MOW WP1: Potential target reference points that consider profitability of fleets: south Pacific albacore longlining as an example

Background

- MOW candidate objective maximizing the economic yields from the fishery (i.e., MEY)
- <u>Example</u> of how to make this operational through candidate TRPs
- Stimulate discussion on matters, including:
 - overall objective
 - appropriate economic quantities/values to be considered
 - potential implications of management options for the southern longline fishery
- emphasising principles and broad strategic approach, not specifics of the costs and assumptions used

The example

Concerns for the SP albacore fishery coming from an economic standpoint (not a conservation one) because it is *increasing* overall effort and *reducing* catch rates that are currently of concern, not overall stock status.

% Change	% Change	% Change			
from 2010 Effort	Catch	VB			
-70	-57	34			
-60	-47	26			
-50	-39	20			
-40	-32	14			
-30	-25	8			
-20	-19	4			
-10	-14	-1			
0	-10	-5			
10 20 2012 levels	-5 -1	-8 -12 -14			
40	5	-18			
50	8	-20			
60	11	-23			
70	13	-25			
80	16	-27			
90	18	-29			
100	20	-31			
Note: effort scalar of 1.29 in 2012					

Bioeconomic model - approach

- MEY we define 'economic yield' as the net present value of the fishery over a 20 year period of fishing
- · Given different effort levels predict annual changes in catch

Find the level of effort that maximizes long-term resource rents

(inc. 'normal' return on investment)

(inc. price received from all catch)

Resource rent (profit) = Revenues - Costs

the profit earned above and beyond that required to justify undertaking fishing activity

Projections (key features)

- Modelling simplified to provide a worked example rather than attempting to reflect full reality
- Change in longline effort (rel. 2010 levels) applied to 2012 SP ALB assessment model
- Scale longline effort in southern WCPFC-CA only (other fisheries/areas held at 2010 levels)
- Catches of YFT, BET, Billfish, and 'other' valued species included in catch values
- Economics assumed constant across fleets and regions

Economic conditions

Parameter Species		High	Med.	Low		
Price/mt (USD)	ALB	3,500	3,116	2,731		
, , ,	YFT	8,200	6,716	5,231		
	BET	10,100	8,747	7,394		
	Billfish	2,194	2,144	2,094		
	Other ^a	2,094	2,094	2,094		
Cost/hook (USD)		1.30	1.10	0.90		
Discount rate		0.07	0.05	0.03		
^a Includes sharks and other finfish						

Scenarios

3

3

2

'typical' longline vessel

 $3^3 = 27$ combos

vessel with lower costs (e.g. technically efficient)

Catch/value composition (2030)

'medium' price structure

MEY/Break-even points

Increase in value greatest with initial effort reductions

Performance indicators (effort at MEY)

		PERFORMANCE INDICATOR AT MEY					
Relative Price Structure	Cost/hook (USD)	Scalar at Max. NPV (rel. 2010 Effort)	Forgone Value (million USD)	Catch ALB-SP (MEY) (mt)	Catch MEY/MSY %	Biomass SBMEY/SBMSY ratio	Change ALB CPUE (MEY) ratio
MEDIUM	1.3 1.1	0.38 0.52	1,965 1,168	45,998 56,551	47 58	3.08 2.86	1.28 1.18
	0.9	0.72	526	68,704	70	2.61	1.07

Note: effort scalars of 1.13 and 1.29 correspond to observed 2011 and 2012 effort levels releative to 2010

Performance indicators (effort at break-even)

		PERFORMANCE INDICATOR AT Break-Even					
Relative Price Structure	Cost/hook (USD)	Scalar at Break-Even (rel. 2010 Effort)	Catch ALB-SP (mt)	Vul. Biomass ALB-SP (2030/2010)	Catch YFT-SP (mt)	Catch BET-SP (mt)	
MEDIUM	1.3	1.12	83,071	0.91	22,177	10,257	
	1.1	1.54	95,612	0.79	24,861	10,988	
	0.9	2.14	107,849	0.66	27,659	11,906	

Note: effort scalars of 1.13 and 1.29 correspond to observed 2011 and 2012 effort levels releative to 2010

Main conclusions

- Analysis based on current catch and effort settings for SPA suggest there is considerable loss of potential economic value
 - To achieve MEY estimated that reductions of 14-70% of 2010 effort levels required, depending on economic conditions
- Substantial gains in value (and improved catch rates) can be made even with only moderate reductions in fishing effort
- Vessels with lower costs will have sufficient returns to stay in fishery long after other 'average' vessels with higher costs will exit the fishery due to inadequate returns
- Resource rent at MEY or %MEY is one potential economic indicator that can help define TRPs (others incl. employment or other onshore economic benefits); all require access to industry/market data

Discussion points

- What economic indicators are most suitable for the calculation of the Maximum Economic Yield?
- Do we want to maximise economic yield or just get 'pretty good' economic yield?
- How do you consider the differing economic performance of fleets, in particular consideration of SIDs fleet performance when considering MEY-based target reference points?
- The importance of secondary species when determining economic returns and impacts/linkages with other fisheries.
- Should bioeconomic analysis like this form part of the work of the Commission? If yes, how might it be done?