

Western and Central Pacific Fisheries Commission 1st Scientific Committee meeting Noumea, New Caledonia 8-19 August 2005

Ecopath model of the pelagic ecosystem of the Western and Central Pacific Ocean

CONTEXT OF THE STUDY

Ecosystem approach of fisheries management

ECOPATH DESCRIPTION AND INPUT PARAMETERS

Ecopath is a mass-balanced model

based on food-web analysis assuming steady state in the system

Mass-balance

Production = catch + predation mortality + biomass accumulation + net migration + other mortality

Conservation of matter

Consumption = production + respiration + unassimilated food

STUDY AREA

INPUT PARAMETERS

ECOSYSTEM COMPONENTS	САТСН	DIET	BIOMASS	PRODUCTION	CONSUMPTION		
SWORDFISH	SPC 2004						
OTHER BILLFISH	SPC 2004	DIET	MUI	LTIFAN-CL			
BLUE SHARK		STUDIE	S/ EST	TIMATES /			
OTHER SHARKS							
BIGEYE TUNA	SPC 2004	DIET 2005	MULTIFAN-CL 2005	MULTIFAN-CL 2005			
YELLOWFIN TUNA	SPC 2004	DIET 2005	MULTIFAN-CL 2005	MULTIFAN-CL 2005	BIOENERGETIC 2005		
SKIPJACK TUNA	SPC 2004	DIET 2005	MULTIFAN-CL 2005	MULTIFAN-CL 2005	BIOENERGETIC 2005		
PISCIVOROUS FISH							
SMALL BIGEYE TUNA	SPC 2004	DIET 2005	MULTIFAN-CL 2005	MULTIFAN-CL 2005			
SMALL YELLOWFIN TUNA	SPC 2004	DIET 2005	MULTIFAN-CL 2005	MULTIFAN-CL 2005	BIOENERGETIC 2005		
SMALL SKIPJACK TUNA	SPC 2004	DIET 2005	MULTIFAN-CL 2005	MULTIFAN-CL 2005	BIOENERGETIC 2005		
SMALL BILLFISH							
SMALL SHARKS	SPC C	CATCH					
EPIPELAGIC FORAGE	ESTIMATES		SEAPODYM 2005	SEAPODYM 2005	WIDDEL		
MIGRANT MESOPELAGIC FORAGE			SEAPODYM 2005	SEAPODYM 2005			
MESOPELAGIC FORAGE			SEAPODYM 2005	SEAPODYM 2005			
Highly migrant bathypelagic forage			SEAPODYM 2005	SEAPODYM 2005			
MIGRANT BATHYPELAGIC FORAGE			SEAPODYM 2005	SEAPODYM 2005			
BATHYPELAGIC FORAGE			SEAPODYM 2005	SEAPODYM 2005	SEAPODYM		
MESOZOOPLANKTON							
MICROZOOPLANKTON	Other data are estimated based on						
LARGE PHYTOPLANKTON	literature review of similar studies in the						
SMALL PHYTOPLANKTON	Pacific, when available						
DETDITUC							

RST RUN OF THE MODEL					
	Trophic	Biomass	Prod./ biom.	Cons./ biom.	
Group name	level	(t/km²)	(/year)	(/year)	EE
SWO	5.23	0.002	0.4	5.2	0.313
Other billfish	5.44	0.005	0.4	5.3	0.219
BSH	4.86	0.014	0.3	2.5	0.041
Other Shark	5.22	0.01	0.35	4.8	0.141
Adult BET	5.3	0.00148	1.026	14.5	0.807
Adult YFT	4.85	0.0112	1.446	16.14	0.444
Adult SKJ	5.38	0.103	2.046	33.475	0.136
Small billfish	5.16	0.011	0.9	9.3	0.124
Small Shark	5.17	0.012	0.5	5.2	0.137
Small SKJ	4.46	0.0200		69.288	51.605
Small BET	5.27		1.238		
Small YFT	4.75	0.00953	1.330	18.009	1.392
Piscivorous Fish	5.09	0.0394	1	9	0.95
Forage epipelagic	3.48	0.339	3.691	13.9	5.292
Forage migrant mesopelagic	4.12	0.443		13.9	2.772
Forage mesopelagic	4.? F	FORAGE COMPONENTS			5.976
Forage H migrant bathypelagic	4.16			13.9	3.482
Forage migrant bathypelagic	4.37	0.343	1.338	13.9	7.207
Forage bathypelagic	4.36	0.759	0.845	13.9	3.499
Mesozooplankton	2.44	4	33	110	0.311
Microzooplankton	2	1.724	100	300	0.944
Large Phytoplankton	1	1.989	134	-	0.251
Small Phytoplankton	1	11.271	94.6	-	0.485
Detritus	1	130	-	-	0.184

BALANCING THE MODEL

- Modification of parameters to try and reach the balance
- Biomass, production and consumption are less subject to variation than diet
- Modification of the diet matrix to reduce the predation on juvenile SKJ

- by modifying adult SKJ diet composition which represent a high biomass and high predation as initially 90% of its determined diet is juvenile SKJ

- and other diet modifications
- After many modifications
 - juvenile SKJ EE was reduced from 51 to 9
 - EE of the 6 forage components were also reduced
 - but piscivorous fish EE increased
- Balance could not be reached

- ECOPATH model could not be balanced and simulations to test fisheries and environment impact on the ecosystem could not be run
- More work is needed on the parameterization of the model, and the first model allowed to identify the parameters that need improvement
- Introducing variability into diet matrix and other parameters to help balance the model to include some variability into the model
- Improve data (biomass estimates) on critical components
 - forage components
 - piscivorous fish

- Ecopath is still potentially an interesting tool to try and understand how the ecosystem works
- Concerning the use of this type of models for management issue, at this stage, Ecopath with Ecosim cannot probably be considered as a management tool because of many uncertainties and approximations
- However it is a complement of single-species models as it provides information on the non-target species of the ecosystem
- Even if the results emerging from simulations can be highly speculative because of important uncertainties in the model, Ecopath and Ecosim still provide a documented valuable information on the impact on the ecosystem