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SEAPODYM: Spatial model driven by physical
and “simplified” food-web interactions
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2004-05 achievements

e Model using a new numerical scheme for
transport allowing to run the model with
non-regular grid (ME-WP 2)
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2004-05 achievements

e Model using a new numerical scheme for
transport allowing to run the model with
non-regular grid (ME-WP 2)

e Mid-trophic levels sub-model (6
components in 3 vertical layers)
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2004-05 achievements

Model using a new numerical scheme for
transport allowing to run the model with
non-regular grid (ME-WP 2)
Mid-trophic levels sub-model (6
components in 3 vertical layers)
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2004-05 achievements

Model using a new numerical scheme for
transport allowing to run the model with
non-regular grid (ME-WP 2)
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Model using a new numerical scheme for
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non-regular grid (ME-WP 2)
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components in 3 vertical layers)
Coupling predator/forage revised

Movement (advection-diffusion) linked to
Maximum Sustainable Speed (MSS)

Spawning seasonality

0.10 ~

0.08 ~

0.06 -

0.04

0.02

0.00 ~

Gradient of Day Length (h/d)

-0.02 ~

-0.04

15-Dec

30-Dec -
14-Jan
29-Jan -
13-Feb -
28-Feb A
15-Mar A
30-Mar A
14-Apr -
29-Apr
14-May -
29-May -
13-Jun

28-Jun -




2004-05 achievements

Model using a new numerical scheme for
transport allowing to run the model with
non-regular grid (ME-WP 2)
Mid-trophic levels sub-model (6
components in 3 vertical layers)
Coupling predator/forage revised

Movement (advection-diffusion) linked to
Maximum Sustainable Speed (MSS) 6o

Spawning seasonality 050

Natural mortality varying in space and time o
In relation with habitats o

0.10

0.70

Mortality (M)

0.00

Habitat Index (Ha)




2004-05 achievements

Model using a new numerical scheme for
transport allowing to run the model with
non-regular grid (ME-WP 2)
Mid-trophic levels sub-model (6
components in 3 vertical layers)
Coupling predator/forage revised

Movement (advection-diffusion) linked to
Maximum Sustainable Speed (MSS)

Spawning seasonality
Natural mortality varying in space and time

Change in
Juvenile Habitat

!

In relation with habitats Ghonge o omen

Model is fully operational and can be used -

to run multi-species multi-fisheries o crenge T foundance ATt e
simulations e

Change in

Natural mortality (ife>0) Change in

Feeding [¢

™~
/ Habitat

Change in
Spatial distribution




2004-05 achievements

Model using a new numerical scheme for
transport allowing to run the model with
non-regular grid (ME-WP 2)
Mid-trophic levels sub-model (6
components in 3 vertical layers)

Coupling predator/forage revised

Movement (advection-diffusion) linked to
Maximum Sustainable Speed (MSS)

Spawning seasonality

Natural mortality varying in space and time
In relation with habitats

Model is fully operational and can be used
to run multi-species multi-fisheries
simulations

Executable with documentation (cf.
reference manual: ME IP 1), associated
softwares and files needed to run simulation
will be released on a dedicated web site

; seapodym.tk - Microsoft Internet Explorer
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SEAPODYWM

A Spatial Ecosystem and Populations Dynamics Model

What is Seapodym ?

Hor

3 SEAPODYM is a
[z l numerical model initially
L @ developped for

IIIIII . . . .
il investigating physical-
Download @l biological interaction
- | between tuna
Publicat W populations and the
Support fl pelagic ecosystem of
@ the Pacific Ocean. Using
Forum predicted  environment
from ocean-biogeochemical models, SEAPCDYM integrates spatio-
e temporal and multi-population dynamics and considers interactions
P among populations of different species and between populations and

their physical and biclogical environment (including intermediate
trophic levels). The model also includes a description of multiple
fisheries and then predicts spatio-temporal distribution of catch catch
rates, and length-frequencies of catch based either on observed or
simulated fishing effort, allowing respectively to evaluate the model or
to test management options (e.g., changing the fishing effort,
implementing marine reserves, efc...).

How to get Seapodym ?

SEAPODYM and associated programs and documentation are made
available to the scientific community free of charge. However, all
software and documentation are copyrighted, and availability of the
software is subjectto a that places some minor restrictions on
use and distribution. These restrictions permit icensees to distribute
unaltered copies of the software, but not derivative works based on it.
Licensees are not permitted to use the software for commercial
purpases, unless they get the licensor's permission |




Results: mid-trophic levels

Running forage model alone:

Turn-over of forage component is based
on a relationship between temperature and
age of maturity of organisms (Q10’s rule)
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-> this can be considered as a dynamic
equilibrium state of the system

-> and then provides a limit of the
carrying capacity of the ecosystem mid-
trophic levels for top predators species
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Results: mid-trophic levels
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Results: prey-predator coupling

» itis possible to have from zero to N predators species explicitly described in the model.

Over the “specific predator area”, the mean
forage mortality (for a given component) is
the sum of the mortalities due to the
predator species described in the model + a
residual mortality A’ due to all other
predators
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245

Locally, in each cell, the forage mortality
due to food requirements of described

. predators, @, is caculated according to

physical acce53|b|I|ty of the predator species
(age) to the forage component considered
and to their daily ration (% of body mass)

Ifsumof @, above 4. Outside specific predator area,

> ERROR: forage m = A(temperature)

biomass of predators cannot be nsice speciiC Hinee

sustained by the forage component foragem = a@;; + 1’



Application to skipjack,
yellowfin and bigeye tuna
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Fisheries

Category
code

Description / source / resolution

PURSE SEINE

WPSASS

Aggregated data of purse seine fisheries in the WCPO
Sets associated to animals, log or FAD

WPSUNA

Aggregated data of purse seine fisheries in the WCPO
Unassociated sets (i.e. free schools)

EPSASS

Aggregated data of purse seine fisheries in the EPO
Sets associated to animals, log or FAD

EPSUNA

Aggregated data of purse seine fisheries in the EPO
Unassociated sets (i.e. free schools)

POLE-AND-LINE

PLTRO | Aggregated data of tropical (25°N-25°S) pole-and-line fisheries data
PLSUB | Aggregated data of sub-tropical pole-and-line fisheries (mostly Japanese
domestic fleets)
LONGLINE
LLP80 | Aggregated data of longline fisheries before 1980 (The pre-1980/post-1980
categories was to (very roughly) define the change from targetting yellowfin to
targetting bigeye)
LLSHW | Aggregated data of longline shallow after 1980 (mainly TW and mainland
Chinese LL offshore fleets
LLDEEP | Aggregated data of deep longline fisheries after 1980
LLMIX | Aggregated data of “mixed” longline fisheries after 1980
DIVERSE
RINGNET | Aggregated data of ringnet fisheries (mainly Philippines, Indonesia)
ARTSURF | Aggregated data of artisanal surface fisheries (including ringnet, mainly
Philippines, Indonesia)
COMMHL | Aggregated data of commercial handline fisheries (Philippines, Indonesia, PNG,
uS)
GILLNET | Aggregated data of gillnet fisheries
TROLL | Aggregated data of troll fisheries




Spawning Habitat
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Skipjack Yellowfin Bigeye

1950-75

1976-98

Average predicted distribution of juvenile (age 2-3 months) biomass during decadal period 1950-75 and 1976-98



Skipjack Yellowfin Bigeye
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o . <+—— Skipjack anomaly (1976-98) — (1950-75)
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Average forage consumption by species (all age classes)
based on accessibility to forage components
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Running single vs multi-species simulations with
SEAPODYM: What are the effect of interaction between
top predator species like tuna?
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Some more results on bigeye...



Selectivity

bigeye
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BET

Observed total catch (t)
Blue = LL
Orange = Others (surf. Gears)

Predicted LL catch

Predicted total catch

High level of catch by surface
gears in 1994-97 not predicted
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BET - WCPO

Adult total biomass

SEAPODYM (3-species
simulation) estimates
with (red) and without
(blue) fishing

Black curve: MULTIFAN-
CL estimate (with fishing)
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Conclusions

* In absence of an optimization function, a reasonable
parameterization for 3 species (skj, yft and bet) and their fisheries
was obtained.

« The model capture important changes in the population
dynamics that explain a large part of time space variability in the
catch and CPUE.

» Multi-species simulations make big differences and produce
better results.

* Decline in bigeye stock In the late 1950’s and during 1960’s Is
reproduced by the model and predicted to be largely due to
natural variability AND species interactions.

 You can do it yourself: WwWw.seapodym.org




Perspectives

 There is still room for improvement in the parameterization
» Develop a version with an optimization function

* Include albacore
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Perspectives

 There is still room for improvement in the parameterization

» Develop a version with an optimization function

* Include albacore
 Test management scenarios

« Export the model to other Ocean:
GLOBEC CLIOTOP Modelling
working group

e Test first simulation with climate
change scenario (1860-2100)

-> Exploratory analysis to identify
main mechanisms that need more
studies (for WG 12 3 in CLIOTOP)
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icators|  Aspects and

WG 5
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