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Executive Summary

Understanding fisher decision making in a competitive but changing market is becoming increasingly
important when developing management plans for sustainable fisheries. In the Western and Central
Pacific, catches of tuna by weight are dominated by the purse seine fleet. To investigate the key
drivers that influence the behaviour of the US purse seine fleet operating in the complex Western
Central Pacific Ocean tuna fishery, multivariate methods were applied to identify candidate
predictor variables in 2 separate 7 year periods and the 14 year time series to be applied in a
discrete choice multinomial model. By integrating available cost data, interest rates and other
factors that were likely to influence future anticipated benefits or losses, it was possible to identify
key important drivers influencing whether operators chose to enter (invest in), remain (stay and
continue fishing) or exit (tie-up for a period or remain under a different flag) the US fleet. Results
show the importance of capturing the changes of the fisher dynamics over the time period. Early
years show that vessel engine power was an important factor (a proxy for capital investment) in
contrast to the later time period where vessel tonnage was of greater importance potentially due to
fuel prices increases (cost), a drop in interest rates (financing decisions), increased revenues (net
benefits) to offset the increase in costs. Fishers Willingness To Pay (WTP) estimated by the 3 models
estimates increased from USS$29 to US$7290 per day, which shows the perceived value placed on
the fishery by fishers wanting to invest in. These models may assist fisheries managers when
considering potential strategic long-term policies for balancing licence sales, and hence revenues for
pacific island nations without displacing large amounts of capacity.



1. Introduction

When natural resources such as fish stocks are poorly regulated and are limited, a race to exploit
them occurs because of excess competition. For fisheries to remain sustainable and profitable, the
fishing effort applied by fishers must be in proportion with the fishing opportunities i.e. excess
fishing capacity needs to be reduced to an optimum level for those fishing opportunities (FAO,
2003). While progress has been made in developing a precautionary approach to fisheries
management to move towards this optimum, in most cases this has been confined to biological
elements. A more balanced application is needed to address important social and economic risks
(FAO, 2005-13). As stated by several authors, for fisheries management to be successful, that
understanding fisheries dynamics and the drivers that influence the behaviour of fishers is necessary
(Wilen, 1979; Hilborn and Walters, 1992; Charles, 1993; Fulton et al., 2011).

Economic theory in the past has suggested that decisions to ‘enter’ a fishery have largely been based
on the assumption of fishers reallocating to the most profitable fisheries and those who ‘exit’ a
fishery are non-profitable and subsequently seek capital investment elsewhere (Gordon, 1954).
Nowadays entry and exit decisions are said to depend on investment in terms of e.g. the availability
of licences (opportunity costs), economic performance relating to the relative size of fish stocks they
harvest, the value of landings, as well as financial costs (Le Floc'h et al.,, 2011). A fleet’s response to
management’s decisions cannot be predicted with absolute certainty because the drivers that
influence strategic and tactical behaviour change over time. In a management context it is important
to understand fisher behaviour in the face of a changing environment in order to manage the system
better. Fisher tactics can be described as short-term decisions, such as where and when to go fishing
(Vermard et al., 2008; Ran et al., 2011), what gear(s) to deploy (Eggert and Tveteras, 2004; Bene and
Tewfik, 2001), and where to land the fish (all of which can be affected by fuel costs (Poos et al.,
2013), weather (Campbell and Hand, 1999), crew availability and market price (Asche et al., 2008). In
contrast, fisher strategies associated with long-term decision-making include factors such as fuel
price rises (Abernethy et al., 2010), costs for replacing gears, modifications to vessel (Mesnil, 2008)
(including general refurbishment as well as changes to allow deployment of other gears), stock
status (Asche et al., 2008), catch prices and incentives such as decommissioning schemes (Frost et
al., 1995), investment or disinvestments for modernisation (Anderson, 2007). Using models to
assess a fleet’s responses to management measures can provide essential information on fleet
dynamics that can be used then to inform the management decision-making process (e.g. Pelletier
and Mahévas, 2005; Bastardie et al., 2010).

The Western and Central Pacific Ocean (WCPO) purse seine fishery is one of the most important
oceanic tuna fisheries with catches in 2004 representing 66 % of the world’s tuna (Hamilton et al.,
2011). The fishery consists of 4 main target species, albacore (Thunnus alalunga), skipjack
(Katsuwonus pelamis), yellowfin (Thunnus albacares), and bigeye tuna (T. obesus). Small yellowfin
and bigeye are caught together with skipjack close to the surface of in tropical and sub-tropical
waters of the equatorial region (between +/- 102). El Nifio and La Nifia climate conditions influence
the distribution of tuna within the Western and Central Pacific Ocean and its availability to fishing
gears, and subsequently can have huge implications for all stakeholders in the fishery especially the
Pacific islanders that rely on tuna production in terms of income (Barclay et al., 2007). The main
fishing fleet targeting the displacements during these events are the Western Pacific purse seine
fleet tightly concentrated along the equatorial plane between 5°N - 10°S and from 135°E to 150°W
(Figure 1). The fleet is large in size and has around 300 vessels which include vessels from other
pacific island nations, the US, Japan, Philippines and New Zealand catching over 80% of the tuna in
the Western Pacific (Harley et al., 2012). The US fleet operates under a specific multilateral
agreement with Pacific Island Country and Territory members of the Forum Fisheries Agency (FFA).
Past arrangements have included a capacity cap on the number of vessel licences (set at 40 vessels
in 2002; WPFMC, 2009) and Total Allowable Effort (TAE) limits. Since 2007 the Vessel Day Scheme



(VDS) has been in operation as a means to control effort levels. The VDS arrangement allocates a
total number of days and these days are then apportioned among Pacific nations on an annual basis
or in some instances up to 3 years in advance. While setting limits on days, Pacific Island nations
benefit in terms of increasing revenues from access fees paid by the Distant Water Fishing Nations
(DWFNs), which result in the creation of infrastructure and it is hoped that the catches of tunas are
reduced. The current minimum benchmark fishing day fee is now up to $8000 and the number of
days set at a total of 44,623 days per year (http://www.pnatuna.com/node/142).

Historically the US fleet during the 1980-1990s consisted of 30-50 vessels and was catching on
average 144,000 to 203,000 metric tonnes of tuna, which accounted for 15-25% of the tuna caught
(Gillett et al., 2002), but a large proportion of vessels left early 2000’s due to market forces
(Hamilton et al., 2011). Today the US fleet makes up around 10% of the 300 vessels after a re-
emergence due to an arrangement with US nationals and foreign investors in 2007. In 2009 this fleet
caught over 280,000t (Hamilton et al., 2011).

The rationale for this study is to identify factors that influence the strategic investment behaviour of
fishers in the short and longer term where there have been lots of changes in terms of an ever
changing environment e.g. financial markets, climate change and excessive rises in fuel prices,
together with vessel modernisation and technological uptake (Fissel and Gilbert, 2010) (e.g. better
storage facilities, increases in vessel power, sonar etc.) which increase fishing efficiency and thus
may provide incentives to enter the fishery. The US purse seine fleet was chosen due to the data
availability and because the fleet is economically important because of its access arrangements
which have led to a growth in employment in the region. Pradhan and Leung (2004) used the
multinomial logit framework (polytomous discrete choice model or random utility model - RUM
(McFadden, 1974)) to predict the strategic behaviour of the US Hawaiian longline fleet to better
understand fisher behaviour (enter/exit) relative to staying in the fishery. The same framework is
employed for the US WCPO purse seine fishery, and the analysis extended to include model variable
selection approaches and an estimation of Willingness To Pay (WTP) to enter the fishery, as an
increase in effort (number of vessels entering) will subsequently lead to an increase in ratio to the
total value placed on the fishery. Thus the model will assist fisheries managers in the development
of strategic long-term policies that anticipate fisher behaviour.

2. Methods

2.1 The data

The Secretariat of the Pacific Community (SPC) Catch and Effort query System (CES) database for
fishing activity and the FFA fleet register were used to select commercial landing and vessel data of
the United States of America purse seine fleet operating in the WCPO between 1997 and 2010. The
fleet register contains information on vessel characteristics such as gross registered tonnage, grt,
vessel length, and date of registration. Price per metric tonnes data (USS) of the main target species,
skipjack, yellowfin and bigeye tuna were acquired from FFA (Bangkok prices). The Southern
Oscillation Index (SOI) was obtained from the Australian government bureau of meteorology'. US
gulf prices (USS) per barrel were obtained from the US energy information administration’ and
information on interest rates were sourced from the federal reserve®, the data were combined by
year and a database was produced.

! http://www.bom.gov.au/climate/current/soihtm1.shtml
2 http://www.eia.gov/petroleum/data.cfm
3 http://research.stlouisfed.org/fred2/series/FEDFUNDS



2.2 Response variable selection

Economic theory suggests that fishers make their strategic choices based on changing stock biomass
levels, management regulations (effort controls), market prices, and fuel costs. Ideally individual
vessel cost data would be necessary to conduct a full bio-economic model; however much of these
data are not available. As a result, several variables were used as surrogates, e.g. value as a proxy
for economic viability and fuel price as a proxy for cost. Annual fuel prices were calculated per
vessel based on Fuel Use Intensity (FUI) estimates (Tyedmers and Parker, 2012) for the 3 species as a
weighted average of catch. US Gulf prices were used as they include barge and/or ex-pipe fees.
Fisher skills, knowledge, and experience are expected to relate to the annual revenues of the target
species of the fleet. Age of vessel was included, because it is assumed that older vessels may exit
because of higher costs of maintenance and operation and that newer vessel will enter. Physical
factors such as length, number of crew, number of auxiliary boats, engine power and gross
registered tonnage were included to see the behaviour of a particular size or power group of vessel
influenced fisher behavior. Size/power is correlated with capital investment and may affect a
decision. SOI was included to track the climatic effects. Interest rates were included in the database
to capture capital investment and financing decisions. One would assume that a large increase in the
interest rate could potentially have implications in terms of exit strategies. Figure 2 and 3 shows
results of the data exploration.

2.3 Variable reduction for models

Here we propose multivariate methods to identify candidate variables for 2 separate 7 year periods
1997-2003, 2004-2010 and the full time series (1997-2010). The rationale for doing so was that some
variables can be considered non-stationary and nonlinear due to the variability of their nature and
thus maybe diluted, which can cause problems when fitting over a long time series. Variable
selection for input into the RUM was explored using a sequence of multivariate techniques e.g.
Principle Component Analysis (PCA) (Hotelling, 1933), correlation matrices and random forests
(Breiman, 2001). The purpose of this was to simplify the interpretation of multivariable datasets.

Step 1 - Random Forests

Random forest theory (Breiman, 2001) is based on single decision trees, but rather than one decision
tree they are based on an ‘ensemble’ or forests in order to reduce high variances (which are
produced with single trees) by averaging across the forests. It does this by bootstrapping a random
sample of the input data, and then fitting a tree (or as many as the analyst requires) for each
classification, accuracies and error rates are computed for each observation using out of bag
predictions (OOB). The Random Forests differs from other traditional variable selection techniques
as it gives equal weighting to collinear variables that are good predictors of the response. As such it
prevents elimination of equal good predictors which are also correlated. However it should be
noted that variable importance is a ranking not an absolute value. Values are ranked if the value is
above the lowest scoring value, these values can also be negative, generally however, variables
approaching 0 are irrelevant. Here 20000 bootstrapped samples were used.

Step - 2 Correlation matrices

A correlation matrix describes the correlation amongst n variables based on a square n x n matrix.
The higher or lower the correlation coefficient the more strongly it’s correlated positively or
negatively correlated with another variable. For instance the diagonal element relates to
correlations amongst themselves, so will give a correlation coefficient of 1. A cut off < 0.3 is used to
identify pairs of variables that are weakly correlated.

Step 3 - PCA

Problems when selecting variables for use in the RUM are correlation between variables, high noise



and a lack of contrast in the variables. Here a PCA was applied to help alleviate the problems of
multi-colinearity in the dataset by converting correlated variables into uncorrelated components
representing linear combinations of co-varying variables. A loading cut off at 0.3 was used to assess
which variables were important, and scree plots used to identify the fraction of total variance in the
data as explained by each principal component, a cut off > 1 was used (Westad et al., 2003).

In summary the steps taken for variable selection are as follows:

Step 1 is based on all the random variable trees that have been permuted for the OOB which are
passed down the trees to perform predictions and undergo an algorithm test for variable importance
based on OOB misclassification rate and its standard error (all variables are treated with equal
weighting even though they maybe correlated).The mean decreasing accuracy output table is used
and each variable systematically selected in combination with step 2 and step 3.

Step 2 will give an indication of the scale of correlation, the closer to zero in the matrix imply
conditional independence of the variables. If the selected variable in step 1 is assessed as correlated
i.e., having a correlation coefficient > 0.3 then it is omitted.

Step 3 supports step 2, variables in the same component can be considered correlated, however if
correlation coefficient is < 0.3 then is selected. Also some variables which are seen as important in
step 1 may not appear in the components that explain the most variation so are excluded.

Final model selection of variables was based upon the Akaike information criteria (AIC; Akaike, 1974).

2.4 The model

The RUM used is based on the conditional logit choice model (McFadden, 1974, 1981), where U is
the utility, 7 the individual, j the choice (such as a fishing trip), w; are attributes of individual 7, ¢; is
the stochastic error component, which is random, and ﬁj is a coefficient. A set of unordered choices
is assumed, and this can be written as:

Uy‘:ﬁjwfl'gij- (1)

The probability that an individual i makes choice j is then

exp(w,3,)

Prob(y, = /) =gt
>, ewnA)

(2)

where 7; is an indicator variable (with the same length as vector J) referring to the choice (j) made

by individual i. The discrete choice dependent variable j is a polytomous variable parameterized on a
year-by-year basis and assumes the unique values ‘entry’, ‘exit’, or ‘stay’ in the purse seine fishery.
Based on the paper by Pradhan and Leung (2004) their decision rules were applied e.g. A vessel
enters a WCPO fishery if it was not in the previous year’s US fleet but is in the current fleet. A vessel
that enters is assumed to already be in the fishery, under a different flag or tied up due to
operational reasons based on their year of build which is present in the vessel history database. A
dummy variable in the predictor variables captures new entrants (lag of 5 years since their build
year). A vessel which assumes the value ‘exit’ is one which is currently in the US fleet but is not in the
fleet the subsequent year (potentially tied up for operational reasons or re-flagged, however there
are no ways to capture this information as ‘unique’ license information changed with owner), in
contrast to stay which is a vessel that stays in the current year and the subsequent year. The fishery
is potentially one of the most profitable fisheries in the world, so one would assume that fishers are



highly likely to exit it. The model assumes regulated access (Homans and Wilen, 1997), i.e. that they
purchase a vessel and the licence with the entitlement to fish. Taking into account the objective to
identify factors that influence fisher decision making over the 2 separate time periods and the full
time series WTP can be estimated for change in investment attributes on the entry decision (mean)
over cost (entry) attributes resulting from the coefficients (e.g. see Train, 1998).

23 Battributes
Uentry = ﬁattributes + ﬁcosts =0=- BB— =-WTP (3)
costs

R software (R-development team, 2010) was used in the model estimation (mlogit package).

3. Results

The results from the PCA analysis in all cases identified >10 new variables (components) which
explained the same amount of information as the original 15 variables (Table 1). The amount of
variance each component (eigenvalues) accounts for can be determined by plotting components
against the variance (Figure 4).

The dataset 1997-2003 show that components 1-6 display the most variation, in contrast to 2004-
2010/1997-2010 which shows the most variation in the first 5 components. The loadings of
coefficients that make up each component are displayed in Tables 2-4. For instance component
number 1 (dataset 1997-2003) contains the variables skjval and yftval so when one
increases/decreases so does the other, this is reconfirmed by the correlation matrices (Figure 5)
which have a correlation coefficient of +0.38. However some variables can be considered non-
stationary and nonlinear and are positively correlated in the dataset 1997-2003 (e.g. soi and
int.rates), however in the 2004-2010 dataset they are slightly negatively correlated (Figure 5).

Results from the random forest are displayed in Figure 6. The variables of higher mean decreasing
accuracy are considered the more important variables. The top mean decreasing accuracy scores >0
were used to classify exit, entry or stay. In the dataset 1997-2003 the variable fuelcostyr was
considered the most important in contrast to vsl_length which was the least important. Fuel cost
was the first selected variable, it also featured in the first 3 components of the PCA with a loading
greater than 0.3. The second variable to be selected from the random forest (Figure 6) was
vsl_fuel_capacity featuring on the 5th component of the PCA and has a correlation coefficient of -
0.01 with fuelcostyr (Figure 5) so was selected. Engine power was identified as the next important
variable (Figure 6), and features on the second component of the PCA (Table 2). Engine power was
selected based on weak association with the selected variables above. The next 3 variables, vsl_grt
(same component as engine power with which it has correlation >0.5), totrev (on a different
component to all of the pre-selected components but is highly positively correlated with fuelcostyr
0.45) and skjval which is correlated with fuelcostyr and as such are removed. Vsl_age was on the
same PCA component as fuelcostyr, however vs|_age was selected due to weak associations (0.2).
Soi (featuring on PCA component 4 and 5) and vsl_storage_capacity (component 2) were selected
due to weak association with the already selected variables; however yftval which was next in
sequence was omitted due to correlations with soi. Auxillary boat count was the next variable to
feature from the random forest variable importance; this was selected due to weak associations
with all pre-selected variables even though it was found in the same component as fuelcostyr and
vsl_age. The last remaining variables were either considered unimportant (vsl_length) or were
correlated with the candidate variables and as such were omitted from further analyses.
Subsequently the final model contained vsl_engine_power, fuelcostyr, vsl_fuel_capacity, vsl_age,
soi, vsl_storage_capacity and psv_auxillary_boat_count. Note that classification variables (entus)
could not be included for the above analysis and thus enter the AIC procedure. Final selection of the
variables was then based on their statistical significance at a level of a of 0.05, following stepwise



backward selection using the multinom package and the R function stepAlC. This approach was
adopted for all of the datasets until a reduced selection of the variables were selected.

The significant variables and their estimated coefficients for each of the RUM models are listed in
Table 5. The results from the multinomial models showed a range of McFadden’s R’ of 0.20 - 0.32,
suggesting the models fitted the data well (McFadden, 1979). Several variables had a significant
influence on the utility and probability of entry ‘vs’ stay and exit ‘vs’ stay choices, including
fuelcostyr, vsl_engine_power/vsl_grt/vsl_length, the significance of new investment (entus), and
vsl_age.

The model for the period 1997-2003 suggests that as vessel engine power increased, fishers aligned
their decision to enter marginally more than exit, i.e. coefficient for enter 0.003 compared to 0.002
to exit (p < 0.01 )(Table 5). While the decision to exit or enter vs stay relationship for fuelcostyr was
weak (i.e a low negative number), model outputs suggest that as the fuel prices increase (along with
their operating costs), vessels are marginally more likely to exit the fishery. In contrast, when the
fleet contained few psv_auxillary_boats there was a higher probability of exiting.
Vsl_storage_capacity is obviously an important characteristic and will reflect on the fishers’
economic performance and hence investment decisions, hence the marginally more positive sign on
entering rather than exiting (i.e the more storage space the longer the boat can stay out and fish).

The model for the period 2004-2010 contained more, and generally different, covariates than that
for 1997-2003, but similarly the fuel variable showed weak relationships with entry and exit
response variables. Nevertheless both exit and entry decisions associated with this variable were
significant at (p < 0.001) and had negative signs on the coefficients. Marginally more boats entered
(Figure 2) than exited when fuel prices increased (thereby making it more costly to fish) but also
more appealing to sell at higher prices to recoup their investment. Figure 3 suggest that fishers were
encouraged to enter the fishery with the decline in interest rates experienced during this period;
however interest rates didn’t enter the model due to it being omitted at the variable selection stage.
Vessel tonnage and vessel length in this period replaced engine power/storage_capacity as the proxy
for capital investment which was a key driver in the model for 1997-2003. Figure 3 would suggest
that as fuel prices increased, and when past stock biomass levels were high, prices for skipjack and
yellowfin tunas may have decreased. One would also assume from the results that fishers were
looking for bigger less fuel intensive boats in order to control the supply and demand market to
offset the increase in costs. The results show that there was major investment in this period with
the increase in boat size came the increase in auxiliary vessels, the coefficient on entering is
significant (p < 0.001) and positive relative to the exit coefficient (p < 0.001) which was small and
negative.

Model 1997-2010 shows a combination of all the factors discussed in the 2 study periods with the
exception of vessel age, fuel capacity becoming a prominent factor over time. The results for the
variable vessel age indicate, as expected, that younger vessels are more likely to enter the fishery,
resulting in an increase in the efficiency of the fleet. In contrast the model suggests that older
vessels are not more likely to exit over this period.

The results from WTP were calculated using equation (3) for the 3 separate year periods and are as
follows:

1997-2003 the surplus amount fishers were willing to pay was USS$29, in the year period 2004-2010,
it was US$5394 and over the whole period it was US$7290 per day. These results show the value of
the fishery to the fishers.



4. Discussion

Worldwide, previous attempts to control fishing capacity have resulted in the use of programs to
restrict fleet expansion (or fishing power) and fishing effort targets via Individual Transferable
Quotas (ITQ’s), whereby a reduction in capacity and effort is hoped to lead to a reduced fishing
mortality on the main target stocks (Cunningham and Greboval, 2001). Nowadays there is more of a
requirement of member states to develop cooperation among the various stakeholders and to
rationalise and devolve management of fisheries more regionally. Whilst it is necessary to build on
existing capabilities to ensure implications of our advice are explained in socio-economic terms as
well as environmental considerations, many tools are necessary to improve cooperation amongst
various stakeholders and need to be developed.

Within the VDS there is a need for stakeholders to be able to evaluate alternatives prior to
implementation to show that management objectives can be met within a cost effective and
equitable framework. The Western Central Pacific is one of the most important fisheries in the world
(Hamilton et al., 2011), it is potentially the most profitable and as a consequence attracts fishing
effort rather than losing it, and thus makes exit decisions difficult to predict. Therefore controlling
effort levels in the future will be of great importance to this fishery, and as such understanding how
fishers invest will be of increasing importance for fisheries managers when trying to manage and
balance capacity with fishing opportunities.

The outcomes of one of the papers main objectives was to estimate fishers investment preferences
and from this calculate what fishers were WTP beyond what they actually pay to procure fishing
rights within the Pacific Island territories. Results from the model (2004-2010) suggest that fishers
are willing to pay more than the US$8000 market price of up-to US$5394, this is assuming fuel prices
(or other factors not included in the model i.e. maintenance costs, wages and salaries etc..) don’t
change. In contrast the results from model (1997-2003) show those US fishers were only willing to
pay USS$29 dollars for access rights. Figure 2 shows that a large portion of this fleet left during this
period potentially due to the increased costs and decrease in market prices. Overall however fishers
perceived this a valuable fishery willing to pay in excess of US$7290. This is of course an estimate
and further analysis would be needed for the development of strategic long term policies in
balancing licence sales without displacing a large amount of capacity, as the implications of charging
this additional access fee could be costly opportunity for the pacific island nations in terms of
forgone access fees and the domestic benefits from US fishers landing into island nation ports.

Most fisher behaviour analyses based on decision theory has been constructed via theoretical
economic theory and/or knowledge that’s been published (Abernethy et al, 2007). Here 3
multinomial models are presented with variable selection to select the best set of predictors and to
remove colinearity in order accurately capture strategic behaviour of the US Purse seine fleet. The
results described offer insights into this fleet's investment decisions where changes in important
external forcing factors have occurred e.g. fluctuations in oil prices, stock levels and interest rates.
By integrating available cost data, interest rates and other factors that were likely to influence future
anticipated benefits or losses, it was possible to identify key important drivers influencing whether
operators chose to enter, remain or exit.

Important factors considered in the analysis included future revenues and operating costs (e.g.
potential fuel price increases), vessel characteristics and the impact of interest rates. In the late
1990s it was apparent from the results that engine power played a pivotal role in the decision to
enter the fishery, however as time preceded, engine power within the fleet decreased, while in
contrast vessel tonnage increased®. Engine power can be considered a proxy for capital investment

4 (According to WPFMC (2009), US vessels in 2009 had an average grt of 1500t in contrast to
1995 when the average was just 1181t (see also Figure 2)



and an older vessel can be fitted with a new engine, reducing maitenance costs. During this time
period the purse seine fleet had an average age of 23 years without any new entrants to the fishery
since 1990 and as such, the cost of replacing a purse seiner at that time would have cost USS15
million (Gillett et al., 2002). Several authors in the past (Hutton, 1984; Suzuki, 1988; Campbell and
Nicoll, 1994) discussed US fishers’ preference for faster vessels to target free-schooling tunas which
generally had a higher proportion of yellowfin which traditionally obtained better market prices, and
subsequently they maximised their resource rent.

If the stock biomass of yellowfin and skipjack declined it provided less opportunities for this fleet and
so it would then either decline in size or diversify (in terms of fishing areas and/or species) which is
potentially what happened towards the end of 2001. Coupled with the increase in fuel price and low
price per ton of the target species resulted in fewer opportunities for the fleet and so they either
exited or simply reflagged. Over the study period fuel prices rose from USS$ 25 per barrel in 1997 up
to US$100 per barrel in 2009. During this period improvements in fishing vessel power occurred to
offset the increase in fishing costs through the use of Fishing Aggregation Devices (FAD), associated
sonar technology (Fonteneau et al., 2013) (thereby reducing search time and thus fuel costs) and
increasing storage capacity and vessel length mirroring increases in vessel tonnage and the
investment of more vessels to this fleet (age being a significant variable), which were significant
outcomes from the analysis. Also of note were the increases in prices per ton of the target species
coupled with low interest rates encouraged investment behavior as well as government subsidies
(not included in the study) allocated to US purse seiners (Sharp and Sumalia, 2009). Interestingly the
El Nifio (soi) wasn't a significant factor in the strategic thinking of these fishers potentially due to the
amplitude in inter-annual variability (see, http://www.bom.gov.au/climate/current/soihtm1.shtml)
that has occurred in the last 2 decades which could have been viewed as an unreliable factor to base
their decision making on in an already profitable fishery. In contrast Campbell and Hand (1999)
showed that this particular fleet based their short term decision making (tactics) on this
phenomenon.

Over the study period changes in correlation amongst the different variables exist and so changing
one variable may result in a change in another. Therefore collinearity can lead to erroneous
parameter estimation in statistical models (Weisberg, 1985). Here collinearity in the models was
reduced to negligible amounts by adopting multivariate processes resulting in variable reduction for
input into the models. However it should be noted that alternative models may equally be
supported by the data, in which case model choice is not necessarily about choosing the best model
since the recognition of the fact there may be several equally good explanatory models which are
important in developing a better understanding of system dynamics (Grant, 1986; Pitelka and Pitelka
1993).

As a suggested way of improving future models, a qualitative survey would enrich the analysis as
assumptions had to be made in the models constructed. Several authors have stressed the
importance of including fisher knowledge in models that are to be used for management decision-
making (McGoodwin, 2006; Menzies and Butler, 2006). Fisher knowledge was absent from this study
because there was no time or resource to conduct a qualitative survey. Data on pre-entry and post-
exit performance related to revenues in other fisheries would be useful (e.g. the Eastern pacific or
under a different flag). Furthermore, there may be impacts on other stocks, for example the spatial
distribution of fishing effort may change as some vessels exit a particular fishery and move to exploit
other stocks/regions. This will result in fishing mortality changes on different ages of the new target
stock and by-catch, and the subsequent discard levels. As some of the fleet exit others do not, it still
results in the most profitable remaining with money from buybacks or government grants used for
more investment i.e. larger storage facilities, technological FAD advancements or extra subsides
towards license and fuel costs resulting in greater impacts on the stocks. Social changes also
happen, as those that do not exit the fleet can be bought up by other national or international



fishers/investors, which is what happened to a large portion of this fleet. This can have implications
in terms of changes in targeting and hence fishing mortality. Overall, the model has potential to be
used as a strategic planning tool that can be used to help develop management plans to align fleet
capacity with fishing opportunities.
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7. Tables and Figures

Table 1. Description of variables in the database.

variable description

vsl_grt Gross registered tonnage of the vessel
vsl_length Vessel length

vsl_speed Vessel speed in knots

vsl_crew_count
vsl_engine_power
vsl_fuel_capacity
vsl_storage_capacity

psv_auxiliary_boats_count

Vessel crew count (humber of persons)
Vessel engine power in kW

Vessel fuel capacity in m?

Vessel storage capacity in m?

Number of auxiallary boats

vs|_age Age of vessel
fuelcostyr Fuel cost per vessel per year (USS)
int.rates Average % interest rate
totrev Combined total of skj, bet and yft per vessel per year (USS)
skjval Skipjack tuna value per per vessel per year (USS) — Bangkok prices
yftval Yellowfin tuna value per vessel per year (USS) — Bangkok prices
betval Bigeye tuna value per vessel per year (USS) — Bangkok prices
Soi Southern oscillation index

Table 2. PCA loadings 1997 — 2003 where loading > 0.3.
variable Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6
vsl_grt -0.398
vsl_length 0.575
vsl_speed 0.437 -0.385
vsl_crew_count -0.373
vsl_engine_power -0.323
vsl_fuel_capacity 0.585
vs|_storage_capacity -0.357
psv_auxiliary_boats_count -0.422 -0.422
vsl_age -0.392
fuelcostyr -0.384 0.41
int.rates 0.596
skjval -0.455 0.31
yftval -0.418
betval -0.305
totrev -0.525
soi 0.506 0.388




Table 3. PCA loadings 20042010 where loading > 0.3.

variable Comp.1 Comp.2 Comp.3 Comp.4 Comp.5
vsl_grt -0.433 -0.317
vsl_length 0.581
vsl_speed -0.345 0.343
vsl_crew_count -0.343
vsl_engine_power -0.54
vsl_fuel_capacity -0.389 -0.396 0.426
vsl_storage_capacity -0.391
psv_auxiliary_boats_count -0.369 0.442
vsl_age 0.383
fuelcostyr -0.386
int.rates 0.344 0.432
skjval -0.389
yftval 0.376 0.323
betval 0.452
totrev -0.395 0.305
SOi

Table 4. PCA loadings 1997-2010 where loading > 0.3.
variable Comp.1 Comp.2 Comp.3 Comp.4 Comp.5
vsl_grt -0.425 -0.347 -0.315
vsl_length 0.679 0.582
vsl_speed -0.401 0.328 0.344 -0.477 0.371
vsl_crew_count -0.372
vsl_engine_power -0.504 -0.303
vsl_fuel_capacity -0.34 -0.367 0.467 0.379 0.315
vsl_storage_capacity -0.452 -0.678
psv_auxiliary_boats_count -0.331 0.348 -0.553 -0.355
vsl_age -0.469 -0.319
fuelcostyr -0.417
int.rates 0.44 -0.392 -0.679
skjval -0.412
yftval 0.628 -0.491
betval -0.506 -0.668 0.301
totrev -0.403
soi -0.656 -0.427




Table 5. Parameter estimates from the multinomial logit model.

Model 1997-2003 Estimate Std. Error
enter:(intercept) -15.589 5.3373 **
exit:(intercept) -10.17 3.6015 **
enter:fuelcostyr -2.82E-05  7.27E-06 ***
exit:fuelcostyr -1.44E-05 4.67E-06 **
enter:vsl_engine_power 0.003595 0.001297 **
exit:vsl_engine_power 0.002286 0.000941 *
enter:psv_auxiliary_boats_count 0.90663 0.41863 *
exit:psv_auxiliary_boats_count 0.49695 0.25849
enter:vsl_storage_capacity 0.000794 0.000407 .
exit:vsl_storage_capacity 0.000643 0.000324 *
Log-Likelihood: -60.081

McFadden R"2: 0.32417

Model 2003 - 2010 Estimate  Std. Error
enter:(intercept) -6.809437  2.02E-07  ***
exit:(intercept) -0.636176  2.96E-07 ***
enter:fuelcostyr -1.62E-06  6.25E-07 **
exit:fuelcostyr -1.76E-06  8.03E-07 *
enter:vsl_length 0.020147 1.5E-05 ***
exit:vsl_length 0.015062  2.01E-05 ***
enter:vsl_grt 0.001781 0.000359  ***
exit:vsl_grt -0.000198 0.000421
enter:psv_auxiliary_boats_count 0.586298  6.83E-07 ***
exit:psv_auxiliary_boats_count -0.293133  7.73E-07  ***
enter:entus 12.13128  1.11E-11 ***
exit:entus -1.506471  1.66E-12 ***
Log-Likelihood: -90.00391

McFadden R"2: 0.2416361

Model 2003 - 2010 Estimate Std. Error
enter:(intercept) -3.170228  5.26E-07  ***
exit:(intercept) -4,77779  6.05E-07 ***
enter:fuelcostyr -1.17E-06  4.07E-07 **
exit:fuelcostyr -1.48E-06  5.75E-07 *
enter:vsl_length 0.022226  3.64E-05 ***
exit:vsl_length 0.022166  3.61E-05 ***
enter:vsl_age -0.092643  1.42E-05 ***
exit:vsl_age 0.028548  1.75E-05 ***
enter:vsl_storage_capacity 0.000534 0.000289 .
exit:vs|_storage_capacity 0.000874 0.000263  ***
enter:vsl_fuel_capacity 0.001781 0.000697 *
exit:vsl_fuel_capacity 5.59E-05 0.000711
enter:entus 15.68829  2.96E-14 ***
exit:entus -1.655642  6.59E-16 ***

Log-Likelihood: -169.7683
McFadden R"2: 0.2013186

Statistical significance at “***’ 0.001 ‘**’ 0.01 *’ 0.05 ‘" 0.1.
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Figure 1. The Western and Central Pacific Ocean with Pacific island regions.

vsl_grt vs|_length
1600 100
1500
1400 %0
1300 80
1200 70
1100
vs|_speed vsl_crew_count
165 30
160 27
145 2%
140 21
135 1
vsl_engine_power vsl_fuel _capacity
700
3800 650
3700 600
3600 550
3500 500
3400 . 80 -
vsl_storage_capacity psv_auxiliary_boats_count
1600 40
1400 35
1200 3
25
vsl_age vsl_number
30 4
25 30
2 2%
15

1995 2000 2005 2010 1995 2000 2005 2010

Figure 2. The US purse seine physical characteristics, the thin black line represents the mean
surrounded by standard error bar in light grey. (see Table 1 for list of covariates)
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Figure 3. Price per tonne (price.skj = skipjack, price.bet = bigeye, price.yft=yellowfin), fuel price in
dollars per barrel, interest rates as (%) (int.rates) and biomass estimates in tonnes,
(skj.biom=skipjack, bet.biom=bigeye, yft.biom=yellowfin). (See Table 1 for list of covariates)
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Figure 4. Scree plots displaying the variance of each component for each dataset.
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Figure 5. Correlation matrices of the 3 data sets.
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Figure 6. Variable importance plots for the predictor variables from the RF.
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