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Summary 
For the 2008 albacore stock assessment, a version of the final model was tested for a large number of 

assumptions and uncertainties to evaluate the effects on a range of management quantities (Hoyle et al. 

2008). In examining these sources of uncertainty more closely, these tests were repeated, using a 

slightly revised version of the 2008 model input files, an updated version of MULTIFAN-CL, and an 

expanded and improved range of uncertainty factors.   We examined the influence of eight sources of 

structural uncertainty (i.e. we undertook a Structural Sensitivity Analysis (SSA)), with two options for 

each factor, comprising a total of 256 model runs (28). Using the distributed computing system (Condor), 

the complete uncertainty grid was estimated in about 33 hours.  

The purpose of this work was to identify the key (and plausible) sources of uncertainty that should be 

considered in the 2009 ALB stock assessment. Based on the results of the SSA, and recommendations 

from the previous assessment, we offer guidance for sensitivity analyses to be undertaken in the 2009 

assessment. 

Introduction 
Many sources of uncertainty affect the results of stock assessment models. It is important to examine 

their influence, and to consider overall assessment results in the light of this uncertainty. Including 

structural uncertainty in the assessment, using multiple combinations of structural uncertainties, has 

advantages over the standard approach of using a base case and sensitivity runs. Integrating across 

these structural uncertainties can improve understanding of the overall level of uncertainty in the stock 

assessment. Interactions among sources of uncertainty can also be important.  

Sensitivity analyses to aspects of model structure are a routine element in fisheries stock assessments. 

In developing a base model for the 2008 albacore stock assessment, a wide range of sources of bias and 

uncertainty were investigated including: moving the central latitudinal boundary north by 5° to 25°S; 

separating data from the Japanese and Korean longline fisheries; including standardised CPUE data as 

relative abundance indices for the Japanese, Korean and Chinese Taipei longline fisheries, and the New 

Zealand troll fishery; reducing the weight given to length frequency data; making the selectivity of 

longline fisheries seasonal; removing length frequency data collected in Pago Pago before 1971; 
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changing the biological parameters for natural mortality and reproductive potential; reducing the 

influence of CPUE from non-standardized fisheries; and permitting declining (i.e. dome-shaped) 

selectivity to be estimated for most longline fisheries (Hoyle et al. 2008). 

In addition to these developments, a number of structural assumptions were tested for the 2008 stock 

assessment, including the interactions among them, for: the stock-recruitment relationship, growth, 

time-variant selectivity, increased fishing efficiency, natural mortality, relative weight of the catch at 

length frequency data, and the choice of the model start-year. In this paper, we further develop this 

approach for assessing structural uncertainty in the 2008 albacore stock assessment model that 

combines the assumptions to examine the effects of interactions. We have considered six of the factors 

used previously with two additional factors (estimating length-based selectivity and offsets to the von 

Bertalanffy growth curve for young fish) which combine to give 256 plausible model structures. The goal 

of this analysis is to better understand the uncertainty in the overall assessment and the results are 

expected to guide the 2009 albacore stock assessment.  

Methods 
A series of eight pairs of alternative hypotheses (each pair designated S, G, C, M, X, L, V or P, see Table 1) 

was established about selected factors that may affect the results of the MFCL albacore stock 

assessment. The focus was on factors where there was either recognized uncertainty that should be 

considered (e.g. steepness and growth), or factors where assumptions were made without a strong basis 

and alternative assumptions should be considered (e.g. relative weighting on length frequency data). All 

of the hypotheses were considered to be plausible, but at this stage no attempt was made to determine 

the relative plausibility. 

Each hypothesis was examined using a scenario established in the MFCL input files. Interactions among 

hypotheses are likely to be important, so multi-way interactions among eight of these hypotheses were 

also tested by combining scenarios.  

Testing all possible combinations of scenarios (256 runs) on a single fast machine would take, assuming 

3.5 hours per run, 5.3 weeks. However, this type of simulation can be run with many jobs in parallel, 

which we achieved by setting up a Condor cluster (Tannenbaum et al. 2001); 

http://www.cs.wisc.edu/condor) at the Secretariat of the Pacific Community. Once established, Condor 

clusters can be expanded relatively easily to include hundreds of computers. This cluster was limited by 

MFCL’s requirement, when running under Condor, for computers to have more than 1GB of RAM. The 

jobs were submitted to over 25 personal computers, running both Linux and Windows XP operating 

systems, and the entire set ran in approximately 33 hours. The setup of files is described below in more 

detail. The condor submit script and related files are in the Appendix.  

Setting up each of the 256 runs as a combination of eight scenarios involved altering 4 MFCL input files: 

the batch script (doitall), the data file (alb.frq), the tag data file (alb.tag), and the initial values file 

(alb.ini). To facilitate this process we wrote a program, R setup runs.r, which generated input files, set 

up the job directories, and submitted the jobs to condor. 
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Scenarios for general structural sensitivity analysis (SSA).  

The eight assumptions examined are detailed below, and summarized in Table 1 and Figures 1a-1c 

display the different model inputs for various scenarios. All options included the same number of model 

parameters, though this obviously does not have to be the case. 

1. Recruitment constraints (S) (par, doitall) 

Steepness is unknown and very difficult to estimate from fisheries data, and so constitutes a relatively 

intractable source of uncertainty. Alternative values should always be considered in a stock assessment. 

The albacore stock assessment is very sensitive to assumptions about steepness (Hoyle et al. 2008) 

because the spawning biomass at maximum sustainable yield is very low for albacore, at 18% of 

spawning biomass at MSY. Steepness was given alternative values of 0.7 and 0.9 (the fixed value 

assumed for the 2008 assessment), (Figure 1a).  

In MFCL the stock recruitment relationship can be parameterised using steepness, by setting 

age_flag(163)=0 and age_flags(153 and 154) to 0. Steepness was fixed, by setting age_flag(162)=0. The 

steepness parameter is stored in sv(29), which is the 29th column in the “Seasonal growth” section of 

the par file. This requires a change to the par file after the first run. 

2. Growth curve (G)(ini. Doitall) 

The growth curve was estimated in the 2008 albacore base case model, and the rates were higher than 

the established growth parameters used as starting values in the model, and higher than growth rates 

estimated in previous assessments. The estimates were close to the Australian (Farley & Clear 2008) 

growth curve estimate, with most differences occurring for young fish below about six years. The 

estimated variability of length at age reduces with age, and was very low for the older age classes. This 

appears unrealistic and suggests a problem fitting to the length frequency data. 

The base option for the growth curve in the sensitivity analysis runs was to fix the growth rate 

parameter K of the growth curve to the value estimated for the Australian curve (Figure 1b). The 

alternative option was to estimate all parameters. The parameters for variability of length at age were 

estimated in both cases. The parameter values were adjusted in the alb.ini file and the associated flag 

values in the doitall file. 

3. Effort creep (C) (frq) 

An increasing trend in catchability in fisheries is analogous to an “invisible creep” in fishing effort as 

fishing operations improve in efficiency. This may occur when technological improvements, such as 

remote sensing equipment, GPS, better communication equipment, and/or higher vessel speeds, allow 

vessels to improve their ability to find and catch fish. At some life stages, albacore tend to aggregate at 

oceanographic fronts (Chen et al. 2005, Langley 2004, Langley 2006, Laurs et al. 1977), and the 

technology to detect fronts has improved dramatically in recent years. Preferred environmental 

conditions also vary with age, and improved ability to target larger fish may help to explain the 

increasing average size of albacore caught in recent years. Such technological advances may be capable 

of generating quite large increases in fishing catchability.  
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Effort creep is very likely to be affecting even the standardized longline effort for south Pacific albacore, 

and further work should be carried out to determine an appropriate level to include in the model. This 

change would primarily affect the fisheries with standardized CPUE, and not those fisheries in which 

temporal catchability deviates are estimated. 

The alternative option to no effort creep was examined through an increase in catchability by 0.5% per 

year since 1960 for all fisheries. This is equivalent to 0.00125 per quarter and was achieved by changing 

the effort series for all fisheries to match this assumption, i.e. progressively increasing the quarterly 

effort. This was achieved by adjusting the effort time series for all fisheries in the alb.frq file. 

4. M with alternative mean value (M) (ini) 

Natural mortality is a difficult parameter to estimate in a model, and it is often fixed at a ‘reasonable’ 

value. Fishery data are usually uninformative about natural mortality, and attempts to estimate the 

mean annual value for the 2008 assessment resulted in unrealistic values greater than 0.9. Mean natural 

mortality was therefore fixed at a value of 0.4, with variation at age as estimated from analysis of sex 

ratio at length data. The increasing skew in the sex ratio towards males (SPC unpublished data) is 

hypothesised to be due to higher natural mortality of sexually mature females than for males of the 

same age or size (although other possible explanations should be considered) (Harley and Maunder 

2003). This increase in female natural mortality and the subsequent loss of females from the population, 

are implemented in the single sex model via an increase in the combined M for both sexes (since MFCL 

is a single sex model) at the age of female sexual maturity, and subsequent decline towards the constant 

male value. 

An alternative option of adjusting the mean natural mortality to a fixed value of 0.45, instead of 0.4, was 

examined in the SSA (Figure 1c). Natural mortality was adjusted by changing values in the alb.ini file. 

5. Time split (X) (frq,tag,doitall) 

Changing selectivity through time has been suggested as a reason for the increasing mean length of fish 

observed in longline fisheries (Langley and Hampton 2005, Langley and Hampton 2006). Multifan-CL 

does not have the facility to vary selectivity through time within a fishery; selectivity is constrained to be 

constant. However, time-variant selectivity may be emulated by sub-dividing an individual fishery into 

discrete fisheries over several time periods and estimating unique selectivities for each, which we have 

termed as a “time split”. This approach involved splitting each of the seasonal and regional Japanese, 

Korean and Chinese Taipei longline fisheries into period-specific fisheries, and estimating selectivity and 

catchability (which is confounded with selectivity) separately for each fishery-period. In order to retain 

the long-term index of abundance over the periods, the splits by fishery were offset from one another in 

time. The divided fisheries shared tag return rates and length frequency sample size weighting.  

The alternative option to time-invariant selectivity, entailed two splits, north and south: fisheries in 

regions 1 and 4 were each split into three periods, at 1971 and 1990, while fisheries in regions 2 and 3 

were split at 1975 and 1986. The timing of the selectivity splits was chosen arbitrarily, rather than by 

observing the timing of length changes. Selectivity changes are likely to occur as a trend rather than in 

jumps, and an approach that takes this into account is likely to be more successful. For example, it may 
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be possible to use hooks between floats as an indicator of gear configuration, and use it to as a covariate 

in the model. 

Time splits in the fisheries were applied by adding new fisheries in the alb.frq, alb.tag, and doitall files. 

6. Alternative Re-weighted length frequency data (L) (frq) 

The sample sizes of length and weight frequency data determine the amount of influence that the 

samples have in the likelihood. Raw sample sizes cannot be used however, because individual fish within 

a sample are not independent of one another. Sample sizes are therefore adjusted, and down-weighted. 

For the 2008 assessment, attempts were made to reduce the impact of the increasing size of fish in the 

catch-at-length time series by reducing the weight of the length frequency data. The MFCL albacore 

base case uses effective sample size of n/20 for length frequency data, with maximum sample size of 

1000. An alternative value of n/40 was considered. This change involved setting fish_flag(49) to specify 

the relative weighting scalar in the doitall file. 

7. Von Bertalanffy growth offsets (V) (doitall) 

It became apparent in the 2008 albacore assessment the quality of fit to length frequencies in the small 

size classes was relatively poor. In MFCL size at age for specified age classes (starting from the youngest 

age) can be modified from von Bertalanffy by activating independent parameters for the average 

lengths of young age classes. The number of age classes to be modified is set by parest flag(173) in the 

doitall file. For the 2008 albacore base case model no offsets were estimated. An alternative was 

examined in which growth offsets for the first 3 age classes were estimated. 

8. Length-based selectivity (P) (doitall) 

The 2008 albacore base model assumed age-based fishing selectivity. However, the variability of length 

at age in the growth function declined with age and was very low for the older age classes. This was 

apparently unrealistic and suggested a problem in the model fit to the length frequency data. 

Consequently, it was recommended that length-based selectivity be investigated as a model 

development. This alternative was achieved by adjusting the fish flag(26) using the upgraded version of 

MFCL.  

 

Results 
The results are described in two stages, firstly the one-change sensitivity analyses, and secondly, the full 

grid of 256 model runs. 

 

Single model changes 

In the first stage, 9 models were examined: the base model, and eight models with the alternative 

hypothesis considered for each of the eight structural assumptions examined. Including the base model, 

6 runs had the same number of parameters, with 3 runs having more parameters (estimated growth, 

time split, von Bertalanffy offsets).  The run with lower relative weight assigned to length-frequency 
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observations involved changes to the likelihood function (length frequency effective sample size (N)) 

and therefore the objective function value was not directly comparable. Compared to the base model, 

better fits to the data were obtained with the estimated growth, natural mortality, time split, von 

Bertalanffy offset, and length-selectivity scenarios (Table 2). For the time split scenario the fit was 

improved to both the CPUE and length-frequency likelihood terms, while for the von Bertalanffy offset 

scenario the improvement in fit to the length-frequency was accompanied by a worse fit to the CPUE. 

The steepness and effort creep scenarios produced roughly equivalent fits (Table 2).  

The length-based selectivity scenario produced a substantial improvement in both the model fit and in 

estimating variation in mean length at age (Figure 2). However, for a length-based selectivity scenario in 

which growth was estimated, the model estimated an implausible flat growth curve that started high 

and grew little. This indicates a model fitting problem. Length-based selectivity may permit the model to 

fit the data better, but it represents a substantial change in model structure, so some changes to the 

doitall file may be needed to help the model find the best solution.  

Values for the key management quantities were also compared (Table 3 and Figure 3). MSY was larger 

for the higher steepness, length-based selectivity, and effort creep scenarios, and smaller for the length-

frequency weight and (in particular) time split scenarios. The time-split scenario also predicted 

substantially higher current fishing mortality (FCURR/FMSY), and BCURR/BMSY. The key reference point 

SBCURR/SBCURR,F=0 was also sensitive to this scenario. Higher BCURR/BMSY was estimated for the time split, 

length-based selectivity, length frequency weight, and higher steepness runs, with lower BCURR/BMSY 

estimated for the effort creep run.  

In terms of overall stock status, the base model indicated that the stock was not exceeding the 

overfished and overfishing thresholds. 

Full grid 

The general patterns in the one change model runs were reflected in the results from the full 

uncertainty grid estimation. Runs containing a combination of scenarios that led to changes in the same 

direction when done individually lead to greater changes when combined. Figures 4 to 7 provide 

boxplots showing the distribution of estimates of key management quantities.  

Intuitive results were obtained for scenarios having lower steepness and natural mortality, with effort 

creep that produced more pessimistic estimates of stock status. Consistent with the one change model 

runs, the von Bertalanffy offset and length frequency relative weight scenarios had little effect.  

The fixed growth, steepness, time split and length-based selectivity scenarios produce large effects, with 

the latter three producing more pessimistic estimates of stock status. SBCURR/SBMSY was substantially 

lower for the lower steepness scenario (Figures 4 and 8). Similarly, length-based selectivity results in 

lower values for SBCURR/SBMSY and BCURR/BMSY (Figures 4 and 5), with higher FCURR/FMSY (Figure 6), . 

Although SBCURR/SBMSY was lower for the time split scenario, higher BCURR/BMSY was obtained (Figures 4, 5 

and 8). This is due to the substantially lower value of BMSY for this scenario compared to the base model, 

as was indicated in the single model changes (Table 3). The low SBCURR/SBMSY most likely reflects the 

effects of time-variant selectivity that may reduce adult biomass relative to total biomass. This result 
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warrants closer examination in the 2009 assessment. Fixing growth to the Australian curve produced 

more optimistic results, while most of the pessimistic runs, in terms of FCURR/FMSY and SBCURR/SBMSY, were 

obtained when growth was estimated. It was noted that some of these model runs, the growth curves 

were implausible. 

Figures 8 and 9 provide scatter plots of FCURR/FMSY versus some of the biomass-based reference points, 

indicating the effects of the scenario factors in terms of the overfished and overfishing quadrants of the 

Kobe-style plot. Generally the runs with the estimated growth, time split, and length-based selectivity 

predict a more pessimistic stock status relative to the alternative scenarios. 

  

Discussion 
The purpose of the analysis described in this paper was to indicate which potential sources of 

uncertainty were likely to impact on the important management quantities and therefore warranted 

consideration in the 2009 assessment. Based on the results of the analysis, a number of topics were 

identified for discussion at a workshop held before undertaking the assessment, so as to focus attention 

on the main sources of uncertainty to be considered. 

It was recommended that this approach can produce robust advice on the main sources of model 

uncertainty in respect of the structural assumptions that potentially cause mis-specification of model 

processes, and hence, bias in the estimates. This approach is similar to that used initially for southern 

bluefin tuna assessments (Polacheck et al. 2001), and more recently for south-west Pacific swordfish 

(Kolody et al. 2006). A main advantage of this method over “one-dimensional” sensitivity tests relative 

to a base case model, is that it illustrates the effects of interactions among assumptions on model 

uncertainty. Since the approach effectively gives equal relative weight to each assumption, methods for 

assigning non-uniform weight according to each assumption’s reliability could usefully be developed in 

the future. This is particularly important if the approach is used for quantifying model uncertainty due to 

structural assumptions, i.e., a structural uncertainty analysis (SUA). This differs from the method 

presented here which has the main aim of identifying the main sources of uncertainty. 

A number of the models in the grid illustrated substantial structural uncertainty which prompted a set of 

recommendations for topics needing closer examination during the 2009 assessment. 

i) Growth 

A number of runs produced implausible growth functions, especially when length-based selectivity was 

estimated, with the mean length for the younger age classes being poorly determined. This highlights 

growth estimation as being very influential and warrants attention for the 2009 assessment as a major 

source of uncertainty. In future SSA, it is advised that feasibility criteria be determined for identifying 

and removing runs from the analysis having biologically unrealistic growth estimates, similar to the 

approach used for the south-west Pacific swordfish assessment (Kolody et al. 2006). Although, 

estimating von Bertalanffy offsets improved the model fit to length frequency observations, it appears 

to have little effect on model uncertainty.  
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ii) Steepness 

This parameter is influential and warrants close attention for the 2009 assessment, and it is 

recommended that it be included in SUA for estimating model structural uncertainty. Since little is 

known of the relationship between the albacore spawning stock and absolute annual recruitments, it is 

difficult to determine whether a steepness value of 0.7 is plausible. This uncertainty should underpin the 

specification of an appropriate prior distribution for the model.  

iii) Length-based selectivity 

Applying fishery-specific selectivity to fish lengths rather than their ages clearly improved the model fit 

and also the estimation of growth variability, i.e., the variance around mean lengths at age. Applying this 

assumption had a large effect on model results and will be a substantial feature of the 2009 assessment. 

Issues usefully highlighted from the SSA included the uncertainty caused by the simultaneous estimation 

of mean growth and selectivity at length, which often produced implausible growth curves. 

iv) Time-split 

Time-variance in fishery-specific selectivity was implemented in the model by splitting a particular 

fishery’s time series of a into separate time-segments, i.e., splitting the fishery’s history, and estimating 

a unique selectivity for each. This assumption was one of the four most important sources of 

uncertainty, having a substantial impact on early recruitment estimates, and hence, on SB0, SBMSY and 

their related reference points. Characteristic of this scenario was a higher number of runs for which 

overfishing occurs – a more pessimistic stock status. Further development of this scenario must take 

account of related work currently in progress to explore issues with sampling approaches for albacore 

length frequency data, and in redefining the fisheries by split model regions. Also a useful diagnostic of 

the plausibility of this assumption is to examine the time series of catchability estimates among the 

splits. 

v) Relative weighting of the length frequency data 

It was not clear from the analysis whether the scenario values (n/20 or n/40) sufficiently explored the 

true structural uncertainty caused by this assumption for the statistical model. It was recommended 

that alternative hypotheses be explored further for the 2009 assessment. This scenario should take 

account of the comprehensive review of the LF data proposed for the assessment, including 

downweighting of domestic longline data, stratifying by spatial distribution and vessel characteristics, 

etc. The conflict between the CPUE and length frequency data has been a fundamental source of 

uncertainty in previous albacore assessments. Therefore, the outcomes of the review may be an 

informative basis for specifying appropriate relative weight for length frequency data. 

vi) Effort creep 

Similar to point v), it was not clear from the analysis whether the scenario values sufficiently explored 

the full structural uncertainty caused by this assumption. It substantially affected model uncertainty, but 

there is little information on which to base an assumed rate of 0.05% per annum. It is recommended 
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that trends in catch per unit effort data be examined for indicators of increased catchability, and rates 

that are suitable and consistent with those tested in other assessments be specified. In addition, there is 

the unanswered question whether an assumed increase in catchability is suitable for all the fisheries 

having fixed catchability. 

vii) Natural mortality 

This scenario produced a minimal effect on model uncertainty, which prompted the question whether 

the assumed values (0.4 and 0.45) sufficiently explored the structural uncertainty. It was recommended 

that a wider range be explored for the 2009 assessment. 
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Tables and Figures 
 

Table 1: Summary of the scenario options considered in the albacore structural sensitivity analyses. 

Assumptions Hypothesis 1 Hypothesis 2 

S - Recruitment steepness 0.7 0.9 

G – Growth curve Fixed K – Australian curve  Estimated 

C – Effort creep No creep 0.5% per year 

M – Natural mortality 0.4 0.45 

X – Time split (time-variant selectivity) No split Split selected fisheries 

L – Length frequency relative weighting Down-weight by 20 Down-weight by 40 

V – von Bertalanffy offsets (juvenile growth) No offsets estimated Offsets estimated (1 to 3 years) 

P – Length-based Selectivity Age-based selectivity Length-based selectivity 

 

Table 2: Individual runs with number of parameters, gradient, objective functions, and offsets of the 

objective function and number of parameters from the base model. 

Run Npars gradient objective fn delta Obj 

Base 5255 1.9866 -346426 0.0 

Steepness = 0.90 5255 0.7662 -346424 2.2 

Growth estimated 5256 1.5928 -346470 -44.0 

Effort creep 5255 3.1261 -346422 4.4 

Natural mortality 5255 1.7757 -346451 -24.8 

Time split 5881 4.7539 -347089 -663.0 

LF relative weighting 5255 2.1836 -298606 47819.5 

vonB. offsets 5258 0.8242 -346493 -67.1 

Length-based Selectivity 5255 1.8666 -346631 -205.0 
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Table 3: Estimates of management quantities for the single option runs (Hypothesis 2) versus the SSA base model (Hypothesis 1).  

Management 
quantity 

Units Base Steepness = 
0.90 

Growth 
estimated 

Effort creep Natural 
mortality 

Time split LF relative 
weighting 

vonB. offsets Length-based 
Selectivity 

currentFY
~

 mt per year 77610 80620 78900 85440 78460 32670 72850 80020 78820 

MSY mt per year 127500 169400 127300 153300 134000 32810 107000 132900 156400 

0

~
B  mt 1907000 1901000 1858000 2304000 1988000 475800 1644000 1953000 2259000 

currentFB
~

 mt 1558000 1612000 1501000 1926000 1664000 241500 1305000 1594000 1898000 

MSYB
~

 mt 994300 929800 955800 1202000 1072000 256300 875900 1021000 1137000 

0

~
BS  mt 627600 625600 603100 751600 573000 159500 501500 661500 814300 

currentFBS
~

 mt 425500 440000 400100 532800 390500 39830 310700 448900 595200 

MSYBS
~

 mt 173200 107800 164000 206600 151800 44670 133900 182300 221700 

currentB  mt 1073600 1070166.7 1054736.7 1211533.3 1121166.7 368786.7 1028023.3 1111100 1375666.7 

latestB  mt 1058900 1067600 1030900 1192000 1128400 323710 1155800 1130100 1414000 

currentSB  mt 331793.3 330026.7 303510 376556.7 302883.3 78117 250700 337680 408810 

latestSB  mt 334990 332970 316850 381790 306110 72004 268050 348570 469600 

0, FcurrentB  mt 1258133.3 1254700 1239366.7 1395900 1286000 564333.3 1212566.7 1299266.7 1566566.7 

0, FcurrentSB  mt 449053.3 447333.3 417883.3 492826.7 409463.3 210950 366833.3 459620 530120 

0, FlatestB  mt 1243500 1252200 1215900 1376600 1291500 519350 1339800 1318600 1606900 

0, FlatestSB  mt 462430 460360 441660 508040 421300 215910 392600 481550 602030 
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Management quantity Units Base Steepness = 
0.90 

Growth 
estimated 

Effort creep Natural 
mortality 

Time split LF relative 
weighting 

vonB. offsets Length-based 
Selectivity 

0

~
BBcurrent   0.56 0.56 0.57 0.53 0.56 0.78 0.63 0.57 0.61 

currentFcurrent BB
~

  0.69 0.66 0.70 0.63 0.67 1.53 0.79 0.70 0.72 

MSYcurrent BB
~

  1.08 1.15 1.10 1.01 1.05 1.44 1.17 1.09 1.21 

0, Fcurrentcurrent BB   0.85 0.85 0.85 0.87 0.87 0.65 0.85 0.86 0.88 

0, Flatestlatest BB
 

 0.85 0.85 0.85 0.87 0.87 0.62 0.86 0.86 0.88 

0, Fcurrentcurrent SBSB   0.74 0.74 0.73 0.76 0.74 0.37 0.68 0.73 0.77 

0, Flatestlatest SBSB
 

 0.72 0.72 0.72 0.75 0.73 0.33 0.68 0.72 0.78 

0

~
BSSBcurrent  

 0.53 0.53 0.50 0.50 0.53 0.49 0.50 0.51 0.50 

0

~
BSSBlatest  

 0.53 0.53 0.53 0.51 0.53 0.45 0.53 0.53 0.58 

currentFcurrent BSSB
~

 
 0.78 0.75 0.76 0.71 0.78 1.96 0.81 0.75 0.69 

MSYcurrent BSSB
~

  1.92 3.06 1.85 1.82 2.00 1.75 1.87 1.85 1.84 

MSYlatest BSSB
~

  1.93 3.09 1.93 1.85 2.02 1.61 2.00 1.91 2.12 

0

~~
BB

currentF   0.82 0.85 0.81 0.84 0.84 0.51 0.79 0.82 0.84 

0

~~
BSBS

currentF  
 0.68 0.70 0.66 0.71 0.68 0.25 0.62 0.68 0.73 

0

~~
BBMSY   0.52 0.49 0.51 0.52 0.54 0.54 0.53 0.52 0.50 

0

~~
BSBS MSY   0.28 0.17 0.27 0.27 0.26 0.28 0.27 0.28 0.27 

MSYF
~

  0.13 0.18 0.13 0.13 0.13 0.13 0.12 0.13 0.14 

MSYcurrent FF
~

  0.24 0.13 0.27 0.21 0.22 1.13 0.30 0.25 0.22 
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MSYF BB
current

~~
  1.57 1.73 1.57 1.60 1.55 0.94 1.49 1.56 1.67 

MSYF BSBS
current

~~
  2.46 4.08 2.44 2.58 2.57 0.89 2.32 2.46 2.68 

MSYY
currentF

~
  0.61 0.48 0.62 0.56 0.59 1.00 0.68 0.60 0.50 

 



16 
 

 

 

 

 

 

 

Figure 1a: Spawner recruitment curves for the two values of steepness included in the structural 

sensitivity analysis. The current levels of spawner depletion for each case are indicated with the vertical 

lines.  

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

Biomass

R
e

c
ru

it
m

e
n

t

h = 0.7

h = 0.9



17 
 

 

 

Figure 1b: Growth curves included in the structural sensitivity analysis.  
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Figure 1c: Natural mortality at age curves included in the structural sensitivity analysis.  
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Figure 2: Alternative albacore growth curves estimated from models for which either age- or length-

based fishery selectivities were estimated, showing higher variability in mean length-at-age for a model 

with length-based selectivity. In both models the von Bertalanffy growth parameter k was fixed. Total 

likelihood was -346,425.8 and -346,630.8 for the model fit with either age- or length-based fishery 

selectivity estimated, respectively. 
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Figure 3: BMSY versus MSY and B/BMSY versus F/FMSY for each single-change scenario. 
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Figure 4: Distribution of SBCURR / SBMSY from 256 runs, grouped by factor. When the notches in the 

sides of the boxes within a pair do not overlap, this is strong evidence that the two medians differ. The 

box encloses the upper and lower quartiles, divided by the median, and whiskers extend to either the 

extreme values or 1.5 times the inter-quartile range from the box, whichever is smaller.  
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Figure 5: Distribution of BCURR / BMSY from 256 runs, grouped by factor.   
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Figure 6: Distribution of FCURR / FMSY from 256 runs, grouped by factor.   
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Figure 7: A complete range of management quantities estimated over the complete uncertainty grid of 

256 models. 
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Figure 8: SBCURR / SBMSY versus FCURR / FMSY from 256 runs, grouped by factor. 
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Figure 9: BCURR / BMSY versus FCURR / FMSY from 256 runs, grouped by factor. 

 


