MOW2 WP3: Management strategies (objectives, indicators, reference points and harvest control rules): the equatorial skipjack purse seine fishery as an example

What are harvest control rules?

- MSC definition:
 - "A set of well-defined <u>pre-agreed</u> rules or actions used for determining a management action in response to changes in indicators of stock status with respect to <u>reference points</u>"
- The annual level of fishing is defined by the HCR, not through annual negotiation simplify (simplify negotiation and quicken management response time)

An example

Aim of the paper

- Worked <u>example</u> of how fisheries management decisions in support of achieving target reference points can be put into practice through a harvest control rule.
- Stimulate discussion on a range of matters including:
 - trade-offs between maximizing catches and minimizing catch variability;
 - important features in harvest control rules for skipjack tuna;
 - designing rules for yellowfin and bigeye tuna which involve major gear interactions; and
 - how harvest control rules could assist decision making processes in the WCPFC

Design of harvest control rules 1

The lag effect in terms of the delcine in effort when SB below target needs explaining (i.e. not sure I understand it!)

Ian Cartwright, 11/26/2013

Results

Testing robustness of HCRs

- Important to test a HCR using a model to determine if decisions based on the rule, when applied to the fishery over time, achieve targets and avoid limits.
- Two example areas investigated:
 - Stock assessment uncertainty how does the HCR perform when our assessments are uncertain?
 - Effort creep how does the HCR perform when the ability of vessels to catch fish improve over time?

Robustness analysis

	Harvest control rule 1			Harvest control rule 2		
Effort change	Base	Uncertainty	Effort creep	Base	Uncertainty	Effort creep
Any change	11%	13%	61%	21%	29%	57%
> 5,000	1%	3%	1%	5%	16%	10%
>10,000	0%	2%	1%	3%	11%	6%
> 15,000	0%	1%	0%	2%	8%	3%

Discussion points

- Trading off objectives: How important is it to maximise catch and catch value versus ensuring more stability in the WCPFC tuna fisheries?
- Will the adoption of harvest control rules make decision making easier in the WCFPC?
- How might sustainability concerns over bigeye and yellowfin be incorporated into management strategies for skipjack? Will it involve specific harvest control rules?
- How might we be able to develop harvest control rules for bigeye and yellowfin given the multi-gear considerations?

'Sliding' HCR

Adjustments fishing level if stock status declines. Higher levels are permitted with improved stock status.

- moderate yields
- lower levels of risk
- higher variation in yield
- gradual changes

Stock status