

WCPFC MANAGEMENT OBJECTIVES WORKSHOP

Manila, Republic of the Philippines 28-29 November 2012

APPLICABILITY OF HISTORICALLY BASED LIMIT REFERENCE POINTS TO NORTH PACIFIC TUNA STOCKS

MOW1-PRES/13 28 Nov 2012

MIKHIKO KAI¹, HIROSHI OKAMURA², MOMOKO ICHINOKAWA^{1,2} and HIROYUKI KUROTA^{1,3}

 ¹ National Research Institute of Far Seas Fisheries, Fisheries Research Agency
 ² National Research Institute of Fisheries Science, Fisheries Research Agency
 ³ Seikai National Fisheries Research Institute, Fisheries Research Agency

WCPFC Management Objectives Workshop 2012-Manila

Applicability of historically-based limit reference points to North Pacific tuna stocks

Mikihiko Kai, Hiroshi Okamura, Momoko Ichinokawa, and Hiroyuki Kurota

What is an historically-based LRPs?

 F_{loss} (Cook 1998): the rate of fishing mortality that produces a SPR associated with the historically lowest spawning stock size (S_{loss})

Concept: If F_{loss} is maintained, S can be maintained at S_{loss} on average

What are the different characteristics?

Tropical tunas (southern stocks) Temperate tunas (northern stocks)

"One-way trip" Short-term history

"V-turn around" Long-term history

Objectives

- (1) To propose alternative historically-based limit reference points (LRPs) such as $F_{\rm loss}$ for northern stocks;
- (2) To compare the performance of historically-based and MSY-based LRPs (F_{loss} and F_{MSY}) using numerical simulations for northern and southern stocks; and
- (3) To discuss the applicability and advantages of historically-based LRPs for particular northern stocks.

Methods (1)

- We used a basic simulation model to evaluate the differential performance of two LRPs defined in terms of fishing mortality (*F*) for southern and northern stocks.
- This model contrasts the historically-based LRP $F_{\rm loss}$ with the MSY-based LRP, $F_{\rm MSY}$

$F_{ m loss}$ versus $F_{ m MSY}$

Methods (2)

• To create a set of indicators for the risk of recruitment overfishing, we computed F for various fractions of S_{MSY} (i.e. 100%, 50%, 20% and 10%, and *S*=0), each of which represents varying degrees of depletion of stock biomass.

 $F_{\text{\%SMSY}}$ is the *F* value corresponding to a fraction of the S_{MSY}

• We evaluated the probability that either candidate LRP would exceed the value of *F* at the various depletion levels (= risk of recruitment overfishing).

Simulation Procedures

Results - Base Case

		Southern	n stocks		Northern stocks (PBF)				Northern stocks (ALB-N)			
Thresholds Small variance		ariance	Large variance		Small variance		Large variance		Small variance		Large variance	
	F _{MSY}	F _{loss}	F _{MSY}	F _{loss}	F _{MSY}	$F_{\rm loss}$	F _{MSY}	F _{loss}	F _{MSY}	F _{loss}	F _{MSY}	$F_{\rm loss}$
h = 0.3												
$\Pr(> F_{Smsy})$	0.48	0.49	0.4	0.23	0.74	0.94	0.65	0.47	0.72	0.5	0.54	0.19
$\Pr(> F_{50\%Smsy})$	0.29	0.25	0.29	0.17	0.43	0.72	0.52	0.39	0.54	0.25	0.42	0.12
$\Pr(> F_{20\%Smsy})$	0.19	0.18	0.24	0.15	0.22	0.49	0.48	0.33	0.43	0.21	0.4	0.11
$\Pr(> F_{10\%Smsy})$	0.19	0.13	0.23	0.11	0.15	0.43	0.46	0.33	0.4	0.14	0.38	0.1
$\Pr(> F_{S=0})$	0.13	0.11	0.21	0.09	0.11	0.39	0.41	0.31	0.38	0.12	0.36	0.08
h = 0.6												
$\Pr(> F_{Smsy})$	0.24	0.21	0.07	0.02	0.13	0.47	0.33	0.11	0.47	0.05	0.3	0.03
$\Pr(> F_{50\%Smsy})$	0.06	0.02	0.05	0.01	0.01	0.13	0.29	0.05	0.2	0	0.25	0.02
$\Pr(> F_{20\%Smsy})$	0	0.01	0.05	0	0	0.05	0.29	0.04	0.11	0	0.24	0.01
$\Pr(> F_{10\%Smsy})$	0	0.01	0.05	0	0	0.01	0.29	0.02	0.11	0	0.24	0.01
$\Pr(> F_{S=0})$	0	0	0.04	0	0	0.01	0.29	0	0.09	0	0.23	0
h = 0.9												
$\Pr(> F_{Smsy})$	0.07	0.02	0.03	0	0.11	0.03	0.45	0	0.38	0	0.33	0.01
$\Pr(> F_{50\%Smsy})$	0	0	0.03	0	0.11	0.01	0.45	0	0.33	0	0.33	0
$\Pr(> F_{20\%Smsy})$	0	0	0.03	0	0.11	0	0.45	0	0.33	0	0.33	0
$\Pr(> F_{10\%Smsy})$	0	0	0.03	0	0.11	0	0.45	0	0.33	0	0.33	0
$\Pr(> F_{S=0})$	0	0	0.03	0	0.11	0	0.45	0	0.33	0	0.33	0

Results - Summary

- For southern stocks, the performance of both $F_{\rm loss}$ and $F_{\rm MSY}$ is good when recruitment compensation is high (i.e. when "steepness" in the stock recruitment relationship is high)
- For northern stocks, the performance of $F_{\rm loss}$ is better than $F_{\rm MSY}$ if the steepness is high and the process error is large.

Discussion-Data Contrast

Discussion - MSY-based LRPs

Inaccurate estimation of steepness can lead to overestimation of F_{MSY} , which in turn is associated with a high risk of recruitment overfishing and stock depletion.

In this sense, it is not recommended to apply MSY-based LRPs such as F_{MSY} to northern stocks.

Discussion - Historically-based LRPs

 F_{loss} was robust to the overestimation of steepness. This means the F_{loss} can be used to achieve a risk-averse and conservative fisheries management.

In this sense, historically-based LRPs such as F_{loss} would be appropriate for northern stocks such as PBF and ALB-N.

Conclusion

• We suggest that limit reference points based on historical stock sizes are worthy of consideration for temperate tunas in the North Pacific

Thank you for your attention

Discussion - Steepness

Tuna stocks	Base Case	Range	Reference
YFT, BET, ALB-S	0.8	0.65-0.95	Harley et al. 2011
PBF	0.999	0.8-1.0	Iwata et al. 2012
ALB-N	0.955	0.7-1.0	Iwata et al. 2011

Discussion - The relationship between *S* and *F* in the steady state

S1 Note that "sustainable" is mis-spelled on the x-axis. SCC, 11/21/2012

Schematic diagram of historical population dynamics scenarios

The effect of natural mortality and steepness on proxy MSY-based reference points: (a) relationships between %SPR and $F_{\text{\%}SPR}$ with different natural mortality coefficients; and (b) relationships between the ratio of S_0 and $F_{\text{\%}S0}$ with different values of steepness.