	 as	 well	 as	 recorded	 tuna	 lengths.	 	 For	 purposes	 of	 data	
summaries	and	model	fitting,	we	limited	the	dataset	to	the	2007‐2012	time	frame.	Table	1	lists	the	
number	of	observer	 classified	purse	 seine	 sets,	with	associated	 sets	 comprising	54.5%	of	all	 sets	
over	 the	 2007‐2012	 time	 frame.	 	 The	 spatial	 distribution	 of	 the	 sets	 shows	 essentially	 complete	
overlap	between	the	two	set	type	associations	(Figure	1).	
	
The	52,206	 sets	 comprise	73.2%	of	 all	 observed	 sets	 in	 the	 filtered	database.	 	 Years	 earlier	 than	
2007	represent	a	 time	period	 that	 is	 likely	 less	 relevant	 to	more	 recent	 years	 in	 terms	of	 fishing	
methods,	 areas	or	 catch	 composition.	 	Data	 for	2013	are	 at	 present	 very	 incomplete	 as	 less	 than	
2000	observed	sets	have	been	entered	into	the	SPC	observer	database	and	the	representativeness	
of	this	data	is	unknown.		Over	the	past	six	years	there	have	been	roughly	similar	numbers	of	FAD‐
Free	(“unassociated”)	and	FAD‐Associated	(“associated”)	observed	sets.		In	this	context,	the	term	“...	
Fish	 Aggregation	 Device	 (FAD)	means	 any	man‐made	 device,	 or	 natural	 floating	 object,	 whether	
anchored	 or	 not,	 that	 is	 capable	 of	 aggregating	 fish.”3	 	 The	 proportion	 of	 unassociated	 sets	 has	
generally	 increased	 since	 2010,	 coinciding	 with	 the	 implementation	 of	 the	 FAD‐closure	 period	
within	the	WCP	between	July	and	September	(with	certain	exceptions).			
	
The	 observer	 data	 used	 in	 the	 analysis	 were	 collected	 using	 a	 method	 termed	 “grab	 sampling”	
which	has	been	consistently	utilized	dating	to	the	beginning	of	onboard	purse	seine	set	sampling.			
In	essence,	the	observer	is	instructed	to	randomly	collect	five	tuna	from	each	braille	used	to	empty	
the	purse	seine	net.		Mean	grab	sample	size	from	each	set	is	65	fish	though	variability	in	sample	size	
                                                 
3 WCPFC. 2013. Conservation and Management Measures for Bigeye, Yellowfin and Skipjack.  CMM 2012-01.  
Available at http://wcpfc.int/system/files/CMM-2012-01-Conservation-and-Management-Measure-BET-YFT-and-
SKJ.pdf 
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is	 very	 large,	 consistent	 with	 the	 nature	 of	 purse	 seine	 set	 catch	 sizes.	 	 More	 recently	 “spill	
sampling”	has	been	gradually	 introduced	as	a	means	of	 reducing	potential	biases	associated	with	
grab	sampling.		In	the	assembled	dataset,	a	total	of	306	sets	contained	both	grab	and	spill	samples	
for	species	and	length	compositions;	only	the	grab	sample	data	have	been	utilized.		It	is	anticipated	
that	any	sampling	scheme	devised	to	classify	unassociated	and	associated	sets	on	the	basis	of	catch	
sampling	will	also	use	grab	samples	thus	the	data	summaries	and	classification	rules	are	all	based	
on	grab	samples.	 	Spill	sampling	has	become	of	 increased	importance	of	 late,	signified	by	the	560	
spill	samples	already	collected	among	the	1888	observed	and	recorded	sets	in	2013.		The	potential	
utility	of	spill	sampling	may	warrant	future	investigation	as	a	means	of	classifying	purse	seine	set	
type.	 	Bycatch	data	are	not	subsampled;	observers	utilize	a	variety	of	means	of	estimating	full	set	
weights	of	all	non‐target	tuna	species.	
	
Potential	 covariates,	 or	 predictor	 variables,	 for	 classifying	 set	 type	 were	 1)	 tuna	 species	
composition;	2)	various	measures	of	tuna	length;	and	3)	species	bycatch	per	set.			

Tuna	species	composition	
In	 Figure	 2,	 the	 relative	 proportions,	 of	 the	 three	 target	 tuna	 species,	 within	 associated	 and	
unassociated	purse	seine	sets	are	presented	in	ternay,	or	De	Finetti	(Fonteneau	et	al.	2010),	plots.		
These	plots	illustrate	that	both	associated	and	unassociated	sets	are	most	often	comprised	of	90+%	
skipjack.		However,	a	couple	of	differences	in	relative	catch	composition	between	the	two	set	types	
are	also	evident.		Unassociated	sets	targeted	on	skipjack	tend	to	be	purer,	and	there	are	occasional	
sets	 that	 are	 nearly	 100%	 pure	 yellowfin	 sets.	 Associated	 sets	 most	 frequently	 contain	 10‐20%	
yellowfin	 and/or	 bigeye	 tuna.	 	 In	 the	 results	 section,	 these	 three	 variables	 are	 abbreviated	 as	
SKJ.pct,	YFT.pct,	and	BET.pct,	 representing	the	percentage	of	skipjack,	yellowfin,	and	bigeye	tuna,	
respectively	in	a	purse	seine	set.	

Tuna	length	composition	
The	three	target	tuna	species	captured	in	unassociated	sets	tend	to	have	a	larger	size	distribution	
than	 those	 in	 associated	 sets	 (Figure	 3).	 	 Juvenile	 yellowfin	 tuna	 (~	 50cm	 and	 smaller),	 in	
particular,	 are	not	 commonly	 caught	 in	unassociated	 sets	but	 form	 the	bulk	of	 yellowfin	 catch	 in	
associated	 sets.	 	We	 computed	mean	 tuna	 species	 length	 for	 each	 set	 in	which	 any	 of	 the	 three	
target	tuna	species	were	captured.		The	25th,	50th	and	75th	length	quantiles	were	also	computed	but	
early	 analyses	 showed	no	 improvement	over	use	of	 simple	mean	 length,	 and	 they	were	dropped	
from	the	analysis.		Figure	4	shows	a	boxplot	of	the	differences	in	mean	length	distribution	between	
set	 types	 and	 these	mean	 lengths	 are	 used	 in	 the	 classification	 analysis.	 	 Similar	 to	 the	 naming	
convention	described	above	for	catch	composition,	these	variables	are	abbreviated	SKJ.len,	YFT.len,	
and	BET.len	where	“len”	is	interpreted	as	mean	length.	

Bycatch	composition	
Bycatch	data,	estimated	total	weight	per	set,	was	limited	to	the	eight	most	common	“edible	species”	
‐	 barracudas	 (Sphyraena	 spp.),	 black	 marlin	 (Istiompax	 indica),	 blue	 marlin	 (Makaira	 mazara),	
dolphinfish	 (Coryphaena	 hippurus),	 striped	 marlin	 (Kajikia	 audax),	 rainbow	 runner	 (Elagatis	
bipinnulata),	 sailfish	 (Istiophorus	 platypterus),	 and	 wahoo	 (Acanthocybium	 solandri)).	 	 With	 the	
exception	 of	 rainbow	 runner,	 dolphinfish	 and	wahoo	 in	 associated	 sets,	 the	 bycatch	 rates	 of	 the	
eight	most	common	bycatch	species	are	very	 low	(Table	2).	 	Bycatch	species	name	abbreviations	
used	for	naming	conventions	in	the	results	section	are	listed	in	Table	2,	followed	by	“kg”,	indicating	
total	weight	in	kg	in	a	set.		An	examination	of	the	fate	of	these	species	indicated	that	20‐60%	of	fish	
might	be	retained	(varying	by	the	flag	of	the	vessel	and	unloading	port)	and	much	of	the	retained	
fish	is	consumed	onboard	by	the	crew.		This	information	is	potentially	important	in	devising	a	port	
catch	sampling	scheme.		We	note	that	while	sharks	are	a	common	bycatch	in	associated	sets,	a	strict	
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no	 retention	 policy	 for	 certain	 species	 makes	 use	 of	 shark	 bycatch	 data	 unrealistic	 for	 set	 type	
determination	when	port	sampling.	

Two	 other	 potential	 covariates	 were	 also	 examined	 –	 Season	 (months	 1‐3,	 4‐6,	 7‐9,	 10‐12)	 and	
Region	(west	of	160°W,	160°W	–	180°,	east	of	180°).		Initial	tests	indicated	little	predictive	power	of	
these	 covariates	 across	 the	 entire	 dataset.	 	 Subsequently	 we	 investigated	 whether	 seasonal	 or	
regional	 data	 subsets	 yielded	 different,	 or	 improved,	 classification	 rules.	 	 The	 breakdown	 of	 set	
association	by	season	and	region	is	illustrated	in	Table	3.	
	
We	extended	our	analysis	to	focus	on	a	subset	of	the	observer	data	specifically	related	to	the	recent	
imposition	of	“FAD‐closure”	periods.		Beginning	with	the	months	of	August	and	September	in	2009	
and	 then	 extended	 to	 include	 July	 beginning	 in	 2010,	 fishing	 on	 FADs	 has	 generally	 been	
disallowed,	 with	 certain	 exceptions	 for	 archipelagic	 waters	 and	 Pacific	 Island	 states.	 	 Table	 4	
illustrates	the	pronounced	shift	in	unassociated	to	associated	set	ratio	relative	to	the	overall	2007‐
2012	period.		The	question	we	addressed	was	whether	there	is	anything	“unusual”	about	the	purse	
seine	sets	specified	as	unassociated	taken	during	the	FAD‐closure	period.	 	The	premise	being	that	
an	 observer	 might	 routinely	 mark	 all	 purse	 seine	 sets	 during	 the	 FAD‐closure	 period	 as	
unassociated	but	the	fishing	vessel	might	surreptitiously	set	upon	a	FAD.		Specifically,	we	wished	to	
examine	 how	 these	 sets	 would	 be	 classified	 using	 classification	 models	 that	 excluded	 the	
unassociated	 data	 from	 model	 development.	 	 A	 data	 subset,	 hereafter	 the	 “FAD‐Closure	
Unassociated	Kept	aside”	(FCUK	for	short)	data,	was	created.	 	The	FCUK	data	contain	all	observer	
sets	identified	as	unassociated	from	months	7	and	8	in	2009	and	months	7,	8,	and	9	for	the	years	
2010‐12.	 	 By	 subtraction,	 a	 FCUK‐less	 data	 set	 contains	 the	 remainder	 of	 the	 original	 data...	 	 A	
number	 of	 different	 time	 periods	 were	 used	 to	 construct	 and	 test	 the	 classification	 rules,	 and	
misclassification	 error	 rates	 were	 compared	 to	 overall	 misclassification	 rates	 from	 the	 full	 data	
analysis.	
		
To	 determine	 the	 appropriate	 statistical	 technique	 for	 this	 analysis,	 a	 literature	 review	 was	
conducted	 to	 ascertain	 previous	work	 in	 this	 area.	 	 Specifically	 regarding	 identification	 of	 purse	
seine	 set	 type	 association	 using	 catch	 data,	 there	 appears	 to	 be	 just	 a	 few	 previous	 analyses.		
Pallarés	et	al.	(2003)	used	two	variables	–	an	average	sample	weight	and	a	catch	diversity	index	–	to	
assign	 unobserved	 catches	 as	 either	 unassociated	 or	 associated.	 	 Their	 analysis,	 however,	 was	
based	on	very	small	sample	sizes	and	the	intent	was	to	classify	sets	for	historical	purposes	and	no	
cross‐validation	was	conducted.		In	a	more	recent,	highly	relevant	study,	Lennert‐Cody	et	al.	(2013)	
used	 a	 classification	 technique	 known	 as	 “Random	 Forests”	 to	 determine	 set	 association	 for	 the	
purposes	of	estimating	dolphin	mortality	associated	with	purse	seine	fishing.			
	
For	 this	 analysis,	 we	 settled	 upon	 the	 method	 of	 Classification	 and	 Regression	 Tree	 (CART)	
modelling.	 	Briefly,	CART	modelling	 is	a	means	of	variable	selection	with	 the	attractive	 feature	of	
clearly	illustrating	the	decisions	made	to	classify	a	variable	among	a	set	of	discrete	choices.	 	Each	
step	 of	 the	 decision	 is	 conditioned	 on	 a	 “branch”	 of	 the	 decision	 tree,	 each	 branch	 of	 which	 is	
determined	through	a	recursive	estimation	process.		This	method	lends	itself	to	establishing	a	set	of	
clearly‐labelled	 rules	 that	 can	 be	 used	 to	 estimate	 whether	 a	 sampled	 purse	 seine	 set	 is	 FAD‐
unassociated	or	FAD‐associated.	 	Models	 are	developed	by	 sequentially	 identifying	 variables	 that	
best	 separate	 the	 data	 into	 similar	 categories,	 continuing	 until	 the	 decreased	 improvement	 in	
classification	does	not	warrant	addition	of	more	predictor	variables.	 	All	data	analyses	conducted	
herein	were	based	on	 the	R	Programming	 language	(R	Core	Team	2013)	and	model	 fits	used	 the	
“rpart”	package	(Therneau	et	al.	2013).		The	two	main	model	fitting	control	parameters	in	rpart	are	
the	 “complexity	parameter”	 (cp)	and	“minimum	branch	size”	 (minsplit).	 	For	all	CART	model	 fits,	
the	settings	for	these	two	parameters	were:	cp=0.01	and	minsplit=30.	
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Following	 the	 initial	 CART	 modelling,	 we	 then	 utilized	 a	 more	 complex	 methodology	 that	 uses	
bootstrapping	techniques	to	see	if	misclassification	rates	could	be	improved	upon.		The	downside	is	
that	the	models	are	not	“field	applicable”	and	require	use	of	a	computer	to	interactively	determine	
set	association.  The	generic	name	for	the	resampling	methodology	is	Bagging	Predictors	(Breiman	
1996).	 	 A	 concise	 summary	 of	 the	methodology	 is	 provided	 in	 the	 abstract	 to	 the	 original	 paper	
describing	the	technique:	

“Bagging	 predictors	 is	 a	method	 for	 generating	multiple	 versions	 of	 a	 predictor	 and	
using	these	to	get	an	aggregated	predictor.		The	aggregation	averages	over	the	versions	
when	predicting	a	numerical	outcome	and	does	a	plurality	vote	when	predicting	a	class.		
The	multiple	 versions	 are	 formed	 by	making	 bootstrap	 replicates	 of	 the	 learning	 set	
and	 using	 these	 as	 new	 learning	 sets.	 	 Tests	 on	 real	 and	 simulated	 data	 sets	 using	
classification	and	regression	trees	and	subset	selection	 in	 linear	regression	show	that	
bagging	can	give	substantial	gains	in	accuracy.		The	vital	element	is	the	instability	of	the	
prediction	method.	 	 If	perturbing	the	learning	set	can	cause	significant	changes	in	the	
predictor	constructed,	then	bagging	can	improve	accuracy.”	

A	further	strength	of	this	method	is	that	it	allows	for	missing	data.		A	related,	potentially	superior,	
method	also	developed	by	Breiman	(2001)	called	Random	Forests	is	inapplicable	to	the	situation	at	
hand	due	to	the	surfeit	of	missing	data	 in	our	dataset.	 	We	note	that	there	 is	substantial	“missing	
data”	 in	 the	 sense	 that	 classification	 rules	may	 be	 based	 on	 factors	 such	 as	 average	 length	 of	 a	
particular	tuna	species	but	if	no	such	tuna	were	captured	in	a	set,	then	such	data	are	“missing.”	
	
The	 technique	of	bagging	predictors	has	several	adjustable	parameters,	e.g.,	 the	size	of	bootstrap	
samples,	 the	 number	 of	 trees	 to	 construct,	 the	minimum	 branch	 size,	 etc.	 	 For	 this	 analysis,	 we	
explored	 a	 number	 of	 settings.	 	 Some	 of	 the	 settings	 can	 result	 both	 in	 data	 overfitting	 and	
substantial	 increases	 in	 computing	 time,	 possibly	 with	 little	 increase	 in	 predictive	 power.	 	 	 We	
ultimately	 chose	 the	 following	 settings	which	provided	a	balance	of	 complexity	 and	 close	 to	best	
predictive	 power.	 	 Bootstrap	 samples	 were	 of	 size	 n	 out	 of	 n	 with	 replacement;	 30	 trees	 were	
constructed,	 minimum	 branch	 size	 was	 set	 to	 100,	 and	 the	 complexity	 parameter	 was	 set	 to	 0,	
meaning	that	any	data	split	which	increases	overall	data	fit	(subject	to	other	parameter	settings)	is	
pursued.	
	
Both	 the	 CART,	 as	 well	 as	 the	 bagging	 predictor,	 models	 are	 fitted	 such	 that	 the	 overall	
misclassification	 rate	 is	minimized	 for	 the	 training	 data	 set.	 	 This	 overall	misclassification	 error	
(MCE)	rate	is	a	mix	of	two	types	of	misclassifications,	which	are	referred	to	as	Type	I	and	Type	II	
errors.		In	this	analysis,	the	interpretation	of	the	two	types	of	errors	is	as	described	in	Table	5.		The	
overall	 misclassification	 error	 is	 a	 weighted	 average	 of	 the	 two	 error	 types,	 thus	 always	 falls	
between	 the	 two.	 	 In	general,	Type	 II	errors	are	of	more	 interest	due	 to	concern	over	potentially	
accepting	fish	caught	in	association	with	a	FAD	but	labelled	as	unassociated.		In	general,	we	report	
only	the	Type	I	and	Type	II	MCE	rates.	 	 It	 is	 important	to	bear	in	mind	that	while	we	report	MCE	
rates	for	both	the	training	and	the	test	data,	ultimately	it	only	the	test	data	MCE	rates	that	illustrate	
potential	predictive	utility.	
	
Finally,	 to	perhaps	state	the	obvious:	we	use	the	measure	of	MCE	rate	to	 illustrate	how	often	our	
models	fail	to	correctly	predict	set	association.		The	success	rate	of	the	models	is	simply	100	minus	
the	MCE	rate	thus	a	20%	MCE	error	rate	can	also	be	positively	viewed	as	an	80%	success	rate.	
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Results 
The modeling results are presented in pairs for each of the various datasets, regions, and seasons.  
The first of each model pair, termed “tuna-only”, uses only tuna species and mean length to 
develop the classification trees.  The second of the model pairs, “with-bycatch”, includes the 
bycatch species as possible classifying variables. 

Classification	models	without	seasonal	or	regional	breakdown.	
The	CART	 (hereafter,	 generally	 referred	 to	 simply	as	 “classification	 tree”)	model	developed	 from	
fitting	to	the	2007‐2011	data,	using	only	tuna	composition	and	mean	length	data,	 is	 illustrated	 in	
Figure	5.		As	this	is	one	of	the	simplest	of	all	models,	and	as	a	means	of	illustrating	interpretation	of	
how	 the	 following	 models	 might	 be	 used	 “in	 the	 field”,	 a	 fuller	 explanation	 of	 this	 model	 is	
presented.	 	The	 first	 classification	 rule	 (SKJ.pct<99.8)	divides	 the	 initial	data	 set	 into	 two	halves:	
sets	with	a	skipjack	composition	of	less	than	99.8	percent	and	sets	with	composition	greater	than	or	
equal	to	99.8	percent.		This	implies	that	among	the	predictor	variables,	this	partition	point	provided	
the	highest	 initial	rate	of	correct	separation	into	“U”	(Unassociated)	and	“A”	(Associated)	sets.	 	Of	
course,	there	are	instances	of	both	set	types	above	and	below	the	classification	rule,	and	additional	
rules	are	then	added	to	attempt	to	better	classify	the	two	groups.		The	structure	of	the	classification	
tree	 is	such	 that	any	sets	 for	which	the	answer	to	 the	condition	 is	 “yes”	proceed	to	 the	 left	while	
those	for	which	the	answer	is	“no”	proceed	to	the	right.			
	
Three	 lines	 of	 information	 are	 contained	 in	 each	 node.	 	 The	 first	 line	 is	 which	 set	 type	 has	 the	
majority	 of	 observations.	 	 The	 second	 line	 lists	 the	 number	 of	 “incorrect”	 observations	 over	 the	
total	 number	 of	 observations	 in	 that	 node.	 	 The	 third	 line	 lists	 the	 percentage	 of	 the	 total	
observations	described	in	that	node.	 	Thus,	the	top	node	shows	that	a	majority	of	the	sets	are	“A”	
(Associated)	and	that	18442	are	“incorrect”	(in	that	they	are	actually	“U”)	and	the	total	number	of	
sets	is	41364	(100%	of	sets	for	2007‐2011).	 	Sets	for	which	the	answer	to	the	first	condition	was	
“no”,	are	split	off	to	the	right	and	form	a	terminal	node.		This	node	is	classified	as	“U’;	there	are	2683	
incorrect	classification	out	of	14111	sets	assigned	to	that	node	and	these	sets	comprise	34.1%	of	all	
sets.	 	On	the	basis	of	available	predictor	variables,	 there	is	no	rule	which	can	further	refine	those	
sets,	 subject	 to	 the	 complexity	parameter	 and	minimum	branch	 size	 settings.	 	 Sets	 for	which	 the	
answer	 to	 the	 first	condition	was	“yes”	are	split	 to	 the	 left,	where	 they	are	subjected	 to	a	second	
classification.		This	condition	asks	whether	skipjack	percentage	in	the	catch	is	greater	than	or	equal	
to	 2.05%.	 	 If	 the	 answer	 is	 yes,	 those	 sets	 are	 sent	 to	 the	 left	where	 they	 form	 a	 terminal	 node,	
classified	as	“A”.	 	Those	sets	 for	which	skipjack	percent	was	 less	than	2.05%	proceed	to	the	right	
and	form	a	terminal	node	classified	as	“U”.		Multiple	use	of	the	same	variable	(such	as	SKJ.pct	in	this	
case)	is	not	uncommon	as	more	branches	are	developed	in	refinement	of	the	classifications.	
	
Each	of	the	three	nodes	has	both	correctly	identified	and	incorrectly	identified	set	types.		The	node	
classified	as	“A”,	has	4460	sets	that	were	misclassified	as	“A”;	 these	constitute	the	Type	1	error	–	
4460	out	of	18442	total	“U”	sets	were	misclassified.		The	other	two	nodes,	both	classified	as	“U”,	had	
592	and	2683	misclassified	“A”	sets;	added	together	these	for	the	Type	II	error	–	3275	out	of	22922	
“A”	sets.			We	note	that	these	are	the	MCE	rates	for	the	training	data	itself,	not	the	test	data	to	which	
these	models	are	subsequently	applied.			
	
Figure	6	shows	 the	classification	model	 for	2007‐2011	data	when	bycatch	species	are	allowed	as	
predictor	variables.		In	this	case,	the	mere	presence	of	rainbow	runner	(“rru”,	greater	than	or	equal	
to	0.5	kg	in	a	set)	was	the	first	classification	rule.	 	Sets	for	which	this	was	true	formed	a	terminal	
node	with	all	sets	all	classified	as	“A”.		As	can	be	seen	in	the	node	statistics,	this	is	a	powerful	rule	as	
there	were	only	528	“U”	sets	among	the	15395	for	which	this	rule	was	true.		To	classify	the	18442	
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sets	 without	 rainbow	 runner	 in	 the	 catch	 as	 many	 three	 classification	 rules	 were	 required	 to	
estimate	 set	 association.	 	 Sets	 that	 were	 almost	 pure	 skipjack	 (SKJ.pct	 >=	 99.4%	 of	 catch	
composition)	were	classified	as	 “U”	while	 less	pure	sets	where	 then	classified	according	 to	mean	
length	of	yellowfin	and,	potentially,	percent	of	bigeye	in	the	set.			
	
One	of	the	classification	rules	for	this	model,	YFT.len	<	72.4	(mean	length	of	yellowfin	tuna	less	than	
72.4	cm),	presents	a	special	situation	that	can	arise	when	the	dataset	contains	“NA”	values,	i.e.,	not	
applicable/available.		For	there	to	be	a	non‐NA	YFT.len	value,	there	had	to	have	been	yellowfin	tuna	
in	 the	 set.	 	 Given	 the	 structure	 of	 this	 particular	 model,	 it	 is	 possible	 for	 a	 set	 to	 arrive	 at	 this	
classification	branch	and	contain	no	yellowfin:	for	example,	if	a	set	had	no	rainbow	runner	and	was	
less	than	99.4%	skipjack	but	all	the	non‐skipjack	catch	was	bigeye	–	that	set	would	then	contain	an	
“NA”	 for	 the	 YFT.len	 field.	 	 In	 fact,	 for	 the	 2007‐2001	 data,	 there	 are	 15	 cases	where	 a	 set	with	
YFT.len	has	a	field	entry	of	“NA”.	 	The	classification	algorithm	handles	such	cases	in	the	following	
manner.		The	“NA”	cases	are	all	assigned	the	set‐association	designation	that	forms	the	majority	of	
sets	at	that	particular	node.		Thus,	while	“A”	sets	barely	outnumber	“U”	sets,	6665	to	6589,	those	15	
sets	are	all	classified	as	“A”	and	are	not	subjected	to	any	further	classification	rules.	
	
Table	6	reports	the	MCE	rates	for	the	two	models	described	above.	 	We	list	the	MCE	rates	for	the	
training	data,	 i.e.,	 how	well	 the	model	performed	on	 the	data	used	 to	 fit	 the	model,	 and	 then	 the	
error	rates	when	the	model	fits	are	applied	to	the	test	data.			Type	I	and	II	MCE	rates	are	between	17	
and	29%	for	models	based	solely	on	tuna	catch,	while	MCE	rates	drop	substantially,	to	around	14‐
20%	when	bycatch	is	included	in	the	models.		Thus,	the	inclusion	of	bycatch	reduced	Type	II	MCE	
rate	 by	 3.6%	 (in	 absolute	 terms),	which	 corresponds	 to	 a	 20%	 reduction	 in	 relative	 terms.	 	 The	
overall	MCE	rate	was	substantially	improved	by	the	addition	of	bycatch,	decreasing	to	16.5%	from	
23.0%,	a	relative	 improvement	of	28%.	 	For	both	models,	 the	Type	I	errors	(“U”	sets	classified	as	
“A”	sets)	were	higher	than	the	Type	II	error	rates.		This	is	not,	however,	a	consistent	feature	of	this	
type	of	modelling.			
	
To	determine	 if	 there	were	 any	 spatial	 patterns	 in	 the	misclassification	 rates,	we	 aggregated	 the	
2012	sets	longitudinally	by	one	degree	strips.	 	Within	each	longitude	strip	we	computed,	for	both	
the	 tuna‐only	 and	with‐bycatch	models,	 the	 proportion	 of	 correctly	 classified	 sets	 (unassociated	
classified	 as	 unassociated,	 associated	 classified	 as	 associated)	 and	 misclassified	 sets	 (Type	 1	 –	
unassociated	misclassified	 as	 associated	 and	 Type	 2	 –	 associated	misclassified	 as	 unassociated).		
The	results	are	illustrated	in	Figure	7.		Several	interesting	features	of	the	analysis	are	observed	in	
the	figure.	 	The	lower	MCE	rates	(shown	as	orange	and	red	colors)	for	the	“with‐bycatch”	models	
are	 consistent	 across	 the	 range	 of	 purse	 seine	 fishing.	 	 The	 western	 region,	 with	 the	 highest	
proportion	 of	 purse	 seine	 sets,	 tends	 to	 have	 the	 highest	 MCE	 rates,	 particularly	 Type	 I	 errors.		
There	are	numerous	possible	explanations	for	this	result,	and	it	would	be	if	interest	to	determine	if	
this	was	systemic	of	the	region	or	peculiar	to	2012.		This,	and	other	early	observations,	however	led	
us	to	attempt	some	more	general	regional	and	seasonal	modelling	to	try	and	improve	overall	MCE	
rates,	and	they	are	presented	next.	

Classification	models	that	include	seasonal	disaggregation	
To	 improve	 upon	 the	 performance	 of	 the	 models	 that	 simply	 used	 all	 2007‐2011	 data,	 without	
regard	to	season	or	region,	we	next	fit	models	that	divided	the	dataset	either	into	yearly	quarters	
(“Seasonal”	models)	 or	 large	 oceanic	 regions	 (“Regional”	models).	 	 Figures	 8	 and	9	 illustrate	 the	
Seasonal	 models	 fit	 to	 the	 2007‐2011	 data	 disaggregated	 by	 quarter,	 with	 and	 without	
consideration	of	bycatch,	respectively.		In	the	interest	of	clarity,	the	details	of	the	number	of	cases	at	
each	node	have	been	eliminated,	however	overall	numbers	of	correct	and	incorrect	classifications	
are	 still	 listed.	 	 Without	 consideration	 of	 bycatch,	 the	 first	 classification	 rule	 was	 always	 on	
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percentage	composition	of	skipjack	 in	a	set,	 the	same	 initial	classification	rule	 for	 the	dataset	not	
broken	 down	 by	 quarter.	 	 Subsequent	 classifications,	 however,	 differed	 considerably	 among	 the	
seasons.		Season	2	resulted	in	the	simplest	model,	Season	3	in	the	most	complex.		When	bycatch	is	
introduced,	once	again	the	presence	of	rainbow	runner	in	a	set	is	the	first	classification	rule,	just	as	
was	 the	 case	 in	 the	 season‐aggregated	 dataset.	 	 Subsequent	 classification	 rules	 also	 differ	
substantially	among	seasons.		Table	6	provides	a	summary	of	MCE	rates	using	the	same	format	as	
Table	6.	
	
Comparison	of	MCE	rates	between	 the	Full	Year	and	each	of	 the	 seasonal	 rates	 shows	 that	 some	
seasons	outperform	and	some	underperform	the	full	year	rate.		However,	weighted	averages	of	the	
four	 seasons,	which	 is	 the	 best	 overall	 comparison	with	 the	 Full	 Year	MCE	 rates,	 show	 absolute	
decreases	of	2.6%	(tuna‐only)	and	1.5%	(with‐bycatch)	which	are	equivalent	to	relative	reductions	
of	about	10%.	 	It	thus	appears	there	is	some	benefit	 from	disaggregating	the	data	in	this	manner,	
and	 using	 different	 classification	 rules	 for	 each	 of	 the	 seasons.	 	 As	 is	 the	 case	 for	 the	 Full	 Year	
models,	the	bycatch	models	do	consistently	outperform	the	tuna‐only	models	and	this	holds	for	all	
four	quarters.	

Classification	models	that	include	regional	disaggregation	
We	 next	 fit	 models	 to	 the	 regional	 datasets,	 once	 again	 without	 bycatch	 (Figure	 10)	 and	 with	
bycatch	(Figure	11).	 	With	one	strong	exception,	results	basically	paralleled	those	of	 the	seasonal	
classification.	 	The	non‐bycatch	models	 split	 initially	on	 skipjack	percentage	 in	 the	 catch.	 	 For	all	
three	regions	the	left	branch	of	the	models	(less	pure	skipjack	sets),	the	second	classification	was	
on	 yellowfin	 tuna,	 either	mean	 length	 or	 percentage.	 	 For	 the	 regional	 bycatch‐included	models,	
Regions	1	and	2	again	split	 initially	with	regards	 to	presence	of	rainbow	runner.	 	Region	3	 is	 the	
aforementioned	 exceptional	 model	 result.	 	 For	 Region	 3,	 the	 initial	 split	 was	 on	 skipjack	
composition.	 	 The	pure	 skipjack	 sets	 (branching	 to	 the	 right)	 then	 split	 on	 two	different	bycatch	
species	(rainbow	runner	and	dolphinfish)	as	well	as	mean	skipjack	length.		It	turns	out	that,	among	
all	models	fit,	the	Region	3	bycatch‐included	model	has	the	lowest	MCE	rates	and	this	holds	true	for	
both	the	training	dataset	as	well	as	the	test	dataset,	as	illustrated	in	Table	8.	
	
Without	 the	 inclusion	 of	 bycatch	 information,	 the	 regional	 models	 do	 little	 better	 than	 the	 All	
Region	 (same	as	Full	Year	 in	Seasonal	 table)	model,	with	 the	weighted	regional	average	only	2%	
lower.	 	 The	 Region	 3	 bycatch‐free	 model	 appears	 to	 perform	 well	 for	 the	 training	 dataset,	
particularly	with	regard	to	Type	II	error,	but	when	that	model	is	applied	to	the	Test	data,	the	Type	I	
error	 rate	 (41.7%)	 is	 the	 largest	 of	 any	MCE	 rates	 for	 any	 of	 the	 illustrated	model	 fits.	 	 For	 the	
bycatch	models,	there	is	an	an	absolute	reduction	in	MCE	rate	(from	16.5%	to	15.2%)	between	the	
All	Region	model	and	the	weighted	average	of	the	regional	models.		This	corresponds	to	a	relative	
reduction	 in	 MCE	 rate	 of	 9%,	 roughly	 equivalent	 to	 the	 improvement	 seen	 in	 the	 seasonal	
disaggregation	for	the	bycatch	models.	

Bagging	predictors	
Bagging	predictors	were	 conducted	on	 the	 same	datasets	 as	 the	 simple	CART	analyses	 and	were	
similarly	based	on	tuna‐only	data	and	then	refit	with	the	additional	bycatch	variables.	Because	each	
bagging	predictor	analysis	is	based	on	fitting	30	models	(or	trees),	no	attempt	is	made	to	illustrate	
the	variables	most	important	to	the	final	results.		Similarly,	as	the	MCE	error	rates	differ	for	each	of	
the	individual	tree	models,	we	do	not	report	the	data	fitting	MCE	error	rates,	only	the	test	data	MCE	
rates.		The	Bagging	predictors	MCE	rates	for	the	test	data	are	illustrated	in	Table	9,	and	compared	
to	the	single	tree	CART	results	described	above.	
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As	noted	earlier,	MCE	rates	for	the	full	data	set	tended	to	be	in	the	range	of	17‐29%	for	tuna‐only	
models	 and	 somewhat	 lower	 when	 bycatch	 was	 included,	 dropping	 to	 14‐20%.	 	 Seasonal	 and	
regional	breakdowns	decreased	absolute	MCE	rates	1‐3%	(2‐10%	in	relative	terms).		The	effect	of	
bagging	has	a	range	of	impacts	on	predictions.		Over	all	the	data,	Type	I	MCE	rates	of	were	reduced	
15%	(tuna‐only)	and	33%	(with	bycatch);	however	Type	II	MCE	rates	increased	3%	for	both	types	
of	models.		The	weighted	(overall)	MCE	rates	dropped	8%	(tuna‐only)	and	18%	(with	bycatch).		In	
terms	of	the	seasonal	and	regional	subsets,	differences	between	the	single	tree	models	and	bagging	
predictors	were	 of	 a	 highly	 varied	nature,	 but	 the	 overall	MCE	 rate	 tended	 to	 be	 lower	with	 the	
bagging	models.	 	 The	magnitude	 of	 the	 overall	MCE	 rate	 decrease	 for	 the	 seasonal	 and	 regional	
bagging	models	was	roughly	similar	to	that	seen	when	comparing	the	overall	data	model	and	the	
single	tree	seasonal	and	regional	models.		This	improvement	does	come	at	a	significant	cost,	both	in	
terms	 of	 computing	 and	 non‐interpretability	 of	 the	 many	 bagging	 models	 used	 to	 collectively	
predict	set	association.	

FAD‐closure	period	
To	 investigate	 the	possibility	of	a	FAD‐closure	effect	on	observer	assignation	of	set	association,	 a	
total	of	10	different	year	combinations	was	investigated	(Table	10),	once	again	both	for	tuna‐only	
data	 as	 well	 as	 with	 bycatch.	 	 Note	 that	 in	 the	 original	 full	 dataset	 analyses,	 all	 observer	 data	
between	2007	and	2009	were	utilized.		However,	the	FAD‐closure	period	went	into	effect	in	2009,	
thus	 there	 is	some	question	whether	 the	2007	and	2008	data	should	be	retained	 in	 this	analysis.		
The	first	model	fit	included	the	2007	and	2008	data	in	predicting	set	association	for	the	2009‐2011	
FCUK‐less	data;	all	subsequent	model	fitting	left	out	the	2007	and	2008	data.		Model	fits	were	done	
for	the	year	combinations	of	2009‐2011	and	2009‐2012,	as	well	as	for	each	year	separately.		Unlike	
the	 CART	 and	 Bagging	 Predictor	 analyses	 where	 the	 test	 data	 (2012)	 always	 differed	 from	 the	
training	data	(2007‐2011),	 the	analyses	 in	this	section	often	had	matching	years;	 for	example	the	
second	model	in	Table	10	predicts	2009‐2011	FCUK	data	on	the	basis	of	models	fit	to	2009‐2011	
FCUK‐less	data.		In	the	interests	of	conciseness,	the	CART	models	developed	for	each	dataset	are	not	
illustrated,	however	the	model	retained	variables,	listed	in	order	of	importance,	are	included	in	the	
results	table	(Table	10).	
	
Because	 the	 FCUK	 dataset	 contain	 only	 observer‐classified	 unassociated	 sets,	 there	 can	 only	 be	
Type	 I	 errors,	 i.e.,	 sets	 identified	 as	 unassociated	 but	 classified	 by	 the	 model	 as	 associated.		
Comparison	of	Type	I	MCE	rates	for	the	test	data	(i.e.,	the	FCUK	data)	are	in	the	same	range	as	those	
for	 the	 training	data	(i.e.,	 the	FCUK‐less	datasets).	 	 In	a	sense,	 this	 is	 impressive	 for	 the	 following	
reason:	in	general,	and	as	illustrated	by	the	earlier	results	in	this	paper,	test	model	fits	are	rarely	as	
good	as	the	training	data	model	fits.			This	generalization	held	true	for	both	tuna‐only	model	fits	as	
well	as	those	that	included	bycatch	variables	as	well.	

Discussion 
The	 overarching	 goal	 of	 this	 analysis	 was	 to	 determine	 what	 level	 of	 correct	 purse	 seine	 set	
association	could	be	achieved	with	access	to	sampling	of	individual	sets.			Our	results	suggest	that,	
given	 access	 to	 observer	 type	 sampling	 of	 sets,	 simple	 classification	models,	 based	 only	 on	 tuna	
catch,	could	provide	up	to	80%	accurate	classification.	 	 If	bycatch	data	were	available,	up	to	85%	
accurate	 classification	 might	 be	 possible.	 	 Seasonal	 and	 regional	 breakdowns	 generally	 yielded	
classification	 rates	 2‐9%	 better	 than	 the	 non‐disaggregated	 data.	 	 The	 use	 of	 bagging	 predictors	
provided	a	similar	 level	of	 improvement	 to	set	 type	prediction.	 	The	 improvement,	however,	was	
inconsistent	 in	 regards	 to	 misclassification	 error	 type	 (I	 or	 II)	 and	 was	 highly	 variable	 among	
seasonal	and	regional	variation.	 	 It	 is	concluded	that	 the	great	 increase	 in	complexity	may	not	be	
warranted	for	the	purposes	of	providing	a	set	of	rules	to	determine	set	association	“in	the	field”.				
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Regarding	the	analysis	of	the	FAD‐closure	datasets,	a	couple	of	observations	from	the	model	results	
bear	 mentioning.	 	 First,	 the	 important	 variables	 for	 the	 classification	 models	 were	 very	 similar	
among	the	different	year	groupings.		If	bycatch	is	not	used	in	the	tree	classification,	the	percentage	
of	 skipjack	 in	 the	 catch	 was	 always	 the	 most	 important	 variable	 and	 the	 second	 was	 usually	
yellowfin	percentage	or	yellowfin	mean	length.		The	brief	exercise	also	provided	some	reassurance	
in	regards	to	observer	classification	of	purse	seine	set	association	during	the	period	of	FAD	closure.		
MCE	rates	of	unassociated	sets	during	the	FAD	closure	period	are	equal,	or	even	a	bit	 lower	than,	
MCE	rates	during	non‐FAD	closure	periods.	
	
We	 conclude	 with	 a	 discussion	 of	 situations	 where	 improved,	 or	 decreased,	 set	 association	
classification	performance	might	be	expected.	

Conditions	under	which	catch	sampling	works	best	in	determining	set‐type.	
One	 constant	 across	 all	 models	 is	 that	 bycatch,	 specifically	 rainbow	 runner,	 improves	 model	
predictions	of	set	type.		This	is	true	not	only	for	training	data	sets	but	also	for	the	test	data	sets.		The	
classification	 rule	 for	 rainbow	 runner	 is	 literally	 presence/absence.	 	 As	 the	 smallest	 possible	
recorded	amount	of	rainbow	runner	bycatch	for	any	set	in	the	database	is	1.0	kg	(data	are	recoded	
as	metric	tons	to	three	decimal	places),	and	the	classification	rule	for	rainbow	runner	is	always	set	
at	 0.5	 kg,	 the	 models	 are	 using	 presence	 of	 rainbow	 runner	 as	 the	 strongest	 indicator	 of	 FAD‐
association.		Once	a	set	has	been	classified	as	associated	on	the	basis	of	rainbow	runner	presence,	
no	 models	 include	 additional	 steps	 to	 further	 separate	 those	 sets	 indicating	 none	 of	 the	 other	
variables	contain	predictive	power.	
	
There	 is,	 however,	 considerable	 uncertainty	 as	 to	 whether	 actual	 bycatch	 can	 be	 confidently	
assigned	to	each	set.		The	bycatch	may	be	discarded,	consumed	by	the	crew,	or	mixed	between	sets.		
Without	 exception,	 all	 the	 bycatch‐free	 models	 had	 skipjack	 percentage	 as	 the	 first‐order	
classification	rule,	with	pure	sets	(SKJ.pct	>	99.5%)	classified	as	unassociated	sets.		However,	none	
of	these	bycatch‐free	models	had	misclassification	rates	as	low	as	the	with‐bycatch	models	for	the	
test	data	sets.	
	
Generally	speaking,	analysing	data	sets	disaggregated	by	either	season	or	region	provides	modest	
improvements	to	model	performance	–	with	one	notable	exception.		Region	3,	i.e.,	ocean	waters	east	
of	 180°,	 bycatch	models	 achieved	MCE	 rates	 under	 10%	 for	 all	 three	 error	 types.	 	 Results	were	
more	mixed	for	the	Region	3	tuna‐only	model;	Type	II	MCE	rate	was	less	than	5%.		However,	this	
came	at	a	high	Type	I	error	price	as	41.7%	of	unassociated	sets	were	misclassified	as	associated.		
The	 longitudinal	 summary	 (Figure	7)	 of	 classification	 success	 illustrates	 that	 further	 analyses	on	
other	data	subsets	could	be	explored.	
	
One	other	point	 bears	mentioning	 in	 regards	 to	possible	 increased	 confidence	 in	 sampling	purse	
seine	catches	to	identify	set	type.		The	vast	majority	(>	99%)	of	all	sampled	sets	were	sampled	using	
the	“grab	sample”	method.	Essentially,	an	observer	is	instructed	to	“grab”	a	sample	of	fish,	striving	
for	 representativeness,	 for	 each	 set.	 	The	observer	grab	 sample	 is	 generally	100	 fish	or	 less:	 just	
18%	of	the	observed	sets	were	sampled	for	more	than	100	fish,	 less	than	1.5%	were	sampled	for	
more	than	300	fish.		Mean	grab	sample	size	across	all	sets	is	65	fish.		Both	species	composition	and	
mean	 length	estimates	 are	based	on	 these	 samples.	 	Thus,	 catch	 composition	–	 especially	 for	 the	
rarer	 yellowfin	 and	 bigeye	 species	 –	 is	 only	 roughly	 estimated	 (this	 is	 likely	 less	 an	 issue	 with	
estimated	mean	 lengths).	 	The	move	 towards	 “spill	 sampling”	will	 increase	both	 sample	 size	 and	
likely	reduce	bias,	both	of	which	may	well	increase	the	precision	of	models	developed	to	classify	set	
type.	
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Finally,	Harley	et	al.	(20094)	demonstrated	that	time	of	day	is	a	possibly	important	distinguishing	
characteristic	between	set	types.		Historically,	associated	sets	occurred	pre‐dawn	and	unassociated	
sets	 occurred	 throughout	 the	 day.	 It	 is	 generally	 believed	 that	 unassociated	 sets	 cannot	 occur	
during	 darkness	 (light	 is	 needed	 to	 find	 and	 encircle	 the	 fish),	 but	 associated	 sets	 theoretically	
could	 occur	 at	 any	 time	 of	 day.	 Therefore,	 time	 of	 day	 is	 probably	 best	 for	 excluding	 pre‐dawn	
associated	sets	rather	than	assisting	in	classifying	unassociated	sets.	We	did	not	explicitly	consider	
time	of	day	in	this	analysis,	but	intend	to	further	pursue	this	factor	in	future	work	on	this	subject.	
	

Conditions	under	which	catch	sampling	may	be	compromised	
There	are	several	operational	activities	that	could	serve	to	make	classification	rates	reported	in	this	
analysis	 unreliable	 and	overly	 optimistic.	 	 The	most	 significant	would	 be	 the	 removal	 of	 bycatch	
from	 sets	 if	 bycatch‐included	models	were	 to	 be	 used.	 	 “Clean”	 skipjack	 sets	 are,	 almost	without	
exception,	 classified	 as	 unassociated	 sets.	 	 Sets	 that	 are	 not	 “pure”	 skipjack	 but	which	have	 very	
high	 levels	 of	 either	 yellowfin	 or	 bigeye	 (in	 essence,	 a	 different	 form	 of	 a	 “clean”	 set)	 are	 also	
typically	classified	as	unassociated.		Interference	with	sampling	protocol	to	bias	sampling	towards	
tuna	 bycatch	 is	 therefore	 one	 means	 of	 influencing	 determination	 of	 set	 type.	 	 A	 second‐order	
possibility,	 if	classification	rules	were	“known”,	would	be	to	manipulate	mean	size,	particularly	of	
yellowfin	 tuna:	 large	yellowfin	almost	 always	 come	 from	unassociated	 sets	while	 small	 yellowfin	
can	come	from	either	set	type.	
	
Perhaps	 the	most	 serious	 impediment	 to	 sampling	purse	 seine	 sets	 concerns	 the	 issue	of	mixing	
sets	within	a	well	 such	 that	port	 sampling	would	not	have	access	 to	 individual	 sets.	 	The	models	
developed	 for	 this	 analysis	 use	 individual	 sets	 as	 “cases”	 and	 catch	 characteristics	 as	 predictor	
variables	to	classify	the	cases.		If	cases	instead	represented	a	mix	of	set	types,	the	analysis	becomes	
complex	likely	to	the	point	of	impossibility.		One	possibility,	not	explored	here	but	perhaps	worthy	
of	 investigation,	 is	 application	 of	 individual	 set	 rules	 to	 mixes	 of	 sets.	 	 The	 remainder	 of	 this	
paragraph	is	simple	speculation	on	possible	outcomes	of	such	a	situation.		If	bycatch	models	were	
used	 AND	 accurate	 bycatch	 data	 were	 available,	 one	 almost	 certain	 outcome	 would	 be	 a	 larger	
misclassification	 of	 unassociated	 sets	 as	 associated	 sets,	 i.e.,	 an	 increase	 in	 Type	 I	 errors.	 	 This	
would	 occur	 because	 the	 threshold	 for	 associated	 set	 classification	 is	 1	 (one)	 rainbow	 runner.		
Imagine	a	situation	where	 just	one	of	 four	combined	unassociated	sets	had	a	rainbow	runner:	all	
four	sets	would	be	classified	as	associated.		For	rules	that	involve	mean	length	of	either	skipjack	or	
yellowfin,	it’s	less	clear	how	mixing	of	sets	would	affect	set	classification.		Size	samples	might	not	be	
proportional	 to	set	size	(on	very	 large	sets	a	max	sample	size	 is	generally	 imposed)	and	a	mix	of	
larger	 associated	 sets	 of	 smaller	 fish	with	 smaller	 unassociated	 sets	 of	 larger	 fish	would	 give	 an	
intermediate	mean	size.	 	From	this	brief	summary,	 it	should	be	clear	that	sampling	at	the	level	of	
individual	sets,	for	which	1000s	of	observer	records	provide	data	for	model	development,	would	be	
highly	preferable	and	perhaps	the	only	way	forward.	
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Table	1.		Summary	of	observed	purse	seine	set	data	used	in	analysis.	

	 Unassociated	 Associated	 	

Year	 	
Number	

Percent	of	
annual	sets	

	
Number	

Percent	of	
annual	sets	

Total	
sets	

2007	 1133	 33.1% 2286 66.9% 3419	
2008	 1270	 36.7% 2186 63.3% 3456	
2009	 1780	 37.5% 2964 62.5% 4744	
2010	 8137	 58.9% 5681 41.1% 13818	
2011	 6122	 38.4% 9805 61.6% 15927	
2012	 5293	 48.8% 5549 51.2% 10842	
Total	 23735	 45.5% 28471 54.5% 52206	

	
	

Table	 2.	 	Mean	 catch	 of	 edible	 bycatch	 species	 in	 observed	 purse	 seine	 sets.	 Values	 are	
kg/set.		

Name	 Abbreviation Unassociated Associated	
barracudas	 bar	 0.07 2.62	
black	marlin	 blm	 6.33 7.61	
blue	marlin	 bum	 10.25 16.49	
dolphinfish	 dol	 1.09 29.43	
striped	marlin	 mls	 2.20 3.81	
rainbow	runner	 rru	 6.98 119.35	
sailfish	 sfa	 0.52 0.45	
wahoo	 wah	 0.35 11.23	

 
	

Table	3.		Number	of	observed	purse	seine	sets,	2007‐2012,	disaggregated	by	set	association,	
season	and	region.		UNA	is	unassociated	and	ASS	is	associated.	

	 	
Season	 UNA	 ASS	 Total	

1	 4419	 8029	 12448	
2	 5042	 9078	 14120	
3	 8345	 3572	 11917	
4	 5929	 7792	 13721	

Total	 23735	 28471	 52206
	

	 	
Region	 UNA	 ASS	 Total	

1	 15034	 15523	 30557	
2	 6757	 10192	 16949	
3	 1944	 2756	 4700	

Total 23735 28471	 52206
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Table	4.		Number	of	observed	purse	seine	sets	during	FAD‐closure	periods,	2009‐2012.	

	 Unassociate
d

Associated

2009	 796 419
2010	 2679 280
2011	 1881 711
2012	 2260 825
Total	 7616 2235

	
	

Table	5.	 	Description	of	the	misclassification	error	(MCE)	types	and	formula	for	computing	
MCE	rates.		Abbreviations	are	UNA	(for	unassociated)	and	ASS	(for	associated)	

Error	Type	 Description	 MCE	Rate	Calculation	

Type	I	 False	Positive:	Unassociated	set	misclassified	as	Associated	set	
.݋ܰ ܣܷܰ ݂݀݁݅݅ݏݏ݈ܽܿݏ݅݉	ݏݐ݁ݏ ݏܽ ܵܵܣ ݏݐ݁ݏ

.݋ܰ	݈ܽݐ݋ܶ ݏݐ݁ݏ	ܣܷܰ
	

Type	II	 False	Negative:	Associated	set	misclassified	as	Unassociated	set	
.݋ܰ ܵܵܣ ݂݀݁݅݅ݏݏ݈ܽܿݏ݅݉	ݏݐ݁ݏ ݏܽ ܣܷܰ ݏݐ݁ݏ

.݋ܰ	݈ܽݐ݋ܶ ݏݐ݁ݏ	ܵܵܣ
	

Overall	 Type	I	+	Type	II	
݂݀݁݅݅ݏݏ݈ܽܿݏ݅݉.݋ܰ	݈ܽݐ݋ܶ ݏݐ݁ݏ
.݋ܰ	݈ܽݐ݋ܶ ݁݊݅݁ݏ	݁ݏݎݑ݌ ݏݐ݁ݏ

	

	
	

Table	6.		Comparison	of	misclassification	error	rates	for	model	fit	to	entire	2007‐2011	data,	
without	seasonal	or	regional	breakdown.	

	 	 Training	data	(2007‐2011)	 	 Test	data	(2012)	

	 	 Type	I	 Type	II	 Overall	 	 Type	I	 Type	II	 Overall	

Tuna‐only	 24.2%	 14.3%	 18.7%	 	 29.1%	 17.2%	 23.0%	

With	bycatch	 15.4%	 11.1%	 13.0%	 	 19.6%	 13.6%	 16.5%	
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Table	7.	Comparison	of	misclassification	error	 rates	 for	Seasonal	models	 fit	 to	2007‐2011	
data.		The	Avg.	values	are	a	weighted	average	(by	no.	sets	per	season)	of	the	seasonal	values.	
The	Full	Year	values	are	copied	from	Table	6.	

    Training data (2007‐2011)    Test data (2012)   

    Type I  Type II  Overall   Type I  Type II  Overall 

Tuna‐
only 

S1    32.9%  12.1%  19.1%  30.8%  14.3%  21.2% 

S2    20.8%  13.8%  16.3%  20.4%  15.7%  17.5% 

S3    9.4%  21.6%  13.2%  18.4%  22.7%  19.5% 

S4    17.9%  18.6%  18.3%  35.7%  16.6%  23.9% 

Avg.    18.5%  15.5%  16.8%    24.2%  16.7%  20.4% 

Full Year    24.2%  14.3%  18.7%  29.1%  17.2%  23.0% 

With 
bycatch 

S1    19.6%  9.7%  13.1%  14.8%  18.9%  17.2% 

S2    17.7%  9.2%  12.2%  17.4%  9.6%  12.5% 

S3    4.7%  23.3%  10.5%  8.7%  24.7%  13.0% 

S4    15.6%  12.7%  14.0%  28.7%  12.1%  18.4% 

Avg.    13.2%  12.0% 12.5%   15.2% 14.8%  15.0%

Full Year    15.4%  11.1%  13.0%  19.6%  13.6%  16.5% 

	
	
Table	8.	Comparison	of	misclassification	error	 rates	 for	Regional	models	 fit	 to	2007‐2011	
data.		The	Avg.	values	are	a	weighted	average	(by	no.	sets	per	region)	of	the	seasonal	values.	
The	All	Region	values	are	taken	from	Table	6.	

    Training data (2007‐2011)  Test data (2012) 

    Type I  Type II  Overall   Type I  Type II  Overall 

Tuna‐
only 

R1    19.9%  17.8%  18.8%  29.8%  19.6%  24.7% 

R2    10.4%  17.1%  14.6%  16.0%  20.9%  18.6% 

R3    20.4%  3.5%  10.0%  41.7%  4.6%  22.7% 

Avg.    17.3%  16.3% 16.7%   27.0% 18.2%  22.5%

All Reg.    24.2%  14.3%  18.7%  29.1%  17.2%  23.0% 

With 
bycatch 

R1    13.0%  15.2%  14.2%  18.4%  16.4%  17.4% 

R2    10.6%  8.1%  9.1%  15.3%  13.5%  14.4% 

R3    6.9%  7.1%  7.0%  6.2%  9.0%  7.6% 

Avg.    11.9%  11.9%  11.9%    15.9%  14.5%  15.2% 

All Reg.    15.4%  11.1%  13.0%  19.6%  13.6%  16.5% 
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Table	9.	 	Comparison	of	misclassification	error	(MCE)	rates	between	the	Bagging	Predictor	
method	and	 the	models	developed	using	 the	 simple	CART	method.	 	The	Avg.	values	are	a	
weighted	average	(by	no.	sets	per	season	or	region)	of	the	seasonal	or	regional	values.	The	
All	Data	values	are	copied	from	table	6.	

      Bagging predictors MCE rate Change from CART MCE rate

      Type I  Type II  Overall  Type I  Type II  Overall 

Tuna‐
only 

S1    21.5%  19.2%  20.2%  ‐30%  +34%  ‐5% 
S2    32.2%  7.6%  16.8%  +58%  ‐51%  ‐4% 
S3    17.3%  24.5%  19.2%  ‐6%  +8%  ‐1% 
S4    31.8%  16.0%  22.1%  ‐11%  ‐3%  ‐8% 

Avg.    23.7%  15.3%  19.4%  ‐2%  ‐8%  ‐4% 

R1    26.7%  20.5%  23.6%  ‐10%  +5%  ‐4% 
R2    19.6%  13.8%  16.5%  +23%  ‐34%  ‐11% 
R3    36.1%  6.2%  20.8%  ‐13%  +35%  ‐8% 

Avg.    25.7%  16.5%  21.0%  ‐5%  ‐10%  ‐7% 

All Data    24.7%  17.8%  21.2%  ‐15%  +3%  ‐8% 

With 
bycatch 

S1    10.4%  18.8%  15.3%  ‐30%  ‐1%  ‐11% 
S2    25.3%  7.1%  13.9%  +45%  ‐26%  +11% 
S3    10.3%  20.8%  13.1%  +18%  ‐16%  +1% 
S4    21.0%  14.0%  16.7%  ‐27%  +15%  ‐9% 

Avg.    15.3%  13.9%  14.6%  +0%  ‐6%  ‐3% 

R1    14.6%  16.4%  15.5%  ‐21%  ‐0%  ‐11% 
R2    12.0%  13.1%  12.6%  ‐22%  ‐3%  ‐13% 
R3    18.1%  5.9%  11.9%  +192%  ‐34%  +56% 

Avg.    14.2%  14.0%  14.1%  ‐11%  ‐4%  ‐7% 

All Data    13.1%  14.0%  13.6%  ‐33%  +3%  ‐18% 
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Table	10.	 	CART	model	 fitting	summaries	and	 illustration	of	misclassification	error	(MCE)	rates	when	predicting	FAD	Closure	
Unassociated	Kept	aside	(FCUK)	test	data	using	FCUK‐less	data	(training	data)	to	construct	the	models.	

Tuna‐only  Training data MCE rates    Test data MCE rates

Training data  n  Variables  Type I Type II Overall Test data n Type I Type II Overall

2007‐2011  36008  SKJ.pct (2), YFT.len 26.0% 13.3% 17.9%  2009‐2011 5356 22.8% NA 22.8%

2009‐2011  29133  SKJ.pct, YFT.pct  24.7% 15.3% 18.8%  2009‐2011 5356 21.6% NA 21.6%

2009‐2012  37715  SKJ.pct (2), YFT.len 26.1% 14.8% 18.9%  2009‐2012 7616 25.5% NA 25.5%

2009‐2011  29133  SKJ.pct, YFT.pct  24.7% 15.3% 18.8%  2012 2260 30.3% NA 30.3%

2009  3948  SKJ.pct, SKJ.len, YFT.len, BET.pct, SKJ.len 42.4% 4.3% 13.8%  2009 796 29.1% NA 29.1%

2010  11139  SKJ.pct, YFT.len, YFT.pct, BET.pct 17.1% 20.2% 18.7%  2010 2679 11.8% NA 11.8%

2011  14046  SKJ.pct, YFT.pct, YFT.len 24.5% 14.9% 17.8%  2011 1881 30.5% NA 30.5%

2012  8582  SKJ.pct, SKJ.len, YFT.len, SKJ.pct, BET.pct 22.6% 15.7% 18.1%  2012 2260 29.6% NA 29.6%

2009‐2012  37715  SKJ.pct, SKJ.pct, YFT.len 26.1% 14.8% 18.9%  2013 237 20.7% NA 20.7%

2012  8582  SKJ.pct, SKJ.len, YFT.len, SKJ.pct, BET.pct 22.6% 15.7% 18.1%  2013 237 13.9% NA 13.9%

 
With Bycatch  Training data MCE rates    Test data MCE rates

Training data  n  Variables  Type I Type II Overall Test data n Type I Type II Overall

2007‐2011  36008  rru.kg, SKJ.pct, YFT.pct, YFT.len, BET.pct 14.4% 12.2% 13.0%  2009‐2011 5356 10.4% NA 10.4%

2009‐2011  29133  rru.kg, SKJ.pct, YFT.pct, BET.pct, YFT.len 14.3% 13.2% 13.6%  2009‐2011 5356 10.7% NA 10.7%

2009‐2012  37715  rru.kg, SKJ.pct, YFT.len, YFT.pct, BET.pct 15.5% 12.8% 13.8%  2009‐2012 7616 15.0% NA 15.0%

2009‐2011  29133  rru.kg, SKJ.pct, YFT.pct, BET.pct, YFT.len 14.3% 13.2% 13.6%  2012 2260 19.9% NA 19.9%

2009  3948  SKJ.pct, rru.kg, YFT.len, rru.kg, BET.pct 25.8% 7.9% 12.3%  2009 796 17.1% NA 17.1%

2010  11139  rru.kg, SKJ.pct, YFT.pct, BET.pct, YFT.len 10.2% 15.8% 13.0%  2010 2679 4.7% NA 4.7%

2011  14046  rru.kg, SKJ.pct, YFT.pct, dol.kg 24.3% 8.6% 13.4%  2011 1881 29.0% NA 29.0%

2012  8582  rru.kg, BET.pct, YFT.len, YFT.pct 15.9% 14.1% 14.7%  2012 2260 20.4% NA 20.4%

2009‐2012  37715  rruu.kg, SKJ.pct, YFT.len, YFT.pct, BET.pct 15.5% 12.8% 13.8%  2013 237 9.3% NA 9.3%

2012  8582  rru.kg, BET.pct, YFT.len, YFT.pct 15.9% 14.1% 14.7%  2013 237 10.1% NA 10.1%
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Figure	1.	 	Locations	of	all	observed	purse	seine	sets,	separated	by	set	 type,	 for	 the	period	
2007‐2012.		Size	of	individual	circles	is	proportional	to	total	target	tuna	catch.	
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Figure	2.	De	Finetti	(ternay)	plots	summarizing	relative	catch	composition	of	the	three	target	tuna	species	 for	associated	and	
unassociated	 purse	 seine	 sets.	 	 Density	 indicates	 relative	 proportion	 of	 total	 sets	 having	 the	 indicated	mix	 of	 tuna	 catch	
proportions.	
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Figure	3.		Size	distributions	for	the	three	target	tuna	species	broken	down	by	set	association.		
The	number	of	measured	fish	for	each	distribution	is	indicated	by	n.	
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Figure	4.	Boxplots	of	distribution	of	mean	lengths	for	three	target	tuna	species	broken	down	
by	set	association.		The	shaded	regions	show	the	25th	and	75th	quantile	while	the	black	bar	is	
the	median.		Outliers	are	illustrated	by	circles,	and	often	represent	single	measurements,	i.e.	
only	one	fish	caught	in	a	set.		Tuna	species	abbreviations	are:	skipjack	(SKJ),	yellowfin	(YFT),	
bigeye	(BET);	UNA	indicates	unassociated	sets	and	ASS	indicates	associated	sets.	
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Figure	5.	Classification	 rules	 and	misclassification	 error	 rates	developed	 from	2007‐2011	
data	with	no	bycatch	consideration,	and	without	seasonal	or	regional	disaggregation.	 	See	
text	for	interpretation	of	node	statistics.	
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Figure	6.	Classification	 rules	 and	misclassification	 error	 rates	developed	 from	2007‐2011	
data,	 bycatch	 included,	 and	 without	 seasonal	 or	 regional	 disaggregation.	 	 See	 text	 for	
interpretation	of	node	statistics.	
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Figure	7.		Longitudinal	distribution	of	correct	(UU	and	AA)	and	incorrect	(UA,	AU)	2012	purse	seine	set	classifications.		The	first	
letter	is	the	observer	recorded	set	type	(U	indicates	unassociated,	A	indicates	associated)	and	the	second	letter	is	the	set	type	
predicted	by	our	models.		
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Figure	8.	 	Classification	rules	and	misclassification	error	rates	developed	 from	2007‐2011	
data,	for	seasonal	models,	without	inclusion	of	bycatch.	
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Figure	9.	Classification	 rules	 and	misclassification	 error	 rates	developed	 from	2007‐2011	
data,	for	seasonal	models,	bycatch	included.	 	
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Figure	10.	 	Classification	rules	and	misclassification	error	rates	developed	from	2007‐2011	
data,	for	regional	models,	without	inclusion	of	bycatch.	
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Figure	11.	Classification	rules	and	misclassification	error	rates	developed	 from	2007‐2011	
data,	for	regional	models,	bycatch	included.	
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