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1. Summary 

There have been large changes in the spatial extent of the Japanese longline fishing 

fleet in the WCPO which may have consequences for the reliability of CPUE indices. 

This paper presents preliminary analyses that attempt to account for the spatial 

distribution of fishing through time. We compare a number of approaches including 

methods that use generalized additive models and rule-based back-filling to impute 

CPUE values for cells where fishing did not occur in a given year-quarter. Most 

approaches produced indices relatively similar to the currently-used indices for the 

WCPO BET/YFT assessment region 3. There were exceptions however, and several 

of the indices showed more promising performance than others. The next step will be 

to formulate robust methods, such as cross-validation and/or simulation studies, that 

will allow formal comparison of the indices. It would be very valuable to undertake 

further analyses with refined methodology on more complete datasets of operational 

longline data that are not currently held by the SPC. 

2. Introduction 

Indices of relative abundance of fish over time are an extremely important input for 

stock assessment models (Hilborn and Walters 1992). It is common for indices to be 

developed by standardizing commercial fisheries data to account for changes in catch 

rate that occur due to factors other than fish abundance. CPUE for the Japanese 

longline (JPLL) fishing fleet in the WCPO are vitally important for the assessments of 

bigeye (BET) and yellowfin tuna (YFT) in that region (Davies et al. 2011, Langley et 

al. 2011) and are estimated using generalized linear models (GLMs). Given the value 

of these time-series, considerable effort has been invested in improving the 

standardisations since the early stock assessments, including; a shift from aggregate to 

operational-level data, accounting for targeting, methods for weighting data and the 

structure of the GLMs themselves, amongst others (e.g. Langley et al. 2005, Hoyle et 

al. 2010, Hoyle 2011, Hoyle and Okamoto 2011). 

The use of standardised indices in stock assessment models assumes that they are 

directly proportional to numbers of fish available to the fishery in the assessment 

regions (Figure 1). Despite the progress that has been made several issues remain that 

may affect the validity of this assumption. One example is the failure to fully account 

for spatial changes in the effort of the fleet within regions. Fishing does not usually 

occur in all spatial cells in a region in every year, and this is certainly the case for the 

JPLL dataset. Consequently, standardisation analyses usually assume that the 

dynamics of catch rates are common to both fished and un-fished cells. Because catch 

rates vary between spatial cells (Hoyle and Okamoto 2011), and the pattern with 

which cells are fished is not random, analyses that ignore spatial effects can produce 

non-representative indices. Two examples are often provided to illustrate the idea. 

Firstly, during the early development of a fishery, the spatial extent of fishing expands 

as fishers search for the most productive areas, and each newly fished area may start 

with a high catch rate which then declines. Secondly, in well-developed fisheries 

fishing may contract to those cells where catch rates are highest, again giving an 

artificially high nominal CPUE for the region. The JPLL fishery has both these 

features: it expanded into new areas during the 1950’s and 1960’s, and has 

significantly contracted in spatial extent over recent decades (Figure 2-5). These 
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changes have partly been due to changes in regulations on where these vessels are 

allowed to fish, and partly due to economic factors. 

Currently-used standardisations of CPUE of BET/YFT in the WCPO typically use 

models that include effects for time (usually year-quarter) and area (usually 5×5° 

spatial cells), though not an interaction between them (Hoyle and Okamoto 2011). 

These models are capable of providing robust indices of abundance even for situations 

such as suggested above where fisheries expand or contract into cells with different 

catch-rates. However, to be valid, the trends in abundance must be the same for all 

cells, or at least, must not be different enough to result in significantly biased indices. 

In the event of the latter, a better approach would then be to adopt models with time-

area interaction terms, although large datasets and large numbers of factor levels for 

the interaction often overwhelm the memory capabilities of available computers. 

Furthermore there will generally be missing data for many of the area-time 

combinations, which can lead to uncertain estimates and requires methods to impute 

values for these cells. 

The importance of accounting for spatial extent in standardisations of CPUE has been 

recognised for some time (e.g. Walters 2003, Campbell 2004) and recent progress has 

been made in developing methods to correct CPUE indices using imputation 

techniques (Ahrens 2010, Carruthers et al. 2010, 2011). Most techniques focus on 

imputing values for cells where no fishing occurred in a given year and broadly 

follow one of three methods; kriging, spatial smoothing (often using generalized 

additive models; GAMs) and rule-based imputation. The general premise is common 

to all approaches; the values of CPUE (often after standardisation) in cells where 

fishing did occur provide information on the cells in close proximity (in space and/or 

in time) where fishing did not occur, and this information can be used to impute 

CPUE values for the cells where fishing did not occur. 

The critical questions when attempting to account for the spatial extent of the fishery 

are therefore; are differences in trends in abundance between cells (especially between 

fished and un-fished cells) enough to warrant imputation approaches, and if so, which 

methods provide the most satisfactory estimates of abundance? Many choices must be 

made if these approaches are adopted. These include, but are not limited to; how to 

define the region that the index will represent, the spatial scale to focus on, the 

method of standardising CPUE in the cells where fishing did occur and the method of 

imputing CPUE in cells where fishing did not occur. With these issues in mind, this 

paper presents analyses of BET/YFT CPUE using techniques that account for the 

spatial extent of the JPLL fleet in the WCPO. We will continue to develop the 

methodology over coming months to provide updated standardised CPUE indices for 

the 2014 BET/YFT stock assessments. The CPUE indices for Japanese vessels used in 

the reference case models for the latest BET/YFT assessments (Davies et al. 2011, 

Langley et al. 2011) were estimated using operational-level data held by the National 

Research Institute of Far Seas Fisheries (NRIFSF) in Japan (Hoyle and Okamoto 

2011). This dataset is not available to either the Western and Central Pacific fisheries 

commission (WCPFC) or the Secretariat of the Pacific Community (SPC)
2
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holds a dataset that mostly consists of fishing effort within the exclusive economic 

zones (EEZs) of the Pacific Island nations. The best data coverage is for region 3 of 

the WCPO BET/YFT stock assessments, and this is the data analysed here. 

This paper begins by examining the JPLL fishery’s spatial extent over time. The 

CPUE data is then adjusted to account for differences in fishing practices over time by 

incorporating appropriate covariates into GLMs and removing their estimated effects 

from the raw data.  We then develop indices using GAM-based spatial smoothing and 

rule-based imputation methods, and compare them to the nominal indices and indices 

calculated using the currently-used GLM-based method and its variants. The SPC-

held aggregate-level data at the 5×5 degree square scale is much more complete than 

the operational-level data, and so further analyses are conducted on that dataset to 

investigate whether increased spatial data coverage would provide more robust results 

than the operational-level analyses. 

The purpose of this paper is to develop and compare several methods of accounting 

for spatial extent of fishing, and compare them to currently-used methods for inferring 

trajectories of stock abundance. We identify issues relating to each method, and 

discuss how their performance may change if other data sets are used. All indices 

presented in this paper are preliminary, and we outline in the discussion how these 

analyses are expected to develop between now and the next stock assessment. 

3. Methods 

3.1. Data preparation 

3.1.1. SPC-held operational-level data 

Operational-level data at the set-level were most complete between 1979 and 2011 for 

Japanese longline vessels. Records outside this period were excluded. Fine-scale 

latitude and longitude were available for each set and this was used to assign them to 

1×1° and 5×5° spatial cells. Hooks-between-floats (HBF) were available for most 

sets. The few sets with more than 22 HBF were pooled into the 22 HBF category and 

all sets with missing HBF values were removed. All sets were removed for vessels 

that fished for less than 10 quarters as it is difficult to accurately estimate vessel 

effects with fewer records and vessel effects use up considerable degrees of freedom. 

The effects of data grooming on the characteristics or the data are shown in Table 1. 

The data were separated into the six regions currently used in the BET/YFT stock 

assessments, and only sets within region 3 were retained for the analyses. Available 

data were very sparse for all other regions. Once the final dataset was established the 

analyses for BET and YFT were conducted separately. 

Fifty-five 5° cells of the 72 in region 3 were fished (in the dataset available) at least 

once over 1979-2011. It should be noted that cells will often be referred to as ‘fished’ 

or ‘unfished’ when in reality for the operational data some of the cells with missing 

values would have been fished by JPLL but are not held by SPC. Furthermore, other 

flags will be fishing in some cells considered ‘fished’ and ‘unfished’ for JPLL 

analyses. For the indices that require a total region to be specified for imputation of 



5 

 

missing values, these 55 cells were designated as that region. Most of the missing 

cells are largely land or continental shelf, with no significant tuna population. Also, 

while imputing values for cells that are never fished is possible for GAM-based 

spatial imputation, it is more difficult for rule-based imputation which relies on CPUE 

being available before and/or after the missing value. For these reasons and for 

purposes of comparison among methods we considered the 55 cells to represent the 

total region. 

Due to the contraction of the JPLL fleet another dataset was extracted that included 

vessels under multiple flags (flags with at least 3,000 sets fished). Data grooming 

followed the rules carried out for the JPLL data except that sets without HBF were not 

removed as this information is not available for data under most flags. The results of 

the data grooming are displayed in  

3.1.2. Aggregated data 

The full Japanese longline dataset aggregated at the 5°-square-scale is held by SPC 

and provides almost complete spatial coverage of effort of this fleet in the WCPO, 

though considerable detail of fishing efficiency is lost when the data is aggregated 

(Langley 2007). With full operational-level data unavailable, many of the analyses 

were repeated on the aggregated data to examine the benefits of the greater spatial 

coverage they provide. 

The aggregate data were extracted and assigned to the six spatial regions. Data outside 

the period 1975-2012 were removed. For simple GLM-based indices of abundance 

(sections 3.3.1, 3.3.3) only data from region 3 were retained for analyses. Due to the 

abundance of data in the surrounding regions (in comparison to the operational-level 

data where little data was available outside of region 3) data from all regions were 

retained for the GAM-based analyses (section 3.3.2) so that they could provide 

information about the CPUE surface at the edges of region 3. In the latter case the 

CPUE index is still calculated from only cells in region 3 – data from the surrounding 

regions merely influence the imputation in cells within region 3 with missing values. 

One further GLM-based index was developed that uses data from flags other than 

Japan to impute CPUE values for cells at time-steps lacking Japanese data. This 

necessitated extracting aggregated data for vessels of all flags (including Japan), using 

the approaches described above. Only data within region 3 was retained for this 

analysis. 

The aggregate data was used to calculate indices of spatial concentration of catch and 

effort, in addition to the indices of abundance. The two indices calculated here are the 

Gini index for measuring concentration of catch and Gulland’s index of measuring the 

concentration of effort in cells with higher density (as estimated by CPUE). Methods 

followed those presented by Harley (2009) and a higher Gini index indicates higher 

proportion of catch being taken from a smaller number of cells, and a higher 

Gulland’s index indicates more fishing effort being expended in cells with higher 

catch-rates. 
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3.2. Indices calculated for operational-level data 

3.2.1. Currently used CPUE indices 

The CPUE indices used in the reference case models for the latest BET/YFT 

assessments (Davies et al. 2011, Langley et al. 2011) were estimated using delta 

lognormal models (Lo et al. 1992, Stefansson 1996). The probability of catch being zero 

(w) is modelled using a binomial GLM (with a logit link function) and the distribution of 

the positive catch rates is modelled using a standard GLM with normally distributed 

errors (and an identity link function) after log transforming the catch rate. More formally 

this model can be described by 

���� = �� = � 	
�1 − 	�����	�

																		� = 0,
																	� > 0    , 

where y is the CPUE calculated as numbers caught in the set divided by the number of 

hooks fished in the set. The link function and linear predictor of the binomial GLM 

are given by g(w) = Intercept + Year-quarter + Cell + Vessel + h(hooks) + h(HBF), 

where g is the logit link function, Year-quarter and Cell (spatial cell; in current 

standardizations this is 5° squares) are categorical variables, hooks is a covariate 

calculated as the number of hooks per set, HBF is a covariate calculated as the 

number of hooks between floats for the set, and in both cases h is a 6th order 

polynomial function. The f(y) is the distribution of the positive CPUEs and the model 

for this component is given by 

log(y) = Intercept + Year-quarter + Cell + Vessel + h(HBF) 

where the variables have the same form as in the binomial component. 

Because this approach only includes marginal effects it assumes that the change in 

CPUE between year-quarters is the same across spatial cells. Furthermore, it assumes 

that the CPUE trends for spatial cells not observed (fished) in a given year-quarter are 

the same as those that were observed. 

Because the imputation methods presented in the following sections have been 

developed under a simplified model structure for ease of developing methodology, the 

delta log-normal method was not appropriate for comparison. Instead, the reference-

case standardised index was estimated using GLMs with a similar structure to those 

used for spatial imputation in the sections below.  This GLM is given by 

log(y) = Intercept + Year-quarter + Cell + Vessel + h(HBF) 

where y = catch/hook+c, where catch is the number of fish caught in the set, hook is 

the number of hooks fished in the set and c is a constant added to prevent taking the 

logarithm of zero for sets where no catch occurred. The offset was set at half of the 

minimum observed value of y. The independent variables again have the same form as 

presented in the delta log-normal model. The index of abundance is calculated from 

the estimated Year-quarter effects and is denoted the ‘traditional’ index.  
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3.2.2. Rule-based imputation 

A rule-based method for imputing CPUE in spatial cells where fishing did not occur 

has been proposed by Walters (2003) and was implemented by Carruthers et al. 

(2011) for CPUE indices of a range of pelagic species, including BET and YFT in the 

Indian and Atlantic oceans. CPUE in all cells fished is standardised to remove the 

influence of factors other than the abundance of fish, before CPUE values are imputed 

for the missing cells where fishing did not occur in that time step. 

Carruthers et al. (2011) compared several models of standardisation and identified a 

GLM with a time-cell interaction as the best performing. Their imputation then 

proceeded depending on the nature of the cell that needed imputing (the ‘missing 

cell’) with the rules being: 

1. If the missing cell has CPUE values in at least one year-quarter before, and one 

year-quarter after, then the mean of the two nearest values is imputed. 

2. If the missing cell has no CPUE values in any year-quarter before it then the 

mean of the first three values occurring after it is imputed. 

3. If the missing cell has no CPUE values in any year-quarter after it then the last 

CPUE occurring before it is imputed. 

These rules are ad hoc, for instance the choice of taking the mean of three values in 

rule 2 as opposed to only one value in rule 3 appears to be arbitrary, and they do not 

seem to have been formulated based on empirical relationships at different time 

scales. It is also not a complete set of rules. For example, three values must occur 

before the first observed CPUE in rule 2 and this will not always be the case. The 

rules also ignore the reasons that effort is missing from an area.  

The rule-based approach was implemented for the SPC-held JPLL data to compare it 

with currently used standardised indices (section 3.2.1) and GAM-based imputation 

indices (section 3.2.4). The memory costs of implementing GLMs with time-area 

interaction terms for the JPLL datasets precluded their use in the time available for 

this analysis, and so a preliminary approach was used to control for changes in fishing 

power over time. A log-offset GLM model was fitted with the structure 

log(y) = Intercept + Year-quarter + Cell + Vessel + h(HBF) 

where y was calculated  y = catch/hook+c where catch is the number of fish caught in 

the set, hook is the number of hooks fished in the set and c is an offset term which is a 

constant added to prevent taking the log of zero. The offset was set at half of the 

minimum observed value of y. The observed log CPUE values (log(y)) were then 

adjusted for the variables representing changes in fishing practices over time by 

calculating 

log(y)* = log(y) – βves – δhbf 

where log(y)* is the adjusted log CPUE, βves are the coefficients of vessel effects and 

δhbf is the effect of hooks between floats estimated for the value of HBF in the given 

set, which was calculated as a function of the coefficients of the polynomial 

relationship estimated by the GLM. These adjusted CPUE represent the best estimates 
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of standardised log-catch rate at the set-level (which can now be aggregated to the 

year-quarter-level) in the absence of being able to fit GLMs with time-area 

interactions. 

The means of the log(y)* over all sets in each cell, in each year-quarter, were 

calculated to produce a spatial set of CPUE values for each year-quarter. These are the 

‘observed’ CPUEs for cells where fishing occurred in that year-quarter. The rule-

based approach was then applied to impute values for the remaining cells in each 

year-quarter where fishing did not occur. The rules used were the same as Carruthers 

et al. (2011)’s and presented above except that the first value after the missing value 

was imputed for rule 2 rather than the mean of the first three values. The CPUE index 

was then calculated by summing the CPUEs across all cells (both observed and 

imputed) in each year-quarter and is denoted the ‘Carruthers’ index. 

It was quickly apparent that many cells were unfished for long periods of time and so 

the Carruthers method imputed CPUE for some missing cells as the mean of CPUEs 

widely separated in time. This is not ideal as, if CPUE is changing through time, the 

change will be underestimated by the imputation. Three datasets were therefore 

analysed; the full dataset where data from all cells was retained, a dataset where data 

from cells fished in less than 50% of year-quarters was discarded, and a dataset where 

data from cells fished in less than 50% of year-quarters was discarded. 

3.2.3. GLM-based backfilling 

An alternative approach attempts to account for possible synchronicity in the temporal 

fluctuations in catch-rate across cells. Instead of using previous or future CPUE to 

impute values, the predicted value for the missing cells was taken as the prediction of 

CPUE for the individual cell in that particular year-quarter, based on the original 

GLM model used to adjust for fishing efficiency (section 3.2.1). This approach can 

therefore be considered to be a hybrid of the traditional marginal effects GLM model 

for the imputed cells where we lack information on trends, and a model similar to one 

with an area-time interaction for the cells where fishing did occur and we therefore 

have information on trends, and is denoted the ‘hybrid’ index. The CPUE index was 

again calculated by summing the CPUEs across all cells (both observed and imputed) 

in each year-quarter. It accounts for some spatial and temporal effects when imputing 

values, while also allowing different cells to have different trends in catch-rate where 

there is evidence (i.e. where fishing occurs). As the number of cells that were not 

fished increases we expect that this index will approach the traditional index in 

section 3.2.1 because the index will be made up of an increasing number of cells 

where the CPUE has been imputed based on the traditional model itself. 

3.2.4. Spatial imputation using GAMs 

An alternative method of accounting for spatial extent in CPUE standardisation uses 

GAMs to spatially smooth the CPUEs and simultaneously predict the missing values 

in the cells where fishing did not occur. A preliminary analysis of the SPC-held JPLL 

dataset using this approach was undertaken through the following methods. The same 

adjusted CPUE (log(y)*) as used in section 3.2.2 was modelled at the set level using 

GAMs in the R package mgcv. Data for each year-quarter was analysed separately to 

produce a time-specific spatial CPUE surface. The model formula was 
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log(y)* ~ s(longitude, latitude)  

where log(y)* is the adjusted CPUE at the set-level for the year-quarter being 

analysed, s represents an isotropic smoother, and longitude and latitude are measured 

at the 1° scale. The standardised CPUE index for each year-quarter can then be 

calculated as the sum over the model estimates of mean CPUE in the cells that were 

fished and the model predictions of CPUE in cells that were not fished (the model-

based imputed values). This is effectively the sum over the model predicted CPUE 

surface for the effective region being considered and is calculated using the 

predict.gam function in R and is denoted the ‘GAM-based’ index. 

Predictions of CPUE from the GAM were highly unstable for certain cells in some 

years, particularly on the edges of the region where there are no surrounding cells to 

constrain the predicted gradient of catch-rate. This was more prevalent towards the 

end of the time-series when the spatial extent of the Japanese longline fishery had 

significantly contracted. Two rule-based approaches were used to limit the effects of 

this problem. If the predicted CPUE of a missing cell was higher or lower than the 

maximum or minimum adjusted observed CPUE (log(y)*) in that year-quarter then 

the value imputed for the cell was taken to be either 1) the mean of the fitted values in 

that year-quarter (from the GAM model), or 2) the predicted value for that cell in that 

year-quarter from the original GLM model (taken to be the prediction for the 5° cell 

to which the 1° cell in the GAM model is associated) used to adjust for fishing 

efficiency (section 3.2.1). 

Each of these indices was also calculated for the full operational-level dataset which 

included data from vessels under all the main flags. The models for this dataset only 

differ in that HBF is no longer available for most sets and it is consequently removed 

from the models. 

3.3. Indices calculated for aggregated data 

3.3.1. Traditional reference indices 

The reference indices used for the aggregated data broadly follow those previously 

estimated and used for stock assessments of BET/YFT (Hoyle 2009). Zero catches are 

less frequent in aggregated data and so it is common to remove these data and fit a 

GLM on the log-scale, which in this case has a model with the simple form of 

log(y) = Intercept + Year-quarter + Cell + h(HBF) 

where y is CPUE (with values of zero removed) and Year-quarter, Cell and HBF are 

the familiar time, area and hooks-between-floats effects, with the latter at the 5° scale. 

The standardised index for this model is then calculated by extracting the year-quarter 

effects and is again denoted the ‘traditional’ index. 

To provide a direct reference index to compare to the multiple flag model developed 

in section 3.3.3, an additional model was fitted that allowed for differences in trends 

between cells. It has the form 

log(y) = Intercept + Year-quarter-cell + h(HBF) 
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where the response is the same as above and the Year-quarter-cell is a factor with 

levels for each combination of year, quarter and cell for which there was data. This 

manual construction of the year-quarter-cell factor instead of including a three-way 

interaction between year, quarter and cell in the model was to prevent the instabilities 

that can result when missing values occur for some combinations of the factors in an 

interaction (which is relatively common for this dataset). The CPUE index was 

calculated as the mean over the predicted values for all cells with predictions in each 

year-quarter and is denoted the ‘traditional-interaction’ index. Note that the number of 

cells with predictions in each year-quarter varies as some cells in the region were 

obviously not fished in each year-quarter. 

3.3.2. Spatial imputation using GAMs 

It is difficult to standardise the aggregated data for temporal changes in fishing 

performance as relevant covariates at the set-level are clearly unavailable, and the data 

is pooled over vessels within each cell. Consequently, the spatial imputation for this 

dataset using GAMs was more straightforward than for the operational-level data. 

Due to more data being available in all assessment regions the GAM was fitted to all 

data instead of just region 3, to allow data in other regions to influence the CPUE 

surface on the edges of region 3. The GAM model was fitted to data from each year-

quarter separately and was simply 

log(y) ~ s(longitude, latitude)  

where log(y) is the CPUE (with zero catches removed) at the 5° scale for that year-

quarter in question, s represents an isotropic smoother,  and latitude and longitude are 

continuous variables. The CPUE index for each year-quarter can again be calculated 

as the sum over the GAM estimates of mean CPUE in the cells that were fished and 

the GAM-based imputations of CPUE in cells that were not fished and is again 

denoted the ‘GAM-based’ index. Note that this was the sum over all cells in region 3, 

including those that were never fished. Due to far fewer cells in this dataset being un-

fished in comparison to the operational-level data, the imputations were more stable. 

However, on the very infrequent occasions that the predicted CPUE of a missing cell 

was higher or lower than the maximum or minimum observed CPUE in that year-

quarter, the value imputed for the cell was taken to be the mean of the fitted values 

from the GAM model in that year-quarter. 

3.3.3. Imputing using a GLM with multiple flags 

Aggregated data for vessels of all flags were used to fit a GLM that allowed 

prediction of CPUE for Japanese vessels in cells where they did not fish, provided at 

least one other flag fished in that cell in that time period. The model was 

log(y) = Intercept + Year-quarter-cell + Flag 

where y is CPUE (catch/hooks) after the small number of zero catch-rates were 

removed, Year-quarter-cell is a factor with levels for every combination of year, 

quarter and cell where fishing occurred and flag is a factor indicating the nationality 

for the CPUE being modelled. Again we manually constructed the year-quarter-cell 

factor instead of including a three-way interaction between year, quarter and cell in 

the model, to prevent the instabilities that can result when missing values occur for 
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some combinations of the factors in an interaction. We predicted CPUE for each year-

quarter-cell combination for Japanese flagged vessels, using the R function 

predict. The index was calculated as the mean over the predicted values for all 

cells with predictions in each year-quarter and is denoted the ‘flag-imputation’ index. 

Note that the number of cells with predictions in each year-quarter varies as some 

cells in the region were invariably not fished by any flag in each year-quarter. This 

means that the index will still be affected by the spatial extend of fishing, but will be 

less sensitive than the traditional index as some missing values (cells fished at some 

stage over the time-series) will be imputed. 

4. Results 

The number of cells in region 3 that were fished by Japanese vessels changed 

dramatically between the 1970’s and 2012 for both the SPC-held operational-level 

data (Figure 2) and the aggregated data (Figure 3). The spatial pattern of contraction 

of fishing in the SPC-held operational-level data is shown at two spatial scales in 

Figure 4 and 5. The pattern of presence of fishing and CPUE in each year-quarter in 

individual spatial cells is displayed in Figure 6. This shows that ‘missing data’ (cells 

not fished) occurs as a mix of short-term absences of data in some cells and extended 

time-periods with no data in others. The latter includes cells where fishing did not 

occur for long periods at the beginning or end of the time-series. 

Gulland’s index of concentration for BET was variable and had periods where it was 

both lower and higher than one, indicating fishing effort was sometimes concentrated 

in cells where CPUE was lower and higher, respectively. For YFT it was generally 

above one in most years and showed a dramatic increase in the period after about 

2008. The Gini index showed a steady increase from about 0.7 to about 0.9 over the 

whole time-series, for both species. 

The general dynamics of the GAM-based spatial indices followed those observed for 

the nominal and GLM-based indices. The exception to this was the increased variation 

in the GAM-based index especially towards the end of the time-series (Figure 8b, 9b, 

10c, 11c). This was especially the case for the operational-level data for both BET and 

YFT, presumably partly due to the sparseness of cells fished during this period for 

that dataset. Over this time period it was frequently necessary to constrain predictions 

of CPUE in the un-fished cells as they were often unrealistically high or low for many 

cells, especially on the edge of the region. This tended to result in the GAM index 

being higher than the traditional index in those years (Figure 8f, 9f) and resulted in a 

trend in the ratio of the GAM-based index to the traditional index over time for YFT 

but not for BET. The indices produced by constraining unstable estimates to be either 

the mean of the fitted values in that year-quarter or the predictions from the GLM 

model were essentially identical and hence only the former is displayed in the figures. 

The GAM-based index was more stable for the aggregated data and except for a very 

few year-quarters it was unnecessary to constrain the spatial imputations of missing 

CPUEs. There were fewer differences between the GAM-based indices and the 

traditional indices for this dataset and there was less, to no trend detected in their 

ratios against the traditional indices (Figure 10g, 11g). Examples are shown for two 

contrasting year-quarters for the aggregate data, one with a high number of fished 

cells where imputation did not have to be constrained (Figure 12), and one where 
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imputations for several cells needed to be constrained when the GAM-predicted 

values were unstable (Figure 13). 

The Carruthers et al. (2011) method of rule-based backfilling produced indices that 

displayed the most significant deviations away from the nominal and traditional 

indices.  For both species these indices exhibited different trends over the time-period, 

with the index for BET being generally higher than the traditional index in the early 

part of the time-series and lower in the later period (Figure 8c). For YFT the index 

was lower than the traditional index initially but was generally higher during the 

middle to latter periods of the time-series (Figure 9c). These indices also display 

substantially less year-quarterly variation than the traditional indices. This may be 

because the imputations dampen fluctuations as they are linked with CPUE in several 

surrounding year-quarters. The general trends remained when the cells with large 

proportions of year-quarters without CPUE estimates were removed, but the year-

quarterly variation increased. 

The hybrid indices that were calculated by imputing CPUE based on the main effects 

GLM model (the basis of the traditional index) produced indices that were relatively 

similar to the traditional indices for the operational-level data, although there was a 

slight negative trend in the ratio against the traditional index for BET (Figure 8d) and 

a positive trend for YFT (Figure 9d). Few changes in these indices were observed 

when cells with large proportions of year-quarters without CPUE estimates were 

removed. 

The method that used aggregate data and multiple flags to impute CPUE values for 

cells where the Japanese fleet did not fish produced indices (the flag-imputation 

indices) for both species that were very similar to the traditional indices and the 

traditional-interaction indices (Figure 10d, 11d). The exception was for the period 

since 2008 when this method produced an index lower than the traditional and 

nominal indices for BET. 

The indices performed similarly on the operational-level data where data from vessels 

under all the main flags were included (Figure 14 and 15). Carruthers indices were 

again more stable than the other indices and consequently displayed trends in the ratio 

against the traditional index. The GAM-based indices were more stable than those for 

the JPLL operational-level data in the later years.  

Comparison of each of the traditional indices showed similar general patterns between 

each dataset, though there were differences in variability and periods where some 

indices differed from each other somewhat, most notably at the very end of the BET 

and start of the YFT time-series. 

5. Discussion 

The indices of concentration suggest that there has been a trend towards increased 

concentration of catches into a smaller number of cells, and at least for YFT, some 

concentration of fishing effort in cells with higher CPUE, especially in the last five 

years. While these dynamics must be accounted for by including cell effects within 

standardisation models they do not necessarily demand spatial imputation methods. 

The insights from these indices are valuable, but they could be improved for our 

purpose here (accounting for spatial extent when estimating relative abundance 

indices) by incorporating information on unfished cells. For example, Gulland’s index 
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shows the concentration of effort within the year-quarter, and within the cells that 

were actually fished in that year-quarter.  It provides no information about CPUE in 

un-fished cells at that time or the patterns of concentration of effort between year-

quarters for the full set of cells in the region, which is more important for CPUE 

standardisation. Development of further indices of concentration that consider 

unfished cell would certainly be beneficial for informing spatial CPUE 

standardisations, especially if they can identify differences in CPUE trend between 

cells and if so, whether fishing is becoming concentrated within cells with different 

trends. 

Unfortunately indices of concentration and other diagnostics do not provide any 

information on the dynamics of CPUE in cells that are never fished.  This highlights 

the problem with calculating CPUE indices for a region with different categories of 

data availability. For example, there are cells that are fished in every time-period, 

cells that are never fished and cells that are sometimes fished. Currently-used 

standardisations are robust if the trends in CPUE between these categories are very 

similar. The validity of this assumption depends on why the cells belong in these 

categories, for example, are they un-fished because of political regulations, the 

presence of other fleets etc., or the abundance of fish. Furthermore, it depends on the 

biology of the species, such as whether there is a high level of movement at a scale 

larger than the size of the spatial cells in the model that can reduce localized 

depletions from fishing as just one example. Imputation is desirable if trends are 

likely to be different between the categories and the reasons for the missing cells will 

affect the best way to do this. For example, the Carruthers and hybrid indices are only 

able to impute cells that are fished in at least one or more years, and so again 

assumptions are made about the cells that are never fished. Spatial imputation using 

GAM-based methods are capable of imputing for all missing cells, including those 

that were never fished, but this requires extrapolation, which has its own risks. 

Without being able to directly calculate relative changes in CPUE between cells in the 

different categories we are limited to comparing the different indices that 

accommodate variation in trends between cell and indices that do not. 

The methods of accounting for spatial extent of fishing produced indices largely 

similar to the traditional indices. For BET this was a relatively variable index with 

little overall trend since about 1990. For YFT this was a sustained decline over most 

of the time-period investigated. The largest exception to this was the Carruthers index 

which generally flattened any trend observed in the traditional index for both species. 

However, this may be attributed to both the imputation rules and the large amount of 

missing data when using the SPC holdings of Japanese operational data. Thus this 

method may be less suitable for datasets with large gaps as the ratio of imputed to 

‘real’ data increases. We did not apply this approach to either the all-flags operational 

data or the aggregate data. The relative stability of the index is a result of the 

frequency with which a large proportion of cells are un-fished in any year-quarter, and 

the long periods for which a cell might not be fished. This means that the index in any 

given year-quarter is made up of many cells whose imputed value is a function of 

abundance often a significant time prior to, or subsequent to the focal year-quarter. 

This effectively dampens between year-quarter variations. It is possible that it is 

adequate in other situations where variability is lower, a higher proportion of cells are 

fished and/or CPUE in a cell is only missing for a year or two straight (the simulated 

data of Carruthers et al. (2011) for example), rather than for multiple years such as for 
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our datasets. Regardless, it will generally be possible to come up with improved 

imputation rules such as those used for the hybrid index which better accounts for 

year-quarter effects. 

The GAM-based and hybrid indices also showed some deviations away from the 

traditional index for the operational data. For the former, some differences can 

probably be attributed to the high uncertainty in estimates in some year-quarters, 

especially in recent years where spatial coverage was lower. With high uncertainty on 

the log-scale the expected value on the nominal scale will tend to be higher and this 

led to a tendency for the GAM-based estimates to be substantially higher than for the 

traditional index in some of these later year-quarters. This would presumably be 

reduced for the full dataset and this is reflected in the GAM-based indices for the 

aggregate data which had fewer extreme positive ratios against the traditional indices 

and also for the operational-level data with all flags included. The hybrid index for 

YFT also showed an increasing trend in the ratio against the traditional index. The 

consequences of results such as this for stock assessments are significant and further 

work into whether these differences are real or a consequence of the limited data and 

preliminary model structures is important. 

There are numerous future research avenues for improving indices that account for 

spatial extent of fishing effort. For example, there are many methodological 

improvements that could be made to the indices themselves: 

•  utilise more realistic error distributions (than those assumed for the simple 

log-offset methods used here) for the GLMs fitted to the observed data. 

•  account for zero inflation in the operational data.  

• utilise more powerful computing resources to investigate the possibility of 

implementing models with area-time interactions for operational-level data.  

•  determine the optimal spatial scale for undertaking analyses. 

• account for cells with large proportions of landmass occurring within them. 

• weight data in the models based on the number of sets in the spatial cell to 

prevent cells where a lot of effort is concentrated from biasing the index 

• investigate the effects of spatial correlation in residuals for models where 

time-area interactions are not accounted for. 

• calculate reliable uncertainty around the point estimates, which are an 

important component of assessment models. 

The results from this paper will form the basis of future work and have identified 

general methods that have promise and should be investigated further. Among the 

more promising is the hybrid index, which is some way between the traditional 

method and a full interaction model with imputation of missing cells. The GAM-

based index of spatial imputation also has some attractive properties and its 

preliminary performance shows potential, however there are issues that need to be 

resolved. Perhaps most importantly is the difficulty in predicting CPUE for cells on 

the boundary of a region where there is little surrounding observed data to constrain 

predictions to be realistic. This is partly a consequence of extrapolating a statistical 

technique beyond the observed data which is a risky endeavour, although it should be 

noted that the risks of the alternative (of not imputing missing values) are also high, 

and are of course the motivation behind this paper. This was most prevalent when 
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little data were available and so it is hoped that the issue will be reduced if the full 

operational-level data was available. However, whether this technique could be used 

in some other regions where spatial coverage is more limited (even in the full dataset), 

remains to be seen. Future work would benefit from investigating whether 

developments such as incorporating a time dimension into smoothers may lead to 

more robust indices. 

Development of techniques to test and compare the performance of different 

approaches will be just as important as improving the fitted models themselves. A 

cross-validation approach to model comparison appears to be well suited when 

different methods are fitted to the same data. This approach aims to identify models 

with better predictive ability which is perhaps the most important property of an 

imputation method given that predicting unobserved CPUE is their main function. 

Development of cross-validation routines would significantly improve the 

comparisons of methods presented herein. 

A more challenging, though complementary approach to model testing would involve 

construction of a simulation model to represent the temporal and spatial dynamics of 

BET/YFT in the WCPO, and the ‘observation process’ linking these underlying 

dynamics in each spatial cell with the CPUE observations that result from fishing 

within it. This is a difficult undertaking and careful thought must be given to each of 

the large number of simplifying assumptions to ensure that important properties of the 

system are captured with respect to the purposes of the study. The simulation 

approach was adopted by Carruthers et al. (2010, 2011) to test several methods of 

calculating abundance indices for pelagic fish, and a similar approach would benefit 

other aspects of the WCPO tuna research, such as analyses of the spatial dynamics of 

tuna tagging programmes. 

Finally, if these methods and the resulting indices are to be the best possible – then 

they also need to be based on the best available data. It has been shown that 

operational data hold the best hope of being able to standardise for important factors 

such as vessel and hooks-between-floats. SPC holds some operational data for DWFN 

vessels, but this data only has reasonable coverage for region three. Ideally as this 

work is progressed we will have access to all available DWFN operational data under 

arrangements that are conducive to good and thorough scientific investigation. 

Alternatively, aggregated data in the non-equatorial assessment regions will have to 

be used. 
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7. Tables 

Table 1: Characteristics of the data for the full operational dataset for region 3 and the data remaining after 

removing years, after removing records without HBF information and after removing vessels fishing for less 

than 10 year-quarters for data for just JPLL and for all flags (AllLL). 

Data No. sets 

(thousands) 

No. hooks 

(millions) 

BET caught 

(thousands) 

YFT caught 

(thousands) 

No. vessels 

JPLL      

Full 337 760 3,710 9,383 1,687 

Yrs removed 335 755 3,700 9,277 1,680 

HBF removed 308 687 3,424 8,384 1,543 

Vessels removed 229 522 2,741 6,215 358 

AllLL      

Full 972 1,657 6,912 13,370 4,917 

Yrs removed 957 1,617 6,793 12,844 4,683 

Vessels removed 679 1,203 5,299 9,401 1,048 
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8. Figures 

 

Figure 1: The regions used for the WCPFC BET/YFT stock assessments. 
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Figure 2: The number of spatial cells in region 3 fished in each year-quarter by Japanese longline vessels, 

for the SPC-held operational-level data. The top and bottom panels are at the 5×5° and 1×1° square scale, 

respectively. 
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Figure 3: The number of 5×5° spatial cells in region 3 fished in each year-quarter by longline vessels of all 

flags (top panel) and Japanese longline vessels (bottom panel) for the aggregated dataset. 
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Figure 4: Spatial distribution of the 1×1° spatial cells with data in each year in region 3 by Japanese longline 

vessels for the SPC-held operational-level data. 
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Figure 5: Spatial distribution of the 5×5° spatial cells fished in each year in region 3 by Japanese longline 

vessels for the SPC-held operational-level data. 
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Figure 6: Nominal CPUE in each year-quarter for each 5×5° spatial cell for BET (top panel) and YFT 

(bottom panel) for the SPC-held operational-level data. Each row of bubbles represents an individual cell, 

the area of the bubble is proportional to CPUE and the absence of a bubble in a year-quarter indicates that 

no fishing data were available in the cell then. 
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Figure 7: Gulland’s index of concentration of effort (left panels) and the Gini index of concentration of 

catch (right panels) calculated from the aggregate data for BET/YFT in region 3. 
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Figure 8: Indices of BET CPUE in region 3 for the SPC-held operational-level data for Japanese longline 

vessels. The black line in each panel is the nominal CPUE index. The red line in panel a is the traditional 

index and the blue line in panel b is the GAM-based index. The indices in panel c are Carruthers indices 

with the green, purple and grey lines representing indices when all cells are retained, when cells with less 

than 50% year-quarters fished are removed, and when cells with less than 70% of year-quarters fished are 

removed, respectively. The indices in Panel e are the hybrid indices with the orange, pink (obscured) and 

yellow lines representing indices when all cells are retained, when cells with less than 50% year-quarters 

fished are removed, and when cells with less than 70% of year-quarters fished are removed, respectively. 

Panel e shows the ratio of the traditional index to the nominal index, panels f, g and h show the ratio of the 

GAM-based, Carruthers and hybrid indices, respectively, against the traditional index. The numbers in 

panels e-h are the annual trend in the ratio estimated using a linear regression model fitted to the log ratios, 

with the 95% confidence interval for this trend given in brackets. 



26 

 

 

 

 

Figure 9: Indices of YFT CPUE in region 3 for the SPC-held operational-level data for Japanese longline 

vessels. The black line in each panel is the nominal CPUE index. The red line in panel a is the traditional 

index and the blue line in panel b is the GAM-based index. The indices in panel c are the Carruthers indices 

with the green, purple and grey lines representing indices when all cells are retained, when cells with less 

than 50% year-quarters fished are removed, and when cells with less than 70% of year-quarters fished are 

removed, respectively. The indices in Panel e are the hybrid indices with the orange, pink (obscured) and 

yellow lines representing indices when all cells are retained, when cells with less than 50% year-quarters 

fished are removed, and when cells with less than 70% of year-quarters fished are removed, respectively. 

Panel e shows the ratio of the traditional index to the nominal index, panels f, g and h show the ratio of the 

GAM-based, Carruthers and hybrid indices, respectively, against the traditional index. The numbers in 

panels e-h are the annual trend in the ratio  estimated using a linear regression model fitted to the log ratios, 

with the 95% confidence interval for this trend given in brackets. 
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Figure 10: Indices of BET CPUE in region 3 for the aggregate data for Japanese longline vessels. The black 

line in each panel is the nominal CPUE index. The red line in panel a is the traditional index, the orange line 

in panel b is the traditional- interaction index, the blue line in panel c is the GAM-based index and the green 

line in panel d is the flag-imputation index. Panel e shows the ratio of the traditional index to the nominal 

index, panels f, g and h show the ratio of the traditional-interaction, GAM-based, and flag-imputation 

indices, respectively, against the traditional index. The numbers in panels e-h are the annual trend in the 

ratio  estimated using a linear regression model fitted to the log ratios, with the 95% confidence interval for 

this trend given in brackets. 
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Figure 11: Indices of YFT CPUE in region 3 for the aggregate data for Japanese longline vessels. The black 

line in each panel is the nominal CPUE index. The red line in panel a is the traditional index, the orange line 

in panel b is the traditional-interaction, the blue line in panel c is the GAM-based index and the green line in 

panel d is the flag-imputation index. Panel e shows the ratio of the traditional index to the nominal index, 

panels f, g and h show the ratio of the traditional-interaction, GAM-based, and -flag-imputation indices, 

respectively, against the traditional index. The numbers in panels e-h are the annual trend in the ratio  

estimated using a linear regression model fitted to the log ratios, with the 95% confidence interval for this 

trend given in brackets. 
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Figure 12: An example of the GAM-based method of spatially imputing CPUE values for cells that were not 

fished in the 1st quarter of 1975, for the aggregate data for Japanese longline vessels in region 3. Panel a 

shows the observed CPUE data for each 5° spatial cell, panel b shows the fitted values resulting from the 

GAM, panel c shows the CPUE surface for all cells (fished and un-fished) before constraints are applied and 

d shows the same as c but after the constraints have been applied (in this case the constraints did not affect 

the surface). The sum of the CPUE values over all cells in panel d is the index of abundance for that year-

quarter. The contour lines and colours indicate the relative CPUE with red being lowest through to yellow 

being highest. 
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Figure 13: An example of the GAM-based method of spatially imputing CPUE values for cells that were not 

fished in the 3rd quarter of 1975, for the aggregate data for Japanese longline vessels in region 3. Panel a 

shows the observed CPUE data for each 5° spatial cell, panel b shows the fitted values resulting from the 

GAM, panel c shows the CPUE surface for all cells (fished and un-fished) before constraints are applied and 

d shows the same as c but after the constraints have been applied (in this case the cells in the far west of the 

region were constrained to be the predictions from the traditional GLM model as the GAM-based 

predictions for these cells were outside the range of CPUE values observed in that year-quarter). The sum of 

the CPUE values over all cells in panel d is the index of abundance for that year-quarter. The contour lines 

and colours indicate the relative CPUE with red being lowest through to yellow being highest. 
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Figure 14: Indices of BET CPUE in region 3 for the SPC-held operational-level data for vessels under all 

flags. The black line in each panel is the nominal CPUE index. The red line in panel a is the traditional 

index,  the blue line in panel b is the GAM-based index, the green line in panel c is the Carruthers index 

when all cells are retained, and the orange line in panel e is the hybrid index when all cells are retained.  

Panel e shows the ratio of the traditional index to the nominal index, panels f, g and h show the ratio of the 

GAM-based, Carruthers and hybrid indices, respectively, against the traditional index. The numbers in 

panels e-h are the annual trend in the ratio  estimated using a linear regression model fitted to the log ratios, 

with the 95% confidence interval for this trend given in brackets.  
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Figure 15: Indices of YFT CPUE in region 3 for the SPC-held operational-level data for vessels under all 

flags. The black line in each panel is the nominal CPUE index. The red line in panel a is the traditional 

index,  the blue line in panel b is the GAM-based index, the green line in panel c is the Carruthers index 

when all cells are retained, and the orange line in panel e is the hybrid index when all cells are retained.  

Panel e shows the ratio of the traditional index to the nominal index, panels f, g and h show the ratio of the 

GAM-based, Carruthers and hybrid indices, respectively, against the traditional index. The numbers in 

panels e-h are the annual trend in the ratio  estimated using a linear regression model fitted to the log ratios, 

with the 95% confidence interval for this trend given in brackets. 
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Figure 16: Comparison of traditional indices for BET (panel a) and YFT (panel b) in region 3. Black, red, 

orange and blue lines are the indices for the Japanese operational-level data, all flags operational data, 

Japanese aggregate data and all flags aggregate data. 

 

 

 


