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Background

The Pacific Tuna Tagging Programme (PTTP) is a joint research project being implemented by the Oceanic
Fisheries Programme (OFP) of the Secretariat of the Pacific Community (SPC), the PNG National Fisheries
Authority (NFA) and the members and participating non-members of the Western and Central Pacific Fisheries
Commission (WCPFC). The goal of the PTTP is to improve stock assessment and management of skipjack,
yellowfin and bigeye tuna in the western and central Pacific Ocean (WCPO). This report specifically addresses
objective 4 of the PTTP:

“obtain information on species-specific vertical habitat utilisation by tunas in the tropical WCPO, and
describe the impacts of FADs on vertical behaviour.”

Vertical habitat utilisation plays a large role in determining vulnerability to all major gear types operating in the
fishery. This objective seeks to characterise the effect of FADs (anchored and drifting) on tropical tuna vertical
behaviour and habitat utilization. This information will allow better estimation of abundance indices and
standardised effort for the main fisheries and possibly contribute directly to the design of management measures
for FAD fishing.

Funding support for this objective has been provided by the PNG National Fisheries Authority, New Zealand
Agency for International Development, 9" European Development Fund (SciCoFish Project), Republic of Korea,
Pelagic Fisheries Research Project, the Institute for Complex Systems Simulation, and the Lenfest Ocean Program.

This document complements the existing reports for this objective:

Leroy, B., D.G. Itano, T. Isu, S.J. Nicol, K.N. Holland and J. Hampton. 2010. Vertical Behavior and the Observation
of FAD Effects on Tropical Tuna in the Warm-Pool of the Western Pacific Ocean. Reviews: Methods and
Technologies in Fish Biology and Fisheries 9: 161-180.

Leroy, B., J. Scutt Phillips, S. Nicol, G.M. Pilling, S. Harley, D. Bromhead, S. Hoyle, S. Caillot, V. Allain, J. Hampton.
2012. A Critique of the Ecosystem Impacts of Drifting and Anchored FADs on Tuna in the Western and Central
Pacific Ocean. Aquatic Living Resources 26: 49-61.

Introduction

The study of behavioural ecology presents a number of significant challenges, particularly in the case of free-
roaming, marine animals such as tropical tuna that cannot be directly observed. Indeed, there remain many
aspects of the behaviour of these animals that are not well understood, including changes in vertical behaviour
associated with biological factors, differences in location, and exposure to fishing gears. Assumptions about
catchability, thermal-habitat preference, and how these differ across regions, are important components in stock
assessment models. Improving our understanding of vertical habitat-use may have implications for scientific
advice for the management of industrial fisheries. However, the problems involved in describing observed
behavioural patterns objectively, correctly attributing changes in these patterns to appropriate stimuli, and
applying statistically rigorous analysis techniques to behavioural time-series, have made such understanding
difficult to incorporate into modern stock assessment.

In the case of tropical tuna, movement has important consequences for the susceptibility of these animals to
fishing gears. Movement behaviours are manipulated and exploited by both industrial and artisanal fishers
through the use of drifting and anchored Fish Aggregation Devices (FADs). This is because tuna, along with other
pelagic species, are attracted to and associate with floating objects for reasons that are not fully understood, but
may be related to the search for food and social interaction (Leroy et al. 2012). The use of FADs allows coastal
fishers to utilise and broaden their pelagic resources (Bell et al. 2009), while for industrial purse seiners it
increases the number of school encounters and stabilises catch (Squires & Kirkley 1999). Associated sets have
reached 65% of purse seine effort in recent years (Hampton et al. 2012), and FADs are now deployed in such
numbers that many thousands are in use at any one time (Moreno et al. 2007). As a result, some areas of the
Western and Central Pacific Ocean (WCPQO) contain very large changes in FAD density across relatively small
spatial scales (Leroy et al. 2012). Such dense areas of floating objects may affect tuna dynamics across larger
scales or in a different manner than previously thought.

The information from tuna tagging programmes in the Pacific provide a way to examine both the nature of and
influences on these behaviours. In particular, a database now exists from over 130 archival tag returns from
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bigeye, yellowfin and skipjack tuna in the WCPO. Archival tags are surgically-implanted electronic devices that
record data on the light intensity, depth and temperature that an individual fish experiences over a period of
time. The time interval between records can be pre-programmed, often as short as 30 seconds, and so
consequently, archival tag-release experiments can provide high resolution data for the analysis of vertical
movement across many of the factors that may influence tuna behaviours. With this information it is possible to
identify how tuna use the vertical water column that makes up their habitat, how physiology and environment
affect their movement, and ultimately examine the degree to which FADs may alter this behaviour.

Despite the significant advances in technology and effort that have enabled the collection of large amounts of
data on the fine-scale behaviour of tuna in the WCPO and elsewhere, there still exist a number of problems in the
analysis and interpretation of these kinds of data.

Firstly, it is not trivial to objectively describe and classify behavioural data. Previous descriptions of behaviour in
tuna have been largely qualitative and often related to depth only. Leroy et al. (2010) provided the first analysis of
vertical movement of tropical tuna in the WCPO using qualitative descriptions of tuna diving behaviour similar to
those attributed to archival tag data in many other studies (e.g. Schaefer and Fuller 2004; 2007; Wilson and Block
2009; Matsumoto et al. 2013a). Tuna behaviours have been classified by using observations such as the
proportion of the day spent at certain depths (Schaefer et al. 2007; Matsumoto et al. 2013b), proportion of time
spent above or below particular isotherms (Schaefer et al. 2009; Matsumoto et al. 2013a), summary metrics such
as mean, maximum and proportional time spent at certain depth bins (Bestley et al. 2009; Walli et al. 2009),
number and nature of individual dives (Dagorn et al. 2006; Wilson and Block 2009), the distribution of relative
movements through the water column (Humpbhries et al. 2010) and a combination of these alongside qualitative
description of predefined behavioural patterns (Leroy et al. 2010).

Secondly, the behavioural time-series provided by archival tags contain significant autocorrelation. Behaviour
observed at one time is often related to behaviour observed previously, a result of the persistence of the
underlying processes, such as hunger or resting, which drive these behaviours. This necessitates the use of
statistical tools that do not assume independent sampling, and so many of the standard approaches for analysis
or statistical modelling are not appropriate.

Finally, although archival tags record high resolution data on movement, the behaviour of these animals is not
explicitly observed. Changes in depth and movement patterns are the result of underlying motivational changes in
tuna. These motivations may persist or change in relation to environmental or other stimuli. Because these
motivations are not directly observed, considerable care must be taken when interpreting the patterns that are
observed in the time-series from archival tags. In particular, relating qualitative descriptions of behaviour to some
other variable can implicitly incorporate potentially erroneous assumptions, biasing perceived relationships
between vertical behaviour and potential covariates.

Here we provide an objective approach to analysing vertical tuna behaviour. We demonstrate a method using
hidden Markov models (HMMs) to classify the vertical behaviour of tunas using data derived from archival tags
and a number of simulated data sets. This approach has a long history in the field of signal processing, particularly
for voice recognition (Gales & Young 2007), and its popularity as a tool for examining ecological data has
increased in recent years. In particular, the field of animal behaviour has benefited from the ability to objectively
estimate patterns and behavioural states from data in which behaviours may not be explicitly observed.
Furthermore, HMMs provide a statistically rigorous framework to include covariate information that may
influence the nature of and switching between estimated behavioural states. Examples of such models being
applied to ecological problems include the foraging behaviour of mouse lemurs (Schlieche-Diecks et al. 2012),
horizontal movement behaviour of Southern Bluefin tuna (Patterson et al. 2009), habitat-use of leatherback
turtles (Jonsen et al. 2007) and diving behaviour in Macaroni penguins (Hart et al. 2010). In an ecological context,
this approach can objectively identify the nature of observed behavioural patterns, estimate the probability of
individuals switching between these behavioural states, and apply model selection criteria to objectively choose
the most parsimonious model.

We presume that factors such as environment, ontogenetic development, time of day, and the presence of FADs
influence patterns of behaviour in tropical tuna (Robert et al. 2012, Humphries et al. 2010, Maury 2005, Dagorn
2000). Archival tagging data provides neither a complete observation of these species’ behaviour, nor the
ecological context that drives it. Rather, we assume that the patterns observed in the diving behaviour are linked
to latent behavioural states, which may be driven by these external factors. What are currently lacking are tools
which can objectively extract behavioural patterns and classify these latent behaviours, whilst explicitly dealing
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with autocorrelation in the vertical movement time-series. HMMs have been applied to horizontal movement
patterns for these very reasons, but are entirely appropriate for application to vertical behaviour.

We apply HMMs to a subset of archival tags from yellowfin and bigeye tuna deployed in the WCPO to examine
three hypotheses:
1. Tropical tuna exhibit consistent behavioural patterns in their vertical movement tracks.
2. Individual biology drives differences in these behaviour patterns.
3. Stimuli such as time of day and the presence and density of nearby floating objects affect the transition
between these behavioural states in tuna.

Methods

WCPO Archival Tag Database

The PTTP database stores archival tag returns numbering over 130 individual skipjack, yellowfin and bigeye tuna
that in total have spent over 13,000 days at liberty in regions across the WCPO (Figure 1, Appendix 1). Data
captured by archival tags includes depth and internal body temperature measurements captured at time intervals
ranging from 30 seconds to 5 minutes, with most models also recording water temperature and light intensity.

Location of all Archival Tag releases
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Figure 1. Release and estimated recapture locations for all archival tags in the PTTP database.

Data Pre-processing

HMMs are suited to analyses of autocorrelated time-series, such as those from archival tags. To facilitate
examination of persistent behaviours that occur in tuna for time durations longer than a few minutes it was
necessary to pre-process the data into summarised units. It was desirable that any data pre-processing did not
remove autocorrelation in the archival tag data. The optimal time step for such binning needed to be long enough
to capture the range of consistent, composite behaviours that have been described for tuna in previous studies,
such as ‘U-shaped diving’ (e.g. Schaefer and Fuller 2005; 2007), whilst also being small enough to capture within-
day shifts in behaviour, such as the ‘afternoon diving’ described by Matsumoto et al. (2013b).

Raw tag data were divided into sections from which summary metrics were calculated, starting with two initial
divisions made at dawn and dusk. Data were divided at these points to avoid metrics being calculated across the
time-period when tuna have been previously reported to shift their vertical behaviour.

The first step to identify the average time of day at which these behavioural shifts occur was to use a split-moving
window analysis (Ludwig & Cornelius 1987), which was applied to changes in time at depth. This approach has
been used elsewhere to divide the vertical behaviour of free-roaming animals into behaviourally consistent
sections over longer timescales (e.g. Humphries et al. 2010; Sims et al. 2011). Initially, the depth profiles for each
individual were binned into proportion of time spent within 10-meter depth bins during each half-hour time
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period of the entire dive track. Then a ‘virtual’ window encompassing 24 time bins (12-hours) was placed at the
start of the track, and split into two equal halves. Summing the proportion of time at each depth bin for each
window half, the Euclidean distance was then calculated between the split-window. This is a measure of how
dissimilar the first window half is from the second, in terms of time spent at different depths. This dissimilarity
was recorded for the point in the binned depth profile split by the window, the window then moved on one bin,
and the process was repeated for the new window position. In the case of tropical tuna, these measures of
dissimilarity are often greatest when the window equally straddles a period of deeper behaviour, typically during
the day, and shallower behaviour, such as exhibited during the night, although this was not the case 100% of the
time. There was also considerable inter-depth movement that did not correspond to these day/night periods. To
identify when the most consistent shifts in movement occurred, the time at depth bins were shuffled 5000 times
and the same analysis carried out. When these random dissimilarities failed to exceed those calculated from the
originally ordered data at a particular point 95% of the time, we concluded that this represented a significant shift
in vertical behaviour, given the variation in the data.

The periodicity of these significant behavioural changes was examined to identify whether there was a consistent,
diel pattern in movement; significant changes can be expected to occur more commonly at the the day/night
boundaries (crepuscular periods). A histogram of periods during the 24 hours in which significant changes
occurred revealed the times at which those changes were most common. A K-means algorithm (MacQueen 1967;
Hartigan & Wong 1979) was applied to estimate two clusters from the frequency of times of (a 24 hour) day at
which significant changes occur. The centre points of these clusters were selected as the crepuscular boundary
periods that divide the dive data between day and night.

Once boundary periods had been identified, the data were further divided into the smaller units between the
crepuscular boundary points. Summary metrics were calculated from the raw data for time bins of 1, 2, 3, 4, 6, 12
hours duration. At a time step of 3 hours, a balance was obtained between capturing dynamics such as just diving
around crepuscular periods, or periods of ‘U-shaped’ diving, without the very fine patterns such as
thermoregulatory dives being characterised individually in our analyses. Furthermore, such a time scale is
appropriate for interpreting behavioural switching driven by underlying motivations that we assume are
associated with factors such as FAD-association or periods of feeding or digestion. FAD-association is believed to
occur on the scale of hours to months (Bromhead et al. 2003), whilst complete gastric evacuation occurs in
tropical tuna at the scale of 5-12 hours (Olsen & Boggs 1986). We noted that at 12 and 6 hour time bins, the
details of many shorter term and composite behaviours were also lost in the summary metrics, while noise from
large individual dives began to increase at 2 and 1 hour sectioning. Using this 3 hour interval as a guide we then
subdivided each crepuscular period into four equally spaced time units. Although each section divided between
dawn and dusk was equally spaced, depending on the time chosen for the crepuscular boundary, the day periods
and night periods may not always contain exactly the same amount of data.

In this study, we calculated summary metrics from the available tag data across time bins. As the study included
tuna from different time periods and areas, we did not use measures of absolute depth which may differ across
these factors for behaviours of the same underlying ecological motivation. We used a multivariate assemblage of
summary metrics to capture information about both relative movement through the water column and
temperature-based habitat use. Water temperature and absolute depth were highly correlated, although non-
linearly. We used temperature as measure of habitat use. As individual deep dives and thermoregulatory dives
can have a considerable effect on mean temperature metrics, the median water temperature was used. To
choose the second summary metric in our multivariate assemblage, a principal component analysis was carried
out on all the summary statistics (except those involving absolute depth) calculated from individual fish to
examine the ways in which the data may be transformed into orthogonal components. Both the mean and
variation in move step lengths consistently provided high loadings in the first principal component. We chose the
mean move step length, a measure of vertical movement amplitude, as the movement component of our
multivariate normal observation model.

Thus, raw archival data was processed into a time-series containing a two-dimensional, multivariate assemblage

of mean move step lengths and medium water temperatures across 3-hour time periods.

Study Fish

We used 8 study fish to examine:

e two species (bigeye and yellowfin);



e two size classes at release (sub 70cm FL fish and ~100cm FL fish). These two size classes were chosen to
examine how physiological development of a swim bladder would affect individual behaviour of the
smaller class, whilst this development should be complete in the larger individuals (Magnhuson 1972);,
and

e two release locations distinct in both environment and floating object density. Extensive use of anchored
FADs occurs in and around the Bismark Sea (Leroy et al. 2012), whereas in the open ocean locations of
the Central Pacific there is a presumed lower density of FADs.

Fish Location Species Size at Days at | Date Notes
release liberty

Arc294 Central Pacific Bigeye 53cm 318 Dec 2011

Arc272 Central Pacific Bigeye 106cm 360 Nov 2010

Arc217 Central Pacific Yellowfin 68cm 148 May 2008 Fish migrated

over 30° West
whilst at liberty

Arc269 Central Pacific Yellowfin 98cm 255 June 2010 Approx. 240 days
data corrupt and
removed

Arcl163 Bismark Sea Bigeye 59 174 Nov 2011

Arc88 Bismark Sea Yellowfin 50 168 Feb 2007 Initial 40 days of
data corrupt and
removed

Arc302 Bismark Sea Yellowfin 63 280 Jan 2012

Arc220 Bismark Sea Yellowfin 98 124 Sept 2007

Model

Hidden Markov models (HMMs) are a group of state-space models which assume that observations depend on a
finite number of underlying, unobservable states (Zucchini & MacDonald 2009). In time-series, these observations
are assumed to be drawn from separate distributions each corresponding to a ‘hidden’ state in the same way as
an independent or discrete mixture model applied to ecological data (Welsh et al. 1996). However, in an HMM
these observations form a Markov chain, with the probability of occupying a given state at a given timestep
dependent on the state occupied in the previous timestep. Using this framework, parameters that describe these
distributions, the probabilities of transitioning between states, and the relationship between these transitions
and other covariates, can all be estimated using numerical estimation of the maximum likelihood for a given
dataset (Zucchini & MacDonald 2009, Patterson et al. 2009).

Here, we use the pre-processed dive tracks from our subsample of study fish to estimate the parameters for such
a model. We assume that multivariate normal distributions of 3-hour binned mean step move length and median
water temperature exist and are arranged in a number of distinct states, and that time series of these data form a
Markov chain. Individual tuna switch between exhibiting behaviours drawn from these distributions with
transition probabilities based on the behavioural state occupied during the previous three hour time period, and
for models that include covariate information, the value of this covariate.

A full description of the HMM model is provided in Appendix 2.

Diagnostics and Simulation Experiments

In order to introduce and examine the effectiveness of the HMM developed in this study, we undertook a number
of simulation experiments using artificial data. Consider a theoretical tuna, tagged with an electronic tag that
records two metrics over a particular time period. These metrics could relate to the speed the individual moves
and the surrounding water temperature, averaged over some time bin. Two-dimensional datasets are generated,
corresponding to this idealised individual exhibiting a number of different behaviours, such as remaining in the
warm, mixed layer with little change in velocity (sometimes considered ‘associative’ behaviour), or making
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repeated dives to deeper, colder layers (as in ‘characteristic’ bigeye behaviour). We design these behaviours to
have varying levels of persistence, and in some cases behavioural switching related to a covariate (perhaps a
binary factor relating to day-time or night-time influences). For each simulation, HMMs were constructed and
their abilities to correctly estimate true parameter values were examined. ‘Pseudo-residuals’ were also calculated
for each model. As normal residuals do not exist for HMMs, these quantities fulfil a similar role and are explained
further in Appendix 3. Each dimension of the multivariate assemblage has an associated set of pseudo-residuals.
These become increasingly normally distributed with little structure through time as an HMM becomes more
complex.

Three simulation experiments were carried out to assess the accuracy of our method for identifying states in the
vertical behaviour of tuna. We generated three sets of artificial data which simulated dive track summary metrics
drawn from the following state-dependant mixture of bivariate normal distributions. A full description and results
of the simulation experiments are provided in Appendix 3.

The results of the simulation revealed that the HMM was capable of estimating true state distribution parameters
and transition probabilities when these multivariate normal distributions were not too similar, although state
persistence tended to be underestimated. Relationships between simulated transition probabilities and
covariates were also estimated well. However, the AIC as a basis for model selection appeared to consistently
select the most complex model despite less complex models being more appropriate. The parameter space in
HMMs grows very large with increasing numbers of states, but despite this the AIC does not appear to adequately
penalise the improvement in likelihood from these larger models. Examination of ‘pseudo-residuals’ provided a
better, although not completely objective, method of model selection. Pseudo-residuals examined from these
simulation experiments showed very little improvement in distribution for models that contained more
parameters than the appropriate, ‘correct’ model. In each case, the simplest model which demonstrated
comparable pseudo-residuals to more complex models was selected.

Modelling Archival Data Time-series

For each study fish, HMM parameters were estimated using the method described above for 3-hour mean step
length and median temperature summary metrics arranged in a multivariate distribution. The summary metrics
from all fish were combined, and the resulting distribution examined to identify an appropriate transformation to
normalise the data. A Box-Cox estimate of the ideal transformation exponent, lambda, was made for these two
summary metrics, giving 0.11 and 0.19, for mean step length and median temperature, respectively. As both
these values were not significantly different from zero, all data were log-transformed prior to the analysis.

Three HMMs were fitted to each study fish, assuming 2, 3 and 4 hidden states. The models estimated a mean and
covariance matrix describing behaviour within each state, and a matrix of transition probabilities between the
states. For some groups of models, we replaced single transition probabilities with linear functions of covariates.
In these cases, we assumed a relationship between the covariate and the probability of switching states, allowing
us to examine a number of hypotheses.

Initial conditions for all parameters were formed by scaling the time-series data to a Z-score and using a K-means,
unsupervised machine learning algorithm to cluster the data into the same number of groups as estimated states.
Using this classification, the centre points and covariance of each group of observations were used as starting
values for state distribution parameters. A transition matrix was then calculated based on the K-means clustering
of the time-series, and used to create starting values for the transition probabilities. For models that contained
coefficient parameters for discrete covariates in the transition matrix (such as day or night), a separate transition
matrix was built from a subset of the time series for each value of the covariate, using these K-means
classifications. For continuous covariates (such as fish length), the data were divided into two halves and
transition matrices constructed for each half based on the K-means classifications. The average value of the
covariate in each half was then calculated, and the difference between these values in the two halves, with the
corresponding change in transition matrix, was used estimate the value of the slope and intercept for the linear
relationship between covariate and probability for each state to state transition. Using these start parameters,
models were estimated using the Nelder-Mead algorithm in the R function optim() (R Core Team 2013). For each
individual, one of the three models was selected as the most appropriate by examination of the pseudo residuals
as described above. The number of states in the selected model for each individual is given in Appendix 4.

For each group of models estimated, a different assumption was made regarding the relationship between
covariates and state switching. First, a set of models were built from all study fish that assumed no relationship
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between covariate information and switching between behavioural states. Then, we included a binary covariate
to each 3-hour section of the time series that described the diel environment, i.e. whether the section data was
recorded during the day or night. Day-time was defined if the time of day at the midpoint of the time series
section was between 6am and 6pm. A third set of models were built using an estimated length of the individual
throughout the time series, projected forward from the length recorded at release. These length estimations
were calculated using growth curves from the most recent WCPO stock assessments for yellowfin (Langley et al.
2011) and bigeye (Davies et al. 2011). Finally, model parameters were estimated for two of the study fish at
liberty in the Western Pacific, using a binary covariate representing potential movement within the FAD-dense
Bismark Sea region. Estimated horizontal movement was available for these individuals based on two different
methods of geolocation. For the small bigeye Arc163, the light-level based Trackit package for R (Nielson et al.
2007) was used. Due to high levels of uncertainty in the latitudinal estimates of this method, only estimates of
longitude were used to indicate potential time spent within the Bismark Sea. For the large yellowfin Arc220, the
most probable track was estimated using the geolocation method described in Royer et al. (2005).The Bismark
Sea area was bounded by the box 5°80’S - 2°20’S and 145°50’W - 152°50°W.

Results

To test the performance of the HMMs and examine our hypotheses, we describe the vertical movement of the
study fish using HMMs with no covariate information, with a day-night covariate; and with a length covariate to
the 8 study fish. A simple, binary location covariate was applied to two fish. For each archival tag, parameters
describing the multivariate normal distributions of the behavioural states were estimated, along with an m-by-m
matrix of transition probabilities, which described the switching between states. These transition probabilities
change in relation to covariates, if these data have been included in the model. From this information, the
probability of occupying each state at each timestep was calculated from the likelihood contribution of that
observation, and used to classify each section of the time-series.

Transition matrices can be difficult to compare across individuals and alternative models. A clearer way of making
this comparison is to compare the limiting distributions of the Markov chains they describe, also called the
stationary distribution. In this case, the stationary distribution can be thought of as the proportion of time an
individual fish would spend in each state, if the time-series ran on infinitely. Thus, each transition matrix can be
viewed as a vector of proportions of length m, where each value is the proportion of time at the limit spent in
each motivational state. A detailed example of estimated parameters and state classification is given in figure 2
for an HMM fitted to data from a small bigeye tuna with two hidden states, and no covariate-informed
parameters in the state-transition matrix.
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Figure 2 Example HMM output for Arc163, a bigeye tuna released at 59cm FL in the Western Pacific. This model has two behavioural-
state distributions, and includes no covariate information affecting the transition probabilities between those states. Figure a)
displays the estimated state distributions of the multivariate summary assemblage shown on a log scale. This fish has two clear
states. The shallow state (S) was typified by a large variation in move step lengths (amplitude; x-axis) within a fairly narrow range of
thermal habitat in the mixed layer (y-axis). The deep state (D) constituted a looser distribution with larger mean, relative movements
through the water column and the fish occupying colder habitats, although there is a high variance in these temperatures. Figure b)
shows the estimated transition probabilities and related stationary distributions between these behavioural states. Here, both the
shallow and deep states were persistent (80% and 74% respectively), although the shallow state slightly more so. Switching occurred
with probability of 0.2 when the individual occupied the shallow state and with probability of just over 0.25 when in the deep state. In
the limiting, stationary distribution this resulted in a slightly greater proportion of time spent exhibiting shallow behaviour. Figure c)
displays an example section of the time series as classified by the model, showing, from top to bottom, raw depth, raw water
temperature, summary mean step move length, summary median water temperature, and the probability of state occupation at each
time step.

The hidden Markov models we have used here provide information on three aspects of tuna behaviour. First, the
nature of the most likely observed behavioural-state distributions, given the entire time-series, is estimated.
Second, the switching between the underlying motivational states linked to these observed distributions is given
by transition probabilities, including the relationship between these probabilities and covariate information, if this
information has been used. Finally, these two aspects are used to classify the behavioural time series with a
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probability of occupying each motivational state at each timestep. We examine each of these aspects for the
HMMs fitted to the archival tag data in this study in turn.

No Covariate Information

Shallow States Deepest States Other States

Log(Median Temperature)
Log(Median Temperature)
Log(Median Temperatuire)
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- tow fin Tuna
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Figure 3. Estimated state distributions from the selected models for all fish in this analysis, divided into the most shallow, most deep
and any other states. For each individual, each state has a separate colour. Top row: results from HMMs with no covariate ~ transition
relationship; Bottom row: results from HMMs with a binary covariate for day or night in the transition matrix

Observed Behavioural States

The estimated behavioural states for each individual can be described by a shallow state, where the mean of the
multivariate normal distribution in the temperature dimension is highest, a deep state, where this mean is lowest,
and, depending on the number of total states in the chosen model, a number of intermediate states. For all
HMMs, the most shallow and most deep states were similar for each individual across runs with differing
covariate information, indicating that the grouping of summary metric observations is clear enough to estimate
the same states across models with differing transition matrices (Figure 2). The shallow state classified in all
models was similar across all individuals (Figure 2) with the largest variation in behaviour associated with the
mean movement step length rather than the habitat (which constituted a median temperature of between 33
and 25°C, being the epipelagic, mixed layer). In contrast, the nature of the classified 'deepest' states varied
between individuals and species (Figure 2) with greater differences in habitat across individuals and less variation
in mean movement step length, which was generally of greater amplitude than the shallow states. The deepest
states of bigeye tuna were considerably deeper than those of yellowfin.

Addition of the diel covariate increased the ability of the HMM in minimising the variance in mean step length
between individuals for the deep state behaviour (Figure 2), likely because switching between shallow and deep
behaviours was so clearly linked to the time of day that estimated state distributions could become tighter. The
variance associated with intermediate third and fourth states for some individuals (where model diagnostics
suggested these were the best models) were also smaller on median temperature and mean step length with the
inclusion of a covariate (Figure 2).
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The estimated state distributions of HMMs fitted with a length covariate in the transition matrix did not differ
greatly from the models fitted with no covariate information, with exception of Arc217. This fish undertook a
significant horizontal migration during its time at liberty, occupying two locations with different median
temperatures in the mixed layer. In this case the inclusion of the length covariate, which increases throughout the
time series, increases the likelihood of separating these periods of shallow behaviour into separate state-
distributions due to each one only being exhibited in the first half and last half of the time series, respectively.

Similarly, the state distributions for the two models including a Bismark Sea location covariate were very close to
the equivalent models using no covariates. The selected models for both these fish were 2-state models.

Switching between States

An examination of stationary distributions for each individual indicated that, across all models, shallow states in
the mixed layer were the most dominant behaviour (Figure 4), although the most dominant state was not always
the most shallow (as in the case of Arc217). One or more deeper states are exhibited less frequently, where
differences between species were evident. The proportion of time spent in shallow or deep states was closer to
50:50 for bigeye than yellowfin. Furthermore, the difference in the nature of these states was also greater for
bigeye, the thermal habitat being more different between shallow and deep behaviours (see Figures 3 and 4).

The transition probabilities matrix for the diel HMM demonstrates strong differences in the thermal habitat used
by both species between day and night (Figure 5) with occupation of colder median temperature states during
diurnal hours which correspond to habitats of the deep state and warmer median temperatures during nocturnal
hours which are indicative of the habitats in the shallow state. All three bigeye tuna examined here, and one large
yellowfin (Arc220), were the most consistent in switching between their deepest and shallowest behaviours
during the day and night, respectively. The large bigeye, Arc272, had almost certain probability of switching to
and persisting in deep behaviours during the day. A high proportion of time spent in these shallower, warmer
states during the night was more consistent across individuals than spending time in colder, deep states during
the day, whereas some individuals still pass considerable time in the mixed layer.

We observed inconsistent trends in the HMMs with the addition of a length covariate. While including the
estimated length covariate information in the transition matrix results in some clear relationships between
increasing size and behavioural switching for some individuals, for others there appears to be little or no change
in relationship to length. Furthermore, a change in the initial conditions used during model optimisation resulted
in different estimations of these state-transition parameters, occasionally even suggesting the opposite gradient
in the linear relationship. For example, in the case of data from one small bigeye tuna, estimation of transition
parameters from initial conditions using an estimate created using K-means clustering, as has been used through
this analysis, resulted in increased switching to a deep state as the fish increased in length. In contrast, when no
relationship was assumed in the initial conditions, i.e. the fish undertakes the same behavioural switching
regardless of size, a slight relationship to the contrary was estimated. Unlike the inclusion of the diel state
information, where regardless of initial conditions a similar relationship between change in covariate and
transition probabilities was estimated, in the case of length it appears that there is no, or not enough, information
in our time-series to interpret such a relationship. Subsequently, we do not present model results for this group
of model estimations here.

Conflicting results were observed between the two individuals examined with a Bismark Sea location covariate.
For the small bigeye Arc163 (59cm FL at release), persistence of deep behaviour was slightly lower when the fish
was within the longitudinal bounds of the Bismark Sea. Persistence of shallow behaviour was comparable both in
and out of the Bismark Sea area, resulting in an small overall increase proportion of time spent exhibiting shallow
behaviour when inside the bounds of the Bismark Sea (Figure 4). For the larger yellowfin Arc220 (98cm FL at
release), there was less evidence to suggest an effect on behavioural switching when inside the Bismark Sea.
Similarly to when length was included, different relationships between location and transition probabilities were
estimated dependent on the initial conditions used in optimisation. When K-means initial values were used, the
estimated relationship was similar to Arc163, i.e. an increase in time spent in the shallow state at the expense of
the deep when inside the Bismark Sea. However, using initial start values with no relationship, the final
parameters estimated were also very close to this null hypothesis (Figure 4).

Classified Timeseries
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An HMM can be used to subsequently classify a time-series by calculating the probability of the individual
occupying each state at each timestep using the estimated state distributions and transition matrices. Although
this can be applied to a new set of data using a model fitted to a different time-series, he we simply classify each
dive track using a model fit to that same time-series. Figure 2c shows a section of classified summary metrics for
Arc163, with corresponding sections of raw data also classified. This example classifies the time series into two
states, associated with shallow and deep behavioural patterns. Due to the slightly higher persistence of the
shallow state, behavioural patterns that may lie somewhere between the two state distributions are more likely
to belong to this warmer state, particularly if they occur after other instances of shallow behaviour. An example
of this can be seen in the final three days shown in figure 2c, where a high probability of the individual exhibiting
its shallow state persists into the first part of the daytime despite a shift to slightly deeper diving patters during
some of those mornings.
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Figure 4 Stationary distributions for selected models and all fish in this analysis, showing the proportion of time spent in each state.
The thermal habitat associated with each state is shown by colour, using the multivariate mean value in the median water temperature
dimension (back transformed). Top row: results from HMMs with no covariates included in the transition matrix (left), and results from
two fish with the potential Bismark Sea residence covariate (right). Bottom row: results from HMMs with a binary covariate for day or
night in the transition matrix.
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Discussion

Using HMMs we have demonstrated an approach to objectively describe vertical behaviour in tropical tuna. By
summarising raw data into bins at the temporal scale of hours, it is possible to explore the nature of clustered
behavioural states, the switching between those states and its relationship to other biological or environmental
information, and to classify these time-series using state probabilities at each timestep. The results from the 8
study fish identified patterns of behaviour that are consistent with the literature, although our behavioural
conclusions here are tentative in the knowledge that 8 individuals sampled across the size, area, species, and
indeed temporal variables may not be representative. Encouragingly, however, the shallow and deep state
identified were very similar across all groups of models, suggesting that the grouping of summary metric
observations used was sufficient to estimate the same states across models with differing assumptions about
transition between those states.

The identification of a similar warm-water, shallow state across individuals and species was consistent with the
known biology of tropical tunas which requires them to reside in the warm surfaces waters to thermoregulate.
However, tropical tuna have evolved ways to dive and exploit prey in colder layers of water, and it appears there
is a greater variety in how these study fish exhibit this behaviour. The shallow states, whilst occupying a narrow
range of median temperatures, consist of a large variety of step lengths, which are measures of movement
amplitude through the water column. Across all the individuals examined here, there is no evidence of
consistently different move step lengths for behaviours within the epipelagic layer. Rather, individuals spent time
in the mixed layer exhibiting a continuous range of relative movement from small to large amplitudes. It is likely
that this variation is influenced by location factors (e.g. depth and availability of prey) and the addition of
continuous horizontal movement covariates would be a useful experiment to test with the complete dataset to
better understand the variation in mean step length among individuals. In contrast, for all fish but Arc217, the
deeper states have consistently larger, mean step lengths. For the deepest states, such as in Arc272 and Arc294,
this is caused by the presence of thermoregulatory ascents during these deeper periods, but it is clear that for the
majority of the fish, behaviour in deeper water is associated with larger vertical movements. It is important to
note that the results from Arc217 must be interpreted in the knowledge that this yellowfin made a considerable
longitudinal migration (over 30° West), and so contains data from two different regions with different mean
surface temperatures. Subsequently, these separate sections of the time-series have been classified as distinct
states in these HMMs, when in reality they probably fulfil the same behavioural role as one another. Despite the
objective nature of our analysis, results must still be interpreted in light of significant shifts in environment that
result from seasonality or migration.

Across all models, shallow states were generally more persistent than deep states. From the small sample of
individuals examined here, it appears that yellowfin may be slightly more disparate than bigeye in the time they
spend exhibiting shallow and deep behaviours, spending more time in shallow waters. In contrast, bigeye have
more even amounts of time spent across their most shallow and deepest states. Once day and night are included
as covariates in the transition matrices, a clear relationship between diel period and state switching was evident
in all fish. This is consistent with previous descriptions of behaviour, whereby tuna feed on vertically migrating
species in the sound-scattering layer (SSL) in the epipelagic layer during the night, and exploit prey in colder layers
during the day. In addition, whilst some fish may abandon their deepest behaviours during the day (which has
been referred to as ‘floating object association’ by some authors), it is rare that individuals exhibit anything other
than their shallow or intermediate states during the night. This is demonstrated in the uniformity of time spent in
shallow states during the night across all fish, whereas during the day, time spent across states is more varied. For
those fish with intermediate states, these tended to be not only movements in cooler water, but also of greater
mean step length than the shallowest states. In the raw archival data, this manifests itself as large amplitude
movements into and out of the thermocline, with more time is spent exhibiting these intermediate behaviours
during the night than during the daytime.

The relationship between size and behavioural switching is less clear in these results. It is assumed that tropical
tuna ontogenetically develop an improved ability to exploit deeper layers of water as they grow through
physiological adaptations such as growth of the swim bladder (Magnuson 1972), increased aerobic scope
(Korsmeyer & Dewar 2001) and more effective endothermy (Graham et al. 2006). However, from the small
subsample of tropical tuna investigated, we saw no clear evidence in consistent changes in behavioural switching
across size. It is important to note that absence in size-based behavioural switching does not mean that
behaviours are static across size. In this study, behavioural states have been estimated across the entire time-
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series, defined by distribution parameters that are assumed to be consistent across of the lifetime of the archival
tag data. By including length information as a covariate in the transition probabilities between these states, the
assumption is made that tuna have a distinct number of states as estimated from the entire time-series, but the
switching between this is partially dependent on the size of the fish. However, from a biological perspective this
may not occur. Rather, even at sizes where the physiological developments allowing sustained deep diving and
foraging have not fully developed, individuals may still exhibit a deep state, albeit at a reduced depth or high
movement amplitude, and switch to and from this state with the same probabilities as when they are larger. In
this case, the size of the fish affects not the switching between states, but the nature of the states themselves.
Such an effect can be incorporated in this approach by including length as covariate in the state-dependent
distribution parameters, and is anticipated as a future development of this project. Indeed, this effect can be
partially examined in the current analyses by comparing estimated models for the same fish with varying states.
In the case of the small bigeye Arc294, a 2-state HMM consists of a fairly tightly distributed shallow state, and
deep state that constitutes fairly high amplitude movements over a large range of temperatures. Under this
model, the effect of a fish-length covariate on state transitions appears negligible. However, when looking at the
results of the same individual using a 3-state model, estimated state distributions consist of similar shallow state
to the 2-state model, and two deeper distributions. With these state-dependent distributions, the length effect
on state switching suggests an increased proportion of time spent on the deepest, most tightly distributed state
at the expense of the shallowest state. Potential evidence for this can be seen by these contrasting plots of rolling
mean values of the median water temperature summary metrics for all probable instances of ‘deep’ state
behaviour by fish length for a smaller and larger bigeye tuna, respectively (Figure 5.). The median temperatures of
an individual tagged at a small size class (59 cm) decreased with estimated growth, whilst for the larger (tagged at
106cm) there is little change in the rolling mean temperature of the deep state.
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Figure 5. Comparison of the median water temperature observed during bouts of ‘deep’ state behaviour for two bigeye tuna.
Observations are plotted as arolling means of 30 observations.

Our investigation regarding the potential behavioural influence of FAD-dense areas on tropical tuna is far from
conclusive, given the uncertainties in the horizontal estimates we have used and our sample size of two. The
increased proportion of time spent exhibiting shallow behaviour when in the Bismark Sea by the smaller fish may
be due to the increase in ‘associative’ type behaviour, and it is interesting to note that such an effect was less
clear, or did not exist, in a larger individual. Some evidence exists for the strength of individual FAD associations
being size-dependent (Robert et al. 2012), although there may be stronger location effects in the behaviour of fish
across size classes. However, our focus here is on demonstrating the technique of using location covariates for
examining questions such as these.

An important issue regarding model selection criteria still remains when using this approach to estimate HMMs
for behavioural data such as these. The failure of the AIC to select meaningful or appropriate models is a cause for
concern, and whilst use of pseudo-residuals to identify the most appropriate model is clear in some cases, many
times it is not. In particular, models with higher numbers of states often increase the likelihood contribution of a
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small number of outlying observations by a new state distribution accommodating their inclusion, at the
expensive of an increasing parameter space. Finding an objective method of model selection to be applied across
applications is a key area for improvement.

This issue aside, our evaluation of HMMs for classifying vertical movement suggests that this class of models are
potentially extremely useful for modelling the behaviour and ecology of tropical tunas within an objective
framework. Our initial work here demonstrates a description of this behaviour that is consistent with previous
literature, but that has further statistically incorporated potential covariate information such as time of day and
length into this description. Critically, even in the cases where these covariates have not had clear relationships
on behavioural switching, this approach provides a framework to assess whether it is the switching between
different states, the nature of the behaviour itself, or a combination of the two that changes with these factors.
Future developments of this study are anticipated to include an ability to examine covariates in these three ways.
Such a framework allows the testing of fisheries management hypotheses on the full archival tag dataset of the
PTTP, such as do FAD dense areas influence behaviour switching or the nature of behaviours, or how does
vulnerability to fishing gears change temporally (throughout the day, season, with lunar phases etc.). Examining
more individual fish that have been double tagged with both electronic and acoustic tags that record proximity to
specific FADs would allow a more direct examination of the behaviour changes FAD-association using this
approach. Depending on whether consistent behaviour states and/or transition matrices emerge from these fish,
it may be possible to use models fitted to individuals with known periods of FAD association to estimate the
probability of associative type behavioural patterns in new individuals for which this information is not known.
Furthermore, for population dynamics models that contain a thermal component in habitat indices, such as
SEAPODYM (Lehodey et al. 2008) which is currently used to inform and assess fisheries in the WCPO, these
analyses provide a way to test and improve assumptions about age-based thermal habitat and its effect on the
distribution and catchability of tropical tuna.

In this study we have demonstrated a new approach to describing the vertical behaviour in tropical tuna using
hidden Markov-models. We identified clear and consistent shallow and deep states across individual fish, and
biological factors such as size and species explain some of the differences that we observed. A clear relationship
between the diel period and behavioural switching was seen, and this is consistent with previous studies.
Although we found no evidence for a change in behavioural switching as fish increase in size, we suggest that
increasing size may be responsible for gradual changes in the nature of individual states. This is a recommended
area for development in future work. Using simple location covariates we have highlighted a method for
examining in detail the effect that dense areas of FADs have on the individual behaviour of tuna, and aim to
extend and improve this approach by examining more fish with a variety of more accurate information about
proximate FAD-density and association.
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Appendix 1. Current list of Archival Tags in the PTTP database

Release Date| Track Length in Days Species Fork Length Tag Model
19/05/2005 8:10 137.99 YFT 77 L24
20/05/2005 7:05 4.03 YFT 85 L24
21/05/2005 7:00 3.03 YFT 84 L24
22/05/2005 7:42 3.01 YFT 85 L23
28/08/2006 3:55 3.21 BET 65 L24

28/08/2006 18:05 2.60 BET 58 L24
29/08/2006 10:05 204.22 BET 65 L24
5/09/2006 19:11 41.50 YFT 104 MK9
19/09/2006 18:55 81.03 YFT 109 MK9
19/09/2006 19:05 12.54 BET 51 L24
20/09/2006 3:00 12.31 YFT 54 L24
20/09/2006 5:25 60.11 YFT 71 L24
20/09/2006 5:50 12.08 YFT 54 L24
20/09/2006 6:07 15.05 YFT 90 MK9
20/09/2006 6:30 12.17 YFT 56 L24
20/09/2006 9:15 48.20 YFT 68 L24
20/09/2006 9:35 163.18 YFT 60 L24
21/09/2006 7:45 24.99 BET 59 L24
21/09/2006 8:50 11.04 YFT 59 L24
21/09/2006 9:05 53.97 YFT 55 L24
21/09/2006 19:58 13.47 YFT 101 L23
21/09/2006 20:26 12.50 YFT 101 L23
24/09/2006 18:56 9.51 YFT 102 MK9
24/09/2006 21:07 123.75 YFT 98 MK9
2/10/2006 19:20 73.91 YFT 97 L11
20/10/2006 19:37 19.53 BET 67 L11
20/10/2006 23:29 100.38 BET 67 L11
21/10/2006 3:50 238.84 BET 62 L11
21/10/2006 4:00 16.74 BET 63 L24
3/01/2007 10:00 340.00 YFT 64 L24
27/02/2007 8:20 115.74 YFT 61 L24
27/02/2007 10:05 340.40 YFT 58 L24
27/02/2007 12:25 207.22 YFT 50 L24
13/03/2007 12:40 172.49 YFT 54 L24
16/03/2007 13:05 3.76 YFT 46 L24
16/03/2007 14:35 2.71 YFT 50 L24
17/03/2007 12:47 84.11 YFT 85 L23
26/03/2007 13:15 74.76 YFT 55 L24
27/03/2007 9:38 59.01 YFT 74 L23
27/03/2007 9:46 81.47 YFT 72 L23
12/04/2007 12:21 158.43 YFT 75 L23
15/04/2007 12:07 107.30 YFT 86 L23
15/04/2007 12:48 77.84 YFT 86 L23
27/03/2008 8:24 161.97 YFT 62 MK9
27/03/2008 12:02 120.83 YFT 69 MK9
3/04/2008 6:26 6.07 YFT 67 MK9
10/05/2008 7:48 148.01 YFT 68 MK9
11/05/2008 11:05 60.88 BET 68 MK9
16/05/2008 6:39 287.05 BET 73 MK9
16/05/2008 7:11 285.02 BET 72 MK9
16/05/2008 15:46 72.66 BET 70 MK9
17/05/2008 9:21 222.98 BET 77 MK9
17/05/2008 10:06 112.39 BET 86 MK9
17/05/2008 16:48 192.65 BET 85 MK9
18/05/2008 12:28 92.81 BET 106 MK9
24/05/2008 7:46 117.02 BET 79 MK9
24/05/2008 18:04 207.59 BET 83 MK9
1/06/2008 15:14 31.97 YFT 88 MK9
4/11/2008 13:31 4.75 BET 51 L25
4/11/2008 13:35 4.76 BET 53 L25
5/11/2008 14:32 154.81 BET 62 MK9
8/11/2008 11:56 1.82 BET 69 MK9
8/11/2008 11:59 1.81 BET 57 L25
8/11/2008 12:07 1.81 BET 51 L25
8/11/2008 12:17 1.81 BET 62 MK9
8/11/2008 12:23 1.80 BET 53 L25
8/11/2008 12:27 1.80 BET 50 L25
8/11/2008 12:27 173.67 BET 59 L25
8/11/2008 12:28 1.80 BET 60 MK9
8/11/2008 12:31 1.79 BET 49 L25
8/11/2008 22:07 1.82 BET 54 L25
12/11/2008 5:55 14.05 BET 47 L25
26/03/2009 13:15 54.85 BET 52 L25
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27/03/2009 5:27
27/03/2009 6:35
30/04/2009 8:06
26/05/2009 8:01
26/05/2009 8:25
5/06/2009 19:12
5/06/2009 21:00
5/06/2009 22:34
5/06/2009 23:12
6/06/2009 18:29
6/06/2009 18:44
6/06/2009 21:19
6/06/2009 21:59
31/07/2009 8:27
5/08/2009 9:06
1/09/2009 11:23
1/09/2009 11:27
10/10/2009 21:15
12/10/2009 4:37
12/10/2009 5:38
12/10/2009 6:04
23/10/2009 19:28
24/10/2009 5:19
24/10/2009 19:16
26/10/2009 16:35
26/10/2009 16:36
26/10/2009 16:39
26/10/2009 16:43
26/10/2009 16:51
26/10/2009 16:55
26/10/2009 17:03
26/10/2009 17:21
27/10/2009 20:41
27/10/2009 21:52
12/05/2010 4:21
13/05/2010 4:30
5/06/2010 8:21
5/06/2010 8:23
23/11/2010 17:20
24/11/2010 6:26
24/11/2010 9:07
24/11/2010 16:39
26/11/2010 9:21
11/10/2011 8:29
12/10/2011 7:16
14/10/2011 17:04
19/10/2011 8:17
22/10/2011 6:43
13/11/2011 20:20
13/11/2011 20:22
13/11/2011 20:50
14/11/2011 20:23
14/11/2011 21:11
5/12/2011 8:56
7/12/2011 19:50
9/12/2011 19:25
10/12/2011 6:44
29/01/2012 12:41
29/01/2012 12:46
2/10/2012 7:36

40.10
28.09
61.00
152.94
24.93
25.44
35.47
21.64
180.21
128.49
8.49
100.40
137.33
41.34
30.35
4.01
11.76
25.30
38.09
19.07
13.03
99.60
71.36
214.41
10.64
10.63
10.63
10.62
384.53
10.61
261.58
50.65
98.72
196.67
27.12
38.14
302.43
487.94
180.46
24.06
71.89
360.57
262.86
102.97
104.00
56.58
224.94
26.00
153.36
131.60
246.86
291.34
221.29
59.96
236.40
318.44
60.15
279.76
56.88
10.00

BET
BET
YFT
BET
BET
BET
BET
BET
BET
BET
BET
BET
BET
SKJ
YFT
SKJ
SKJ
YFT
BET
BET
BET
YFT
YFT
BET
BET
BET
BET
BET
BET
BET
BET
BET
BET
BET
BET
BET
YFT
YFT
BET
BET
BET
BET
BET
BET
BET
BET
BET
BET
BET
BET
BET
BET
BET
BET
BET
BET
BET
YFT
YFT
BET

48
47
105
58
60
57
56
67
60
92
107
88
86
49
56
49
52
86
82
59
68
68
78
65
67
70
72
67
69
70
63
58
60
61
73
85
79
98
96
82
80
106
84
77
76
72
68
69
67
76
79
69
89
51
51
53
51
63
64
65

L25
L25
L23
MK9
MK9
L23
L23
L23
L23
L23
L23
L23
L23
L25
L23
L25
L25
MK9
MK9
MK9
MK9
L23
L28
MK9
MK9
MK9
MK9
MK9
MK9
MK9
MK9
L23
L28
L28
MK9
MK9
MK9
MK9
MK9
MK9
MK9
MK9
MK9
MK9
MK9
MK9
MK9
L28
MK9
MK9
MK9
L28
L28
L28
L28
L28
L28
L28
L28
MK9
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Appendix 2. HMM Model description

The HMM used assumes that observations of the summary metrics were drawn from a number, m, of
multivariate normal distributions, each with separate parameters depending on the current hidden state. This
observational model is identical to a mixture model, except that in an HMM the switching between underlying
states forms a Markov-chain. The transition probabilities between these ‘hidden’ states, S;to S, are estimated
parameters, i.e. the likelihood of doing something at one time depends on what the fish was doing at the previous
timestep, and thus accounts for the autocorrelative nature of these behavioural time-series. These transition
probabilities, i, between hidden states can be thought of in terms of the transition matrix, I, where

S, S
= Szl [nls_l nlz_ml
Sm MTm-1 " MTm-m

While some data forms the basis of the observational model, other covariate data can also be included in this
transition matrix, capturing the effect that this information may have on the transition probabilities between
states. If a linear effect is assumed, then for each transition probability, r,

T=a+fy

Wherey is a continuous or binary covariate, and both a and B are estimated parameters.
The likelihood of a given set of time-series data from t=1...T is

Ly = Pr(xq, x5, X3 ... X7)

Under the assumptions of a mixture model, with m underlying distributions,

Ly = D{;(Pr(xt | Sm) = Pr(x; € Sp))

Here, the contribution to the likelihood at each time-step is the product of the probability of an observation being
drawn from a state-dependent distribution and the probability that the observation comes from a time when the
system was in that state, summed across all possible states. The total likelihood is the product, or the summed
logarithms, of all these likelihood contributions fromt=1to T.

In an HMM, the observation model remains the same, but now our state probability, which we re-write as Pr(S,),
is dependent on what we have observed in the system at t-1. Thus

L= 1D ree tsm- Pr<sm>>}
M

= [ Z(Pr(xt | Sm) - Pr(Sm | Sm—1 xt—l))}
L4

= [ [1D.®reee 15w Pr(Si 1 Sps) - Pr(sms | xt_l))}
T M

In this case, the observation model is a state-dependent multivariate normal distribution, N, such that we assume

XeN?2)

Where u is a multivariate mean in k dimensions, and 2 is a k by k covariance matrix.

We use summary metrics calculated from archival tagging data as our multivariate normally drawn observations,
and include a range of covariates such as the diel period or size of fish in our estimated transition matrices.
Parameters are numerically estimated by conversation of the likelihood to a negative logarithm and minimisation
using the optim function in R.
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Appendix 3. Simulation Experiments

Three simulation experiments were carried out to assess the accuracy of our method for identifying behaviour
states in the vertical behaviour of tuna. We generated three sets of artificial data which simulated dive track
summary metrics drawn from the following state-dependant mixture of bivariate normal distributions. Example
data from each scenario is given in figure A3-1.

1. Three distributions identical in covariance but well separated by their means. State switching is

autocorrelated and governed by a set of transition probabilities which result in highly persistent periods of each
state. We expect an HMM to perform very well in such a straight forward scenario with clear distributions and
persistent state transitions.

2. Three distributions of differing covariance, with two of those distributions sharing the same mean. State
transition probabilities include a binary covariate which switches values regularly every 10 timesteps. States are
still persistent, but less so than in scenario 1. This constitutes a much harder task for an HMM, with two very
similar states, and more complex, transient state transitions.

3. The same three distributions as in scenario 2 but with no state transition probabilities. State switching is
independent, and driven by three different probabilities. In this case, while an HMM should estimate parameters
we expect that a mixture model, with no estimated transition matrix, should provide the more parsimonious
solution.

Sim1Datal, 2]

Sim2Dataf, 2]

SimaDatal, 2]
5

SimDatal, 1] Sim2Data, 1] Sim3latal, 1]

Sim1Datal, 1]
5
L
Sim2Dataf, 1]
SimaDatal, 1]

200 400 500 300 1000 0 200 400 600 800 1000 0 200 400 800 200 1000

Index Index Index

Sim1Datal, 2]
Sim2Dataf, 2]
5
L
SimaDatal, 2]
5
L

T T T T T T T T T T T T T T T T T T
200 400 500 300 1000 0 200 400 600 800 1000 0 200 400 800 200 1000

Index Index Index

Figure A3-1 Examples of artificial data generated under each scenario (cols 1-3). Row1: Bivariate data plots,
with true state covariances and colours marked. Rows 2-3: Metric 1 and 2 through time, with true states
coloured.

For each scenario, 10 sets of data were generated (N = 1000) and the parameters for both an independent
mixture model and a hidden Markov model with two, three and four states were estimated. Mean AICs are given
for all these models in Table A3-1. True and estimated parameters from the three-state HMMs are summarised in
Table A3-2, and example pseudo residuals are displayed in Figure A3-2. Confusion matrices between the most
likely state predictions at each time step and the true, known states are also given for these models.

22



Table A3-1

Model Mean AIC

Scen. 1

HMM 2-State 8384.179

HMM 3-State 7492.038

HMM 4-State 7451.729

Mixure Model 2-State 9375.814

Mixure Model 3-State 9128.736

Mixure Model 4-State 9119.139

Scen. 2

HMM 2-State 8444.915

HMM 3-State 8411.69

HMM 4-State 8328.584

Mixure Model 2-State 8998.56

Mixure Model 3-State 8997.167

Mixure Model 4-State 8999.166

Scen. 3

HMM 2-State 9222.804

HMM 3-State 9210.701

HMM 4-State 9193.782

Mixure Model 2-State 9227.295

Mixure Model 3-State 9225.498

Mixure Model 4-State 9227.091

Table A3-2

Model |y, Ha M3 21 22 23 T T, T3

Scen.1 |10 6 1 [2 O] [2 0] [2 0] 0.96 0.02 |0.02

True 2 7 10 0 2 0 2 0 2 0.02 0.96 |0.02
0.02 0.02 |0.96

HMM  [10.025 |6.031 |[1.035 2.09 0.04 [2.02 0.14] [2.08 0.15] 0.919 |0.040 |0.035

3-State [2.014 |7.021 [10.025 | '0.04 1991 l0.14 199! |l0.15 2.06!|0.041 |0.920 |0.041
0.040 |0.039 |0.924

MM 10.053 |6.078 |1.059 218 0.1 [2-14 0.33] [2.13 0-19] 0.346 |0.366 |0.289

3-State [2.029 |7.056 |10.051 01 2091033 2111019 214

Scen.2 |3 3 10 [2 0] 50 [4 —1] 0.96 0.35 |0.02

True 9 9 3 0 2 0 1 -1 51 j0.02 0.30 [0.02
0.02 0.35 |0.96

HMM  [3.658 [5.213 [9.493 2.81 0.01 [4-20 0-0] [3.77 —0-8]0.590 0.383 |0.160

3-State [8.551 |7.233 |3.317 0.01 1.83 0.0 2411|1-08 43210279 (0.292 |0.111
0.131 |0.325 |0.730

MM 3.66 5.329 (9.567 2.7 025 [3.40 0.50] [3.64 —0.5]0.445 0.264 |0.291

3-State |8.500 7.204 |3.410 0.25 1.65 0.50 2.631 |L-0.5 4.18

Scen3. |3 3 10 [(2) (2)] (5) 2 [41 —51] 0.40 0.15 |0.45

True 9 9 3 -

HMM  |4.35 6.29 |8.76 [3.24 —0.0] [4.89 0.60] [3.87 —0-6]0.253 0.288 |0.278

3-State |(8.30 6.44 |4.03 —0.0 3.201}10.60 1851 (1-0.6 4.0910.339 |0.297 |0.356
0.413 |0.414 |0.366

MM 3.71 6.25 [10.43 271 0.25 [2.9 0.30] [3.56 0 ]0.442 0.256 |0.302

3-State |8.52 6.46 2.62 0.25 1.97 0.30 2.66 0 3.90
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Figure A3-2. Mean results for 3-state HMMs. A= Scenario 1; B= Scenario 2; C= Scenario 3

When using linear-regression to model observations of a random variable, the concept of using residuals is a well
developed method for assessing the fit and suitability of a particular model. In an HMM we do not aim to predict
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the value of a response variable, but rather the nature and probability of observations being drawn from
underlying states. As such, there are no residuals in the sense of the difference between predicted and observed
values. However, Zucchini & MacDonald (2009) introduce quantities called pseudo-residuals which aim to fulfil
the same model checking role.

Uniform pseudo-residuals are defined as the probability, assuming the observation distributions and state
probabilities of the fitted model, of obtaining an observation less than or equal to each individual observation. For
appropriate models, these pseudo-residuals should be uniformly distributed between 0 and 1, with outlier
observations generating residuals close to 0 or 1. Similarly, normal pseudo-residuals can be examined by plotting
a quantile-quantile plot or histogram of the normal cumulative distribution of the ordinary pseudo-residuals. This
allows a clearer view of outliers in the data. Finally, plotting these normal pseudo-residuals through time should
reveal little structure in pattern and occurrence if the model is appropriate.

For scenario 1 results, there was a clear improvement in pseudo-residuals between the two- and three-state
HMMs (Figure A3-3). Time-dependent structure in residuals decreases significantly with the increase in hidden
state, and residuals are also distributed more closely to the expect distributions. The four-state model does not
noticeably improve these residuals.
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Figure A3-3 Scenario 1 Pseudo-residuals for one dimension of observation data

In scenario 2, the change in pseudo-residuals across models is not clear (Figure A3-4). Although the uniformity
of residual distributions appears better for the two-state model, increasing the number of states to three
eliminates a number of clear outliers that can be seen in the skew of the Q-Q plot and normal distribution.
The increase from three to four states does noticeably improve the distribution or structure of these pseudo-
residuals. For scenario 3, where none of the HMMs are an appropriate model, we see very little improvement
in pseudo-residual distribution across models of increasing hidden state number (Figure A3-5).
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Figure A3-5 Scenario 3 Pseudo-residuals for one dimension of observation data
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Appendix 4. Selected models in full analysis

Table A4-1 Summary of the selected HMM models (2, 3 or 4 state)

HMM

Arc294 Arc163 Arc302 Arc88 Arc272 Arc217 Arc269 Arc220
No covariate 3 2 2 2 3 3 2 3
Diel 4 2 4 2 3 3 2 2
Length 3 2 2 2 3 3 2 2
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