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Executive Summary 

This study used tuna longline logbook data to look for higher catch rates of tuna species close to 

seamounts, to identify those seamounts with significantly higher catches, and to quantify the seamount 

contribution to Pacific Ocean tuna catch. We found that a significant number of seamounts throughout 

the Pacific Ocean are targeted by tuna longline fleets. Adopting some conservative assumptions, this 

study concluded that at least 5-10% of the seamounts in the Pacific show significantly higher CPUE 

values for at least one tuna species and that seamounts may be responsible for an annual longline catch 

of as much as 25 thousand tons for three species combined. This study identified at least 43-69 

seamounts that exhibit increased yellowfin fishing yields in the Pacific, 30-61 that increased bigeye 

catches and 27-69 that increased albacore catches. Seamounts enhancing tuna yields were found 

throughout the study area with a great proportion lying within national EEZs. This study did not show 

clear temporal changes on the seamount potential to enhance fisheries yields over the period from 1965 

to 2007. Furthermore, our analyses showed increased proportions of the longline catch being taken 

from seamounts in recent years. Seamount aggregations, areas as well as any other aggregation points 

such as FADs, atolls or islands, may lead to hyperstability of catch rates caused by tuna shoaling 

behavior and range contraction during stock declines and should be carefully accounted for in any 

analysis of spatial catch rate data. 

 

Introduction 

Tuna is one of the most important world marine fish resources accounting for nearly 10% of the global 

marine fisheries catches by landed weight (FAO, 2009) and 20-30% by landed value (Sumaila et al., 

2007). The largest tuna fisheries target skipjack (Katsuwonus pelamis), yellowfin (Thunnus albacares), 

bigeye (Thunnus obesus) and albacore (Thunnus alalunga) and account for about 70% of the global tuna 

catch (Lawson, 2008; FAO, 2009). The Western and Central Pacific Ocean (WCPO; area managed by the 

Western and Central Pacific Fisheries Commission, WCPFC) is by far the most important tuna fishing 

ground, contributing about 50% (2.4 million tonnes in 2007) of the global tuna catches (Lawson, 2008) 

using predominately purse seine, longline and pole-and-line gears.  

 

Over the last decade there has been considerable debate on the sustainability of these fisheries and the 

ecosystem upon which they are dependent. Seamounts have been hypothesized as important 

aggregating locations for tunas and other pelagic species (Holland and Grubbs, 2007; Litvinov, 2007; 

Morato et al., 2008) and proposed as potential locations for special conservation measure to help 

protect these fisheries from potential over-exploitation. In the WCPO, the status of the tuna stocks 

varies amongst species. Current stock assessments indicate that overfishing is occurring on the bigeye 

stock and that the adult component of the stock may be overfished (Langley et al., 2008). Yellowfin tuna 

is fully exploited with significant probability of overfishing (Langley et al., 2007). On the other hand, 

overfishing is not occurring on skipjack and some increases in catch may be sustainable (Langley and 

Hampton, 2008). Current stock assessments also indicate that the albacore stock is not overfished but 

there are significant uncertainties in the assessment (Hoyle et al., 2008). Major management concerns in 

the region include a general increase in effective fishing effort, the impact of purse seining on juvenile 

bigeye and yellowfin, longline catches of adult bigeye, and increasing illegal, unregulated and 

unreported (IUU) fishing by vessels of both members and non-members of the WCPFC (FAO, 2009). 

 

Seamounts are important topographic features of the ocean bottom and their influence on local 

abundances of many commercial demersal species is well documented (Clark et al., 2007; Marques-da-

Silva and Pinho, 2007; Watson et al., 2007). Their importance for pelagic fish has been only 

demonstrated for a small part of the northeast Atlantic, in the Azores EEZ (Morato et al., 2008) and the 
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contribution of seamounts to global fisheries catch is still poorly estimated. Watson et al. (2007) tried to 

assess the global seamount catch by allocating catch statistics to spatial cells and by intersecting this 

modeled distribution with a map of known seamounts. With this method, they estimated that about 

10% of yellowfin tuna catch, 4% of bigeye, albacore and skipjack were caught in the vicinity of 

seamounts. This method, however, is highly dependent on the catch allocation algorithm at a too large 

spatial scale to capture seamounts association, and the habitat affinity index which is to some extent 

subjective. 

 

In the Pacific Ocean region, tuna fish or fishing has been reported in association with seamounts but no 

analyses of tuna fishing around these features have been performed at an ocean basin scale. 

Associations with seamounts have been observed for bigeye tuna, yellowfin tuna and albacore (Yasui, 

1986; Anon., 1994, Holland et al., 1999; Itano and Holland, 2000; Sibert et al., 2000, 2003; Klimley et al., 

2003; 2005; Musyl, et al. 2003; Beverly et al., 2004) in the region, but only from four specific seamounts: 

Cross, Capricorn, Emperor and Espíritu Santo seamounts. The Emperor Seamount chain (Hawaii), for 

example, has a long history of tuna fishing around its features. The Japanese fleet has been longlining 

for albacore since 1938 and fishing with pole-and-line since 1973 (Yasui, 1986). Pole-and-line catches in 

this seamount chain represented 5 to 25% of the total albacore landings by Japanese vessels. Cross 

seamount, also in Hawaii waters, is another well known seamount in the Pacific that has become a 

handline and deep longline fishing ground for bigeye and yellowfin tuna in the 1990’s (Beverly et al., 

2004; Itano and Holland, 2000). The handline fishery on the Cross Seamount was based on high catch 

rates of juvenile fish. In the western and central Pacific Ocean there are fewer reported examples of 

tuna fishing around seamounts. The exception is the longline fishing experiments in Tongan waters 

where catch rates were found to be much higher close to Capricorn seamount when compared to the 

open ocean (Anon., 1994). During these experiments catch rates on Capricorn were 12.7 tuna per 

hundred hooks (mainly bigeye and yellowfin) while open ocean sets averaged 1.9 tuna per hundred 

hooks (mainly albacore). 

 

To examine the hypotheses that oceanic pelagic species are associated with seamounts we use a 

spatially explicit 47 year time-series of longline catch data, and a recently validated and spatially explicit 

seamount occurrence dataset for the Pacific Ocean to 1) look for higher catches of tuna species close to 

seamounts, 2) identify seamounts with significantly higher catches close to their summits relevant to 

identify hotspots for fishing industry, and 3) quantify the seamount contribution to Pacific Ocean tuna 

catches overtime. 

 

Material and Methods 

Seamounts in the Pacific. The numbers and locations of Pacific seamounts have been determined by 

several authors but the dataset by Kitchingman and Lai (2004) and Kitchingman et al. (2007) is one of 

the most complete and this dataset has been validated for part of the Pacific Ocean by Allain et al. 

(2008) by cross checking its seamount positions with other datasets available for the Pacific region. This 

process was able to remove atolls and islands that had been incorrectly classified as seamounts. It also 

added seamounts that were not detected by Kitchingman and Lai (2004) algorithm but were detected in 

other datasets (e.g. Seamount Catalog http://earthref.org/SBN, GEBCO http://www.gebco.net, Volcano 

NGDC http://www.volcano.si.edu, or NGA underwater features http://earth-info.nga.mil). The final 

datasets produced a list of 4021 underwater features in a defined area of the Western and Central 

Pacific Ocean.  

 

In this work we used an extension of the Allain et al. (2008) seamount dataset so it covers a larger area 

of the Pacific Ocean (50°N-50°S and 105°E-95°W). This included all validated seamounts in Allain et al. 
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(2008) plus all validated seamounts in the same database (SPC database) that lie outside of Allain study 

area (n= 6022), plus those from Kitchingman and Lai (2004) that lie in the area missing from the previous 

datasets (n= 1908), minus those seamounts lying in the Indian Ocean. The final seamount list used in this 

study includes 7741 of these features (Figure 1) 

 

Tuna fisheries longline catch data. The Secretariat of the Pacific Community (SPC) maintains a Catch 

and Effort database (CES) on industrial tuna fisheries in the WCPO. This database has been extensively 

used for research and monitoring purposes such as assessing the state of exploitation of the tuna stocks. 

CES contains data from daily catch and effort logsheets provided by over 20 member countries. It has 

information on vessel trip, date, GPS position of the fishing operation, the effort and configuration of the 

gear expended in that fishing operation and the catch for each species taken (see details in Williams, 

2001). CES currently has over 2.5 million records from 1960 onwards covering longline, purse seine, pole 

and line and troll fishing gears. The quality of logsheet data increased substantially in recent years 

(Lawson et al., 2002). Problems have existed in the past with the reporting of catches on logsheets for 

certain fleets. However, the reporting in recent years appears to have little biased (Lawson et al., 2002). 

 

All longline sets from the period 1960-2007 and for the area 50°N-50°S and 105°E-95°W were extracted 

from the SPC’s catch and effort system. The final dataset contained 1.8 million sets (Figure 2). Catch by 

species was returned as numbers, estimated weight, and discarded fish. Date and geographic location of 

the set, numbers of hooks, flag and fleet of the fishing boat were also extracted. Studying catch data in 

relation to seamount positions presents two major challenges. The first is common to any large scale 

study on seamount and lies in deciding what seamounts are and where they are located. The second lies 

in the quality of the fisheries data for the specific purpose of quantifying seamount-associated catches. 

For example, the position of a longline set represents only a rough approximation of where the gear is 

actually fishing since one set can be more than 100km long and the logsheet will contain only one 

lat/long position. 

 

Distance of longline sets to closest seamount. The distance (d) of each longline set to the closest 

seamount was estimated using the simple spherical law of cosines: 

� � acos�sin
���� · sin
���� � cos
���� · cos
���� · cos
����� � ������� · �.  

Only sets that were located within 100km from any seamount summit were selected, i.e. 1.051.463 sets 

or rows. This selection was done to reduce the number of rows for computing proposes and because we 

were interested in looking at data points close to seamount summits. Those longline sets farther than 

100km are unlikely to be under the influence of the seamount itself (Morato et al., 2008). From the 7741 

seamounts in the dataset only 4465 had longline sets within 100 km from their summits. 

 

Standardization of longline logsheet data. Fisheries catch data are usually influenced by many factors in 

addition to fish abundance, including fishing fleet, fishing location, year, season, moon phase, and many 

environmental conditions. Consequently, catch data are usually standardized to remove the impact of 

such factors. Generalized linear models (GLM) are the most common method for standardizing catch 

and effort data (Maunder and Punt, 2004) and assume that the expected value of a response variable is 

related to a linear combination of explanatory variables (Guisan et al., 2002). In the present study we 

used GLM techniques to standardize yellowfin, bigeye and albacore catch data for longline sets 
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performed within 100km from any seamount summit (n=1.051.463). Longline sets were allocated to 7 

seven areas to allow computing. 

 

The natural logarithm of the catch in numbers +1 was used as the response variable. After trying 

different sets of explanatory variables, it was decided to use year, moon phase, month (as a proxy for 

annual variability), geographical areas (lat5 + long5), and vessel type (described by flag and fleet) as 

categorical variables and number of hooks as a continuous variable. A Gaussian family of error 

distributions with identity link function was used and the common analysis of variance (ANOVA) for 

generalized linear model fits and drop tests were performed. The drop test computes the single 

explanatory variables that can be maintained or dropped from the model: 
 Ln
����� � 1� ~ !"�� � #��� $��%" � ��5 � ����5 � '���'�"" � "''�� 

Years included in the standardization were 1960 to 2008, but the latest being incomplete. Moon phase 

was divided in 8 categories from New to Full. To calculate the moon phase for each longline set, the 

reference New Moon date was assumed as 18/01/1950 at 7:00 a.m. and the moon period assumed as 

29.52. The geographical areas used in the standardization were squares of 5 degrees latitude and 

longitude3. Vessels were categorized based on their flag and fleet type but a combination of the two was 

used. Effort was measured as the number of hooks in each longline set. 

 

Analyses of the GLMs residuals. In order to identify seamounts with significantly higher catches close to 

their summits the residuals of the GLMs were analyzed against the distance of each longline set to the 

nearest seamount. Linear and quadratic models were then fitted for each tuna species to the whole data 

and to each seamount. Seamounts showing significant regressions and a negative slope were selected. 

Additionally, residuals from the average catch in number were estimated for each distance interval 0-

100, bin size 10, for each seamount. Negative linear or logarithmic models were fitted to each of the 

4465 seamounts and for each species separately. A short Visual basic for Applications (VBA) code was 

developed to perform the analyses. Furthermore, one-way analyses of variance (ANOVA) were 

performed to test for significant differences between mean Catch residuals at different distances from 

each individual seamount. When significant F-test values from the ANOVA were found, the Dunnett’s 

post hoc multiple comparison test was used to determine what distance bin mean catch residuals were 

significantly higher than the overall mean catch residuals, the control mean (Morato et al., 2008). 

 

A set of criteria was defined to select seamounts showing significant higher catches close to their 

summits (Table 1). Seamounts were considered to have a significant impact on tuna catch if (1) had 

more than 100 longline sets in their vicinity (n≥ 100); (2) longline sets in at least 6 out of the 10 distance 

bins (blanks<5); (3) if showed a significant linear or quadratic regression (p<0.05) with a negative slope 

(b<0) on the residuals of the catch in number (distance to seamount vs residuals of Catch in numbers); 

(4) if showed a significant linear or logarithmic regression (p<0.05) with a negative slope (b<0) on mean 

residuals at different distances bins (10 km distance bin vs Mean residuals of Catch in numbers); (5) if 

showed significant differences between mean catch value at different distances (p<0.05) and (6) showed 

1, 2 or 3 significant (Dunnett Q test) higher residuals close to the seamount (<40km) than the overall 

mean (Q10, Q20, Q30 and Q40 >q’). 

 

                                                 
2
 Moon period= 29.53058867. The Excel formula is =INDEX($D$2:$D$9,MOD(ROUND(MOD($A5-$B$2,$B$1)/$B$1*8,0),8)+1) 

where D2:D9= Moon phases, A5= Date with unknown moon phase, B1= Moon Period, and B2= reference New Moon date 
3
 The Excel formula is =ROUNDUP(I2/5,0)*5 
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Overtime trends in seamounts effect. In order to investigate changes over time in the seamount effect 

on tuna catches, we estimated the average slope and intercepts of the regressions (residuals of the 

GLMs against the distance of each longline set to the nearest seamount) for each year for the period 

1965 to 2007. In these analyses we used only those longline sets that were performed around significant 

seamounts, as detected by the methods described above. With this, we expected to investigate changes 

in the slopes and intercepts of the regressions over time. Steeper negative slopes and higher intercepts 

will indicate stronger effects of seamounts while positive or close to zero slopes and negative intercepts 

will indicate that seamounts are no longer enhancing tuna catches. 

 

Quantifying tuna seamounts catch. After selecting seamounts that significant increased the longline 

catch as described above we quantified the proportion of the standardized longline catch that was 

fished within 100km to their summits. These proportions were then extrapolated to the entire WCPO 

area to estimate the total longline catch of tuna species around WCPO seamounts. 

 

Results 

Exploration of CES database. The SPC’s catch and effort database contained 1.8 million sets mostly 

concentrated in the area 10°N-10°S and 140°E-160°W (Figure 2). Areas with high levels of fishing effort 

were the SE coast of Australia, Fiji, Federal States of Micronesia, and Solomon Islands. The average 

fishing effort, as the mean number of hooks in each longline, also varies spatially. This indicates different 

gear configurations used in different areas with common patterns being a higher number of hooks per 

longline at higher latitudes and smaller gears in equatorial region. In the WCPO, the spatial distribution 

of catch per unit of effort varies amongst species. Yellowfin tuna mean CPUE during 1960−2007 were 

higher in the western region of the Pacific Ocean. Bigeye tuna CPUE’s peaked in equatorial regions while 

albacore peaked at higher latitudes. These patterns clearly match the natural distribution of these 

species in the Western Pacific region (Langley et al., 2007, 2008; Hoyle et al., 2008). 

 

Standardization of longline logsheet data. Pseudo-R2 values for most GLM were approximately 0.40. 

For yellowfin, pseudo-R2 values ranged from 0.35 to 0.52, while for albacore ranged from 0.26 to 0.84 

and for bigeye 0.31 to 0.53. These values were in the range of GLM models fits for standardization of 

tuna catch data (Su et al., 2008). All explanatory variables were highly significant for all species with the 

exception of “Moon” for albacore in area 7. The residuals were used as a measure of the difference 

between the observed sample and the fitted GLM. This measure allows quantifying the catches that 

were higher than predicted by the regression models. Thus, positive residuals identify those catches 

greater than predicted by the GLM and negative residual values those catches smaller than predicted. 

Most of the residuals were close to zero meaning small or no difference between the predicted and the 

observed catches (Figure 3).  

 

Analyses of the residuals. The analyses of the residuals for the whole dataset revealed different 

patterns between species. If considering all seamounts and catch data, yellowfin tuna showed somehow 

higher catches close to seamounts as revealed by significant (ANOVA with Dunnett test) higher residuals 

for the 10 and 20 distance bin intervals (Figure 4). For bigeye tuna, the patterns were not clear while for 

albacore significant higher residuals were found away (≥ 70 km) from seamounts (Figure 4). 

 

All 4465 seamounts considered in this study were screened for higher catches of tuna close to their 

summits, using multiple methods. Only 1780 had one hundred or more longline sets in their vicinity and 

2760 had longline sets in at least 6 out of the 10 distance bins. Applying the two first criteria reduced the 

number of seamounts to 1663.  
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The number of seamounts showing significant higher catches of tuna in their vicinities varies between 

the methods used (Table 2) with more restrictive methods selecting fewer seamounts. The number of 

seamounts that were selected by at least one method and for at least one species was 640 (38%) of the 

seamounts with sufficient data to be screened, with 533 being located inside EEZs. From these, 310 

seamounts were significant for yellowfin, 246 for bigeye and 219 for albacore. 

 

Considering just the regression models on residuals of the catch data or regression models on 

aggregated residuals at 10km distance bins, the number of seamounts with higher catches were 459 and 

467, representing 27.6% and 28.1% of the seamounts with sufficient data to be screened. The number of 

significant seamounts was higher for yellowfin tuna with 209 (12.6%) or 239 (14.4%) seamounts, 

followed by bigeye with 164 (9.9%) and 167 (10.0%) and albacore with 161 (9.7%) and 143 (8.6%) 

significant seamounts. 

 

When considering the one-way analyses of variance with the Dunnett’s post hoc multiple comparison 

test, the number of significant seamounts were much smaller. It ranged from 99 (6.0%) if accepting only 

one significant mean in the first four to 13 (0.8%) if accepting three out of four significant means. Note 

that this selection method also required significant regression models on aggregated residuals at 10km 

distance bins with negative slopes. With this method, the number of significant seamounts was smaller 

but also higher for yellowfin tuna (50 to 8), followed by bigeye (17 to 6) and albacore (28 to 3). If 

combining regression models on residuals with ANOVA and Dunnett’s test, the numbers of significant 

seamounts is similar to the ones mentioned above. It ranged from 176 to 16 for all tuna species, 69 to 

16 for yellowfin tuna, 61 to 6 for bigeye and 69 to 4 for albacore. 

 

The number of seamounts that satisfy all criteria defined for all methods varied from 89 (5.4%) to 11 

(0.7%) if considering all tuna species, 43 (2.6%) to 7 (0.4%) for yellowfin, 30 (1.8%) to 3 (0.2%) for bigeye 

and 27 (1.6%) to 2 (0.1%) for albacore. 

 

Seamounts with significantly higher tuna catches were found throughout the study area (Figure 5) with 

similar spatial patterns for all three tuna species: yellowfin, bigeye, and albacore. The only exception 

was the area north of 10°N where only two seamounts were selected. The proportion of significant 

seamounts located within EEZs was larger than 85% for most of the methods with only about 15% or 

less lying in the high seas (Table 2). Many seamounts were selected around French Polynesia, Fiji, 

Federal States of Micronesia, Kiribati, or Solomon islands but almost every EEZ had significant 

seamounts (Table 3). 

 

Overtime trends in seamounts effect. Our analyses of the temporal changes in the average slopes and 

intercepts of the regressions did not show any clear pattern (Figure 6). On the contrary, no evidences of 

significant changes in the seamount effects in enhancing fisheries yields were revealed. For all species, 

the slopes of the regressions were always negative, indicating higher catches close to seamounts 

summits, and the intercepts were always positive indicating that catches around summits were always 

higher than predicted by our GLM models (Figure 6). In any case, some patterns can be described, such 

as weakening of seamount effects with time for yellowfin (smaller slopes in absolute terms and smaller 

intercepts), enhancement for bigeye (greater slopes in absolute terms and greater intercepts), and an 

irregular pattern for albacore. 

 

Quantifying tuna longline catch around seamounts. Our methodology has identified that a significant 

proportion of tuna longline catch is associated with seamounts with these proportions varying over time 

(Figure 7a). For yellowfin tuna, the proportion of the catch for the total period apportioned to 
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seamounts varied from 10.1% when considering all selected seamounts, to 6.8% or 7.4% when 

considering only those seamounts selected by regression models on residuals of the catch or regression 

models on aggregated residuals at 10km distance bins. The proportions of yellowfin tuna were higher 

before 1980 where it reached the minimum of about 6%. From this year onwards, the proportions have 

increased steadily reaching a value of 14% in recent years (Figure 7a, YFT). For bigeye tuna, the 

proportion of the catch being allocated to seamounts was smaller but more constant over time. For the 

whole period, the proportion of bigeye catch allocated to seamounts varied from 9.3% for all significant 

seamounts to 6.6% or 5.9% when considering the other two main methodologies (Figure 7a, BET). These 

proportions did not change much from 1965 to 2007. The contrary was observed for albacore, with 

higher proportions of the catch coming from seamounts in recent years (Figure 7a, ALB). When 

considering the whole period, the proportions of albacore were very similar to bigeye varying from 9.2% 

for all significant seamounts to 6.9% or 5.9% when considering only those seamounts selected by 

regression models on residuals of the catch or regression models on aggregated residuals. 

 

From the proportion of the tuna longline catch apportioned to seamounts (Figure 7a), it was possible to 

estimate annual landings for different species (Figure 7b). Longline fishing around seamounts may be 

responsible in recent years for about 8000 tons of yellowfin, 6000 tons of bigeye and 10000 tons of 

albacore. The catches around seamounts have increased over time for bigeye and albacore but have 

been fairly stable for yellowfin (Figure 7b). Generally, seamounts in the western central Pacific region 

may be responsible for an annual catch by longline of as much as 25 thousand tons (Figure 8). 

 

Seamounts showing higher catches for the whole period (1965-2007) were located around the 10°S 

parallel with Phoenix Islands (Kiribati) and Tuvalu having some important seamounts. For bigeye tuna, 

seamounts with large catches were identified throughout the region with Line Islands (Kiribati), Federal 

States of Micronesia (FSM) and French Polynesia (FP) having some of the most productive seamounts. 

For albacore, the most productive seamounts were located south of the parallel 10°S with Fiji, American 

Samoa and Cook Islands having some important seamounts. These patterns, however, varied with time 

with individual seamounts showing different catches between decades. Yellowfin tuna showed higher 

catches during the 1970’s from Tuvalu, Phoenix and Line Islands (Kiribati) seamounts, whereas in the 

1980’s and 1990’s the most important seamounts were from FSM and Papua New Guinea and in 2000’s 

from Vanuatu and Fiji. Bigeye seamount catch did not varied significantly between decades and the 

most productive seamounts were located in FSM, FP and Line Islands. For albacore, seamount tuna 

catches have increased steadily in the last decades with important seamounts changing over time. In the 

1970’s the most productive seamounts were located in the high seas south of Cook Islands and in the 

Cook Islands, whereas in the 1980’s and 1990’s were mostly in Australia and New Zealand, and in 2000’s 

mostly in Fiji, American Samoa, Cook Islands and Solomon Islands. 

 

 

Discussion 

Our analyses suggest that a significant number of seamounts throughout the Pacific Ocean are being 

targeted by the tuna longline fleets. The numbers of seamounts that appear to have significantly 

increased catch-per-unit-of-effort, however, varied substantially between methods mostly because 

more statistically restrictive methods selects fewer seamounts. Adopting somewhat conservative 

figures, this study concluded that at least 5.3-10% of the seamounts in the Pacific show significant 

higher CPUE values for at least one tuna species. These estimates are extremely high considering that 

many seamounts in the region are very deep (Alain et al., 2008) and thus not likely to have an impact on 

aggregating pelagic visitors (Morato et al., 2008), and that many seamounts were not included in the 

study due to insufficient fisheries logbook data. It should also be noted that the complexity of the 



8 

 

western Pacific Ocean basin with many islands, atolls and ridges, and the existence of numerous fishing 

aggregating devices (FAD) in the region (OFP/SPC, confidential data) may also detract tuna from 

gathering around some specific seamounts. 

 

Our study estimated that seamounts in the western central Pacific region may be responsible for an 

annual longline catch of as much as 25 thousand tons. The proportion of the catch apportioned to 

seamounts varied from 6.8% to 10.1% for yellowfin, and 5.9% to 9.3% for bigeye and albacore. These 

proportions were very similar to those estimated by Watson et al. (2007). When extrapolating these 

values for the whole longline fisheries in the Pacific, we ended up with tonnages estimates of 8000 tons 

for yellowfin, 6000 tons for bigeye and about 10000 tons for albacore for recent years. It should be 

noted that the estimates are very dependent on the method used to select seamounts and also very 

dependent on the area considered to be under the influence of each seamount. The results presented 

however are conservative as we only considered those seamounts that showed a significant effect in 

increasing fishing yields. 

 

Aggregations of yellowfin, bigeye and albacore in the Pacific have been directly observed for only a few 

seamounts such as the Hawaiian Cross (Holland et al., 1999; Itano and Holland, 2000; Sibert et al., 2000; 

Beverly et al., 2004; Musyl et al., 2003) and Emperor seamounts (Yasui, 1986), the Espíritu Santo 

seamount in Baja California, Mexico (Klimley et al., 2003), and the Capricorn seamount in Tonga (Anon., 

1994). In contrast, our study identified many seamounts throughout the western Pacific Ocean that may 

act as important aggregating points for tuna species. It should be noted that this study covered only 

1663 of the 7741 seamounts that have been mapped in the region (Allain et al., 2008; Kitchingman and 

Lai, 2004; Kitchingman et al., 2007), and consequently it is likely that these numbers may be 

underestimated. 

 

Information on the physical characteristics of most seamounts, such as depth of the summit, elevation 

and slope are unknown or not accurately measured preventing any detailed analyses on the parameters 

that may be driving tuna aggregations. The rough estimates of seamount depths in the database used in 

this study show, however, significant seamounts with summits ranging from a few meters down to over 

4000m depth. Nevertheless, it is believed that shallow seamounts with summits below 1000m will 

potentially have a higher effect on aggregating most tuna species (Morato et al., 2008), which is in 

agreement with the most common vertical movement patterns of these species (Musyl, 2003; Dagorn et 

al., 2006; Schaefer et al., 2007; Arrizabalaga et al., 2008; Weng et al., 2009). Albacore is believed to 

utilize intermediate depths spending most of their time between 150 and 250 m (Domokos et al., 2007). 

 

This study also demonstrated that seamounts enhancing tuna yields were found throughout the study 

area with a great proportion lying within national EEZs. This aspect may have significant impact in terms 

of management since it is easier to implement effective fishing regulations on seamounts within 

national boundaries (Probert et al., 2007; Santos et al., in press). Only about 15% of the seamounts with 

higher catch were located in the high seas; with the pocket between Solomon Islands and Tuvalu having 

a few significant seamounts for yellowfin and bigeye tuna and the high seas area south of Cook Islands 

having significant seamounts for albacore. A more detailed analyses is required to fully evaluate the 

importance of these high seas areas for the conservation of tuna resources. 

 

This study did not show clear temporal changes on the seamount potential to enhance fisheries yields 

over the period from 1965 to 2007. The patterns revealed by analyzing the average slopes and 

intercepts of the regressions may indicate that even in situations of overfishing, such as the present 

situation of bigeye and yellowfin (Langley et al., 2007; 2008), seamounts will still increase tuna fisheries 
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yields. Furthermore, our analyses showed increased proportions of the longline catch being taken from 

seamounts. These aggregations, areas as well as any other aggregation points such as FADs, atolls or 

islands, may lead to hyperstability of catch rates caused by shoaling behavior and range contraction 

during stock declines (Hilborn & Walters, 1992; Pitcher 1995, Mackinson et al., 1997) and should be 

carefully accounted, in the analysis of spatial catch rate data (Walters, 2003). 
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Tables 

 
Table 1 – Set of analyses and criteria used to select seamounts with higher tuna catches close to their summits 

# Type Analyses Condition 

1 Data Longline sets close to each seamount >=100 

2 Data Longline sets in a range of 10km distance bins blanks<5 

3 Regression Simple linear and quadratic models on the residuals of the catch in numbers p<0.05 and b<0 

4 Regression Simple linear and logarithmic models on mean residuals at 10km distance bins p<0.05 and b<0 

5 ANOVA ANOVA on mean residuals at 10 km distance bins p<0.05 

6 ANOVA Dunnett’s post hoc multiple comparison to determine distance bins with 

significantly higher residuals 

Qn>q’ 

 

 
Table 2 - Number of selected seamounts using different selection criteria. In parenthesis are the number of 

seamounts within EEZs. 

   n of seamounts 

 Method Condition ALL YFT BET ALB 

0 Any method  640 

(533) 

310 

(259) 

246 

(201) 

219 

(189) 

1 Regression models on residuals p<0.05, b<0 459 

(395) 

209 

(180) 

164 

(137) 

161 

(140) 

2 Regression models on aggregated residuals at 10km 

distance bins 

p<0.05, b<0 467 

(406) 

239 

(200) 

167 

(137) 

143 

(123) 

3 Analyses of variance on aggregated residuals at 10km 

distance bins, Dunnett’s post hoc multiple comparison 

(with method 2) 

p<0.05,  

n(Q10-40>q’)≥1 

99 

(91) 

50 

(44) 

32 

(27) 

28 

(26) 

4 Analyses of variance on aggregated residuals at 10km 

distance bins, Dunnett’s post hoc multiple comparison 

(with method 2) 

p<0.05,  

n(Q10-40>q’)≥2 

29  

(28) 

17 

(17) 

9 

(8) 

6 

(6) 

5 Analyses of variance on aggregated residuals at 10km 

distance bins, Dunnett’s post hoc multiple comparison 

(with method 2) 

p<0.05,  

n(Q10-40>q’)≥3 

13 

(13) 

8 

(8) 

3 

(3) 

3 

(3) 

6 Method 1+ Method 3  176 

(157) 

69 

(60) 

61 

(52) 

69 

(63) 

7 Method 1+ Method 4  51 

(47) 

19 

(18) 

22 

(19) 

15 

(15) 

8 Method 1+ Method 5  16 

(16) 

7 

(7) 

6 

(6) 

4 

(4) 

9 Method 1+ Method 2  277 

(243) 

138 

(121) 

85 

(74) 

85 

(73) 

10 Method 1+ Method 2+ Method 3  89 

(82) 

43 

(38) 

30 

(25) 

27 

(25) 

11 Method 1+ Method 2+ Method 4  26 

(25) 

15 

(15) 

9 

(8) 

5 

(5) 

12 Method 1+ Method 2+ Method 5  11 

(11) 

7 

(7) 

3 

(3) 

2 

(2) 
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Table 3 - Number of selected seamounts at different Exclusive Economic Zones (EEZ) and High Seas using different 

selection criteria. Res is regression models on residuals, Reg is regression models on aggregated residuals at 10km 

distance bins, YFT is yellowfin tuna, BET is bigeye and ALB is albacore. 

EEZ All Spp  YFT  BET  ALB 

 

Any  Any Res Reg  Any Res Reg  Any Res Reg 

French Polynesia 82  50 39 37  31 23 20  20 18 12 

Fiji 47  19 13 13  19 14 12  23 20 9 

Fed. States of Micronesia 38  16 8 13  15 9 12  13 7 9 

Kiribati (Line Islands) 38  15 8 13  15 10 12  13 9 12 

Solomon Islands 34  15 9 11  9 6 6  14 11 8 

Cook Island 32  14 12 12  9 4 6  16 12 9 

Marshall Island 32  15 8 13  13 9 12  7 5 4 

Papua New Guinea 28  6 5 5  11 9 4  13 10 10 

New Zealand 26  12 7 7  12 8 5  6 4 2 

Tonga 21  16 14 14  10 7 6  4 1 4 

Vanuatu 18  11 8 7  10 8 9  3 2 3 

American Samoa 16  10 7 9  8 7 7  8 6 4 

New Caledonia 16  12 11 8  4 4 3  2 1 2 

Australia 15  4 4 3  5 5 2  9 9 7 

Kiribati (Gilbert Islands) 15  7 4 7  2 1 2  8 4 6 

Kiribati (Phoenix Islands) 15  8 6 7  5 

 

5  6 3 4 

Tokelau 15  5 1 4  6 3 6  8 6 6 

Palau 12  5 5 2  5 1 4  4 2 4 

Tuvalu 12  7 4 5  3 3 1  5 4 2 

Norfolk Island 4  2 1 2  

   

 2 2 1 

Wallis and Futuna 4  2 1 2  2 1 1  

   Samoa 4  4 2 2  3 3 1  1 1 

 Niue 3  3 2 3  2 1 1  1 

 

1 

Indonesia 2  

   

 

   

 2 1 2 

Pitcairn Islands 2  

   

 1 1 

 

 1 1 1 

USA (Jarvis ) 1  

   

 1 1 

 

 

   USA (Palmyra) 1  1 1 1  

   

 

   High Seas 107  51 29 39  45 26 30  30 22 21 

Total 640  310 209 239  246 164 167  219 161 143 

 

 

  



14 

 

Figures 

 

 

 
Figure 1 - Final list of seamounts included in the present study. It includes seamounts in the box 50N-50S; 105W-

240W (n= 7741) contained in the SPC dataset (n=6022) and the Kitchingman and Lai (2004) dataset (n= 1719). 

 

 
Figure 2 - Location of the 1.8 million longline sets recorded in the SPC's Catch and effort database (1960-2007). 
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Figure 5 - Location of seamounts with higher catches of any tuna species that were selected by different analytical 

methods. a) any methods; b)regression models on residuals; c) regression models on aggregated residuals at 10km 

distance bins; d) regression models on residuals with ANOVA and Dunnett’s test; e) regression models on 

aggregated residuals at 10km distance with ANOVA and Dunnett’s test. 
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 a 

 

 b 

 

  

  
Figure 6 – Temporal patterns on the yearly average (a) slopes and (b) intercepts of the regressions (residuals of the 

GLMs against the distance of each longline set to the nearest seamount) for the period 1965 to 2007. YFT is 

yellowfin tuna, BET is bigeye and ALB is albacore. 
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 b 

 

  

  
Figure 7 - Longline tuna catch in Western Central Pacific Ocean (WCPO) seamounts in terms of (a- left) proportion 

of the regions catch and (b- right) estimated values in thousands of metric tons (not cumulative), for three 

different significant seamount lists. YFT is yellowfin tuna, BET is bigeye and ALB is albacore. 
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Figure 8 - Cumulative longline tuna catch in Western Central Pacific Ocean (WCPO) seamounts in thousands of 

metric tons. YFT is yellowfin tuna, BET is bigeye and ALB is albacore. 
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