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1. Summary	

This paper describes the analysis of swordfish CPUE from Japanese Charter Vessels 
fishing in New Zealand waters. Despite the small size of the fishery, this investigation 
was warranted due to the high quality of data for this fishery and the large swordfish 
that were consistently taken. 

The dataset exhibits an extremely high proportion of zero-counts and low mean 
counts when positive sets occurred, which makes for challenging model fitting. This 
report presents standardizations based on Bayesian negative binomial, and zero-
inflated negative binomial generalized linear models (GLMs). 

The standardized index was similar to the nominal and varied substantially between 
years, including a five-fold increase over a three-year period (peaking in 1999/2000). 
Because the index relates to a time-series of relatively rare bycatch of swordfish in a 
fishery targeting southern bluefin tuna, we recommend using it only in sensitivity 
analyses within the assessment, and exercising caution when fitting models and 
interpreting results. 

2. Introduction	

The last stock assessment of swordfish in the southern WCPO was carried out in 2008 
(Kolody et al. 2008), and will be undertaken again in 2013. New CPUE indices will 
be included in the upcoming assessment, and may include an index from the west 
coast of the South Island (WCSI), New Zealand. This paper presents the analysis of 
the catch rate of swordfish (Xiphias gladius) by Japanese charter vessels fishing for 
southern bluefin tuna (Thunnus maccoyii) within the New Zealand exclusive 
economic zone, with the aim of producing a time series of catch per unit effort 
(CPUE).   

While this is a very small fleet of only 6 vessels with low swordfish catches, it is a 
relatively consistent fleet and the data are of high quality (100% operational logsheet 
data, very high observer coverage). The fleet also catches the largest swordfish taken 
in the southwest Pacific Ocean. A CPUE index that covers the largest fish is likely to 
be sensitive to changes in fishing mortality, and could therefore be valuable for the 
stock assessment.  

Raw catch rates (nominal indices) may be affected by a range of factors over and 
above the abundance of the population. It is important to account for these effects by 
standardizing the CPUE time-series. This report presents attempts to standardize the 
operational level CPUE time series of the Japanese Charter fleet in New Zealand 
using generalized linear modelling techniques (and its variants) to provide a usable 
index of abundance for this region. The dataset exhibits an extremely high proportion 
of zero-counts and low mean counts when positive sets occurred, which makes for 
challenging model fitting. This report presents standardizations based on Bayesian 
negative binomial, and zero-inflated negative binomial generalized linear models 
(GLMs). 



3. Methods	

Operational data at the set level were available for the Japanese vessels in the NZ EEZ 
for the time period 1992-2012 (a total of 4,415 sets), with the exception of 1996 when 
no fishing occurred. Data were reported at a resolution of 1° spatial cell. Data were 
extremely sparse in the 1st and 4th quarters (Table 1) and were discarded, as were 
fishing activities outside the area of interest of the WCSI which covered most of the 
effort in the 3rd quarter. The resulting CPUE analyses will therefore be an annual, 
rather than quarterly, index. 

The spatial extent of sets with positive catches was examined (Figure 1) with the aim 
of selecting a bounded region on the WCSI where positive catches (1 or more fish 
caught) occur. This was established by only including sets within the range of 40°S to 
47°S, and to the west of 171°E. This left a dataset of 3,288 sets (2,832 zero catches 
and 456 positive catches) for which analyses were conducted. 

A significant feature of the dataset is the high proportion of zero catches (0.86 over all 
sets; Figure 2, 3). Furthermore, when positive counts are observed they are generally 
very low (1-13 fish per set, mean=2.0, SD=1.7; Figure 4), which has consequences for 
the appropriateness of hurdle models such as the delta log-normal. The positive counts 
are not log-normally distributed (Figure 5) and nor is CPUE. 

A zero-inflated negative binomial (ZINB) approach is often a suitable approach for 
datasets on non-target-species where encounter rates are low (e.g. Minami et al. 2007, 
Rice 2012, Smith et al. 2012). However, if the mean of positive counts is very low a 
simple (no zero inflation) negative binomial (NB) GLM may be adequate, as this 
distribution will predict a large number of zeros in these situations. The NB GLM can 
be represented by ݕ~NegBinሺߣ,   is the mean andߣ , is the count for set iݕ ሻ, whereߜ
 is the dispersion parameter. The mean of the negative binomial distribution is ߜ
modelled using the usual linear predictor form 

logሺߣሻ ൌ ଵߚ  ଵߚ ଵܺ,  ܺ,ߚ…

where ߚ are coefficients and ܺ are explanatory variables. 

If there are more zeros in the dataset than can be described by the simple NB GLM 
then further complexity must be added to the model. This is can be achieved using 
ZINB models. Firstly, the counts are modelled as negative binomial as a function of a 
set of explanatory variables using a GLM formulation. Then the occurrence of extra 
zeros (over and above the zeros expected to occur given the negative binomial 
distribution) is also modelled using a GLM formulation as a function of explanatory 
variables, which can be the same or different to those in the negative binomial section 
of the model. 

The model is therefore based on 

 

ܲሺݕ|ߠሻ ൌ ൜
ߨ	 	 ሺ1 െ	ߨ	ሻ݃ሺݕ|	ߠሻ																																								ݕ ൌ 0,						
		ሺ1 െ ݕ																																																				ሻߠ	|ݕሻ݃ሺߨ ൌ 1,2,…

 

 

where ߠ are model parameters, ߨ is the probability of an excess zero and ݃ሺݕ|ߠሻ is a 
distribution for the counts, which is assumed to be negative binomial here as there is 
likely to be overdispersion in the data that would not be accommodated by a more 



simple Poisson distribution. The model proceeds by modelling the zeros using the 
usual GLM formulation 

 

logitሺߨሻ ൌ ߙ  ଵߙ ଵܹ, … ߙ ܹ, 

 

where ߙ are coefficients and ܹ are explanatory variables. The mean of the NB count 
distribution ሺߣ) is similarly modelled 

 

logሺߣሻ ൌ ଵߚ  ଵߚ ଵܺ,  ܺ,ߚ…

 

where ߚ are coefficients and ܺ are explanatory variables. Once the model has been 
fitted and parameters estimated, the standardized index of abundance can be 
calculated by multiplying the mean of the count distribution (ߣ) by one minus the 
probability of an excess zero. 

Several explanatory variables that potentially influence swordfish catch rates were 
present in the dataset. This included the categorical variables; year (n=20), vessel 
(n=6), area (n=5; 5° cell where the set occurred; 5° cells were used due to high 
numbers of missing values for 1° cells in some years) and start time (n=12; the time 
that the set was made, binned into 12 two-hourly categories). The measure of effort 
used was the number of hooks per set which was added to the model as a continuous 
variable (an offset; log-transformed). In addition, moon phase was calculated based on 
the date of the set using the R function moonphase (from the package r4mfcl). 
This was transformed to be days from the full moon and was binned into four equal 
length categories. 

A Bayesian approach was adopted using the software WinBUGS 1.4. This 
necessitated formulating prior distributions for all model parameters with attempts 
made to keep them uninformative by specifying dispersed normal distributions 
N(0,100) with means of zero and large variance, for all coefficients, and a 
Gamma(0.0001,0.0001) distribution for the negative binomial dispersion parameter 
(Martin et al. 2005, Smith et al. 2012). Selection among models with different 
explanatory variables proceeded using forward and backwards selection using DIC as 
a selection criterion, in addition to direct examination of the parameter estimates.   

Model adequacy was assessed by comparing replicate datasets simulated under the 
model (from the posterior predictive distribution) with the observed dataset. If the 
replicated datasets (or functions of them e.g. test statistics) are similar to the observed 
dataset then the model is adequate. For example, if the data is from an approximately 
negative binomial distribution but a Poisson GLM is fitted then the replicated datasets 
will be underdispersed when plotted next to the observed dataset. 

4. Results	

Due to the very low mean of the positive counts observed, the simple negative 
binomial GLM appears to be an adequate model for this dataset. Datasets simulated 
under the model (from the posterior predictive distribution) were very similar to the 
observed dataset with respect to the full distribution (Figure 6), the distribution of 



positive counts (Figure 7) and the proportion of zeros in the dataset (Figure 8). This 
later feature is significant in that it appears that this dataset does not warrant adding a 
zero inflation component to the model. The best fitting model included all explanatory 
variables except for start time (year, log hooks, moon, area, vessel), however because 
most of these variables were relatively consistent over the time period the 
standardization produced an index that was very similar to the nominal index (Figure 
9). 

The CPUE index in the first three years was low but it increased quickly from 1998, 
reaching a peak in 1999 and 2000 at about five times the mean level (Figure 9). It then 
decreased again from 2001 and remained at a very low level between 2004 and 2012. 
In no years did the standardized index differ substantially from the nominal index and 
the inferred dynamics of abundance were consequently very similar. 

The equivalent ZINB model was also fitted to the data for comparison purposes but it 
was not an improvement on the NB model (DIC=3,265 vs DIC=2,798 for the best NB 
model). While this model predicted replicate data similar to the observed data (Figure 
10), the replicate data was not quite as consistent with the observed data, compared to 
the NB model, which can be seen graphically in a plot of the proportion of zeros and 
the total observed catch of swordfish (individual fish; Figure 11). Furthermore, the 
standardized index produced by this model is very similar to the NB model. The zero 
inflation component of this model has a constant probability of an excess zero and 
was simply 

logitሺߨሻ ൌ  ߙ

and models with any more complexity than this in the zero component (e.g. year 
effects, or linking the zero and NB components) produced unstable results (evidenced 
by lack of convergence and/or unrealistic parameter estimates. 

5. Discussion	

The analyses outlined produced a standardized index of swordfish abundance off the 
west coast of the South Island, New Zealand. The Bayesian NB model appeared to be 
a reasonable approach to modeling a challenging dataset, but the resulting 
standardization did not alter the index greatly and some of the worrying features 
evident in the nominal index therefore remain. Namely the rapid, substantial increase 
in catch rate of swordfish through 1998-2000 and the subsequent rapid decline to low 
catch rates from 2001 onwards. Given the large size and presumably old age of the 
swordfish taken in this fishery a rapid increase in abundance would require significant 
changes in either movement, recruitment, or fishing patterns. Swordfish catch rates 
are sensitive to operational factors such as hooks between floats, bait type and the use 
of light sticks, about which we lack information. The cause of the observed variation 
remains unclear and the fact that this dataset relates to the relatively rare bycatch of 
swordfish, and has very low sample sizes in many years for a CPUE analysis 
(especially for positive catches), suggest that the index should be treated with caution 
when inferring abundance from it. 

Despite the extremely high proportion of zeros in the dataset ZINB models did not fit 
the data better than NB models due to the distribution of positive counts being 
restricted to very low numbers. The ZINB will be more suitable in situations where 
high proportions of zeros occur but the positive counts are higher than for west coast 
New Zealand swordfish. In the case of the NB model there are few substantial 



advantages of adopting a Bayesian approach, but for other models such as the delta 
log-normal the ease with which derived parameters such as a standardized index (and 
especially the associated estimates of uncertainty) can be calculated in a Bayesian 
framework may be very useful. For this reason the code for fitting the ZINB and NB 
model (which could be easily adapted to other situations) is provided in the appendix. 
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7. Tables	
Table 1: Total number of sets in NZ EEZ for each quarter/year. Note that no fishing occurred in 1996. 

 Quarter 
Year 1 2 3 4 
1992 0 154 20 0 
1993 8 78 24 0 
1994 7 96 0 0 
1995 0 136 0 0 
1996 0 0 0 0 
1997 21 199 23 0 
1998 0 135 22 0 
1999 0 262 12 0 
2000 0 185 14 0 
2001 0 198 0 0 
2002 5 229 0 0 
2003 0 391 138 0 
2004 1 315 34 0 
2005 0 156 42 0 
2006 0 150 48 13 
2007 36 317 90 0 
2008 0 167 0 0 
2009 0 209 22 0 
2010 0 144 0 0 
2011 0 151 0 0 
2012 0 163 0 0 
 
Table 2: Number of sets/ year for each vessel for the final dataset for WCSI in quarter 2. 

Vessel 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 

Ves 1 0 0 38 0 0 31 41 52 46 42 59 67 81 81 70 60 41 51 35 36 37 

Ves 2 59 0 0 0 0 0 0 57 50 46 39 58 73 70 71 81 38 45 36 36 40 

Ves 3 74 59 1 41 0 39 49 62 0 40 54 67 67 0 0 66 43 0 0 0 0 

Ves 4 0 0 25 48 0 38 21 53 41 47 62 69 76 0 0 0 0 0 0 0 0 

Ves 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 89 45 55 39 42 44 

Ves 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 56 34 35 40 

 
Table 3: Nominal and standardized indices of abundance of WCSI swordfish. 

 Nominal Estimate Standardized Estimate SE 
1992 0 0.016 0.017 
1993 0.910 0.689 0.242 
1994 0 0.005 0.018 
1995 0.209 0.220 0.106 
1996 NA NA NA 
1997 0.846 0.760 0.194 
1998 2.567 2.117 0.385 
1999 4.645 5.123 0.525 
2000 4.982 4.929 0.623 
2001 1.792 2.144 0.334 
2002 0.800 0.940 0.175 
2003 0.561 0.573 0.108 
2004 0.148 0.165 0.049 
2005 0.354 0.392 0.116
2006 0.191 0.251 0.097 
2007 0.347 0.253 0.058 
2008 0.382 0.368 0.103 
2009 0.097 0.084 0.038 
2010 0.143 0.151 0.070 
2011 0.207 0.247 0.100 
2012 0.819 0.577 0.152 



8. Figures	

 

 
 
Figure 1: Distribution of sets in the New Zealand region in quarter 2. Each dot represents a set, the green 
dots are sets in the defined fishery region and the pink dots are the sets excluded from analyses. The top plot 
shows sets with zero catches and the bottom plot is the sets with positive catches. Data is at the 1 degree 
square scale but have been jittered to show the frequency within each cell. 

 



 
 
 

 
 
Figure 2: Relationship between catches and effort (hooks per set). Figures are for all sets (top), only sets 
where positive catches occurred (middle) and the proportion of sets that were zero catches (bottom; catches 
were binned into even width categories). Each dot represents one set. 

 



 
 
Figure 3: The observed proportion of sets that were zero catches for each year. 

 



 
 
 

 
 
Figure 4: Raw annual catch rates. The top panel shows the catch per set for all sets in the final dataset (each 
dot represents a single set – jittered) with the line the yearly mean. The bottom panel is the nominal CPUE 
index (catch per thousand hooks). 

 
 



 
 

 
 
Figure 5: Histograms showing the distributions of catches per set (a-c) and CPUE (catches per thousand 
hooks; d-e). Note that neither the log(catches per set) or log(catches per hook) appear to be well described 
by a normal distribution. 

 
 



 
 
 
 
 
 

 
 
Figure 6: Distribution of observed counts (black histogram) and examples of counts for datasets simulated 
under the best NB model (from the posterior predictive distribution). This shows that the model appears to 
be adequate with respect to this test “statistic” as the observed and simulated distributions are very similar. 



 
 
 
Figure 7: Distribution of observed positive counts (black histogram) and examples of positive counts for 
datasets simulated under the best NB model (from the posterior predictive distribution). The observed and 
simulated distributions appear to be very similar. 

 
 



 
 
Figure 8: The observed proportion of zeros in the dataset (panel a – vertical line) and the observed total 
catch of individual swordfish over the dataset (panel b – vertical line) and the distributions of the same 
statistics for 1000 replicate datasets simulated under the best NB model. Because the replicated “test 
statistics” are not consistently higher or lower than the observed statistics, the model appears adequate in 
describing these aspects of the data. 

 



 
 
Figure 9: The nominal CPUE index (red line) overlaid with the mean standardized CPUE index for the best 
NB model (black line). Dotted lines are the limits of 95% credible intervals. The grey line shows the mean of 
the standardized index produced by the best ZINB model for comparison purposes. 

 



 

Figure 10: Distribution of observed counts (black histogram) and examples of counts for datasets simulated 
under the best ZINB model (from the posterior predictive distribution). 

 

 

 



 

Figure 11: The observed proportion of zeros (panel a – vertical line) and the total catch of individual 
swordfish over the dataset (panel b – vertical line) and the distributions of the same statistics for 1000 
replicate datasets simulated under the best ZINB model. Because nearly all the replicated “test statistics” 
are higher than the observed statistics, the model appears to be inadequate in describing the distribution of 
positive counts. 
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9. WinBUGS	code	for	a	NB	model	and	a	ZINB	with	an	intercept‐only	
excess	zero	component	

 

9.1. Zero	inflated	negative	binomial	GLM	with	intercept‐only	excess	zero	
component	

 
model { 
   for(i in 1:3288) { 
 
#  Need to use the “zeros trick” to set up the negative log likelihood 
          zero[i] <‐ 0 
          zero[i] ~ dpois(FullNLL[i])  
 
# The negative log likelihood for the zeros is the prob of excess zeros (p) + 1‐p * prob of neg binom zeros 
# D is the dispersion parameter of the negative binomial, L is the mean (usually denoted λ) 
          NLLZero[i] <‐ ‐log(p[i] + (1 ‐ p[i])*pow(1 + L[i] / D, ‐D)) 
 
# The negative log likelihood for non‐zeros is 1‐ prob of excess zeros + neg binom prob function 
# COUNT is the observed count of fish 
          NLLNonZero[i] <‐ ‐(log(1 ‐ p[i]) + (loggam(D + COUNT[i]) ‐ loggam(D) ‐ loggam(COUNT[i] + 1) +                     
                                         COUNT[i] * log(L[i]) ‐ COUNT[i] * log(D) ‐ (D + COUNT[i]) * log(1 + L[i] / D))) 
 
# Neg log likelihood depends on whether observed count is a 0 (Indicator=0) or 1 (Indicator=1)   
          FullNLL[i] <‐ (1‐INDICATOR[i]) * NLLZero[i] + INDICATOR[i] * NLLNonZero[i]   
  
# Set up the linear predictor for the excess zeros – in this example only an intercept  
          logit(p[i]) <‐ A0    # Note that this is just example code and throughout p does not need to be indexed by i but 
if more complicated models are to be fitted then must be p[i], for example Smith et al. 2012 suggest linking the 
zero inflation to the positives functionally ‐ logit(p[i]) <‐ A0 + A1*LinPred[i]    
 
# Set up the linear predictor for the mean of the negative binomial component – note log(hooks) is   
# centred as speeds convergence 
          log(L[i]) <‐ LinPred[i] 
          LinPred[i] <‐ B0 + B1[YRS[i]] + B2*(logHOOKS[i]‐mean(logHOOKS[])) + B3[MOON[i]] + B4[AREA5[i]]  
                                 +  B5[VES[i]] + B6[START[i]] 
 
       logHOOKS[i] <‐ log(HOOKS[i]) 
 
       junk[i] <‐ AREA[i]     # Must use all data in winbugs, not a problem in openbugs though... so if some  
                                          # data are not used just make up a junk variable 
   } 
 
# For factors set the first level to zero to make model identifiable – can also be set to sum to zero to  
# speed convergence in some cases e.g. for B1 it would be            B1[1] <‐ ‐sum(B1[2:20]) 
        B1[1] <‐ 0 
        B3[1] <‐ 0 
        B4[1] <‐ 0 
        B5[1] <‐ 0 
        B6[1] <‐ 0 
 
# Priors for all the factors below 
   for(i in 2:20) { 
        B1[i] ~ dnorm(0.0, 0.01) 
   } 



 
   for(i in 2:4) { 
        B3[i] ~ dnorm(0.0, 0.01) 
   } 
 
   for(i in 2:5) { 
        B4[i] ~ dnorm(0.0, 0.01) 
   } 
 
   for(i in 2:6) { 
        B5[i] ~ dnorm(0.0, 0.01) 
   } 
 
   for(i in 2:11) { 
        B6[i] ~ dnorm(0.0, 0.01) 
   } 
     
  # priors for the other parameters here  
  D ~ dgamma(0.0001,0.0001) 
  A0 ~ dnorm(0.0, 0.01) 
  B0 ~ dnorm(0.0, 0.01) 
  B2 ~ dnorm(0.0, 0.01) 
 
# Derived parameters here – calculate the standardized index 
# Prob of an excess zero – if a more complex linear predictor is used this would be within the for loop  
# below 
        P.yr <‐ 1/(1 + exp(‐(A0))) 
 
   for(i in 1:20) { 
# Predict the mean of the negative binomial component 
        L.yr[i] <‐ exp(B0 + B1[i] + B2*(log(1500)‐mean(logHOOKS[])) + B3[2] + B4[2] + B5[2] + B6[2]) 
# Predict the overall mean index 
        mean.yr[i] <‐ (1 ‐ P.yr) * L.yr[i] 
# Standardise mean by the overall mean 
        std.mean.yr[i] <‐ mean.yr[i] / mean(mean.yr[]) 
 
# Code below repeats with different levels of the covariates/factors in the prediction etc. to demonstrate that for  
these models it produces the same index 
        P.yr1[i] <‐ 1/(1 + exp(‐(A0))) 
        L.yr1[i] <‐ exp(B0 + B1[i] + B2*(log(3500)‐mean(logHOOKS[])) + B3[4] + B4[4] + B5[4] + B6[4]) 
        mean.yr1[i] <‐ (1 ‐ P.yr1[i]) * L.yr1[i] 
        std.mean.yr1[i] <‐ mean.yr1[i] / mean(mean.yr1[]) 
   } 
 
} 
 
 
# Example of a row of data – area was added at two scales with AREA not used in the model above  
# hence the junk variable was made in the model 
YRS[] VES[] AREA[] AREA5[] HOOKS[] START[] MOON[] COUNT[] INDICATOR[] 
3 1 29 5 2826 11 2 0 0 
 
# Example of initial values – these are zeros for demonstration purposes but better to come up with 
# reasonable values for specific problems – use different values for different chains. 
list(D = 0, A0 = 0.1, B0 = ‐3, B1 =c(NA,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), B2=0, B3=c(NA,0,0,0), B4=c(NA,0,0,0,0), 
B5=c(NA,0,0,0,0,0), B6=c(NA,0,0,0,0,0,0,0,0,0,0)) 

 
 



9.2. Negative	binomial	GLM	
# Most aspects of the more simple NB glm follow the ZINB above 
model { 
   for(i in 1:3288) { 
       COUNT[i] ~ dpois(L[i])    # To model the NB parameterized by it’s mean in WinBUGS requires using a mixture of 
the poisson and a gamma 
       L[i] <‐ rho[i]*exp(LinPred[i])  # Linear predictor and extra gamma variation (equivalent to NB) 
       LinPred[i] <‐ B0 + B1[YRS[i]] + B2*(logHOOKS[i]‐mean(logHOOKS[])) + B3[MOON[i]] + B4[AREA5[i]] + B5[VES[i]] 
       rho[i] ~ dgamma(A0,A0)  # Extra gamma 
       logHOOKS[i] <‐ log(HOOKS[i]) 
 
       junk1[i] <‐ INDICATOR[i]  # Some of dataset unused so add  meaningless variables if using winbugs 
       junk2[i] <‐ AREA[i] 
       junk3[i] <‐ START[i] 
   } 
 
        B1[1] <‐ 0 
        B3[1] <‐ 0 
        B4[1] <‐ 0 
        B5[1] <‐ 0 
 
   for(i in 2:20) { 
        B1[i] ~ dnorm(0.0, 0.01) 
   } 
 
   for(i in 2:4) { 
        B3[i] ~ dnorm(0.0, 0.01) 
   } 
 
   for(i in 2:5) { 
        B4[i] ~ dnorm(0.0, 0.01) 
   } 
 
   for(i in 2:6) { 
        B5[i] ~ dnorm(0.0, 0.01) 
   } 
 
     
  # priors   
  A0 <‐ exp(logA0) 
  logA0 ~ dnorm(0,0.0001) 
  B0 ~ dnorm(0.0, 0.01) 
  B2 ~ dnorm(0.0, 0.01) 
 
  for(i in 1:20) { 
        L.yr[i] <‐ exp(B0 + B1[i] + B2*(log(1500)‐mean(logHOOKS[])) + B3[2] + B4[2] + B5[2]) 
        std.mean.yr[i] <‐ L.yr[i] / mean(L.yr[]) 
 
        L.yr1[i] <‐ exp(B0 + B1[i] + B2*(log(3500)‐mean(logHOOKS[])) + B3[4] + B4[4] + B5[4]) 
        std.mean.yr1[i] <‐ L.yr1[i] / mean(L.yr1[]) 
  } 
 
} 

 
 


