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Executive Summary 
 
Tuna tagging in the western and central Pacific Ocean has occurred periodically over the past 35 
years, which has resulted in nearly 800,000 tag release and over 100,000 tag recovery records 
catalogued. Tagging has been carried out predominantly through pole-and-line fishing events 
from specifically chartered vessels, where fish are captured, tagged with a conventional dart tag 
in a fish cradle, and released back into the water in just a few seconds. Information is recorded at 
the time of tagging such as date, location, fish size, and species.  Tag release events used in the 
2014 tropical tuna base assessments were associated with the Pacific Tuna Tagging Programme 
(PTTP; 2006–2012), the Regional Tuna Tagging Project (RTTP; 1989 – 1992), the Skipjack 
Survey and Assessment Programme (SSAP; 1977 – 1982), the Commonwealth Scientific and 
Industrial Research Organisation bigeye tagging project (CSIRO; 1995 – 2001), and the Japanese 
skipjack tagging programme (JP; 1988 – 2012). 
  
Information on critical demographic and fishery rates can be obtained from tagging experiments, 
which can help inform estimates generated in the MULTIFAN-CL population assessment model.  
These experiments provide information on tuna survival, mortality components (e.g., fishing, 
natural, and handling), population abundance, growth, and movement.  However, such 
information can also be misleading and contribute to biased results and ill-informed management 
decisions if not properly considered. As such, three different analyses were conducted in an 
attempt to maximize the representativeness and potential accuracy of population-level inferences 
from tagging experiments used in the 2014 stock assessments.  These included:  
 

1. correcting releases for recovery data quality, 
2. estimating tagger and other effects to supplement release corrections for base levels of 

tag shedding and tag-related mortality, and 
3. estimating reporting rates (prior distributions and penalty weights) to account for under-

reporting of tag recoveries. 

The above analyses and data corrections were performed for each species (bigeye, skipjack, and 
yellowfin) and tagging programme where data were available (Table 1).  A brief synopsis of 
each follows. 
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1. Data extractions and corrections for recovery data quality 
 

Missing data fields, incorrectly specified recovery data, or recoveries outside of model regions 
can result in physically recovered tags being unusable for MULTIFAN-CL stock assessments. 
This presents a problem preserving observed recovery-release ratios that are critical for 
informing estimates of fishing mortality and population abundance. Thus, the number of releases 
was adjusted to account for unusable recoveries to preserve population inferences.  In order for 
recoveries to be considered ‘usable’ in MULTIFAN-CL stock assessments, information on tag 
recovery date (year and month), location (latitude and longitude), fleet (gear and flag), and tag 
number must be available. Overall, forty-two percent of all tag recoveries were deemed not 
usable as a result of missing one or more entries of key information.  Release corrections were 
applied at the individual length bin level for each tagging event and species.  Corrections were 
applied to the tagging data prior to input into the assessment model.     
 

2. Tagger effects and correction factors 
 

Individual tagger experience and skill can have an influence on how well tags are implanted into 
fish and the ability of fish to properly recover from the tagging process (catch, handle, tag, and 
release). The probability of fish being exposed to conditions that relate to tag shedding (e.g., 
imprecise tag insertion) and tag-related mortality (e.g., less efficient tagging and handling 
techniques) would be expected to be lower for more experienced taggers than for taggers with 
less experience. Thus, statistical models were used to correct the tagging data for potential biases 
associated with individual tagger effects before these data were used to inform the stock 
assessment. 
 
Tagger effects were only estimated for tag release events associated with the PTTP and RTTP. 
Generalized additive models (GAMs) and generalized linear models (GLMs) were used to 
evaluate which explanatory variables significantly influenced recovery rates and estimate the 
mean effect size (change in recovery rate) resulting from the particular set of observed conditions 
relative to optimal conditions. Explanatory variables included tagging event, tagger, fish length, 
fish condition, tagging quality, and tagging station. A single best model was selected for 
identifying significant variables, making statistical inferences, and developing correction factors.  
 
Corrections adjusted the number of releases downwards to account for 1) base levels of tag 
shedding and tag-related mortality (that which would occur even under ‘optimal’ tagging 
conditions) and 2) additional levels as a result of the particular tagging conditions present at each 
tagging event. Corrections do not account for all tagging induced mortality and tag shedding, but 
it does remove the effects of conditions that can be measured and controlled for (e.g. taggers 
with low skill levels, fish that were released in suboptimal condition, etc.), thereby improving 
resulting demographic estimates. Estimated correction factors (Figure 1) resulted in the number 
of releases being lower on average than the total number of releases. This has the net effect of 
supplying the stock assessment model with information suggesting higher fishing mortality rates 
and lower biomass levels compared to using uncorrected tagging data. Revised estimates should 
better reflect true fishing mortalities and biomasses as a result of improved separation of key 
mortality components: fishing-related mortality, tagging-related mortality, and natural mortality. 
Corrections were applied to the tagging data prior to input into the assessment model.   
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3. Reporting rates 
 

Tag return rates that are used to aid the estimation of exploitation rates and population biomass 
in MULTIFAN-CL assessment models must be corrected to account for the number of tagged 
fish that are recovered but not reported. Estimates of tag reporting rates are used to correct (or 
adjust) tag return rates to avoid systematically under estimating fishing mortality rates and over 
estimating fish stock biomass. These corrections need to also take into account that some tagged 
fish are recovered but not identified as such, due to tag shedding, and the mortality that occurs as 
a result of the physical tagging process. Tag seeding experiments were analysed to produce 
reporting rate prior distributions by gear, flag, tagging programme and species.  Correcting for 
reporting rates occurred during assessment model fitting and optimization procedures through 
the use of the informative prior distributions.  In the absence of other sources of information, 
reporting rates act as a multiplier on stock biomass and thus influence estimates of fishing 
mortality.    
 
The number of releases from seeding trials has nearly tripled (from 1,156 to 3,368) since the 
2011 assessments and now broadly covers the spatial extent of the main purse seine fleets in the 
WCPFC-CA (Table 5). More data and regional coverage has improved estimates, particularly for 
the Korean, Chinese-Taipei and Japanese fleets, which together account for about 40% of the 
total purse seine catch in the WCPFC convention area. Estimates for the Japanese fleet, while 
improved, were still based on very few trials and were inconsistent in some cases with empirical 
data. Therefore, the Japanese fleet was allocated a reporting rate equal to that for Chinese-Taipei, 
with a standard error equal to the maximum among all the flags.  Reporting rates for Indonesian 
and Spanish fleets were set to that estimated for the Philippines and Ecuador, respectively, given 
the similarities in fishing grounds and offloading ports as a result of insufficient data for those 
fleets. 
 
Tag reporting rates for the PTTP (Table 4) were modelled by using a generalized linear model 
(GLM) with vessel flag and tag type as explanatory variables. Point (or central tendency) 
estimates for each flag were extracted directly from the GLM. Prior distributions were estimated 
using Monte Carlo simulations (Figure 2 and 3), from which variances were estimated. Resulting 
distributions were then averaged for each region weighted by the percentage of the catch by each 
flag and input into the assessment models. Tag reporting rates for the RTTP (Table 4) remained 
the same as those previously estimated.  For the Coral Sea tagging programme, the tag reporting 
prior for the Australian longline fleet was based on expert knowledge of the fishery. Tag 
reporting rate priors were not estimated for other fisheries and programmes (Skipjack Survey and 
Assessment Programme and the Japanese Tagging Programme), due to a lack of information to 
conduct suitable analyses.  In such cases, uninformative priors were specified in the assessment 
models.  
 
The current estimates indicate a reporting rate of approximately 10% below previous estimates, 
on average.  Due to the increase in the number of releases, the priors in the current assessments 
are also significantly more informative (i.e., tighter distribution), as reflected by the high 
penalties in the regions where the seeding trials have provided more precise reporting rate 
estimates for the main fishing fleets (Table 4). 
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The process of analysing and adjusting tagging data for use in MULTIFAN-CL tuna stock 
assessments is imperative to maintain the reliability of model results.  Several important changes 
have been made to this process from previous assessments that warrant recognition. First, release 
numbers were adjusted on data aggregated at the finest scale possible to account for unusable 
recoveries to preserve population inferences (Section 1).  Second, tag shedding and tag-related 
mortality (combined base levels and additions from tagger-effects) were corrected for by 
adjusting tag releases downward by an estimated correction factor (Section 2) rather than 
incorporating them into the reporting rate prior distribution (i.e., the loss of these tags from the 
tagged population treated as tags not reported).  Third, sample sizes from tag seeding 
experiments have increased, allowing improved precision of tag reporting rate estimates (Section 
3). The exploration of candidate models using redefined regions in the skipjack assessment (from 
3 to 5 regions) and the yellowfin and bigeye assessments (from 6 to 9 regions) also signify a 
significant change in preparing tagging data from previous years.  
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Introduction 
Information on critical demographic and fishery rates can be obtained from tagging (release-
recovery) experiments, which can help inform integrated statistical catch-at-age population 
dynamic models such as those used in stock assessment (e.g., MULTIFAN-CL; Fournier et al. 
1998; Maunder and Punt 2013).   These experiments, depending on the experimental design, can 
provide information on survival, mortality components (e.g., fishing, natural, and discard), 
population abundance, movement, and growth (Hilborn 1990; Sibert et al. 1999).  However, 
estimates of “nuisance” rates such as tag shedding, tag-related mortality and tag reporting are 
also needed to alleviate potential biases that may be present in the tagging data when used in 
population models. 
 
Tags that are shed (detached or expelled from the fish) are no longer susceptible to recovery and 
thus can incorrectly inform mortality rates when not accounted for in the stock assessment.  
There are many factors associated with the physical tagging process that can be a proximate 
cause of undesired short-term delayed mortality of released fish.  The tagging process can 
increase susceptibility to disease from wound infection and capture stress, predation from 
lethargy, and various other behavioural stress reactions that can affect post-release behaviour and 
survival (Skomal 2007).  Recovered tags that go unreported, either deliberately or 
unintentionally are treated as tags that remain at liberty.  Thus, adjustments need to be made to 
the data (or in the population model) to correct for non-reporting so that ‘true’ recovery-to-
release ratios are maintained. 
 
Tuna tagging in the western and central Pacific Ocean has occurred periodically over the past 35 
years, and has resulted in nearly 800,000 tag release and over 100,000 tag recovery records 
catalogued. Tagging has been carried out predominantly through pole-and-line fishing events 
from specifically chartered vessels, where fish are captured, tagged with a conventional dart tag 
in a fish cradle, and released back into the water in just a few seconds. Information is recorded at 
the time of tagging such as date, location, fish size, and species. Precautions have been taken 
(e.g., established tag mixing periods and variance inflation) and continue to be taken (e.g., newly 
redefined regional structure) in an attempt to best meet key assumptions associated with release-
recovery tagging experiments, such as the assumption for equal probability of recovery (Kolody 
and Hoyle 2014) and independence  (Hampton and Fournier 2001). 

Tagging data preparation and analyses 
Tagging experiments can provide significant information about the dynamics of harvested fish 
populations that would otherwise be unavailable or less precise. However, such information can 
also be misleading and contribute to biased results and ill-informed management decisions if not 
properly considered. As such, three different analyses were conducted in an attempt to maximize 
the representativeness and potential accuracy of population-level inferences from tagging 
experiments used in the 2014 bigeye, skipjack, and yellowfin stock assessment.  These included:  
 

1. correcting releases for recovery data quality, 
2. estimating tagger effects to supplement release corrections for base levels of tag shedding 

and tag-related mortality, and 
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3. estimating reporting rates (prior distributions and penalty weights) to account for under-
reporting of tag recoveries.        

Analyses 1 and 2 were conducted as part of the data preparation phase, where corrections were 
applied directly to the raw release data, aggregated by tagging event and length bin, prior to use 
in the assessment model.  Corrections were applied to the number of released tags to account for 
‘unusable’ recoveries as some recovered tags were missing key pieces of supporting information 
(see Section 1 below).  Releases were also corrected for base levels of tag shedding (rate = 0.059 
from Hampton et al. 1997), base levels of tag-related mortality (rate = 0.07 from SPC OFP), and 
a ‘tagger effect’ component (sensu Hoyle et al. 2014) to capture any additional tag shedding or 
mortality arising from circumstances at the time of tagging (see Section 2 below).  Analysis 3 
was conducted outside the assessment model (see Section 3 below), but results were used as 
input prior information or fixed values in the assessment model.  Tagging analyses and data 
corrections were performed for each species and tagging programme where data were available 
(Table 1). 
 
Table 1. Overview of tagging data corrections and analyses conducted for each species and 
tagging programme.  Missing fields or incorrectly specified recovery data can result in physically 
recovered tags being unusable in MULTIFAN-CL stock assessments. 
  
Species Programme Data Correction Analyses 
   
   

Bigeye PTTP Recovery data quality, tagging mortality, shed tags, tagger effects, reporting rate 
 RTTP Recovery data quality, tagging mortality, shed tags, reporting rate 
 CSIRO  
   

Skipjack PTTP Recovery data quality, tagging mortality, shed tags, tagger effects, reporting rate 
 RTTP Recovery data quality, tagging mortality, shed tags, tagger effects, reporting rate 
 SSAP Recovery data quality, tagging mortality, shed tags 
 JP*  
   

Yellowfin PTTP Recovery data quality, tagging mortality, shed tags, tagger effects, reporting rate 
 RTTP Recovery data quality, tagging mortality, shed tags, tagger effects, reporting rate 
 CSIRO  
* Refer to WCPFC-SC10-2014/SA-WP-05 for details. 
 

1. Data extractions and corrections for recovery data quality 
Tag release and recovery information were extracted from databases held and managed by the 
Secretariat of the Pacific Community on April 28th, 2014, or were obtained with permission from 
cooperating WCPFC member nations.  Tag release events used in the 2014 tropical tuna base 
assessments were associated with the Pacific Tuna Tagging Programme (PTTP; 2006–2012), the 
Regional Tuna Tagging Project (RTTP; 1989 – 1992), the Skipjack Survey and Assessment 
Programme (SSAP; 1977 – 1982), the Commonwealth Scientific and Industrial Research 
Organisation bigeye tagging project (CSIRO; 1995 – 2001), and the Japanese skipjack tagging 
programme (JP; 1988 – 2012). The use of tagging data from the Japanese tagging program is not 
discussed further here; refer to WCPFC-SC10-2014/SA-WP-05 for more details.   
 
Tagged fish that were missing key release information (date, latitude, longitude, species, tag 
identifier, fish length) were removed from the tagging dataset (<1% of all records).  Events that 
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contained less than 10 releases in any one time period (quarter/year) and assessment region were 
removed due to the propensity for unidentifiable parameters or spurious estimates with low 
sample sizes. The resulting total number of tagging release events and tags released varied by 
species and tagging programme (Table 2).      
 
Missing fields, incorrectly specified recovery data, or recoveries outside of model regions can 
result in physically recovered tags being unusable for MULTIFAN-CL stock assessments.  This 
presents a problem preserving observed recovery-release ratios that are critical for informing 
estimates of fishing mortality and population abundance.  Thus, the number of releases was 
adjusted to account for unusable recoveries to preserve population inferences.  In order for 
recoveries to be considered ‘usable’ in MULTIFAN-CL stock assessments, information on tag 
recovery date (year and quarter), location (MULTIFAN-CL region), fleet (gear and flag), and tag 
number must be available. If any one piece of information was missing or could not be 
interpolated with high confidence, the tag could not be assigned to the appropriate assessment 
region, year, quarter, fishing fleet, and length bin in the stock assessment. Release length bins (2 
cm intervals) coincided with those used for length-frequency data in MULTIFAN-CL: range for 
bigeye = 10 – 200cm; skipjack = 2 – 110cm; yellowfin = 10 – 200cm.  Recoveries outside of 
assessment model regions (e.g., bigeye in the Eastern Pacific Ocean) were considered unusable 
at this time, and releases were also adjusted to account for these tags.  
 
For each release event (e), the number of releases in each length bin (b) was adjusted to account 
for unusable recoveries.  Correction factors (𝐶𝐹𝑒,𝑏

𝑅𝑒𝑙) were calculated according to one of the 
following three scenarios: 
 

𝐶𝐹𝑒,𝑏
𝑅𝑒𝑙 =  

⎩
⎪⎪
⎨

⎪⎪
⎧𝑅𝑒𝑐𝑒,𝑏

𝑇 > 1 𝑎𝑛𝑑 𝑅𝑒𝑐𝑒,𝑏
𝑈 > 1                                   

𝑅𝑒𝑐𝑒,𝑏
𝑈

𝑅𝑒𝑐𝑒,𝑏
𝑇

 

𝑅𝑒𝑐𝑒,𝑏
𝑇 > 1 𝑎𝑛𝑑 𝑅𝑒𝑐𝑒,𝑏

𝑈 = 0                 𝑚𝑒𝑑𝑖𝑎𝑛�
𝑅𝑒𝑐𝑒𝑈

𝑅𝑒𝑐𝑒𝑇
�

 
𝑅𝑒𝑐𝑒,𝑏

𝑇 = 0 𝑎𝑛𝑑 𝑅𝑒𝑐𝑒,𝑏
𝑈 = 0                                            1,

 

 

 

where RecT was the total recoveries and RecU was the usable recoveries.  These correction 
factors were used along with corrections for base levels of tag shedding, base levels of tag-
related mortality, and tagger effects (see Section 2) to correct the overall number of tag releases 
for use in MULTIFAN-CL stock assessments.  
 
Table 2. Summary of tag releases and recoveries by tagging programme and species. 
  

 Total Proportions Total Usable Adjusted 
Programme Releases Bigeye Skipjack Yellowfin Recoveries Recoveries Releases 
        
        

PTTP 356,132 0.09 0.63 0.28 48,164 24,058 177,891 
        

RTTP 140,605 0.06 0.66 0.28 15,496 11,817 107,220 
        

SSAP 83,905 0 1 0 4,585 3,426 62,693 
        

CSIRO* 974 0.74 0.26 0 91 91 974 
* Note that correction factors were not calculated for CSIRO releases.  
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2. Tagger effects and correction factors 
Individual tagger experience and skill can have an influence on how well tags are implanted into 
fish and the ability of fish to properly recover from the tagging process (catch, handle, tag, and 
release).  The probability of fish being exposed to conditions that relate to tag shedding (e.g., 
imprecise tag insertion) and tag-related mortality (e.g., less efficient tagging and handling 
techniques) would be expected to be lower for more experienced taggers than for taggers with 
less experience.  This occurrence results in the probability of a tag being recovered being co-
dependent upon the individual who tagged the fish, which is not a desirable feature when 
recovery rates are used to inform population parameters such as fishing mortality and biomass in 
the stock assessment model.  Thus, statistical models were used to correct the tagging data for 
potential biases associated with individual tagger effects before these data were used to inform 
the stock assessment. 

Methods 
Analyses were conducted separately for each species (bigeye, skipjack, and yellowfin) because 
of inherent differences in physiology and behaviour that would likely result in different tagger 
effect estimates and correction factors (sensu Hoyle et al. 2014). Only PTTP release events that 
occurred before January 2013 were included in these analyses as recovery rates from more recent 
events have the potential to be biased low due to recovery data time lags associated with 
reporting and data quality control. 
 
Each species-specific dataset was filtered to ensure stability with fitted statistical models while 
maintaining the maximum amount of tagging events possible. Incomplete records, small sample 
sizes, and extreme outliers were removed to further promote model stabilization and 
interpretation of the results. For example, tagging events that did not meet the minimum 
threshold for number of releases (PTTP and RTTP: SKJ=30, YFT=20, BET=15) were removed 
from consideration.  Individual taggers that did not meet the minimum threshold for number of 
fish tagged and released (PTTP: SKJ=200, YFT=200, BET=100; RTTP: SKJ=200, YFT=100, 
BET=30) were also removed.  Levels of other categorical variables that were hypothesized to 
influence tagger effects (e.g., tag quality, fish condition, and tagging station) were removed if the 
threshold release numbers were not met (PTTP: SKJ=200, YFT=200, BET=100; RTTP: 
SKJ=200, YFT=100, BET=100). The proportion of releases remaining after filtering was 
generally high (88-97%) with the only exception being for PTTP bigeye where the low number 
of fish tagged for many tagging events resulted in 68% of releases remaining. 

Tagger effects 
Tagger effects were only estimated for tag release events associated with the PTTP and RTTP.  
Other tagging programs were not evaluated for lack of sufficient or contrasting supporting data 
(i.e., tagger name, fish condition, tagging location, etc.) to model hypothesized effects.  For 
example, a few release events that occurred in the Central Pacific that were undertaken by the 
IATTC where all tagging was undertaken by two taggers who were not present in any other 
tagging events.  In this case, there was insufficient contrast in the data, raising concerns about the 
reliability of estimated coefficients, so they were excluded from the analysis. 
 
Generalized additive models (GAMs) and generalized linear models (GLMs) were used to 
evaluate which explanatory variables significantly influenced recovery rates and to estimate the 
mean effect size (change in recovery rate) resulting from the particular set of observed 
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conditions. This approach allowed for explicit quantification of how the recovery rate would be 
expected to deviate, on average, as a result of the observed set of tagging conditions relative to a 
base set of conditions. Base conditions were set to mimic optimal conditions (e.g., fish tagged by 
a very experienced tagger, fish condition was good, etc.).  The set of explanatory variables 
considered included: Event: the temporally and spatially unique tagging event during which the 
fish was tagged and released – such events essentially were equivalent to discrete tagging 
episodes on individual schools of tuna; Tagger: the individual who tagged the fish; Length: the 
fork length of fish measured in the cradle before release; Condition: the overall health or 
condition of the fish upon release categorized by ‘good’, ‘bleeding’, ‘dropped on deck’, ‘eye 
damage’, ‘hit side of boat’, ‘long time on hook’, ‘mouth damage’, ‘shark bite’ and ‘tail damage’; 
Quality: the quality of tag placement categorized by ‘good’, ‘badly placed’ and ‘too slow’; and 
Station: the location of the tagging station on the tagging vessel categorized by ‘port bow’, 
‘starboard bow’, ‘midships’, and ‘stern’ (Table 3). Overall, the models used were similar to those 
of Hoyle et al. (2014); except that several explanatory variables used in their analysis were 
excluded in this analysis (e.g. tag type) because either those authors found them to be not 
significant or as a result of unbalanced data recording issues. 
 
For the PTTP, the response variable (yi) was binary (1 – recovered, 0 - not recovered for fish i) 
and the binomial GAM with the full set of explanatory variables was given by 
 

𝑦𝑖  ~ Bernoulli(𝑝𝑖) 
 

𝑙𝑜𝑔 � 𝑝𝑖
1−𝑝𝑖

�  =  𝛽0 + 𝛽𝐸𝑣𝑒𝑛𝑡,[𝑖] + 𝑓�𝐿𝑒𝑛𝑔𝑡ℎ[𝑖]� + 𝛽𝑇𝑎𝑔𝑔𝑒𝑟,[𝑖] + 𝛽𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛,[𝑖] + 𝛽𝑄𝑢𝑎𝑙𝑖𝑡𝑦,[𝑖] + 𝛽𝑆𝑡𝑎𝑡𝑖𝑜𝑛,[𝑖], 

 
where the 𝛽𝑥,[𝑖] indicates the coefficient for each named variable (x) at the observed level for fish 
i. The 𝑓�𝐿𝑒𝑛𝑔𝑡ℎ[𝑖]� term is a tensor product smooth function of the length of fish i. Due to the large 
number of skipjack releases, the amount of computing power necessary to fit the GAM was 
prohibitive, and so an equivalent GLM with a near identical structure to the GAM model was 
fitted. The sole difference was that instead of applying the tensor product smooth function a 
natural cubic spline with 4 degrees of freedom (as determined by comparing models that allowed 
alternative degrees of freedom using AIC) was used to fit length using the ns and glm  functions 
in program R (2013). 
 
In a similar fashion, a binomial GAM was used for the RTTP release events.  The only exception 
being that the data were aggregated at the level of the individual explanatory variables, and so 
the number of successes (𝑦𝑖 recoveries) from the number of trials (𝑛𝑖 releases) was modelled as 
an indicator variable referencing groups of fish (rather than individual fish as with the PTTP due 
to data limitations). The full model was 
 

𝑦𝑖  ~ Binomial(𝑛𝑖 , 𝑝𝑖) 
 

𝑙𝑜𝑔 � 𝑝𝑖
1−𝑝𝑖

�  =  𝛽0 + 𝛽𝐸𝑣𝑒𝑛𝑡,[𝑖] + 𝑓(𝐿𝑒𝑛𝑔𝑡ℎ[𝑖]) + 𝛽𝑇𝑎𝑔𝑔𝑒𝑟,[𝑖] + 𝛽𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛,[𝑖] + 𝛽𝑄𝑢𝑎𝑙𝑖𝑡𝑦,[𝑖] + 𝛽𝑆𝑡𝑎𝑡𝑖𝑜𝑛,[𝑖], 
 
where i now subscripts an aggregated group of fish for each unique set of categorical levels 
across the explanatory variables in the model. 
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Model selection for each of the six unique datasets (three species for each of the PTTP and 
RTTP) was undertaken using backwards elimination on the basis of AIC.  Only the best model 
was used for identifying significant variables, making statistical inferences, and developing 
correction factors. 
 
Table 3. Summary of tagging data attributes used in tagger effect models. 
 

   PTTP  RTTP 
Variable (type) Metric/Level BET SKJ YFT  BET SKJ YFT 
          

Event (numbers) Count 147 888 719  67 561 356 
          

Taggers (numbers) Count 18 39 29  15 21 23 
          

Length (cm) Range 25-115 25-77 27-118  20-135 20-80 20-140 
          

Quality (proportions) Good >0.99 >0.99 >0.99  0.99 0.97 0.98 
  Badly placed <0.01 <0.01 <0.01  <0.01 0.03 0.02 
  Too slow <0.01  -  -  <0.01  - <0.01 
          

Condition (proportions) Good 0.89 0.95 0.94  0.94 0.93 0.93 
  Bleeding 0.03 <0.01 <0.01  0.02 0.02 0.03 
  Dropped 0.01 0.02 0.03   - 0.02 0.02 
  Mouth damage 0.04 <0.01 0.01   - <0.01 <0.01 
  Shark bite 0.01 0.01 <0.01  0.03 0.02 0.01 
  Eye damage <0.01  - <0.01   -  -  - 
  Hit side boat  -  -  -   - <0.01  - 
          

Station (proportions) Port bow 0.08 0.37 0.38  0.21 0.54 0.44 
  Mid-ship 0.08 <0.01 <0.01  0.25 <0.01 0.05 
  Starboard bow 0.25 0.33 0.30   -  -  - 
  Stern 0.59 0.29 0.32  0.54 0.45 0.52 

 

Correction factors 
Correction factors were developed for each species and tagging program (RTTP and PTTP) 
combination from the best tagger effect model results.  These corrections adjust the number of 
releases downwards to account for 1) base levels of tag shedding and tag-related mortality (that 
which would occur even under ‘optimal’ tagging conditions) and 2) additional levels as a result 
of the particular tagging conditions present at each tagging event. Base level corrections are 
required to satisfy the assumption that survival of tagged and untagged fish remains equivalent. 
Corrections do not account for all tagging induced mortality and tag shedding, but it does remove 
the effects of conditions that can be measured and controlled for (e.g. taggers with low skill 
levels, fish that were released in suboptimal condition, etc.), thereby improving resulting 
demographic estimates.  
 
Using the tagging events that were modelled, correction factors were estimated by first obtaining 
the fitted values for each tagged fish on the nominal scale (i.e., the probability of recovery given 
the observed values of each explanatory variable) for each dataset (species and tagging 
programme). Next, the predicted probability of recovery for each tagged individual under 
‘optimal’ conditions was calculated by applying the modelled coefficients at the specified 
‘optimal’ level for each factor. For example, the fitted values for skipjack in the PTTP would be 
calculated as 
 

𝜇𝑖
𝑓𝑖𝑡 = 𝑙𝑜𝑔𝑖𝑡−1�𝛽0 + 𝛽𝐸𝑣𝑒𝑛𝑡,[𝑖] +  𝑓(𝐿𝑒𝑛𝑔𝑡ℎ[𝑖])+ 𝛽𝑇𝑎𝑔𝑔𝑒𝑟,[𝑖] + 𝛽𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛,[𝑖] + 𝛽𝑄𝑢𝑎𝑙𝑖𝑡𝑦,[𝑖] + 𝛽𝑆𝑡𝑎𝑡𝑖𝑜𝑛,[𝑖]� , 

11 
 



 
where the value of each 𝛽𝑥,[𝑖] was the coefficient for the observed factor level for fish i, and 
𝑓(𝐿𝑒𝑛𝑔𝑡ℎ[𝑖]) was the value of the smoothing function at the observed length of fish i.  The 
prediction under ‘optimal’ conditions would be calculated as 
 
𝜇𝑖
𝑜𝑝𝑡 = 𝑙𝑜𝑔𝑖𝑡−1�𝛽0 + 𝛽𝐸𝑣𝑒𝑛𝑡,[𝑖] + 𝑓(𝐿𝑒𝑛𝑔𝑡ℎ[𝑖]) + 𝛽𝑇𝑎𝑔𝑔𝑒𝑟,["𝐵𝑀𝐿"] + 𝛽𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛,["𝐺𝑜𝑜𝑑"] + 𝛽𝑄𝑢𝑎𝑙𝑖𝑡𝑦,["𝐺𝑜𝑜𝑑"] + 𝛽𝑆𝑡𝑎𝑡𝑖𝑜𝑛,["Port bow"]�, 

 
where 𝛽𝑇𝑎𝑔𝑔𝑒𝑟,["𝐵𝑀𝐿"] , 𝛽𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛,["𝐺𝑜𝑜𝑑"] , 𝛽𝑄𝑢𝑎𝑙𝑖𝑡𝑦,["𝐺𝑜𝑜𝑑"]  and  𝛽𝑆𝑡𝑎𝑡𝑖𝑜𝑛,["Port bow"]  were the ‘optimal’ 
condition coefficients. The coefficient for Event was for the observed event for tagged fish i, and 
was not set to an ‘optimal’ condition in order to preserve the influence of this variable because it 
is related to spatial fishing dynamics which are explicitly dealt with in the stock assessment 
model proper. Similarly, the length of observed tagged fish (𝐿𝑒𝑛𝑔𝑡ℎ[𝑖]) was also preserved 
because the effect of fish length on recovery rates is characterized in the stock assessment model 
itself through selectivity parameters. 
 
Correction factor calculations were carried out efficiently in program R (2013) using the 
predict.glm function. The correction factor for event j can then be calculated as the mean ratio of 
the predictions for the observed and ‘optimal’ conditions, 
 

𝑟𝑗 = 1
𝑛𝑗
∑

𝜇𝑗,𝑖
𝑓𝑖𝑡

𝜇𝑗,𝑖
𝑜𝑝𝑡

𝑛𝑗
𝑖=1 , 

 
where 𝑛𝑗  is the number of tagged fish released in during release event j. The total number of 
releases for event j was then adjusted by the correction factor (𝑟𝑗) for event j. 
 
For events that were not modelled (generally due to sample sizes), releases were adjusted in a 
similar manner by replacing missing or unidentifiable coefficients with the median coefficient 
value across all other factor levels.  In cases where a particular tagger was excluded because they 
didn’t meet the minimum sample size (number of fish tagged) threshold, for example, that tagger 
was assigned the median coefficient across all taggers that did meet the minimum tagging 
threshold. 

Results 
The full model with all explanatory variables retained was selected as the best model for skipjack 
and yellowfin in the PTTP, while for bigeye the best model retained all variables except Station. 
For the RTTP, model selection procedures tended to pick more simplified models; the exception 
being skipjack where the full model was identified as the best fit. The best yellowfin model for 
this programme retained all variables except Quality, and the best bigeye model retained only the 
variable Event. 
 
Estimated correction factors (Figure 1) resulted in the number of releases being lower on average 
than the total number of releases. This has the net effect of supplying the stock assessment model 
with information suggesting higher fishing mortality rates and lower biomass levels compared to 
using uncorrected tagging data. Revised estimates should better reflect true fishing mortalities 
and biomasses as a result of improved separation of key mortality components: fishing-related 
mortality, tagging-related mortality, and natural mortality.  For the PTTP, the median correction 
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factor was 0.68, 0.76 and 0.73 for bigeye, skipjack, and yellowfin respectively. For the RTTP, 
the median correction factor was 0.80 for skipjack and 0.76 for yellowfin. There was no 
available correction factor for bigeye in the RTTP because no correction variables were present 
in the selected best model (likely a result of sparse bigeye tagging data in the RTTP). 
 

 
 
Figure 1. Boxplots showing the range of estimated correction factors that were applied to tag 
release events to adjust the number of tag releases for the influence of tagger effects on shedding 
and tag-related mortality.  The central bar represents the overall median.  
 

3. Reporting rates 
Tag return rates that are used to aid the estimation of exploitation rates and population biomass 
in MULTIFAN-CL assessment models must be corrected to account for the number of animals 
that are recovered but not reported. Estimates of tag reporting rates are used to correct (or adjust) 
tag return rates to avoid systematically under estimating fishing mortality rates and over 
estimating fish stock biomass. These corrections need to also take into account that some tagged 
fish are recovered but not identified as such, due to tag shedding, and the mortality that occurs as 
a result of the physical tagging process. 
 
In the previous tropical tuna assessment in the WCPFC-CA (2011), estimated tag reporting rates 
included corrections for tagging failure stemming from tagging-related mortality and tag 
shedding (Hoyle, 2011). For 2014 assessments, it was decided in accordance with the Pre-
Assessment Workshop (WCPFC-SC10-2014/SA-IP-07) to correct the number of released tags to 
account for tagging failure (i.e., adjust the releases downwards; see Section 2 above) in an 
attempt to minimize the variance associated with the reporting rate estimates themselves (and 
hence tighten the reporting prior distributions).  Excessively wide reporting rate prior 
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distributions effectively give the assessment model leniency to make large model fitting 
adjustments that may not be related to tag reporting at all, but rather to other model 
inconsistencies.  The approach used here along with more available data helped to alleviate some 
of the model instability encountered in previous assessments from reporting rate estimates being 
at or close to parameter boundaries.  It also had the advantage of directly linking estimates of 
tagging failure to the tagging process itself (i.e., tags implanted into fish that die from physically 
being tagged and/or shed their tag should not be counted as a release available for recovery).  
The main disadvantage of this approach was that only point estimates of tagging failure were 
used to adjust tag releases. 
 
There are various ways of estimating tag reporting rates. Some attempts have been carried out 
using empirical tagging data assuming a 100% reporting rate for a segment of the fleet (e.g. boats 
with observers on-board) or for high-reward tags (e.g., Brownie et al., 1985; Pollock et al. 2001, 
2002). However, these methods rely on several assumptions, including time-invariant reporting, 
100% detection, and reporting of all the tagged fish recovered in a component of the fishery.  
Alternatively, tag seeding experiments allow direct estimation of tag reporting rates for fishery 
components consistent with the  experimental design (e.g. at the gear, flag and tagging program 
level) by secretly tagging fish once they are caught and then determining the number of those 
tags that are finally reported. 

Methods 
Tag reporting rates for the Pacific Tuna Tagging Programme (PTTP; Table 4) were estimated 
from tag seeding experiments carried out by trained observers aboard purse seiners of different 
nationalities throughout the WCPO between 2007 and 2012. Two types of tags were seeded in 
the WCPFC area: the conventional plastic anchor tags and stainless steel anchor tags.  Both tag 
types had similar streamer and tethering; the only difference being the substance of the barbed 
anchor head.  Data from 188 observer trips, with an average of 20.08 (± 7.56) tags seeded per 
trip, was available for the analyses (Table 5). 
 
Conventional seeded tags were thought to have a lower reporting rate than conventional 
regularly deployed tags due to a lower retention of seeded tags inserted into dead and often 
frozen fish. Consequently, reporting rates were only estimated for steel anchor tags, under the 
assumption (based on experienced taggers advice) that they do not shed. 
 
Reporting rates were modelled in the statistical package R (R Core Team, 2013) by updating the 
procedure described in Hoyle (2011). Briefly, reporting rates were modelled by using a 
generalized linear model (GLM) with a quasibinomial error distribution and vessel flag and tag 
type as explanatory variables. Point estimates for each flag were produced using the predict 
method for GLM fitted models using the “stats” R package.  Variances were interpolated for 
each flag from reporting rate prior distributions that were estimated through Monte Carlo 
simulation by sampling from the probability distribution of the flag (Figure 2) and tag (Figure 3) 
terms.  The distributions were then averaged for each region weighted by the percentage of the 
catch by each flag.  The analysis was repeated for bigeye, skipjack, and yellowfin.  
 
Tag reporting rates for the Regional Tuna Tagging Project (RTTP; Table 4) remained the same 
as those previously estimated (Hampton, 1997).  For the Coral Sea tagging programme, the tag 
reporting prior for the Australian longline fleet in the yellowfin and bigeye assessment model  
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Table 4.  Reporting rate prior distribution parameters for purse seine all fleets per species, region, 
and tagging program.  The penalty term is used in MULTIFAN-CL and is inversely related to the 
variance of the distribution. 
 

  
 

PTTP  RTTP 
Species Region 

 

mean penalty  Mean penalty 

Skipjack 

2  0.62 43  0.59 84 

3  0.55 151  0.59 84 

5  0.68 82  0.59 84 

Bigeye 

3  0.59 89  0.59 84 

4  0.58 33  0.59 84 

7  0.59 89  0.59 84 

8  0.70 163  0.59 84 

Yellowfin 

3  0.62 70  0.59 84 

4  0.56 157  0.59 84 

7  0.62 70  0.59 84 

8  0.72 157  0.59 84 
        

 
 
Table 5.  Summary of seeding trials aboard purse seine vessels in the WCPFC-CA during the 
period 2007-2012 by flag and tag type (S13: steel anchor tag; Y13: plastic anchor tag). 
 

    Releases  Recoveries  Nominal reporting rates 

Flag % 
Catch No. Kits  S13 Y13  S13 Y13  S13 Y13 Average 

             

KR 15 73  474 373  169 169  0.36 0.45 0.40 
JP 13.5 4  17 9  5 1  0.29 0.11 0.23 
PG 12.5 8  25 90  16 77  0.64 0.86 0.81 
US 12.5 68  823 260  533 112  0.65 0.43 0.60 
TW 11.7 9  35 87  28 51  0.80 0.59 0.65 
PH 10.9 40  302 305  250 234  0.83 0.77 0.80 
ID 4 -  - -  - -  - - - 
CN 3.6 6  39 41  20 14  0.51 0.34 0.43 
MH 3.5 12  122 107  37 30  0.30 0.28 0.29 
VU 2.2 14  118 137  87 89  0.74 0.65 0.69 
ES 1.8 -  - -  - -  - - - 
KI 1.6 16  87 109  55 54  0.63 0.50 0.56 
NZ 1.6 3  - 58  - 1  - 0.02 0.02 
FM 1.4 5  29 9  7 5  0.24 0.56 0.32 
VN 1.3 -  - -  - -  - - - 
SB 1.1 8  28 27  28 26  1.00 0.96 0.98 
EC 1 2  10 15  10 11  1.00 0.73 0.84 
SV 0.6 6  14 15  0 0  0.00 0.00 0.00 
TV 0.3 -  - -  - -  - - - 

             

Total 100 274  2123 1642  1245 874  0.59 0.53 0.56 
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regions 5 and 9 was set at 0.8 (penalty set to 50) based on expert knowledge of the fishery. Tag 
reporting rate priors were not estimated for other fisheries and programmes (Skipjack Survey and 
Assessment Programme and the Japanese Tagging Programme), due to a lack of information to 
conduct suitable analyses.  In such cases, uninformative priors were specified in the assessment 
models. 
 

Results 
Since the previous tropical tuna assessments (2011), the number of releases from seeding trials 
has nearly tripled (from 1,156 to 3,368) and now broadly covers the spatial extent of the main 
purse seine fleets in the WCPFC-CA (Table 5). In the absence of other sources of information, 
reporting rates act as a multiplier on stock biomass and thus influence estimates of fishing 
mortality. Hence, it is important to have a good understanding of tag reporting to have an 
accurate evaluation of stock status.  More data and better regional coverage have improved 
estimates, particularly for the Korean, Chinese-Taipei and Japanese fleets, which together 
account for about 40% of the total purse seine catch in the WCPFC convention area. Estimates 
for the Japanese fleet, while improved, were still based on very few trials and were inconsistent 
in some cases with empirical data (e.g., the relative number of tags returned by the Japanese fleet 
was at odds with others with a similar spatial distribution). Therefore, the Japanese fleet was 
allocated a reporting rate equal to that for Chinese-Taipei, with a standard error equal to the 
maximum among all the flags.  Reporting rates for Indonesian and Spanish fleets were set to that 
estimated for the Philippines and Ecuador, respectively, given the similarities in fishing grounds 
and offloading ports as a result of insufficient data for those fleets. 
 
Overall, current estimates range between 10-20% higher than the ones previously estimated by 
Hoyle (2011). This is predominantly an artefact of the different approaches taken and not the 
reporting rate itself.  For instance, Hoyle’s estimates included the effects of tag failure (current 
approach accounts for tag failure separate from tag reporting rates), which overall imply a 
reduction in the reporting rate of about 24% (6% base tag loss, 7% base mortality, and 13% 
average tagger effect). Therefore, the current estimates indicate a reporting rate of approximately 
10% below previous estimates, on average.  Due to the increase in the number of releases, the 
priors in the current assessments are also significantly more informative (i.e., tighter 
distribution), as reflected by the high penalties in the regions where the seeding trials have 
provided more precise reporting rate estimates for the main fishing fleets (Table 4). 
 
The analysis assumes that the explanatory variable flag is the main factor affecting tag reporting 
rates, but it is possible that other factors related to fish processing (offloading port, fish 
processor, region, etc.) may also be influential factors.  Although current estimates are 
considered a significant improvement in our knowledge of reporting rates, the significance of 
this parameter on assessment model outcomes supports the need for ongoing research, including 
continued tag seeding trials.  

Discussion 
The process of preparing tagging data for use in MULTIFAN-CL tuna stock assessments is 
imperative to maintain the reliability of model results.  Several important changes have been 
made to this process from previous assessments that warrant recognition. First, release numbers  
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Figure 2.  Reporting rate by flag, based on a quasibinomial generalized linear model 
with flag and tag type as explanatory variables. 

 
 
 

 

Figure 3.  Reporting rate by tag type, based on a quasibinomial model with flag and tag 
type (S13: steel anchor tag; Y13: plastic anchor tag) as explanatory variables. 
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were adjusted to account for unusable recoveries to preserve population inferences (See Section 
1). These adjustments were performed on data aggregated at the smallest scale possible (release 
event and length bin), while retaining the data input structure necessary for the assessment 
model. Previously, adjustments for unusable recoveries were done at the release event level. 
Finer scale adjustments require more recordkeeping, but act directly on the sampling unit of 
interest rather than applying a single adjustment to all fish by release event, regardless of size. 
 
Second, tag shedding and tag-related mortality (combined base levels and additions from tagger-
effects) were corrected for by adjusting tag releases downward by an estimated correction factor 
(see Section 2) rather than incorporating them into the reporting rate prior distribution (i.e., the 
loss of these tags from the tagged population treated as tags not reported).  The latter has the 
effect of widening the reporting rate prior distribution, which gives the assessment model more 
freedom to adjust reporting rate parameters in an attempt to fit other data source discrepancies in 
the model (e.g., catch, CPUE trends) that are not related to tag reporting rates themselves.  The 
former was the approach used in the 2014 assessments and, by accounting for the loss of tags 
more directly through adjusted releases, maintained the estimated reporting rate prior 
distributions at their most informative level (see Section 3).  The disadvantage is that only the 
point estimates from tagger-effect models were used (in combination with base levels) to adjust 
releases, uncertainty in those effects were ignored. 
 
Third, sample sizes from tag seeding experiments have increased, allowing improved precision 
of tag reporting rate estimates (Section 3). The more informative (less variance) prior 
distributions that result should help to improve model stability and limit model fitting 
adjustments that may not be related to tag reporting at all.  
 
The exploration of candidate models using redefined regions in the skipjack assessment (from 3 
to 5 regions) and the yellowfin and bigeye assessments (from 6 to 9 regions) also signify a 
significant change in preparing tagging data from previous years.  The decision to split 
previously defined regions into smaller ones was, among other things, to better meet tag mixing 
assumptions and to improve fishing fleet definitions for assigning catchability and selectivity 
parameters.  Tagging events – defined by tagging programme, year, quarter and region – 
increased by 43 to 65% as a result of moving to more regions.  This resulted in more tagged 
populations to integrate into the assessment model, longer computing times on average to 
optimize models, and smaller sample sizes on average per tagging event.     

References 
 
Brownie C., Anderson D.R., Burnham K.P., Robson D.S. (1985). Statistical Inference from Band 
Recovery Data: a Handbook. U.S. Fish and Wildlife Service Resource Publication. 
 
Fournier, D.A., J. Hampton, and J.R. Sibert. 1998. MULTIFAN-CL: a length-based, age-
structured model for fisheries stock assessment, with application to South Pacific albacore, 
Thunnus alalunga. Canadian Journal of Fisheries and Aquatic Sciences 55: 2105-2116. 
 
Hampton, J., and Fournier, D.A. 2001. A spatially-disaggregated, length-based, age-structured 

18 
 



population model of yellowfin tuna (Thunnus albacares) in the western and central Pacific 
Ocean. Marine and Freshwater Research 52:937−963. 
 
 
Hilborn, R. 1990. Determination of fish movement patterns from tag recoveries using maximum 
likelihood estimators. Canadian Journal of Fisheries and Aquatic Sciences 47: 635-643.  
  
Hoyle S. (2011). Tag reporting rate prior distribution for the 2014 bigeye, yellowfin and skipjack 
stock assessments. WCPFC-SC7-2011/SA-IP-10. 
 
Hoyle, S., B.M. Leroy, S.J. Nicol, and W.J. Hampton. 2014 - In press.  Covariates of release 
mortality and tag loss in large-scale tuna tagging experiments.  Fisheries Research. Available 
online 27 March 2014. 
 
Hampton J. (1997). Estimates of tag-reporting and tag-shedding rates in a large-scale tuna 
tagging experiment in the western tropical Pacific Ocean. Fishery Bulletin 95, 68-79. 
 
Kolody, D. and S. Hoyle. In press - 2014. Evaluation of tag mixing assumptions in western 
Pacific Ocean skipjack tuna stock assessment models. Fisheries Research.  Available online 12 
June 2014. 
 
Maunder, M.N. and A.E. Punt. 2013. A review of integrated analysis in fisheries stock 
assessment. Fisheries Research 142: 61-74. 
 
Pollock K.H., Hoenig J.M., Hearn W.S., Calingert B. (2001). Tag reporting rate estimation: 1 An 
evaluation of the high-reward tagging method. N. Am. J. Fish. Manage. 21, 521–532. 
 
Pollock K.H., Hearn W.S., Polacheck T. (2002). A general model for tagging on multiple 
component fisheries: an integration of age-dependent reporting rates and mortality estimation. 
Environ. Ecol. Stat. 9, 57–69. 
 
R Core Team (2013). R: A language and environment for statistical computing. R Foundation for 
Statistical Computing, Vienna, Austria.  ISBN 3-900051-07-0, URL http://www.R-project.org/. 
 
Sibert, J.R., J. Hampton, D.A. Fournier, and P.J. Billis.  1999. An advection-diffusion-reaction 
model for the estimation of fish movement parameters from tagging data, with application to 
skipjack tuna (Katsuwonus pelamis). Canadian Journal of Fisheries and Aquatic Sciences 56: 
925-938. 
 
Skomal, G.B. 2007. Evaluating the physiological and physical consequences of capture on post-
release survivorship in large pelagic fishes.  Fisheries Management and Ecology 14: 81-89. 
  

19 
 

http://www.r-project.org/


Appendices 
Generalized and shortened versions of programming code are shown for the analysis that 
estimated the correction factors that accounted for individual tagger effects above base levels of 
tag shedding and short-term tag-related mortality (Appendix 1; referring to Section 2), and tag 
reporting rates by flag and region (Appendix 2; referring to Section 3).  A request for the full 
program R code may be made by contacting simonn@spc.int.   
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Appendix 1.  Program R code used to estimate tagger effect correction factors. 
#####MODIFIED FROM S. HOYLE (2011) 
#This script estimates relative differences in the probability of recovery associated with tagger 
effects for three species and two tagging programmes (PTTP, RTTP). 
 
#Load libraries 
require(splines) 
library(MASS) 
library(xtable) 
library(mgcv) 
#_______________________________________________________________________________ 
##### EXTRACT AND STORE PTTP DATA 
# Source support functions need for calculations 
infile = ""  #data file inserted here 
tag.all = infile  #specific tag data editing/cleaning omitted here for brevity 
 
# Construct binary response variable 
tag.all$relrec = ifelse(tag.all$recap == 'FALSE', 0, 1) 
     
# Extract the year from the date string and use only up to 2012 for 2014 assessments 
tag.all$rel_yr = as.numeric(substring(tag.all$rel_date,1,4)) 
tag.all = tag.all[tag.all$rel_yr < 2013,] 
 
# Save for use later in the 'Correction of effective releases' section 
save(tag.all, file='tag.dat_Uncleaned.RData') 
 
#_______________________________________________________________________________ 
###### PROCESS DATA (shown for Skipjack only, but same general procedure for bigeye and yellowfin 
load('tag.dat_Uncleaned.RData') 
tag.spp = tag.all[tag.all$sp_id == 'S',]                     #extract for skipjack only ('S') 
event.keep = table(tag.spp$tag_sch_id)                       # Table of number of releases by 
tagging event 
event.names = names(event.keep[event.keep > 29])             # Identify tagging events with >= 30 
skj releases  (>=20 for YFT and >=15 for BET) 
tag.spp = tag.spp[tag.spp$tag_sch_id in event.names,]      # Only keep those with >= 30 due to 
sample size considerations 
     
#Remove records with variables with low frequencies ~ <200, preliminary models suggested 
parameter identitiy problems at low freequencies 
table(tag.spp$cradle2) 
table(tag.spp$Cond) 
tag.spp = tag.spp[!(tag.spp$Cond in c('Eye damage','Hit side of boat','Tail damage')),] 
table(tag.spp$Qual) 
tag.spp = tag.spp[!tag.spp$Qual == 'Too slow',] 
 
# Remove taggers with less than 200 releases 
tagger.keep = table(tag.spp$tagger)                      # Number of releases by tagger 
tagger.names = names(tagger.keep[tagger.keep > 199])     # Identify taggers with >= 200 skj 
releases (>=200 for YFT and >=100 for BET) 
tag.spp = tag.spp[tag.spp$tagger in tagger.names,]     # Only keep those with >= 200 
tag.spp = tag.spp[!tag.spp$tagger in c('KMS','DWF'),]  # For BET only - IATTC taggers 
 
event.keep = table(tag.spp$tag_sch_id) 
event.names = names(event.keep[event.keep > 29]) 
tag.spp = tag.spp[tag.spp$tag_sch_id in event.names,] 
           
# Set character strings to factors 
tag.fct = sapply(tag.spp, is.character) # which variables are characters 
tag.spp[tag.fct] = lapply(tag.spp[tag.fct], as.factor) 
 
# Save it 
write.csv(tag.spp, file='tag.dat_AsModelled_skj.csv') 
 
#_______________________________________________________________________________ 
# Load PTTP data, run models, save model objects - SKJ 
tag.spp = read.csv('tag.dat_AsModelled_skj.csv') 
tag.spp$tag_sch_id = as.factor(tag.spp$tag_sch_id)   # Change from an integer to a factor 
 
# Run GLMs with spline for length. Note: tested with dfs of 3 and 5 and confirmed that 4 was most 
parsimonious (effective df of a prelim GAM was close to 4 too) 
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Bin.tag.correct = glm(relrec ~ tagger + ns(len5, df=4) + tag_sch_id + Cond + Qual + cradle2, 
data=tag.spp, family=binomial("logit")) 
  save(Bin.tag.correct, file='Bin.Mod.pttp_skj_full.RData') 
Bin.tag.correct = glm(relrec ~ tagger + ns(len5, df=4) + tag_sch_id + Cond + Qual, data=tag.spp, 
family=binomial("logit")) 
  save(Bin.tag.correct, file='Bin.Mod.pttp_skj_cradle.RData') 
Bin.tag.correct = glm(relrec ~ tagger + ns(len5, df=4) + tag_sch_id + Cond + cradle2, 
data=tag.spp, family=binomial("logit")) 
  save(Bin.tag.correct, file='Bin.Mod.pttp_skj_qual.RData') 
Bin.tag.correct = glm(relrec ~ tagger + ns(len5, df=4) + tag_sch_id + Qual + cradle2, 
data=tag.spp, family=binomial("logit")) 
  save(Bin.tag.correct, file='Bin.Mod.pttp_skj_cond.RData') 
Bin.tag.correct = glm(relrec ~ tagger + ns(len5, df=4) + Cond + Qual + cradle2, data=tag.spp, 
family=binomial("logit")) 
  save(Bin.tag.correct, file='Bin.Mod.pttp_skj_event.RData') 
Bin.tag.correct = glm(relrec ~ tagger + tag_sch_id + Cond + Qual + cradle2, data=tag.spp, 
family=binomial("logit")) 
  save(Bin.tag.correct, file='Bin.Mod.pttp_skj_length.RData') 
Bin.tag.correct = glm(relrec ~ ns(len5, df=4) + tag_sch_id + Cond + Qual + cradle2, data=tag.spp, 
family=binomial("logit")) 
  save(Bin.tag.correct, file='Bin.Mod.pttp_skj_tagger.RData') 
 
#Get AIC values 
load('Bin.Mod.pttp_skj_full.RData'); aic = AIC(Bin.tag.correct) 
load('Bin.Mod.pttp_skj_cradle.RData'); aic = c(aic,AIC(Bin.tag.correct)) 
load('Bin.Mod.pttp_skj_cond.RData'); aic = c(aic,AIC(Bin.tag.correct)) 
load('Bin.Mod.pttp_skj_event.RData'); aic = c(aic,AIC(Bin.tag.correct)) 
load('Bin.Mod.pttp_skj_length.RData'); aic = c(aic,AIC(Bin.tag.correct)) 
load('Bin.Mod.pttp_skj_tagger.RData'); aic = c(aic,AIC(Bin.tag.correct)) 
load('Bin.Mod.pttp_skj_qual.RData'); aic = c(aic,AIC(Bin.tag.correct)) 
 
# Results table 
Modl = c('Full','-Cradle','-Cond','-tag_sch_id','-Len','-Tagger','-Qual') # Model names 
newtab = xtable(cbind(Modl,aic=round(aic,1),chngAIC=round(aic-min(aic),2))) # Construct xtable 
for printing 
print.xtable(newtab, type='html', file='GLM_Model_Selection_skj_PTTP.html') 
 
#Examples of GAMS run for BET 
#Bin.tag.correct = gam(relrec ~ tagger + te(len5) + tag_sch_id + Cond + cradle2, data=tag.spp, 
family=binomial, control=list##(maxit=200)); r.sq = summary(Bin.tag.correct)$r.sq; dev.ex = 
summary(Bin.tag.correct)$dev.expl; aic = AIC(Bin.tag.correct) 
 
#Examples of GAMS run for YFT    
#Bin.tag.correct = gam(relrec ~ tagger + te(len5) + tag_sch_id + Cond + Qual + cradle2, 
data=tag.spp, family=binomial, control#=list(maxit=200)) 
       
#AIC diagnostics not shown here 
 
#_______________________________________________________________________________ 
#_______________________________________________________________________________ 
#Extract and store RTTP data 
 
# Load data 
infile = ""         #data file inserted here 
rtag.all = infile  #specific tag data editing\cleaning omitted here for brevity 
     
# Check the total number of releases per tagging event 
sort(tapply(rtag.all$totrel,rtag.all$tag_sch_id,sum)) 
 
# Save full cleaned data file 
save(rtag.all, file='rtag.dat_AsModelled.RData') 
     
#_______________________________________________________________________________ 
###### PROCESS DATA (shown for Skipjack only, but same general procedure for bigeye and yellowfin 
rtag.all.skj = rtag.all[rtag.all$sp == 'a.SKJ',]   # SKJ 
sort(tapply(rtag.all.skj$totrel,rtag.all.skj$tag_sch_id,sum)) 
 
# Cull tagging events with less than 30 fish tagged (20 for YFT and 15 for BET) 
event.keep = tapply(rtag.all.skj$totrel,rtag.all.skj$tag_sch_id,sum)    
event.names = names(event.keep[event.keep > 29])  
rtag.all.skj = rtag.all.skj[rtag.all.skj$tag_sch_id in event.names,]   

22 
 



 
# Cull taggers with less than 200 fish tagged  (100 for YFT and 30 for BET) 
sort(tapply(rtag.all.skj$totrel,rtag.all.skj$tagger,sum)) 
tagger.keep = tapply(rtag.all.skj$totrel,rtag.all.skj$tagger,sum)    
tagger.names = names(tagger.keep[tagger.keep > 199])  
rtag.all.skj = rtag.all.skj[rtag.all.skj$tagger in tagger.names,] 
 
# Get rid of data from other categories with less than X fish tagged 
tapply(rtag.all.skj$totrel,rtag.all.skj$cradle2,sum)   # All good, no culling necessary for SKJ, 
YFT, and BET 
tapply(rtag.all.skj$totrel,rtag.all.skj$Cond,sum) 
rtag.all.skj = rtag.all.skj[!rtag.all.skj$Cond == 'Tail damage',]   # < 200  (BET < 100; YFT < 
100) 
tapply(rtag.all.skj$totrel,rtag.all.skj$Qual,sum) 
rtag.all.skj = rtag.all.skj[!rtag.all.skj$Qual == 'Too slow',]   # < 200 (BET - not available;  
YFT all good so no cull) 
 
# Ensure that tagging events with < 30 releases are removed   (redundant if no cleaning done made 
above) 
event.keep = tapply(rtag.all.skj$totrel,rtag.all.skj$tag_sch_id,sum) 
event.names = names(event.keep[event.keep > 29]) 
rtag.all.skj = rtag.all.skj[rtag.all.skj$tag_sch_id in event.names,] 
tag.spp = rtag.all.skj 
 
save(tag.spp, file='rtag_AsModelled_SKJ.RData') 
 
#_______________________________________________________________________________ 
# Load RTTP data, run models, save model objects - SKJ 
 
load('rtag_AsModelled_SKJ.RData') 
tag.spp$tagger=as.factor(tag.spp$tagger);tag.spp$tag_sch_id=as.factor(tag.spp$tag_sch_id);tag.spp
$Cond=as.factor(tag.spp$Cond);tag.spp$Qual=as.factor(tag.spp$Qual);tag.spp$cradle2=as.factor(tag.
spp$cradle2)     # Set to factor 
 
# Run GAMs 
Bin.tag.correct = gam(relrec ~ tagger + te(len5) + tag_sch_id + Cond + Qual + cradle2, 
data=tag.spp, family=binomial, control   =list(maxit=200)) r.sq = summary(Bin.tag.correct)$r.sq; 
dev.ex = summary(Bin.tag.correct)$dev.expl; aic = AIC(Bin.tag.correct) 
   save(Bin.tag.correct, file='Bin.Mod.rttp_skj.RData') 
 
Bin.tag.correct = gam(relrec ~ as.factor(tagger) + te(len5) + as.factor(tag_sch_id) + 
as.factor(Cond) + as.factor(Qual), data=tag.spp, family=binomial, control=list(maxit=200)); r.sq 
= c(r.sq,summary(Bin.tag.correct)$r.sq); dev.ex = c(dev.ex,summary(Bin.tag.correct)$dev.expl); 
aic = c(aic,AIC(Bin.tag.correct)) 
 
Bin.tag.correct = gam(relrec ~ as.factor(tagger) + te(len5) + as.factor(tag_sch_id) + 
as.factor(Cond) + as.factor(cradle2), data=tag.spp, family=binomial, control=list(maxit=200)); 
r.sq = c(r.sq,summary(Bin.tag.correct)$r.sq); dev.ex = 
c(dev.ex,summary(Bin.tag.correct)$dev.expl); aic = c(aic,AIC(Bin.tag.correct)) 
 
Bin.tag.correct = gam(relrec ~ as.factor(tagger) + te(len5) + as.factor(tag_sch_id) + 
as.factor(Qual) + as.factor(cradle2), data=tag.spp, family=binomial, control=list(maxit=200)); 
r.sq = c(r.sq,summary(Bin.tag.correct)$r.sq); dev.ex = 
c(dev.ex,summary(Bin.tag.correct)$dev.expl); aic = c(aic,AIC(Bin.tag.correct)) 
 
Bin.tag.correct = gam(relrec ~ as.factor(tagger) + te(len5) + as.factor(Cond) + as.factor(Qual) + 
as.factor(cradle2), data=tag.spp, family=binomial, control=list(maxit=200)); r.sq = 
c(r.sq,summary(Bin.tag.correct)$r.sq); dev.ex = c(dev.ex,summary(Bin.tag.correct)$dev.expl); aic 
= c(aic,AIC(Bin.tag.correct)) 
 
Bin.tag.correct = gam(relrec ~ as.factor(tagger) + as.factor(tag_sch_id) + as.factor(Cond) + 
as.factor(Qual) + as.factor(cradle2), data=tag.spp, family=binomial, control=list(maxit=200)); 
r.sq = c(r.sq,summary(Bin.tag.correct)$r.sq); dev.ex = 
c(dev.ex,summary(Bin.tag.correct)$dev.expl); aic = c(aic,AIC(Bin.tag.correct)) 
 
Bin.tag.correct = gam(relrec ~ te(len5) + as.factor(tag_sch_id) + as.factor(Cond) + 
as.factor(Qual) + as.factor(cradle2), data=tag.spp, family=binomial, control=list(maxit=200)); 
r.sq = c(r.sq,summary(Bin.tag.correct)$r.sq); dev.ex = 
c(dev.ex,summary(Bin.tag.correct)$dev.expl); aic = c(aic,AIC(Bin.tag.correct)) 
 
# Results table 
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Modl = c('Full','-Cradle','-Qual','-Cond','-tag_sch_id','-Len','-Tagger') # Model names 
newtab = 
xtable(cbind(Modl,dev.ex=round(dev.ex,4),r.sq=round(r.sq,4),aic=round(aic,1),chngAIC=round(aic-
min(aic),2))) # Construct xtable for printing 
print.xtable(newtab, type='html', file='GAM_Model_Selection_skj_RTTP.html') 
 
#_______________________________________________________________________________ 
#_______________________________________________________________________________ 
# CORRECTION CALCULATIONS  - Do not want to take length into account in the correction since 
that's mostly q, not mortality 
# predict recoveries using existing model 
 
# Function for calculating the correction ratio for the various modelled and unmodelled tagging 
events 
Correct.pttp = 
function(dat.name,mod.name,correction.string,plot.main,plot.name,spp,rm.Cond,rm.Qual,stat.type,ta
g.proj) 
{ 
    require(mgcv) 
    if(tag.proj == 'pttp') tag.spp = read.csv(dat.name) 
    if(tag.proj == 'rttp') load(dat.name) 
    tag.spp$tag_sch_id = as.factor(tag.spp$tag_sch_id) 
    load(mod.name) 
 
    # Predict recapture rate based on observed values for covariates 
    tag.spp$pred.obs = predict(Bin.tag.correct, newdata=tag.spp, type='response') 
    # Set covariate values for the 'good' reference case e.g. good tagger, fish in good condition     
etc. 
    tag.spp.new = tag.spp 
    tag.spp.new$tagger = correction.string[1]    
    tag.spp.new$Cond = correction.string[2] 
    tag.spp.new$Qual = correction.string[3] 
    tag.spp.new$cradle2 = correction.string[4] 
     
    # Predict recapture rate based on the reference case 
    tag.spp$pred.reference = predict(Bin.tag.correct, newdata=tag.spp.new, type='response') 
     
    # Calculate the ratio of observed to reference case recapture rate at the individual release      
level 
    tag.spp$correction = tag.spp$pred.obs/tag.spp$pred.reference 
     
    # Aggregate to the tagging event level 
    event.corrections = sort(tapply(tag.spp$correction, tag.spp$tag_sch_id, mean)) 
     
    # Transform into an exporting format 
    correct.factors = data.frame(tag.event = names(event.corrections), correction.ratio = 
event.corrections, correction.type =     'MODELLED') 
    correct.factors = 
correct.factors[order(as.numeric(as.character(correct.factors$tag.event))),]   # Reorder by 
tagging event 
     
    ### Correcting events not in model 
    tag.fct = sapply(tag.spp, is.factor) # which variables are factors 
    tag.spp[tag.fct] = lapply(tag.spp[tag.fct], as.character) # Change to character 
 
    # Determine values to be used for taggers and tagging events that were not modelled but must 
be corrected for 
    N.taggers = length(unique(tag.spp$tagger)) 
    N.events = length(unique(tag.spp$tag_sch_id)) 
 
    # Identify a median relative tagger to be used in cases where unmodelled taggers are 
encountered 
    tagger.coefs = coef(Bin.tag.correct)[2:N.taggers] 
    med.tagger = median(tagger.coefs)    
    med.tagger = which(abs(tagger.coefs - med.tagger) == min(abs(tagger.coefs - med.tagger))) 
    med.tagger = substring(names(med.tagger),7,9)   # Remove the 'tagger' part of the tagger 
coefficient name 
 
    # Identify a median tagging event in order to use predict function 
    event.coefs = coef(Bin.tag.correct)[(N.taggers+1):(N.taggers+N.events-1)] 
    med.event = median(event.coefs)   # Again ignores the intercept 
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    med.event = which(abs(event.coefs - med.event) == min(abs(event.coefs - med.event))) 
    med.event = gsub("[^\\d]+", "", names(med.event), perl=TRUE)[1]   # Extract only the number 
 
    # Extract skj data from the 'full' dataset 
    if(tag.proj == 'pttp') load('tag.dat_Uncleaned.RData')   # Data.frame within this is tag.all 
    if(tag.proj == 'rttp') 
                { 
                load('rtag.dat_AsModelled.RData') 
                tag.all = rtag.all   # Data.frame within this is tag.all 
                tag.all$sp_id = tag.all$sp 
    } 
    full.tags = tag.all[tag.all$sp_id == spp,] 
    all.events = unique(full.tags$tag_sch_id)   # Identifies all tagging events available that 
released fish 
 
    # Identify the taggers for which model coefficients exist 
    modelled.taggers = unique(tag.spp$tagger) 
 
    # Determine unmodelled and modelled tagging events 
    modelled.events = unique(tag.spp$tag_sch_id)   # Identifies all tagging events that were 
modelled/corrected 
 
    # Extract all releases for unmodelled/uncorrected tagging events 
    unmodelled.tags = full.tags[!full.tags$tag_sch_id in modelled.events,] 
    unmodelled.tags$tmp.tag_sch_id = unmodelled.tags$tag_sch_id # housekeeping 
 
    # remove few releases where coefficients do not exist 
    unmodelled.tags = unmodelled.tags[!unmodelled.tags$Cond in rm.Cond,] #c('Eye damage','Hit 
side of boat','Tail damage'),]  
    unmodelled.tags = unmodelled.tags[!unmodelled.tags$Qual in rm.Qual,] #== 'Too slow',] # Only 
removes a total of 9 fish 
 
    # Assign 'median' coefficients to releases where the tagger or event was unmodelled 
    unmodelled.tags[!unmodelled.tags$tagger in c(modelled.taggers,'DWF','KMS'),]$tagger = 
med.tagger    
    if(tag.proj == 'pttp') unmodelled.tags[unmodelled.tags$tagger in c('DWF','KMS'),]$tagger = 
'BML'  #set IATTC taggers to       base 
    unmodelled.tags[!unmodelled.tags$tag_sch_id in modelled.events,]$tag_sch_id = med.event        
# Median coefficients for      unmodelled events  
 
    # Predict recapture rate based on 'observed' covariates 
    unmodelled.tags$pred.obs = predict(Bin.tag.correct, newdata=unmodelled.tags, type='response') 
    unmodelled.tags.new = unmodelled.tags 
    unmodelled.tags.new$tagger = correction.string[1] 
    unmodelled.tags.new$Cond = correction.string[2] 
    unmodelled.tags.new$Qual = correction.string[3] 
    unmodelled.tags.new$cradle2 = correction.string[4] 
 
    # Predict recapture rate based on the reference case 
    unmodelled.tags$pred.reference = predict(Bin.tag.correct, newdata=unmodelled.tags.new, 
type='response') 
 
    # Calculate the ratio of observed to reference case recapture rate at the individual release 
level 
    unmodelled.tags$correction = unmodelled.tags$pred.obs/unmodelled.tags$pred.reference 
 
    # Aggregate to the tagging event level 
    event.corrections_unmod = sort(tapply(unmodelled.tags$correction, 
unmodelled.tags$tmp.tag_sch_id, mean))    
 
    # Transform into an exporting format 
    correct.factors_unmod = data.frame(tag.event = names(event.corrections_unmod), 
correction.ratio = event.corrections_unmod       ,correction.type = 'UNMODELLED') 
    correct.factors_unmod = 
correct.factors_unmod[order(as.numeric(as.character(correct.factors_unmod$tag.event))),]   # 
Reorder    by tagging event 
 
    #Combine modelled and unmodelled corrections and save 
    correct.factors = rbind(correct.factors, correct.factors_unmod) 
    save(correct.factors, file=paste('correct.factors_',plot.main,'.RData',sep='')) 
}    
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#End function 
#_______________________________________________________________________________ 
#_______________________________________________________________________________ 
# PTTP - SKJ correction   (similar for BET and YFT) 
Correct.pttp(dat.name='tag.dat_AsModelled_skj.csv', mod.name='Bin.Mod.pttp_skj.RData', 
correction.string=c('BML','Good','Good','BOW'),plot.main='SKJ - pttp', 
plot.name='TaggerEfx_PTTP_SKJ_coefs', spp='S', rm.Cond=c('Eye damage','Hit side of boat','Tail 
damage'),rm.Qual='Too slow', stat.type='GLM', tag.proj='pttp') 
 
#_______________________________________________________________________________ 
# RTTP - SKJ correction   (similar for YFT; BET not done) 
Correct.pttp(dat.name='rtag_AsModelled_SKJ.RData', mod.name='Bin.Mod.rttp_skj.RData', 
correction.string=c('ETP','a.Good','a.Good','a.BOW'),plot.main='SKJ - rttp', 
plot.name='TaggerEfx_RTTP_SKJ_coefs', spp='a.SKJ', rm.Cond='Tail damage',rm.Qual='Too slow', 
stat.type='GAM', tag.proj='rttp') 
 
#_______________________________________________________________________________ 

 
 
  

26 
 



Appendix 2.  Program R code used to estimate reporting rates. 
#####MODIFIED FROM S. HOYLE (2011) 
 
#This script estimates the Reporting Rates for the PS fleets according to the 2014 regional 
structure and fleet definition for the three species. 
 
require(boot) 
require(RODBC) 
require(car) 
 
#First, query the database from CES: aggregate CE data raised for the PS fleet in the WCPFC. 
Estimates are for the PTTP, so only select period 2007-2012. 
 
CE <- read.csv('../Catch_WCPFC.TXT') 
   
###################### 
####DEFINE REGIONS ### 
###################### 
### DEFINE MFCL skj regions 
CE$mfclskj <- rep(-9, length(CE$yy)) 
CE$mfclskj <- ifelse(CE$latd >  20 & CE$latd <  50 & CE$lond > 120 & CE$lond < 210, 1,     
CE$mfclskj) 
CE$mfclskj <- ifelse(CE$latd > 0 & CE$latd <  20 & CE$lond > 140 & CE$lond < 170, 2, CE$mfclskj) 
CE$mfclskj <- ifelse(CE$latd > -5 & CE$latd <  0 & CE$lond > 155 & CE$lond < 160, 2, CE$mfclskj) 
CE$mfclskj <- ifelse(CE$latd > -20 & CE$latd <  0 & CE$lond > 160 & CE$lond < 170, 2, CE$mfclskj) 
CE$mfclskj <- ifelse(CE$latd > -20 & CE$latd <  20 & CE$lond > 170 & CE$lond < 210, 3, 
CE$mfclskj) 
CE$mfclskj <- ifelse(CE$latd > -20 & CE$latd <   20 & CE$lond > 110 & CE$lond < 140, 4, 
CE$mfclskj) 
CE$mfclskj <- ifelse(CE$latd > -20 & CE$latd <   0 & CE$lond > 140 & CE$lond < 155, 5, 
CE$mfclskj) 
CE$mfclskj <- ifelse(CE$latd > -20 & CE$latd <   -5 & CE$lond > 155 & CE$lond < 160, 5, 
CE$mfclskj)  
### END DEFINE MFCL skj regions 
       
###DEFINE REGIONS BET/YFT 
CE$mfclyft <- -9 
CE$mfclyft[CE$latd >  20 & CE$latd <  50 & CE$lond > 120 & CE$lond < 170] <- 1 
CE$mfclyft[CE$latd >  20 & CE$latd <  50 & CE$lond > 170 & CE$lond < 210] <- 2 
CE$mfclyft[CE$latd > 0 & CE$latd <  20 & CE$lond > 140 & CE$lond < 170] <- 3 
CE$mfclyft[CE$latd > -5 & CE$latd <  0 & CE$lond > 155 & CE$lond < 160] <- 3 
CE$mfclyft[CE$latd > -10 & CE$latd <  0 & CE$lond > 160 & CE$lond < 170] <- 3 
CE$mfclyft[CE$latd > -10 & CE$latd <  20 & CE$lond > 170 & CE$lond < 210] <- 4 
CE$mfclyft[CE$latd > -40 & CE$latd < -10 & CE$lond > 140 & CE$lond < 170] <- 5 
CE$mfclyft[CE$latd > -40 & CE$latd < -10 & CE$lond > 170 & CE$lond < 210] <- 6 
CE$mfclyft[CE$latd > -10 & CE$latd < 20 & CE$lond > 110 & CE$lond < 140] <- 7 
CE$mfclyft[CE$latd > -10 & CE$latd < 0 & CE$lond > 140 & CE$lond < 155] <- 8 
CE$mfclyft[CE$latd > -10 & CE$latd < -5 & CE$lond > 155 & CE$lond < 160] <- 8 
CE$mfclyft[CE$latd > -20 & CE$latd < -15 & CE$lond > 140 & CE$lond < 150] <- 9 
   
###END DEFINE REGIONS 
 
###################### 
####DEFINE FLAGS  #### 
###################### 
#Only bother for those flags with at least 1% of the catch in the region. 
     
SKJflags=NULL   
for (SKJregion in 1:5) { 
  a <- with(CE[CE$mfclskj==SKJregion,],tapply(skj_mt,flag,sum,na.rm=T)/sum(skj_mt,na.rm=T)) 
  a[is.na(a)]=0 
  a=a[a>0.01] 
  a=a/sum(a) 
  SKJflags=rbind(SKJflags,data.frame(flag=names(a),region=SKJregion,catch=a)) 
}   
   
BETflags=NULL   
for (BETregion in 1:9) { 
  a <- with(CE[CE$mfclyft==BETregion,],tapply(bet_mt,flag,sum,na.rm=T)/sum(bet_mt,na.rm=T)) 
  a[is.na(a)]=0 
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  a=a[a>0.01] 
  a=a/sum(a) 
  if (length(a)>0) { 
    BETflags=rbind(BETflags,data.frame(flag=names(a),region=BETregion,catch=a)) 
  }   
} 
   
YFTflags=NULL   
  for (YFTregion in 1:8) { 
  a <- with(CE[CE$mfclyft==YFTregion,],tapply(yft_mt,flag,sum,na.rm=T)/sum(yft_mt,na.rm=T)) 
  a[is.na(a)]=0 
  a=a[a>0.01] 
  a=a/sum(a) 
  YFTflags=rbind(YFTflags,data.frame(flag=names(a),region=YFTregion,catch=a)) 
}   
########################## 
####END DEFINE FLAGS  #### 
########################## 
     
########################## 
## MODEL REPORTING RATES # 
##########################  
# Load tagging data from seeding trials from database. 
channel <- odbcConnectAccess("File path")# File path not shown here                                                              
dat <- sqlQuery(channel, "SELECT tag_cruise.cruise_id, tag_cruise.cruise_start, 
tag_cruise.cruise_end, tag_cruise.flag_id, tag_release.tag_type, Count(tag_release.tag_rel_id) AS 
CountOftag_rel_id, 
SUM(SWITCH(tag_recovery.tag_recovered='Y',1,tag_recovery.tag_recovered<>'Y',0)) AS 
CountOfrecoveryyes  
FROM ((tag_cruise INNER JOIN tag_event ON tag_cruise.tag_cru_id = tag_event.tag_cru_id) INNER 
JOIN tag_release ON tag_event.tag_event_id = tag_release.tag_event_id) LEFT JOIN tag_recovery ON 
tag_release.tag_rel_id = tag_recovery.tag_rel_id  
WHERE (((tag_cruise.proj_id)=6))  
GROUP BY tag_cruise.cruise_id, tag_cruise.cruise_start, tag_cruise.cruise_end, 
tag_cruise.flag_id, tag_release.tag_type ORDER BY tag_cruise.cruise_id")  
names(dat) <- c("cruise_id" ,"cruise_start","cruise_end","flag_id","tag_type","rel","recov") 
close(channel) 
 
dat$recov[is.na(dat$recov)]=0  
                                                 
###Eliminate trials after 1 Jan 2013. In addition, eliminate JP and TW trials after 30June2012 
(at odds with the no of tags reported by these flags) 
dat=dat[(dat$cruise_start<ISOdate(2013,1,1) & !dat$flag_id in c("JP","TW")) | 
(dat$cruise_start<ISOdate(2012,6,30) & dat$flag_id in c("JP","TW")),]    #274 lines 
 
#Model struggles to fit 100% or 0% recoveries (therefore a recovery in the case of SV is 
assumed(this does not affect results)  
dat[dat$flag_id=="SV" & dat$tag_type=="S13",7][1]=1  
  
#Fit with binomial distribution. Flag and tag type as factors.  
model1 <- glm(cbind(recov,rel-recov) ~ as.factor(flag_id) + 
as.factor(tag_type),family=binomial,data=dat);  
Anova(model1) #Flag_id and tag type significant 
summary(model1) 
#Residual deviance >> redisual degrees of freedom, so overdispersed. Use a quasibinomial model.  
 
# Quasibinomial version 
model1b <- glm(cbind(recov,rel-recov) ~ as.factor(flag_id) + 
as.factor(tag_type),family=quasibinomial,data=dat); summary(model1b)  #disp 4.8419 
 
# Simulate with model1b, flag effect and tag type (only S13 tags) 
newdat <- expand.grid(flag_id=as.factor(sort(unique(dat$flag_id))),tag_type='S13') 
dat.t <- predict.glm(model1b,newdat=newdat,type="terms",se.fit=T) 
dat.r <- predict.glm(model1b,newdat=newdat,type="response",se.fit=T) 
con <- attributes(dat.t[[1]])$constant 
seedests <- cbind(newdat,con,dat.t[[1]],dat.t[[2]],dat.r[[1]],dat.r[[2]]) # get predictions 
fl_mean <- con + seedests[,4] 
 
##################################### 
## add/Modify values for some flags## 
#####################################  
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## It was decided that the estimate for JP is unrealistically low, taking into account the number 
of tags they report from PTTP, and to assign the value of the TW fleet. 
## There is no estimate for ES and ID. For ID, it was assumed the same RR as for PH; for ES, the 
same as for EC.  
## These were supplied a SD of 2.2 (maximum of the other flags to be conservative). 
   
seedests=seedests[seedests$flag_id!='JP',] 
tt=cbind(flag_id=c("JP","ES","ID","CO","GT","HN","NI","PA","VE"),tag_type=rep("S13",9),rbind(seed
ests[seedests$flag_id=="TW",3:9], 
 
seedests[seedests$flag_id in c("EC","PH"),3:9],matrix(rep(apply(seedests[seedests$flag_id in 
c("EC","SV","VU"),3:9],2,mean),6),byrow=T,nrow=6,dimnames=c(list(1:6),list(colnames(seedests[,3:9
])))))) 
tt[,6]=max(seedests[,6]) 
names(tt)=names(seedests) 
seedests=rbind(seedests,tt) 
##################################### 
## end add/Modify values           ## 
##################################### 
 
############################################ 
###FUNCTION FOR THE CALCULATION OF RR ###### 
############################################ 
make_pens <- function(dat,n,seedests,pl=T) { 
   flag2=dat$flag 
   meanRR=NA 
   pen_RR=NA 
   cv_RR=NA 
   sd_RR=NA 
   if (length(flag2)>0) { 
     dat$mn <- seedests[match(flag2,seedests$flag_id),4]+ seedests$con[1] 
     dat$stddv <- seedests[match(flag2,seedests$flag_id),6]  
     dist_fl <- t(sapply(rep(length(dat$mn),n),rnorm,mean=dat$mn,sd=dat$stddv)) 
     dist_tt <- rnorm(n,seedests[1,5],seedests[1,7])   
     dist_p <- inv.logit(dist_fl+dist_tt) 
     wtd_p <- (rep(dat$catch,each=n) * dist_p)  
     if (dim(wtd_p)[2] > dim(wtd_p)[1] ) {wtd_p=t(wtd_p)} 
     RR_totdist <- apply(wtd_p,1,sum) 
     meanRR <- mean(RR_totdist) 
     if(pl) { 
        windows() 
        hist(RR_totdist,10,xlim=c(0,1)) 
     } 
     cv_RR <- sd(RR_totdist)/mean(RR_totdist)   # CV 
     pen_RR <- round(((1/cv_RR)^2)/2) 
     sd_RR=sd(RR_totdist) 
   } 
  return(list(meanRR=meanRR,pen_RR=pen_RR,cv_RR=cv_RR,sd_RR=sd_RR))  
  } 
################################################ 
###END FUNCTION FOR THE CALCULATION OF RR ###### 
################################################ 
 
######################### 
###RR PRIORS ESTIMATION## 
######################### 
#SKJ RR 
SKJ_RR=NULL 
for (i in 1:5) { 
SKJ_RR=rbind(SKJ_RR,cbind(region=i,make_pens(SKJflags[SKJflags$region==i,],n=1000000,seedests=see  
dests))) 
} 
graphics.off() 
#YFT RR 
YFT_RR=NULL 
for (i in 1:8) { 
YFT_RR=rbind(YFT_RR,cbind(region=i,make_pens(YFTflags[YFTflags$region==i,],n=1000000,seedests=see
dests))) 
} 
graphics.off() 
#BET RR 
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BET_RR=NULL 
for (i in 1:9) { 
BET_RR=rbind(BET_RR,cbind(region=i,value=make_pens(BETflags[BETflags$region==i,],n=1000000,seedes
ts=seedests))) 
} 
graphics.off() 
 
RESULT=rbind(cbind(rep('SKJ',5),1:5,matrix(SKJ_RR[,2],byrow=T,ncol=4)), 
             cbind(rep('YFT',8),1:8,matrix(YFT_RR[,2],byrow=T,ncol=4)), 
             cbind(rep('BET',9),1:9,matrix(BET_RR[,2],byrow=T,ncol=4))) 
              
colnames(RESULT)=c("sp_id","region","RR_mean","RR_penalty","RR_cv","RR_sd") 
############################# 
###End RR PRIORS ESTIMATION## 
############################# 
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